ArcFace: Additive Angular Margin Loss for Deep Face Recognition

Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also signifi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 10; pp. 5962 - 5979
Main Authors Deng, Jiankang, Guo, Jia, Yang, Jing, Xue, Niannan, Kotsia, Irene, Zafeiriou, Stefanos
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2021.3087709

Cover

Loading…
Abstract Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains <inline-formula><tex-math notation="LaTeX">K</tex-math> <mml:math><mml:mi>K</mml:mi></mml:math><inline-graphic xlink:href="deng-ieq1-3087709.gif"/> </inline-formula> sub-centers and training samples only need to be close to any of the <inline-formula><tex-math notation="LaTeX">K</tex-math> <mml:math><mml:mi>K</mml:mi></mml:math><inline-graphic xlink:href="deng-ieq2-3087709.gif"/> </inline-formula> positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.
AbstractList Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains <inline-formula><tex-math notation="LaTeX">K</tex-math> <mml:math><mml:mi>K</mml:mi></mml:math><inline-graphic xlink:href="deng-ieq1-3087709.gif"/> </inline-formula> sub-centers and training samples only need to be close to any of the <inline-formula><tex-math notation="LaTeX">K</tex-math> <mml:math><mml:mi>K</mml:mi></mml:math><inline-graphic xlink:href="deng-ieq2-3087709.gif"/> </inline-formula> positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.
Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains [Formula Omitted] sub-centers and training samples only need to be close to any of the [Formula Omitted] positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.
Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.
Author Xue, Niannan
Yang, Jing
Deng, Jiankang
Zafeiriou, Stefanos
Kotsia, Irene
Guo, Jia
Author_xml – sequence: 1
  givenname: Jiankang
  orcidid: 0000-0002-3709-6216
  surname: Deng
  fullname: Deng, Jiankang
  email: j.deng16@imperial.ac.uk
  organization: Department of Computing, Imperial College London, London, U.K
– sequence: 2
  givenname: Jia
  orcidid: 0000-0002-0709-261X
  surname: Guo
  fullname: Guo, Jia
  email: guojia@gmail.com
  organization: InsightFace, London, U.K
– sequence: 3
  givenname: Jing
  orcidid: 0000-0002-8794-4842
  surname: Yang
  fullname: Yang, Jing
  email: y.jing2016@gmail.com
  organization: Department of Computer Science, University of Nottingham, Nottingham, U.K
– sequence: 4
  givenname: Niannan
  orcidid: 0000-0002-7234-5425
  surname: Xue
  fullname: Xue, Niannan
  email: sparrowxue@hotmail.com
  organization: Department of Computing, Imperial College London, London, U.K
– sequence: 5
  givenname: Irene
  surname: Kotsia
  fullname: Kotsia, Irene
  email: e.kotsia@imperial.ac.uk
  organization: Cogitat, London, U.K
– sequence: 6
  givenname: Stefanos
  orcidid: 0000-0002-5222-1740
  surname: Zafeiriou
  fullname: Zafeiriou, Stefanos
  email: s.zafeiriou@imperial.ac.uk
  organization: Department of Computing, Imperial College London, London, U.K
BookMark eNp9kE1PwkAQhjcGI6D-Ab008eKlOPtFd72YBkVJIBqD5812OyUlpcVtMfHf2wrxwMHTXJ535p1nSHplVSIhVxRGlIK-W77Fi9mIAaMjDiqKQJ-QAaNjCDXTrEcGQMcsVIqpPhnW9RqACgn8jPS5oDBWQg7IQ-zd1Dq8D-I0zZv8C4O4XO0K64OF9au8DOZVXQdZ5YNHxG3QscE7umpVtnRVXpDTzBY1Xh7mOfmYPi0nL-H89Xk2ieeh40w1oZaJUI4DxSQCzljqIhSZgARhLAVFxQUmUqaWC26FpBlYCirlKomESrjj5-R2v3frq88d1o3Z5LXDorAlVrvaMMm1UpGiskVvjtB1tfNl286wiAqlGZMdxfaU8-2DHjOz9fnG-m9DwXR6za9e0-k1B71tSB2FXN7YzkPjbV78H73eR3NE_LulhdBtb_4D1LeFTw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3390_s24144620
crossref_primary_10_1007_s10044_023_01208_1
crossref_primary_10_1007_s00371_024_03414_2
crossref_primary_10_1007_s11042_024_20389_3
crossref_primary_10_1109_TPAMI_2024_3445582
crossref_primary_10_5753_jisa_2024_3914
crossref_primary_10_1109_ACCESS_2023_3321149
crossref_primary_10_1109_JSAC_2024_3369654
crossref_primary_10_1007_s00607_025_01418_x
crossref_primary_10_3390_s23073765
crossref_primary_10_1109_TASLPRO_2025_3527147
crossref_primary_10_1109_TCSVT_2024_3435383
crossref_primary_10_1016_j_iot_2025_101501
crossref_primary_10_1007_s00530_024_01619_y
crossref_primary_10_1109_TIP_2021_3125504
crossref_primary_10_1109_TCSVT_2023_3272924
crossref_primary_10_1016_j_knosys_2024_112727
crossref_primary_10_1109_TASLP_2024_3385287
crossref_primary_10_1109_TIFS_2024_3371257
crossref_primary_10_12677_CSA_2023_132020
crossref_primary_10_1109_ACCESS_2023_3336405
crossref_primary_10_1186_s13636_021_00234_3
crossref_primary_10_3390_app14052149
crossref_primary_10_3390_electronics12214421
crossref_primary_10_1007_s40747_022_00868_6
crossref_primary_10_1109_TIP_2025_3548896
crossref_primary_10_1016_j_cag_2023_08_008
crossref_primary_10_1016_j_neucom_2024_129000
crossref_primary_10_1016_j_engappai_2024_109071
crossref_primary_10_1016_j_knosys_2024_112330
crossref_primary_10_1016_j_patcog_2023_109760
crossref_primary_10_1109_TIP_2024_3411474
crossref_primary_10_1109_TIP_2025_3539472
crossref_primary_10_1117_1_JEI_31_6_062009
crossref_primary_10_3390_sym14122686
crossref_primary_10_1016_j_ins_2024_120618
crossref_primary_10_1007_s00371_022_02675_z
crossref_primary_10_3390_info14060342
crossref_primary_10_1007_s00521_025_11139_z
crossref_primary_10_1109_ACCESS_2024_3382584
crossref_primary_10_3390_s23136006
crossref_primary_10_1109_ACCESS_2024_3435351
crossref_primary_10_3390_agriculture13010144
crossref_primary_10_1016_j_eswa_2023_121410
crossref_primary_10_3390_jimaging9020038
crossref_primary_10_1016_j_imavis_2025_105453
crossref_primary_10_1016_j_patrec_2023_06_014
crossref_primary_10_3390_math10193592
crossref_primary_10_1007_s44196_024_00617_2
crossref_primary_10_1109_TIFS_2024_3424303
crossref_primary_10_1109_ACCESS_2023_3262271
crossref_primary_10_1016_j_apacoust_2024_109929
crossref_primary_10_1145_3597300
crossref_primary_10_3390_electronics12163447
crossref_primary_10_1007_s10489_025_06366_9
crossref_primary_10_1007_s11042_023_17018_w
crossref_primary_10_1109_JIOT_2023_3339722
crossref_primary_10_1109_TIM_2024_3480217
crossref_primary_10_1109_TKDE_2024_3393512
crossref_primary_10_1002_hbm_26721
crossref_primary_10_3390_app13106070
crossref_primary_10_1109_ACCESS_2024_3377564
crossref_primary_10_1109_ACCESS_2023_3326235
crossref_primary_10_1109_ACCESS_2022_3170037
crossref_primary_10_1109_TASLP_2024_3407527
crossref_primary_10_1007_s11042_022_12158_x
crossref_primary_10_1121_10_0025178
crossref_primary_10_1007_s10815_024_03080_2
crossref_primary_10_1088_1742_6596_2868_1_012042
crossref_primary_10_3390_app14072865
crossref_primary_10_1007_s10489_024_05330_3
crossref_primary_10_1016_j_mcpdig_2023_10_004
crossref_primary_10_1109_ACCESS_2024_3445178
crossref_primary_10_1007_s11042_023_17949_4
crossref_primary_10_1109_TCSVT_2024_3419933
crossref_primary_10_1016_j_asej_2025_103350
crossref_primary_10_3390_math11071694
crossref_primary_10_1002_cav_2238
crossref_primary_10_3390_app13116711
crossref_primary_10_3390_info13110535
crossref_primary_10_1007_s10489_025_06269_9
crossref_primary_10_1145_3631460
crossref_primary_10_1007_s11280_024_01263_6
crossref_primary_10_1016_j_eswa_2023_122170
crossref_primary_10_1109_TCSVT_2022_3174582
crossref_primary_10_1109_TIFS_2023_3284649
crossref_primary_10_1109_TIP_2024_3451933
crossref_primary_10_3390_s25051574
crossref_primary_10_1016_j_image_2025_117269
crossref_primary_10_1093_comjnl_bxad111
crossref_primary_10_1109_ACCESS_2023_3321118
crossref_primary_10_1007_s11227_024_06158_x
crossref_primary_10_1109_ACCESS_2024_3390412
crossref_primary_10_1007_s11042_023_15084_8
crossref_primary_10_1177_00405175241293764
crossref_primary_10_1109_ACCESS_2025_3532745
crossref_primary_10_46604_ijeti_2024_13314
crossref_primary_10_1016_j_sigpro_2024_109816
crossref_primary_10_1111_jdv_20365
crossref_primary_10_1109_ACCESS_2024_3406911
crossref_primary_10_1016_j_bspc_2024_106993
crossref_primary_10_1109_ACCESS_2024_3370437
crossref_primary_10_3390_app13105950
crossref_primary_10_1007_s41870_024_01872_4
crossref_primary_10_3390_agriculture14071112
crossref_primary_10_7746_jkros_2024_19_4_335
crossref_primary_10_1016_j_engappai_2024_109346
crossref_primary_10_1371_journal_pgen_1011273
crossref_primary_10_1109_TIM_2024_3428610
crossref_primary_10_1109_TIFS_2023_3329686
crossref_primary_10_1109_ACCESS_2024_3414651
crossref_primary_10_1109_TIFS_2024_3372803
crossref_primary_10_1007_s10489_025_06267_x
crossref_primary_10_1016_j_animal_2024_101079
crossref_primary_10_1016_j_eswa_2023_121182
crossref_primary_10_12720_jait_15_5_572_579
crossref_primary_10_3390_electronics12132927
crossref_primary_10_1007_s11263_024_02068_w
crossref_primary_10_1007_s00521_024_10244_9
crossref_primary_10_3390_electronics13183627
crossref_primary_10_1016_j_engappai_2024_107941
crossref_primary_10_1109_TMM_2023_3313256
crossref_primary_10_3390_e25050727
crossref_primary_10_1109_ACCESS_2024_3356550
crossref_primary_10_2478_amns_2024_3586
crossref_primary_10_1109_TNNLS_2020_3017692
crossref_primary_10_1007_s12204_024_2726_z
crossref_primary_10_24018_ejece_2024_8_2_604
crossref_primary_10_1109_TAES_2023_3277428
crossref_primary_10_54097_hset_v61i_10291
Cites_doi 10.1109/ICCV.2017.47
10.1109/ICCV.2017.578
10.1109/CVPR.2017.668
10.1109/CVPR42600.2020.00874
10.1109/CVPR.2019.00800
10.1007/978-3-030-01252-6_48
10.1145/2810103.2813677
10.1109/CVPRW.2017.250
10.1007/978-3-030-58621-8_43
10.1109/CVPR.2019.00585
10.1109/ICCV.2019.00557
10.1007/978-3-030-58545-7_31
10.1109/CVPR42600.2020.01318
10.1109/CVPR.2015.7298682
10.1109/CVPR.2017.361
10.1109/CVPR42600.2020.00685
10.1109/CVPR42600.2020.00575
10.1109/ICCV.2019.01015
10.1007/978-3-319-46487-9_6
10.1109/CVPR.2019.00364
10.1109/CVPR42600.2020.00594
10.1145/3123266.3123359
10.1109/CVPR.2017.713
10.1109/ICCV.2019.00945
10.1109/FG.2018.00020
10.1109/CVPR.2019.01222
10.1109/WACV.2016.7477558
10.1109/CVPR.2018.00092
10.1109/ICCV.2017.309
10.1007/978-3-030-58595-2_9
10.1109/LSP.2016.2603342
10.1109/CVPR.2019.01108
10.1109/TPAMI.2017.2672557
10.1109/CVPR.2019.00123
10.1109/CVPRW.2017.87
10.1007/s11263-019-01178-0
10.1109/CVPR.2019.00453
10.1109/ICIP.2018.8451704
10.1109/CVPR.2015.7299155
10.1109/CVPR42600.2020.00617
10.1109/CVPR42600.2020.00512
10.1109/CVPR42600.2020.00525
10.1007/978-3-030-58548-8_3
10.1109/CVPR42600.2020.00571
10.1109/CVPR.2015.7299111
10.1109/CVPR42600.2020.00835
10.1109/ICCV.2019.00700
10.1109/ICCV.2019.00655
10.1109/ICCVW.2019.00322
10.1007/978-3-319-46454-1_35
10.1109/CVPR.2019.00353
10.1007/s11263-018-1113-3
10.1109/CVPR.2018.00552
10.1109/CVPR.2014.220
10.1109/CVPR42600.2020.00566
10.1016/j.cviu.2019.102805
10.1109/CVPR.2011.5995566
10.1109/ICIP.2014.7025068
10.1109/CVPRW.2017.251
10.1109/CVPR.2016.434
10.1007/s13398-014-0173-7.2
10.1017/9781108924238.008
10.1109/CVPR.2004.414
10.1609/aaai.v33i01.33019251
10.1109/CVPR.2016.527
10.1109/TIFS.2018.2833032
10.1109/CVPR.2018.00891
10.1109/CVPR42600.2020.00852
10.1609/aaai.v34i07.6906
10.1007/978-3-319-46478-7_31
10.1109/CVPR42600.2020.00774
10.5244/C.29.41
10.1109/CVPR.2019.01014
10.1109/CVPR42600.2020.00775
10.1109/LSP.2018.2822810
10.1109/CVPR.2019.00482
10.1109/SIBGRAPI.2018.00067
10.1109/ICB2018.2018.00033
10.1109/CVPR.2016.90
10.1007/978-3-030-01240-3_47
10.1109/CVPR42600.2020.00643
10.1007/978-3-030-28954-6
10.1109/CVPR.1991.139758
10.1109/CVPR.2018.00702
10.1109/TPAMI.2006.172
10.1109/CVPR.2016.522
10.1109/TPAMI.2018.2827389
10.1109/CVPR.2019.01216
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3087709
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 5979
ExternalDocumentID 10_1109_TPAMI_2021_3087709
9449988
Genre orig-research
GrantInformation_xml – fundername: Imperial President's PhD Scholarship
– fundername: Large Scale Shape Analysis of Deformable Models of Humans
  grantid: EP/S010203/1
– fundername: Face Matching for Automatic Identity Retrieval, Recognition, Verification and Management
  grantid: EP/N007743/1
– fundername: University of Nottingham
– fundername: Google Faculty Award
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c328t-95b48c301eb70322dc7e4f40be06541e834eb55da343a451f0a108d38b748b3c3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 14:28:23 EDT 2025
Sun Jun 29 16:48:22 EDT 2025
Tue Jul 01 03:18:26 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Wed Aug 27 02:18:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-95b48c301eb70322dc7e4f40be06541e834eb55da343a451f0a108d38b748b3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0709-261X
0000-0002-5222-1740
0000-0002-3709-6216
0000-0002-8794-4842
0000-0002-7234-5425
PMID 34106845
PQID 2714892255
PQPubID 85458
PageCount 18
ParticipantIDs crossref_primary_10_1109_TPAMI_2021_3087709
ieee_primary_9449988
crossref_citationtrail_10_1109_TPAMI_2021_3087709
proquest_miscellaneous_2539887815
proquest_journals_2714892255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
Chen (ref39) 2015
ref59
ref58
ref53
ref52
ref55
ref54
Liu (ref84)
Pereyra (ref81) 2017
Pernici (ref87)
ref51
ref50
ref46
Mordvintsev (ref30) 2015
ref45
ref48
ref47
ref44
Liu (ref95) 2015
Zheng (ref77) 2017
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref31
ref33
ref32
Hinton (ref119) 2015
ref38
Rippel (ref43)
Li (ref117)
Müller (ref63) 2020
Sohn (ref12)
ref24
Sun (ref1)
ref23
Wang (ref108)
ref26
ref25
ref20
ref22
ref21
Zhang (ref116) 2019
Tan (ref118)
ref28
ref29
ref13
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
Heusel (ref121)
Srivastava (ref93) 2014; 15
Ranjan (ref114) 2018
ref92
Hardt (ref85) 2016
ref94
ref91
ref90
Xie (ref113)
ref88
Yosinski (ref71) 2015
Brock (ref67)
ref82
Huang (ref89) 2007
ref80
ref79
ref78
ref109
ref106
Yi (ref56) 2014
ref107
ref104
ref74
ref105
Abadi (ref41) 2016
ref102
ref76
ref103
Liu (ref42)
ref2
Hoffer (ref86) 2018
ref111
ref70
ref112
ref73
ref72
ref110
Ranjan (ref83) 2017
ref68
Goodfellow (ref36)
ref69
ref64
ref115
Zheng (ref75) 2018
ref66
ref65
Kingma (ref120) 2014
Zhmoginov (ref27) 2016
ref60
ref62
ref61
References_xml – ident: ref46
  doi: 10.1109/ICCV.2017.47
– ident: ref73
  doi: 10.1109/ICCV.2017.578
– ident: ref91
  doi: 10.1109/CVPR.2017.668
– ident: ref33
  doi: 10.1109/CVPR42600.2020.00874
– ident: ref20
  doi: 10.1109/CVPR.2019.00800
– ident: ref94
  doi: 10.1007/978-3-030-01252-6_48
– ident: ref70
  doi: 10.1145/2810103.2813677
– ident: ref76
  doi: 10.1109/CVPRW.2017.250
– ident: ref22
  doi: 10.1007/978-3-030-58621-8_43
– ident: ref97
  doi: 10.1109/CVPR.2019.00585
– ident: ref99
  doi: 10.1109/ICCV.2019.00557
– ident: ref107
  doi: 10.1007/978-3-030-58545-7_31
– ident: ref35
  doi: 10.1109/CVPR42600.2020.01318
– ident: ref3
  doi: 10.1109/CVPR.2015.7298682
– ident: ref23
  doi: 10.1109/CVPR.2017.361
– ident: ref104
  doi: 10.1109/CVPR42600.2020.00685
– year: 2018
  ident: ref114
  article-title: Crystal loss and quality pooling for unconstrained face verification and recognition
– start-page: 507
  volume-title: Proc. Int. Conf. Int. Conf. Mach. Learn.
  ident: ref42
  article-title: Large-margin softmax loss for convolutional neural networks
– ident: ref101
  doi: 10.1109/CVPR42600.2020.00575
– ident: ref98
  doi: 10.1109/ICCV.2019.01015
– ident: ref37
  doi: 10.1007/978-3-319-46487-9_6
– start-page: 1332
  volume-title: Proc. Brit. Mach. Vis. Conf.
  ident: ref113
  article-title: Multicolumn networks for face recognition
– ident: ref96
  doi: 10.1109/CVPR.2019.00364
– ident: ref54
  doi: 10.1109/CVPR42600.2020.00594
– ident: ref82
  doi: 10.1145/3123266.3123359
– ident: ref13
  doi: 10.1109/CVPR.2017.713
– ident: ref21
  doi: 10.1109/ICCV.2019.00945
– year: 2019
  ident: ref116
  article-title: VargNet: Variable group convolutional neural network for efficient embedded computing
– ident: ref9
  doi: 10.1109/FG.2018.00020
– ident: ref50
  doi: 10.1109/CVPR.2019.01222
– ident: ref74
  doi: 10.1109/WACV.2016.7477558
– ident: ref64
  doi: 10.1109/CVPR.2018.00092
– start-page: 2672
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Generative adversarial nets
– ident: ref45
  doi: 10.1109/ICCV.2017.309
– ident: ref106
  doi: 10.1007/978-3-030-58595-2_9
– ident: ref7
  doi: 10.1109/LSP.2016.2603342
– ident: ref49
  doi: 10.1109/CVPR.2019.01108
– ident: ref61
  doi: 10.1109/TPAMI.2017.2672557
– start-page: 780
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref43
  article-title: Metric learning with adaptive density discrimination
– start-page: 46
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
  ident: ref87
  article-title: Maximally compact and separated features with regular polytope networks
– ident: ref51
  doi: 10.1109/CVPR.2019.00123
– ident: ref79
  doi: 10.1109/CVPRW.2017.87
– start-page: 2678
  volume-title: Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops
  ident: ref117
  article-title: AirFace: Lightweight and efficient model for face recognition
– ident: ref11
  doi: 10.1007/s11263-019-01178-0
– year: 2017
  ident: ref77
  article-title: Cross-Age LFW: A database for studying cross-age face recognition in unconstrained environments
– ident: ref68
  doi: 10.1109/CVPR.2019.00453
– year: 2015
  ident: ref71
  article-title: Understanding neural networks through deep visualization
– ident: ref38
  doi: 10.1109/ICIP.2018.8451704
– ident: ref31
  doi: 10.1109/CVPR.2015.7299155
– ident: ref29
  doi: 10.1109/CVPR42600.2020.00617
– ident: ref66
  doi: 10.1109/CVPR42600.2020.00512
– ident: ref8
  doi: 10.1109/CVPR42600.2020.00525
– ident: ref111
  doi: 10.1007/978-3-030-58548-8_3
– ident: ref110
  doi: 10.1109/CVPR42600.2020.00571
– ident: ref24
  doi: 10.1109/CVPR.2015.7299111
– ident: ref103
  doi: 10.1109/CVPR42600.2020.00835
– ident: ref100
  doi: 10.1109/ICCV.2019.00700
– ident: ref62
  doi: 10.1109/ICCV.2019.00655
– ident: ref88
  doi: 10.1109/ICCVW.2019.00322
– ident: ref10
  doi: 10.1007/978-3-319-46454-1_35
– ident: ref52
  doi: 10.1109/CVPR.2019.00353
– year: 2015
  ident: ref95
  article-title: Targeting ultimate accuracy: Face recognition via deep embedding
– ident: ref25
  doi: 10.1007/s11263-018-1113-3
– start-page: 6629
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref121
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
– start-page: 37
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref67
  article-title: Large scale GAN training for high fidelity natural image synthesis
– year: 2015
  ident: ref30
  article-title: Inceptionism: Going deeper into neural networks
– ident: ref14
  doi: 10.1109/CVPR.2018.00552
– ident: ref2
  doi: 10.1109/CVPR.2014.220
– ident: ref55
  doi: 10.1109/CVPR42600.2020.00566
– year: 2016
  ident: ref41
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
– year: 2016
  ident: ref85
  article-title: Identity matters in deep learning
– ident: ref6
  doi: 10.1016/j.cviu.2019.102805
– ident: ref90
  doi: 10.1109/CVPR.2011.5995566
– ident: ref112
  doi: 10.1109/ICIP.2014.7025068
– ident: ref17
  doi: 10.1109/CVPRW.2017.251
– ident: ref44
  doi: 10.1109/CVPR.2016.434
– year: 2014
  ident: ref56
  article-title: Learning face representation from scratch
– ident: ref92
  doi: 10.1007/s13398-014-0173-7.2
– year: 2017
  ident: ref81
  article-title: Regularizing neural networks by penalizing confident output distributions
– ident: ref40
  doi: 10.1017/9781108924238.008
– ident: ref59
  doi: 10.1109/CVPR.2004.414
– year: 2015
  ident: ref119
  article-title: Distilling the knowledge in a neural network
– ident: ref115
  doi: 10.1609/aaai.v33i01.33019251
– ident: ref78
  doi: 10.1109/CVPR.2016.527
– ident: ref57
  doi: 10.1109/TIFS.2018.2833032
– start-page: 10029
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref108
  article-title: Loss function search for face recognition
– ident: ref47
  doi: 10.1109/CVPR.2018.00891
– year: 2016
  ident: ref27
  article-title: Inverting face embeddings with convolutional neural networks
– ident: ref34
  doi: 10.1109/CVPR42600.2020.00852
– ident: ref53
  doi: 10.1609/aaai.v34i07.6906
– start-page: 6225
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref84
  article-title: Learning towards minimum hyperspherical energy
– ident: ref72
  doi: 10.1007/978-3-319-46478-7_31
– year: 2017
  ident: ref83
  article-title: L2-constrained softmax loss for discriminative face verification
– ident: ref102
  doi: 10.1109/CVPR42600.2020.00774
– year: 2015
  ident: ref39
  article-title: Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems
– ident: ref4
  doi: 10.5244/C.29.41
– year: 2020
  ident: ref63
  article-title: Subclass distillation
– ident: ref48
  doi: 10.1109/CVPR.2019.01014
– ident: ref109
  doi: 10.1109/CVPR42600.2020.00775
– ident: ref15
  doi: 10.1109/LSP.2018.2822810
– ident: ref16
  doi: 10.1109/CVPR.2019.00482
– year: 2018
  ident: ref86
  article-title: Fix your classifier: The marginal value of training the last weight layer
– ident: ref5
  doi: 10.1109/SIBGRAPI.2018.00067
– ident: ref80
  doi: 10.1109/ICB2018.2018.00033
– ident: ref58
  doi: 10.1109/CVPR.2016.90
– ident: ref18
  doi: 10.1007/978-3-030-01240-3_47
– ident: ref105
  doi: 10.1109/CVPR42600.2020.00643
– ident: ref69
  doi: 10.1007/978-3-030-28954-6
– ident: ref32
  doi: 10.1109/CVPR.1991.139758
– year: 2018
  ident: ref75
  article-title: Cross-pose LFW: A database for studying cross-pose face recognition in unconstrained environments
  publication-title: Tech. Rep. 18–01
– ident: ref65
  doi: 10.1109/CVPR.2018.00702
– start-page: 6105
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref118
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– ident: ref60
  doi: 10.1109/TPAMI.2006.172
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref93
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 1988
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref1
  article-title: Deep learning face representation by joint identification-verification
– ident: ref26
  doi: 10.1109/CVPR.2016.522
– year: 2014
  ident: ref120
  article-title: Adam: A method for stochastic optimization
– ident: ref28
  doi: 10.1109/TPAMI.2018.2827389
– start-page: 7
  volume-title: Tech. Rep.
  year: 2007
  ident: ref89
  article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments
– start-page: 1857
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Improved deep metric learning with multi-class n-pair loss objective
– ident: ref19
  doi: 10.1109/CVPR.2019.01216
SSID ssj0014503
Score 2.6996233
Snippet Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5962
SubjectTerms additive angular margin
Additives
Data models
Embedding
Face recognition
Inverse problems
Large-scale face recognition
model inversion
Noise measurement
noisy labels
Predictive models
sub-class
Training
Training data
Title ArcFace: Additive Angular Margin Loss for Deep Face Recognition
URI https://ieeexplore.ieee.org/document/9449988
https://www.proquest.com/docview/2714892255
https://www.proquest.com/docview/2539887815
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8BT9sDX2WiwJCReIO0cWw3Di9TtFExRKcJgdS3yHYuEgKlqGtf9tdzdpOoGtO0tyg5R_Gd73wX390P4DwdGWGt45GwwkQUb8RRhlUZaceNIH_eYGjqM_kxunmUt1M13YDLrhYGEUPyGQ78ZTjLL2du6X-VDTNJ_rnWm7BJgduqVqs7MZAqoCCTB0MaTmFEWyATZ8OHn_nkO4WCCR-E_nexbxVK1jseaV_FtLYfBYCVd1Y5bDXjHZi0H7nKMHkeLBd24H7_0b_xf2exC9uNz8ny1SLZgw2s92GnxXNgjXrvw8e15oQ9-JLP3dg4vGJ5WYYMI5bXHrh-zjw67lPN7mhCjJxe9g3xlXladt_mI83qA3gcXz98vYkauIXIiUQvokxZqR0pPFoyA0lSuhRlJWOLvgCVoxYSrVIlyVAYqXgVGx7rUmibSm2FE59gq57VeAhMmMrSXW4zk0glSlMhuTI4SqtMIyZpH3jL9MI1vcg9JMZLEWKSOCuCzAovs6KRWR8uujGvq04c_6Tuec53lA3T-3DSyrZolPVXkaQUE2Zk2FQfzrrHpGb-7MTUOFsSjRI0PNVcHf39zcfwIfGVESHP7wS2FvMlfiZ_ZWFPw0J9A3oS4mI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8x9sB4GAyY6PiYJ-1tpMSx3Th7maJtVYEWIVQk3iLbuUgTKEVd-7K_nrObRGigaW9Rco7iO9_5Lr67H8DndGCEtY5HwgoTUbwRRxlWZaQdN4L8eYOhqc_kcjC6kee36nYNTrpaGEQMyWfY95fhLL-cuaX_VXaaSfLPtX4Fr2nfV3xVrdWdGUgVcJDJhyEdp0CiLZGJs9PpVT45o2Aw4f3QAS_2zULJfscD7euYnuxIAWLlmV0Om81wCybtZ65yTO76y4Xtuz9_dXD833lsw9vG62T5apm8gzWsd2CrRXRgjYLvwOaT9oS78C2fu6Fx-JXlZRlyjFhee-j6OfP4uL9qNqYJMXJ72Q_EB-Zp2XWbkTSr9-Bm-HP6fRQ1gAuRE4leRJmyUjtSebRkCJKkdCnKSsYWfQkqRy0kWqVKkqIwUvEqNjzWpdA2ldoKJ97Dej2rcR-YMJWlu9xmJpFKlKZCcmZwkFaZRkzSHvCW6YVrupF7UIz7IkQlcVYEmRVeZkUjsx586cY8rHpx_JN613O-o2yY3oPDVrZFo66_iySlqDAj06Z68Kl7TIrmT09MjbMl0ShBw1PN1YeX3_wRNkbTybgYn11eHMCbxNdJhKy_Q1hfzJd4RN7Lwh6HRfsIdhflqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ArcFace%3A+Additive+Angular+Margin+Loss+for+Deep+Face+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Deng%2C+Jiankang&rft.au=Guo%2C+Jia&rft.au=Yang%2C+Jing&rft.au=Xue%2C+Niannan&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=44&rft.issue=10&rft.spage=5962&rft_id=info:doi/10.1109%2FTPAMI.2021.3087709&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon