ReDMark: Framework for residual diffusion watermarking based on deep networks
•Learning new embedding patterns.•Customizing solutions for suggested transform domains and attacks.•Enhancing security and robustness by diffusing watermark in a wide area of images. Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and imag...
Saved in:
Published in | Expert systems with applications Vol. 146; p. 113157 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.05.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2019.113157 |
Cover
Loading…
Abstract | •Learning new embedding patterns.•Customizing solutions for suggested transform domains and attacks.•Enhancing security and robustness by diffusing watermark in a wide area of images.
Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, applications of Convolutional Neural Networks for watermarking have recently emerged. In this paper, we propose a deep end-to-end diffusion watermarking framework (ReDMark) which can learn a new watermarking algorithm in any desired transform space. The framework is composed of two Fully Convolutional Neural Networks with residual structure which handle embedding and extraction operations in real-time. The whole deep network is trained end-to-end to conduct a blind secure watermarking. The proposed framework simulates various attacks as a differentiable network layer to facilitate end-to-end training. The watermark data is diffused in a relatively wide area of the image to enhance security and robustness of the algorithm. Comparative results versus recent state-of-the-art researches highlight the superiority of the proposed framework in terms of imperceptibility, robustness and speed. The source codes of the proposed framework are publicly available at Github11https://github.com/MahdiShAhmadi/ReDMark/tree/master/. |
---|---|
AbstractList | Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, applications of Convolutional Neural Networks for watermarking have recently emerged. In this paper, we propose a deep end-to-end diffusion watermarking framework (ReDMark) which can learn a new watermarking algorithm in any desired transform space. The framework is composed of two Fully Convolutional Neural Networks with residual structure which handle embedding and extraction operations in real-time. The whole deep network is trained end-to-end to conduct a blind secure watermarking. The proposed framework simulates various attacks as a differentiable network layer to facilitate end-to-end training. The watermark data is diffused in a relatively wide area of the image to enhance security and robustness of the algorithm. Comparative results versus recent state-of-the-art researches highlight the superiority of the proposed framework in terms of imperceptibility, robustness and speed. The source codes of the proposed framework are publicly available at Github1. •Learning new embedding patterns.•Customizing solutions for suggested transform domains and attacks.•Enhancing security and robustness by diffusing watermark in a wide area of images. Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, applications of Convolutional Neural Networks for watermarking have recently emerged. In this paper, we propose a deep end-to-end diffusion watermarking framework (ReDMark) which can learn a new watermarking algorithm in any desired transform space. The framework is composed of two Fully Convolutional Neural Networks with residual structure which handle embedding and extraction operations in real-time. The whole deep network is trained end-to-end to conduct a blind secure watermarking. The proposed framework simulates various attacks as a differentiable network layer to facilitate end-to-end training. The watermark data is diffused in a relatively wide area of the image to enhance security and robustness of the algorithm. Comparative results versus recent state-of-the-art researches highlight the superiority of the proposed framework in terms of imperceptibility, robustness and speed. The source codes of the proposed framework are publicly available at Github11https://github.com/MahdiShAhmadi/ReDMark/tree/master/. |
ArticleNumber | 113157 |
Author | Norouzi, Alireza Emami, Ali Samavi, Shadrokh Ahmadi, Mahdi Karimi, Nader |
Author_xml | – sequence: 1 givenname: Mahdi surname: Ahmadi fullname: Ahmadi, Mahdi email: mahdi.ahmadi@ec.iut.ac.ir organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran – sequence: 2 givenname: Alireza surname: Norouzi fullname: Norouzi, Alireza email: alireza.norouzi@ec.iut.ac.ir organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran – sequence: 3 givenname: Nader surname: Karimi fullname: Karimi, Nader email: nader.karimi@cc.iut.ac.ir organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran – sequence: 4 givenname: Shadrokh surname: Samavi fullname: Samavi, Shadrokh email: samavi@cc.iut.ac.ir, ssoroush@med.umich.edu organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran – sequence: 5 givenname: Ali surname: Emami fullname: Emami, Ali email: a.emami@uq.edu.au organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran |
BookMark | eNp9kF1LwzAUhoNMcE7_gFcFrzvz0TapeCPTqbAhiF6HND2RdFszk9bhvzelXnmxqwOH9zmH9zlHk9a1gNAVwXOCSXHTzCEc1JxiUs4JYSTnJ2hKBGdpwUs2QVNc5jzNCM_O0HkIDcaEY8ynaP0GD2vlN7fJ0qsdHJzfJMb5xEOwda-2SW2N6YN1bXJQHfhdzNr2M6lUgDqJ2xpgn7TQDWS4QKdGbQNc_s0Z-lg-vi-e09Xr08vifpVqRkWXlhgYI0bnmcIlJ8ZoqlVRKAY5MyzTQpUCqrxkea4hxxmtYoiCqYQSusowm6Hr8e7eu68eQicb1_s2vpQ0YwRTQXARU3RMae9C8GDk3ttY4EcSLAdtspGDNjlok6O2CIl_kLad6qKAziu7PY7ejSjE6t8WvAzaQquhth50J2tnj-G_P92Kzw |
CitedBy_id | crossref_primary_10_1007_s11042_020_09606_x crossref_primary_10_1016_j_jisa_2024_103884 crossref_primary_10_3390_electronics12020303 crossref_primary_10_3390_electronics14010086 crossref_primary_10_1007_s11042_024_20258_z crossref_primary_10_1109_TMM_2022_3223559 crossref_primary_10_1109_TCSVT_2023_3295895 crossref_primary_10_1155_2022_5425674 crossref_primary_10_1016_j_procs_2020_09_187 crossref_primary_10_1007_s11042_022_13938_1 crossref_primary_10_1016_j_jvcir_2024_104238 crossref_primary_10_1016_j_dsp_2024_104684 crossref_primary_10_1007_s00371_023_02967_y crossref_primary_10_1007_s11263_025_02375_w crossref_primary_10_3390_jimaging10060138 crossref_primary_10_1109_LSP_2024_3456673 crossref_primary_10_1007_s00530_021_00835_0 crossref_primary_10_1155_2022_9880038 crossref_primary_10_1007_s00530_025_01689_6 crossref_primary_10_1109_TCSS_2023_3268950 crossref_primary_10_3390_app132111852 crossref_primary_10_3390_math13040651 crossref_primary_10_1109_LSP_2024_3501285 crossref_primary_10_1155_2022_7259469 crossref_primary_10_1016_j_neunet_2023_03_037 crossref_primary_10_1109_TCSVT_2024_3448351 crossref_primary_10_1007_s11042_023_16963_w crossref_primary_10_1002_cpe_8389 crossref_primary_10_1007_s11760_025_03867_5 crossref_primary_10_1016_j_jisa_2023_103657 crossref_primary_10_1109_TMM_2023_3333659 crossref_primary_10_1016_j_image_2021_116523 crossref_primary_10_1364_OE_498067 crossref_primary_10_1016_j_jvcir_2023_103934 crossref_primary_10_1109_TIFS_2025_3542992 crossref_primary_10_3390_e24121762 crossref_primary_10_1007_s00521_024_09496_2 crossref_primary_10_1007_s00034_023_02299_1 crossref_primary_10_3390_math11143134 crossref_primary_10_1007_s11042_023_15371_4 crossref_primary_10_3390_math11010209 crossref_primary_10_1109_TCSVT_2021_3138795 crossref_primary_10_1016_j_eswa_2023_122062 crossref_primary_10_1016_j_neucom_2022_02_083 crossref_primary_10_1016_j_future_2024_107523 crossref_primary_10_1145_3508365 crossref_primary_10_1109_ACCESS_2024_3446489 crossref_primary_10_1117_1_JEI_31_4_043041 crossref_primary_10_1016_j_asoc_2024_112556 crossref_primary_10_1631_FITEE_2200628 crossref_primary_10_1109_TMM_2024_3415415 crossref_primary_10_1109_JOE_2023_3310079 crossref_primary_10_3390_electronics12010074 crossref_primary_10_32604_cmc_2024_055150 crossref_primary_10_1007_s10044_022_01104_0 crossref_primary_10_1007_s11042_022_13314_z crossref_primary_10_1109_TCSVT_2024_3454531 crossref_primary_10_1109_TAES_2023_3280468 crossref_primary_10_3390_app14166897 crossref_primary_10_11834_jig_220811 crossref_primary_10_1016_j_jvcir_2023_103794 crossref_primary_10_1109_ACCESS_2020_3022779 crossref_primary_10_1117_1_JEI_32_3_031804 crossref_primary_10_1109_TIM_2023_3285981 crossref_primary_10_1016_j_jvcir_2023_103837 crossref_primary_10_3390_sym15050964 crossref_primary_10_1007_s00371_023_03033_3 crossref_primary_10_1016_j_jvcir_2021_103244 crossref_primary_10_1016_j_jfranklin_2025_107511 crossref_primary_10_1109_TIFS_2024_3463547 crossref_primary_10_1016_j_isci_2024_110821 crossref_primary_10_1109_TCSVT_2024_3471891 crossref_primary_10_1109_TIFS_2023_3322315 crossref_primary_10_1016_j_jvcir_2024_104317 crossref_primary_10_1016_j_jvcir_2025_104438 crossref_primary_10_1109_TETCI_2024_3386916 crossref_primary_10_1016_j_cose_2025_104355 crossref_primary_10_1109_TAI_2024_3485519 crossref_primary_10_32604_cmc_2023_034748 crossref_primary_10_1016_j_neucom_2024_127499 crossref_primary_10_1016_j_patcog_2024_110691 crossref_primary_10_1109_TDSC_2022_3208934 crossref_primary_10_1016_j_eswa_2024_123486 crossref_primary_10_1109_ACCESS_2023_3337812 crossref_primary_10_1007_s41870_023_01232_8 crossref_primary_10_1109_TCSVT_2023_3252042 crossref_primary_10_1016_j_procs_2020_09_135 crossref_primary_10_1007_s10489_022_04047_5 crossref_primary_10_1007_s11276_023_03229_4 crossref_primary_10_3390_e23121650 crossref_primary_10_1117_1_JEI_32_2_021604 crossref_primary_10_3390_electronics12030553 crossref_primary_10_3390_s24113400 crossref_primary_10_1016_j_neucom_2024_129282 crossref_primary_10_1007_s10278_021_00524_4 crossref_primary_10_1016_j_eswa_2024_123159 crossref_primary_10_1007_s11042_023_16809_5 crossref_primary_10_3390_s21154977 crossref_primary_10_1093_comjnl_bxae014 crossref_primary_10_1109_TASLP_2024_3486206 crossref_primary_10_3390_app15010057 crossref_primary_10_1364_AO_469155 crossref_primary_10_3390_app12199780 crossref_primary_10_1109_TMM_2022_3149641 crossref_primary_10_3390_sym17010098 crossref_primary_10_1016_j_jksuci_2024_102259 crossref_primary_10_1109_TPAMI_2022_3141725 crossref_primary_10_1109_TCSVT_2022_3188524 crossref_primary_10_1109_TCSVT_2023_3265970 crossref_primary_10_1049_ipr2_12961 crossref_primary_10_3390_app13126886 crossref_primary_10_1007_s44196_024_00506_8 crossref_primary_10_1109_JIOT_2023_3242319 crossref_primary_10_1142_S0218001424540119 crossref_primary_10_1007_s00034_024_02651_z crossref_primary_10_1007_s11042_023_15048_y crossref_primary_10_1016_j_compeleceng_2022_108194 crossref_primary_10_3390_fi16110390 |
Cites_doi | 10.1109/TSP.2017.2652383 10.1016/j.ins.2017.07.026 10.1016/j.cose.2016.11.016 10.1166/jmihi.2015.1407 10.1007/s11042-017-4452-0 10.1007/s11042-018-5759-1 10.1007/s11042-016-4278-1 10.1134/S1054661817030257 10.1109/TMM.2015.2508147 10.1007/s11042-016-3928-7 10.1109/TGRS.2013.2258676 10.1007/s40747-016-0023-7 10.1016/j.patcog.2007.02.016 10.1016/j.patcog.2017.12.006 10.1016/S0031-3203(00)00015-7 10.1109/TNN.2010.2040192 10.1016/j.dsp.2016.02.005 10.1109/ACCESS.2018.2799240 10.5120/12429-9124 10.1007/s11042-015-3200-6 10.1007/s11042-016-4150-3 10.1109/18.923725 10.1016/j.eswa.2018.02.002 10.1016/j.neucom.2015.03.115 10.1016/j.patcog.2008.01.007 10.1016/j.sigpro.2007.07.020 10.1016/j.patcog.2006.07.002 10.1007/BF02476026 10.1007/s11042-015-2786-z |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV May 15, 2020 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV May 15, 2020 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2019.113157 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2019_113157 S0957417419308759 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-90e331fc54a0971ffc2ca66a3e53f34c8a98eb59355ce5042b71f2efb8a8cb403 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 04:51:49 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Tue Jul 01 04:05:47 EDT 2025 Fri Feb 23 02:48:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | FCN CNN Transparency Blind watermarking Deep convolutional networks Data diffusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-90e331fc54a0971ffc2ca66a3e53f34c8a98eb59355ce5042b71f2efb8a8cb403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2431028106 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2431028106 crossref_primary_10_1016_j_eswa_2019_113157 crossref_citationtrail_10_1016_j_eswa_2019_113157 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_113157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-15 |
PublicationDateYYYYMMDD | 2020-05-15 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Sadreazami, Ahmad, Swamy (bib0040) 2016; 18 Everingham, M., Van~Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (a). The PASCAL visual object classes challenge 2012 (VOC2012) results. Lin, Maire, Belongie, Hays, Perona, Ramanan, Zitnick (bib0028) 2014 Xue, Liao, Carin, Krishnapuram (bib0050) 2007; 8 Hagmüller, Hering, Kröpfl, Kubin (bib0019) 2004; 8 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0046) 2014; 15 Anbarjafari, Ozcinar (bib0003) 2018; 77 Chen, Wornell (bib0006) 2001; 47 Mun, Nam, Jang, Kim, Lee (bib0032) 2017 Liu, Han, Wu, Shao, Coatrieux, Shu (bib0029) 2017; 65 Li, Yu, Gupta, Ren (bib0027) 2018; 77 Daubechies, Sweldens (bib0011) 1998; 4 Fazlali, Samavi, Karimi, Shirani (bib0016) 2017; 76 Zhi-Ming, Rong-Yan, Lei (bib0052) 2003; 2 Etemad, Samavi, Soroushmehr, Karimi, Etemad, Shirani, Najarian (bib0012) 2018; 77 He, Zhang, Ren, Sun (bib0020) 2016 Kandi, Mishra, Gorthi (bib0024) 2017; 65 Singh, Dave, Mohan (bib0044) 2015; 5 Abdelhakim, Abdelhakim (bib0002) 2018; 100 Savakar, Ghuli (bib0042) 2017; 27 Sanping, Yusen, Hui (bib0041) 2007 Khan, Tahir, Majid, Choi (bib0025) 2008; 41 Szepanski (bib0047) 1979; 101 Faundez-Zanuy, Hagmüller, Kubin (bib0015) 2007; 40 Papakostas, Tsougenis, Koulouriotis (bib0035) 2016; 2 Zhu, Kaplan, Johnson, Fei-Fei (bib0053) 2018 . Clevert, Unterthiner, Hochreiter (bib0008) 2015 Ng, Dorado, Yeung, Pedrycz, Izquierdo (bib0034) 2007; 40 Pasolli, Melgani, Tuia, Pacifici, Emery (bib0037) 2014; 52 Abadi, Barham, Chen, Chen, Davis, Dean, Isard (bib0001) 2016; 16 Shehab, Elhoseny, Muhammad, Sangaiah, Yang, Huang, Hou (bib0043) 2018; 6 Broughton, R. S., & Laumeister, W. C. (1989). Interactive video method and apparatus. Krizhevsky, A., Nair, V., & Hinton, G. (2014). The CIFAR-10 dataset. Hua, Zhao, Zhang, Bi, Xiang (bib0022) 2018 Ren, He, Girshick, Sun (bib0039) 2015 Heidari, Samavi, Soroushmehr, Shirani, Karimi, Najarian (bib0021) 2017; 76 Parah, Sheikh, Loan, Bhat (bib0036) 2016; 53 Singh, Dabas, Chaudhary (bib0045) 2016; 174 Makbol, Khoo, Rassem, Loukhaoukha (bib0031) 2017; 417 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Bengio (bib0018) 2014 Qi, Zheng, Zhao (bib0038) 2008; 88 Huang, Liu, Van Der Maaten, Weinberger (bib0023) 2017; 1 Narwaria, Lin (bib0033) 2010; 21 Cox, Miller, Bloom, Fridrich, Kalker (bib0009) 2007 Dabas, Khanna (bib0010) 2013; 71 Thakkar, Srivastava (bib0048) 2017; 76 Wang, Lin, Lin (bib0049) 2001; 34 Cheng (bib0007) 2001 Ma, Crawford, Tian (bib0030) 2010; 48 Benrhouma, Hermassi, El-Latif, Belghith (bib0004) 2016; 75 Fdez-Vidal, X. R. (b). COMPOUND GAIN: A visual distinctness metric for coder performance evaluation Etemad, Amirmazlaghani (bib0013) 2018; 77 Zheng, Zheng, Yang (bib0051) 2017; 14 Xue (10.1016/j.eswa.2019.113157_bib0050) 2007; 8 He (10.1016/j.eswa.2019.113157_bib0020) 2016 Pasolli (10.1016/j.eswa.2019.113157_bib0037) 2014; 52 Zheng (10.1016/j.eswa.2019.113157_bib0051) 2017; 14 Srivastava (10.1016/j.eswa.2019.113157_bib0046) 2014; 15 Huang (10.1016/j.eswa.2019.113157_bib0023) 2017; 1 Ren (10.1016/j.eswa.2019.113157_bib0039) 2015 Savakar (10.1016/j.eswa.2019.113157_bib0042) 2017; 27 Shehab (10.1016/j.eswa.2019.113157_bib0043) 2018; 6 Chen (10.1016/j.eswa.2019.113157_bib0006) 2001; 47 Etemad (10.1016/j.eswa.2019.113157_bib0012) 2018; 77 Dabas (10.1016/j.eswa.2019.113157_bib0010) 2013; 71 10.1016/j.eswa.2019.113157_bib0014 Hua (10.1016/j.eswa.2019.113157_bib0022) 2018 10.1016/j.eswa.2019.113157_bib0017 Papakostas (10.1016/j.eswa.2019.113157_bib0035) 2016; 2 Makbol (10.1016/j.eswa.2019.113157_bib0031) 2017; 417 Zhi-Ming (10.1016/j.eswa.2019.113157_bib0052) 2003; 2 Heidari (10.1016/j.eswa.2019.113157_bib0021) 2017; 76 Benrhouma (10.1016/j.eswa.2019.113157_bib0004) 2016; 75 Sadreazami (10.1016/j.eswa.2019.113157_bib0040) 2016; 18 Singh (10.1016/j.eswa.2019.113157_bib0044) 2015; 5 Faundez-Zanuy (10.1016/j.eswa.2019.113157_bib0015) 2007; 40 Goodfellow (10.1016/j.eswa.2019.113157_bib0018) 2014 Ma (10.1016/j.eswa.2019.113157_bib0030) 2010; 48 10.1016/j.eswa.2019.113157_bib0005 Li (10.1016/j.eswa.2019.113157_bib0027) 2018; 77 Thakkar (10.1016/j.eswa.2019.113157_bib0048) 2017; 76 Wang (10.1016/j.eswa.2019.113157_bib0049) 2001; 34 Mun (10.1016/j.eswa.2019.113157_bib0032) 2017 Szepanski (10.1016/j.eswa.2019.113157_bib0047) 1979; 101 Cox (10.1016/j.eswa.2019.113157_bib0009) 2007 Narwaria (10.1016/j.eswa.2019.113157_sbref0029) 2010; 21 Kandi (10.1016/j.eswa.2019.113157_bib0024) 2017; 65 Daubechies (10.1016/j.eswa.2019.113157_bib0011) 1998; 4 Khan (10.1016/j.eswa.2019.113157_bib0025) 2008; 41 Lin (10.1016/j.eswa.2019.113157_bib0028) 2014 Cheng (10.1016/j.eswa.2019.113157_bib0007) 2001 Singh (10.1016/j.eswa.2019.113157_bib0045) 2016; 174 Ng (10.1016/j.eswa.2019.113157_bib0034) 2007; 40 Abdelhakim (10.1016/j.eswa.2019.113157_bib0002) 2018; 100 Qi (10.1016/j.eswa.2019.113157_bib0038) 2008; 88 Abadi (10.1016/j.eswa.2019.113157_bib0001) 2016; 16 Anbarjafari (10.1016/j.eswa.2019.113157_bib0003) 2018; 77 Sanping (10.1016/j.eswa.2019.113157_bib0041) 2007 Liu (10.1016/j.eswa.2019.113157_bib0029) 2017; 65 Clevert (10.1016/j.eswa.2019.113157_bib0008) 2015 Etemad (10.1016/j.eswa.2019.113157_bib0013) 2018; 77 Fazlali (10.1016/j.eswa.2019.113157_bib0016) 2017; 76 10.1016/j.eswa.2019.113157_bib0026 Zhu (10.1016/j.eswa.2019.113157_bib0053) 2018 Hagmüller (10.1016/j.eswa.2019.113157_bib0019) 2004; 8 Parah (10.1016/j.eswa.2019.113157_bib0036) 2016; 53 |
References_xml | – volume: 27 start-page: 511 year: 2017 end-page: 517 ident: bib0042 article-title: Non-blind digital watermarking with enhanced image embedding capacity using DMeyer wavelet decomposition, SVD, and DFT publication-title: Pattern Recognition and Image Analysis – start-page: 91 year: 2015 end-page: 99 ident: bib0039 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Advances in neural information processing systems – volume: 40 start-page: 3027 year: 2007 end-page: 3034 ident: bib0015 article-title: Speaker identification security improvement by means of speech watermarking – volume: 4 start-page: 247 year: 1998 end-page: 269 ident: bib0011 article-title: Factoring wavelet transforms into lifting steps – volume: 14 start-page: 13 year: 2017 ident: bib0051 article-title: A discriminatively learned CNN embedding for person reidentification publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) – year: 2015 ident: bib0008 publication-title: Fast and accurate deep network learning by exponential linear units (ELUs) – volume: 2 start-page: 205 year: 2016 end-page: 220 ident: bib0035 article-title: Fuzzy knowledge-based adaptive image watermarking by the method of moments publication-title: Complex & Intelligent Systems – volume: 18 start-page: 196 year: 2016 end-page: 207 ident: bib0040 article-title: Multiplicative watermark decoder in contourlet domain using the normal inverse Gaussian distribution publication-title: IEEE Transactions on Multimedia – volume: 76 start-page: 3105 year: 2017 end-page: 3120 ident: bib0016 article-title: Adaptive blind image watermarking using edge pixel concentration publication-title: Multimedia Tools and Applications – volume: 21 year: 2010 ident: bib0033 article-title: Objective image quality assessment based on support vector regression publication-title: IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council – volume: 47 start-page: 1423 year: 2001 end-page: 1443 ident: bib0006 article-title: Quantization index modulation: A class of provably good methods for digital watermarking and information embedding publication-title: IEEE Transactions on Information Theory – volume: 71 year: 2013 ident: bib0010 article-title: A study on spatial and transform domain watermarking techniques – volume: 417 start-page: 381 year: 2017 end-page: 400 ident: bib0031 article-title: A new reliable optimized image watermarking scheme based on the integer wavelet transform and singular value decomposition for copyright protection publication-title: Information Sciences – volume: 41 start-page: 2594 year: 2008 end-page: 2610 ident: bib0025 article-title: Machine learning based adaptive watermark decoding in view of anticipated attack publication-title: Pattern Recognition – volume: 174 start-page: 238 year: 2016 end-page: 249 ident: bib0045 article-title: Online sequential extreme learning machine for watermarking in DWT domain publication-title: Neurocomputing – reference: Broughton, R. S., & Laumeister, W. C. (1989). Interactive video method and apparatus. – year: 2007 ident: bib0009 article-title: Digital watermarking and steganography – volume: 101 start-page: 368 year: 1979 ident: bib0047 article-title: A signal theoretic method for creating forgery-proof documents for automatic verification – volume: 40 start-page: 19 year: 2007 end-page: 32 ident: bib0034 article-title: Image classification with the use of radial basis function neural networks and the minimization of the localized generalization error publication-title: Pattern Recognition – volume: 76 start-page: 3669 year: 2017 end-page: 3697 ident: bib0048 article-title: A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications publication-title: Multimedia Tools and Applications – reference: Everingham, M., Van~Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (a). The PASCAL visual object classes challenge 2012 (VOC2012) results. – volume: 65 start-page: 1894 year: 2017 end-page: 1908 ident: bib0029 article-title: Fractional Krawtchouk transform with an application to image watermarking publication-title: IEEE Transactions on Signal Processing – volume: 77 start-page: 2033 year: 2018 end-page: 2055 ident: bib0012 article-title: Robust image watermarking scheme using bit-plane of hadamard coefficients publication-title: Multimedia Tools and Applications – start-page: 740 year: 2014 end-page: 755 ident: bib0028 article-title: Microsoft coco: Common objects in context publication-title: European conference on computer vision – volume: 65 start-page: 247 year: 2017 end-page: 268 ident: bib0024 article-title: Exploring the learning capabilities of convolutional neural networks for robust image watermarking publication-title: Computers & Security – year: 2017 ident: bib0032 publication-title: A robust blind watermarking using convolutional neural network – start-page: 2672 year: 2014 end-page: 2680 ident: bib0018 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – volume: 88 start-page: 174 year: 2008 end-page: 188 ident: bib0038 article-title: Human visual system based adaptive digital image watermarking publication-title: Signal Processing – volume: 6 start-page: 10269 year: 2018 end-page: 10278 ident: bib0043 article-title: Secure and robust fragile watermarking scheme for medical images publication-title: IEEE Access – year: 2018 ident: bib0022 article-title: Random matching pursuit for image watermarking publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 77 start-page: 4545 year: 2018 end-page: 4561 ident: bib0027 article-title: Color image watermarking scheme based on quaternion hadamard transform and schur decomposition – volume: 5 start-page: 406 year: 2015 end-page: 414 ident: bib0044 article-title: Robust and secure multiple watermarking in wavelet domain – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0046 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – volume: 2 start-page: 1517 year: 2003 end-page: 1520 ident: bib0052 article-title: Adaptive watermark scheme with RBF neural networks publication-title: Neural networks and signal processing, 2003. proceedings of the 2003 international conference on – volume: 48 start-page: 4099 year: 2010 end-page: 4109 ident: bib0030 article-title: Local manifold learning-based publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 8 start-page: 10 year: 2004 ident: bib0019 article-title: Speech watermarking for air traffic control publication-title: Watermark – volume: 53 start-page: 11 year: 2016 end-page: 24 ident: bib0036 article-title: Robust and blind watermarking technique in DCT domain using inter-block coefficient differencing publication-title: Digital Signal Processing – volume: 16 start-page: 265 year: 2016 end-page: 283 ident: bib0001 article-title: Tensorflow: A system for large-scale machine learning – volume: 77 start-page: 24521 year: 2018 end-page: 24535 ident: bib0003 article-title: Imperceptible non-blind watermarking and robustness against tone mapping operation attacks for high dynamic range images publication-title: Multimedia Tools and Applications – volume: 52 start-page: 2217 year: 2014 end-page: 2233 ident: bib0037 article-title: SVM active learning approach for image classification using spatial information publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 75 start-page: 8695 year: 2016 end-page: 8718 ident: bib0004 article-title: Chaotic watermark for blind forgery detection in images publication-title: Multimedia Tools and Applications – reference: Fdez-Vidal, X. R. (b). COMPOUND GAIN: A visual distinctness metric for coder performance evaluation, – reference: Krizhevsky, A., Nair, V., & Hinton, G. (2014). The CIFAR-10 dataset. – volume: 8 start-page: 35 year: 2007 end-page: 63 ident: bib0050 article-title: Multi-task learning for classification with dirichlet process priors publication-title: Journal of Machine Learning Research – volume: 76 start-page: 23459 year: 2017 end-page: 23479 ident: bib0021 article-title: Framework for robust blind image watermarking based on classification of attacks publication-title: Multimedia Tools and Applications – start-page: 1112 year: 2007 end-page: 1116 ident: bib0041 article-title: A wavelet-domain watermarking technique based on support vector regression publication-title: Grey systems and intelligent services, 2007. gsis 2007. ieee international conference on – volume: 1 start-page: 3 year: 2017 ident: bib0023 article-title: Densely connected convolutional networks. – year: 2001 ident: bib0007 article-title: Music database retrieval based on spectral similarity publication-title: 2nd Int. Sympo-sium on Music Information Retrieval (IS-MIR), Oct., 2001 – reference: . – volume: 100 start-page: 197 year: 2018 end-page: 210 ident: bib0002 article-title: A time-efficient optimization for robust image watermarking using machine learning publication-title: Expert Systems with Applications – volume: 77 start-page: 99 year: 2018 end-page: 112 ident: bib0013 article-title: A new multiplicative watermark detector in the contourlet domain using t location-scale distribution publication-title: Pattern Recognition – start-page: 770 year: 2016 end-page: 778 ident: bib0020 article-title: Deep residual learning for image recognition publication-title: Proceedings of the ieee conference on computer vision and pattern recognition – year: 2018 ident: bib0053 publication-title: HiDDeN: Hiding data with deep networks – volume: 34 start-page: 671 year: 2001 end-page: 683 ident: bib0049 article-title: Image hiding by optimal LSB substitution and genetic algorithm – year: 2018 ident: 10.1016/j.eswa.2019.113157_bib0022 article-title: Random matching pursuit for image watermarking publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 48 start-page: 4099 issue: 11 year: 2010 ident: 10.1016/j.eswa.2019.113157_bib0030 article-title: Local manifold learning-based k-nearest-neighbor for hyperspectral image classification publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 65 start-page: 1894 issue: 7 year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0029 article-title: Fractional Krawtchouk transform with an application to image watermarking publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2017.2652383 – ident: 10.1016/j.eswa.2019.113157_bib0017 – volume: 2 start-page: 1517 year: 2003 ident: 10.1016/j.eswa.2019.113157_bib0052 article-title: Adaptive watermark scheme with RBF neural networks – volume: 1 start-page: 3 issue: 2 year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0023 article-title: Densely connected convolutional networks. – volume: 417 start-page: 381 year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0031 article-title: A new reliable optimized image watermarking scheme based on the integer wavelet transform and singular value decomposition for copyright protection publication-title: Information Sciences doi: 10.1016/j.ins.2017.07.026 – volume: 101 start-page: 368 issue: 109 year: 1979 ident: 10.1016/j.eswa.2019.113157_bib0047 article-title: A signal theoretic method for creating forgery-proof documents for automatic verification – volume: 65 start-page: 247 year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0024 article-title: Exploring the learning capabilities of convolutional neural networks for robust image watermarking publication-title: Computers & Security doi: 10.1016/j.cose.2016.11.016 – start-page: 1112 year: 2007 ident: 10.1016/j.eswa.2019.113157_bib0041 article-title: A wavelet-domain watermarking technique based on support vector regression – volume: 5 start-page: 406 issue: 2 year: 2015 ident: 10.1016/j.eswa.2019.113157_bib0044 article-title: Robust and secure multiple watermarking in wavelet domain publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2015.1407 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.eswa.2019.113157_bib0046 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – start-page: 740 year: 2014 ident: 10.1016/j.eswa.2019.113157_bib0028 article-title: Microsoft coco: Common objects in context – volume: 77 start-page: 4545 issue: 4 year: 2018 ident: 10.1016/j.eswa.2019.113157_bib0027 article-title: Color image watermarking scheme based on quaternion hadamard transform and schur decomposition publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-4452-0 – year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0032 publication-title: A robust blind watermarking using convolutional neural network – year: 2007 ident: 10.1016/j.eswa.2019.113157_bib0009 – volume: 77 start-page: 24521 issue: 18 year: 2018 ident: 10.1016/j.eswa.2019.113157_bib0003 article-title: Imperceptible non-blind watermarking and robustness against tone mapping operation attacks for high dynamic range images publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-5759-1 – ident: 10.1016/j.eswa.2019.113157_bib0014 – volume: 77 start-page: 2033 issue: 2 year: 2018 ident: 10.1016/j.eswa.2019.113157_bib0012 article-title: Robust image watermarking scheme using bit-plane of hadamard coefficients publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4278-1 – volume: 27 start-page: 511 issue: 3 year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0042 article-title: Non-blind digital watermarking with enhanced image embedding capacity using DMeyer wavelet decomposition, SVD, and DFT publication-title: Pattern Recognition and Image Analysis doi: 10.1134/S1054661817030257 – volume: 18 start-page: 196 issue: 2 year: 2016 ident: 10.1016/j.eswa.2019.113157_bib0040 article-title: Multiplicative watermark decoder in contourlet domain using the normal inverse Gaussian distribution publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2015.2508147 – volume: 76 start-page: 3669 issue: 3 year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0048 article-title: A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-3928-7 – volume: 16 start-page: 265 year: 2016 ident: 10.1016/j.eswa.2019.113157_bib0001 article-title: Tensorflow: A system for large-scale machine learning – year: 2015 ident: 10.1016/j.eswa.2019.113157_bib0008 publication-title: Fast and accurate deep network learning by exponential linear units (ELUs) – volume: 8 start-page: 10 issue: 9 year: 2004 ident: 10.1016/j.eswa.2019.113157_bib0019 article-title: Speech watermarking for air traffic control publication-title: Watermark – volume: 52 start-page: 2217 issue: 4 year: 2014 ident: 10.1016/j.eswa.2019.113157_bib0037 article-title: SVM active learning approach for image classification using spatial information publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2013.2258676 – volume: 2 start-page: 205 issue: 3 year: 2016 ident: 10.1016/j.eswa.2019.113157_bib0035 article-title: Fuzzy knowledge-based adaptive image watermarking by the method of moments publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-016-0023-7 – volume: 40 start-page: 3027 issue: 11 year: 2007 ident: 10.1016/j.eswa.2019.113157_bib0015 article-title: Speaker identification security improvement by means of speech watermarking publication-title: Pattern Recognition doi: 10.1016/j.patcog.2007.02.016 – volume: 77 start-page: 99 year: 2018 ident: 10.1016/j.eswa.2019.113157_bib0013 article-title: A new multiplicative watermark detector in the contourlet domain using t location-scale distribution publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.12.006 – start-page: 91 year: 2015 ident: 10.1016/j.eswa.2019.113157_bib0039 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – volume: 34 start-page: 671 issue: 3 year: 2001 ident: 10.1016/j.eswa.2019.113157_bib0049 article-title: Image hiding by optimal LSB substitution and genetic algorithm publication-title: Pattern Recognition doi: 10.1016/S0031-3203(00)00015-7 – start-page: 2672 year: 2014 ident: 10.1016/j.eswa.2019.113157_bib0018 article-title: Generative adversarial nets – volume: 21 issue: 3 year: 2010 ident: 10.1016/j.eswa.2019.113157_sbref0029 article-title: Objective image quality assessment based on support vector regression publication-title: IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council doi: 10.1109/TNN.2010.2040192 – volume: 53 start-page: 11 year: 2016 ident: 10.1016/j.eswa.2019.113157_bib0036 article-title: Robust and blind watermarking technique in DCT domain using inter-block coefficient differencing publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2016.02.005 – ident: 10.1016/j.eswa.2019.113157_bib0005 – volume: 6 start-page: 10269 year: 2018 ident: 10.1016/j.eswa.2019.113157_bib0043 article-title: Secure and robust fragile watermarking scheme for medical images publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2799240 – volume: 71 issue: 14 year: 2013 ident: 10.1016/j.eswa.2019.113157_bib0010 article-title: A study on spatial and transform domain watermarking techniques publication-title: International Journal of Computer Applications doi: 10.5120/12429-9124 – volume: 76 start-page: 3105 issue: 2 year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0016 article-title: Adaptive blind image watermarking using edge pixel concentration publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-015-3200-6 – volume: 76 start-page: 23459 issue: 22 year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0021 article-title: Framework for robust blind image watermarking based on classification of attacks publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4150-3 – volume: 47 start-page: 1423 issue: 4 year: 2001 ident: 10.1016/j.eswa.2019.113157_bib0006 article-title: Quantization index modulation: A class of provably good methods for digital watermarking and information embedding publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.923725 – year: 2001 ident: 10.1016/j.eswa.2019.113157_bib0007 article-title: Music database retrieval based on spectral similarity publication-title: 2nd Int. Sympo-sium on Music Information Retrieval (IS-MIR), Oct., 2001 – volume: 14 start-page: 13 issue: 1 year: 2017 ident: 10.1016/j.eswa.2019.113157_bib0051 article-title: A discriminatively learned CNN embedding for person reidentification publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) – ident: 10.1016/j.eswa.2019.113157_bib0026 – volume: 100 start-page: 197 year: 2018 ident: 10.1016/j.eswa.2019.113157_bib0002 article-title: A time-efficient optimization for robust image watermarking using machine learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.02.002 – volume: 8 start-page: 35 issue: Jan year: 2007 ident: 10.1016/j.eswa.2019.113157_bib0050 article-title: Multi-task learning for classification with dirichlet process priors publication-title: Journal of Machine Learning Research – volume: 174 start-page: 238 year: 2016 ident: 10.1016/j.eswa.2019.113157_bib0045 article-title: Online sequential extreme learning machine for watermarking in DWT domain publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.03.115 – year: 2018 ident: 10.1016/j.eswa.2019.113157_bib0053 publication-title: HiDDeN: Hiding data with deep networks – volume: 41 start-page: 2594 issue: 8 year: 2008 ident: 10.1016/j.eswa.2019.113157_bib0025 article-title: Machine learning based adaptive watermark decoding in view of anticipated attack publication-title: Pattern Recognition doi: 10.1016/j.patcog.2008.01.007 – start-page: 770 year: 2016 ident: 10.1016/j.eswa.2019.113157_bib0020 article-title: Deep residual learning for image recognition – volume: 88 start-page: 174 issue: 1 year: 2008 ident: 10.1016/j.eswa.2019.113157_bib0038 article-title: Human visual system based adaptive digital image watermarking publication-title: Signal Processing doi: 10.1016/j.sigpro.2007.07.020 – volume: 40 start-page: 19 issue: 1 year: 2007 ident: 10.1016/j.eswa.2019.113157_bib0034 article-title: Image classification with the use of radial basis function neural networks and the minimization of the localized generalization error publication-title: Pattern Recognition doi: 10.1016/j.patcog.2006.07.002 – volume: 4 start-page: 247 issue: 3 year: 1998 ident: 10.1016/j.eswa.2019.113157_bib0011 article-title: Factoring wavelet transforms into lifting steps publication-title: Journal of Fourier Analysis and Applications doi: 10.1007/BF02476026 – volume: 75 start-page: 8695 issue: 14 year: 2016 ident: 10.1016/j.eswa.2019.113157_bib0004 article-title: Chaotic watermark for blind forgery detection in images publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-015-2786-z |
SSID | ssj0017007 |
Score | 2.6606662 |
Snippet | •Learning new embedding patterns.•Customizing solutions for suggested transform domains and attacks.•Enhancing security and robustness by diffusing watermark... Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, applications of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113157 |
SubjectTerms | Algorithms Artificial neural networks Blind watermarking CNN Computer simulation Computer vision Data diffusion Deep convolutional networks Diffusion layers FCN Image enhancement Image processing Machine learning Neural networks Real time operation Robustness Transparency Watermarking |
Title | ReDMark: Framework for residual diffusion watermarking based on deep networks |
URI | https://dx.doi.org/10.1016/j.eswa.2019.113157 https://www.proquest.com/docview/2431028106 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXrz4LVZrycGbrO1uku2ut1ItVWkPaqG3kGRnoSK12Io3f7szu9mCIj0IewpJWCbJm5cw84axC1BgcxPLALmqCmSUIQ7aVAbgcElAZVGcUXLyaBwPJ_J-qqY11q9yYSis0mN_iekFWvuWtrdmezGbtZ-QHKA7xC8lVTtFSXxSdmmXX32twzxIfq5b6u11A-rtE2fKGC9YfpL2UJhSaZOQXNTfzukXTBe-Z7DHdjxp5L3yv_ZZDeYHbLcqyMD9-Txko0e4oeSbaz6oYq44klKOV-oi54pTOZQPeh_jn6bA5OKlnJMryzi2ZgALPi8jw5dHbDK4fe4PA18vIXAiSlZB2gEhwtwpaUgZKs9d5EwcGwFK5EK6xKQJWEWK6g4UnlaLnSLIbWISZ2VHHLP6_G0OJ4x3IZW5SjrGgZBWxibGcTZ0LhIpSKcaLKwMpZ0XE6eaFq-6ihp70WRcTcbVpXEb7HI9ZlFKaWzsrSr76x8bQiPWbxzXrBZL--O41BHSJCRSeP09_ee0Z2w7ops26baqJquv3j_gHOnIyraK_dZiW727h-H4G07u3vI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHODCG_EmB26o2tokpeU2AdN4bAceErcoSV0JhMbEhvb3sdsUCYQ4IPUUxVXlxPaX1P4McIwaXWlTFRFW1ZFKCvKDLlcReloS1EWSFlycPBim_Ud1_aSf5uC8qYXhtMrg-2ufXnnrMNIO2myPn5_b9wQOKBzSkzOrnc7nYYHZqXQLFrpXN_3h18-E005dNU3zIxYItTN1mhdOZkw_FOfc3STmKPV7fPrhqavw01uF5YAbRbf-tDWYw9E6rDQ9GUQw0Q0Y3OEF19-ciV6TdiUIlwo6VVdlV4I7onzwFZmY2cotV5flgqNZIWi0QByLUZ0cPtmEx97lw3k_Ci0TIi-TbBrlHZQyLr1WlsmhytIn3qaplahlKZXPbJ6h00yq7lGTwTqalGDpMpt5pzpyC1qjtxFugzjFXJU661iPUjmV2pTkXOx9InNUXu9A3CjK-MAnzm0tXk2TOPZiWLmGlWtq5e7AyZfMuGbT-HO2bvRvvu0JQ-7-T7n9ZrFMsMiJSQgpEZaiE_DuP197BIv9h8Gtub0a3uzBUsIHb6Zx1fvQmr5_4AGhk6k7DLvvE_4t4aM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ReDMark%3A+Framework+for+residual+diffusion+watermarking+based+on+deep+networks&rft.jtitle=Expert+systems+with+applications&rft.au=Ahmadi%2C+Mahdi&rft.au=Norouzi%2C+Alireza&rft.au=Karimi%2C+Nader&rft.au=Samavi%2C+Shadrokh&rft.date=2020-05-15&rft.issn=0957-4174&rft.volume=146&rft.spage=113157&rft_id=info:doi/10.1016%2Fj.eswa.2019.113157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2019_113157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |