ReDMark: Framework for residual diffusion watermarking based on deep networks

•Learning new embedding patterns.•Customizing solutions for suggested transform domains and attacks.•Enhancing security and robustness by diffusing watermark in a wide area of images. Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and imag...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 146; p. 113157
Main Authors Ahmadi, Mahdi, Norouzi, Alireza, Karimi, Nader, Samavi, Shadrokh, Emami, Ali
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.05.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2019.113157

Cover

Loading…
Abstract •Learning new embedding patterns.•Customizing solutions for suggested transform domains and attacks.•Enhancing security and robustness by diffusing watermark in a wide area of images. Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, applications of Convolutional Neural Networks for watermarking have recently emerged. In this paper, we propose a deep end-to-end diffusion watermarking framework (ReDMark) which can learn a new watermarking algorithm in any desired transform space. The framework is composed of two Fully Convolutional Neural Networks with residual structure which handle embedding and extraction operations in real-time. The whole deep network is trained end-to-end to conduct a blind secure watermarking. The proposed framework simulates various attacks as a differentiable network layer to facilitate end-to-end training. The watermark data is diffused in a relatively wide area of the image to enhance security and robustness of the algorithm. Comparative results versus recent state-of-the-art researches highlight the superiority of the proposed framework in terms of imperceptibility, robustness and speed. The source codes of the proposed framework are publicly available at Github11https://github.com/MahdiShAhmadi/ReDMark/tree/master/.
AbstractList Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, applications of Convolutional Neural Networks for watermarking have recently emerged. In this paper, we propose a deep end-to-end diffusion watermarking framework (ReDMark) which can learn a new watermarking algorithm in any desired transform space. The framework is composed of two Fully Convolutional Neural Networks with residual structure which handle embedding and extraction operations in real-time. The whole deep network is trained end-to-end to conduct a blind secure watermarking. The proposed framework simulates various attacks as a differentiable network layer to facilitate end-to-end training. The watermark data is diffused in a relatively wide area of the image to enhance security and robustness of the algorithm. Comparative results versus recent state-of-the-art researches highlight the superiority of the proposed framework in terms of imperceptibility, robustness and speed. The source codes of the proposed framework are publicly available at Github1.
•Learning new embedding patterns.•Customizing solutions for suggested transform domains and attacks.•Enhancing security and robustness by diffusing watermark in a wide area of images. Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, applications of Convolutional Neural Networks for watermarking have recently emerged. In this paper, we propose a deep end-to-end diffusion watermarking framework (ReDMark) which can learn a new watermarking algorithm in any desired transform space. The framework is composed of two Fully Convolutional Neural Networks with residual structure which handle embedding and extraction operations in real-time. The whole deep network is trained end-to-end to conduct a blind secure watermarking. The proposed framework simulates various attacks as a differentiable network layer to facilitate end-to-end training. The watermark data is diffused in a relatively wide area of the image to enhance security and robustness of the algorithm. Comparative results versus recent state-of-the-art researches highlight the superiority of the proposed framework in terms of imperceptibility, robustness and speed. The source codes of the proposed framework are publicly available at Github11https://github.com/MahdiShAhmadi/ReDMark/tree/master/.
ArticleNumber 113157
Author Norouzi, Alireza
Emami, Ali
Samavi, Shadrokh
Ahmadi, Mahdi
Karimi, Nader
Author_xml – sequence: 1
  givenname: Mahdi
  surname: Ahmadi
  fullname: Ahmadi, Mahdi
  email: mahdi.ahmadi@ec.iut.ac.ir
  organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran
– sequence: 2
  givenname: Alireza
  surname: Norouzi
  fullname: Norouzi, Alireza
  email: alireza.norouzi@ec.iut.ac.ir
  organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran
– sequence: 3
  givenname: Nader
  surname: Karimi
  fullname: Karimi, Nader
  email: nader.karimi@cc.iut.ac.ir
  organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran
– sequence: 4
  givenname: Shadrokh
  surname: Samavi
  fullname: Samavi, Shadrokh
  email: samavi@cc.iut.ac.ir, ssoroush@med.umich.edu
  organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran
– sequence: 5
  givenname: Ali
  surname: Emami
  fullname: Emami, Ali
  email: a.emami@uq.edu.au
  organization: Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Iran
BookMark eNp9kF1LwzAUhoNMcE7_gFcFrzvz0TapeCPTqbAhiF6HND2RdFszk9bhvzelXnmxqwOH9zmH9zlHk9a1gNAVwXOCSXHTzCEc1JxiUs4JYSTnJ2hKBGdpwUs2QVNc5jzNCM_O0HkIDcaEY8ynaP0GD2vlN7fJ0qsdHJzfJMb5xEOwda-2SW2N6YN1bXJQHfhdzNr2M6lUgDqJ2xpgn7TQDWS4QKdGbQNc_s0Z-lg-vi-e09Xr08vifpVqRkWXlhgYI0bnmcIlJ8ZoqlVRKAY5MyzTQpUCqrxkea4hxxmtYoiCqYQSusowm6Hr8e7eu68eQicb1_s2vpQ0YwRTQXARU3RMae9C8GDk3ttY4EcSLAdtspGDNjlok6O2CIl_kLad6qKAziu7PY7ejSjE6t8WvAzaQquhth50J2tnj-G_P92Kzw
CitedBy_id crossref_primary_10_1007_s11042_020_09606_x
crossref_primary_10_1016_j_jisa_2024_103884
crossref_primary_10_3390_electronics12020303
crossref_primary_10_3390_electronics14010086
crossref_primary_10_1007_s11042_024_20258_z
crossref_primary_10_1109_TMM_2022_3223559
crossref_primary_10_1109_TCSVT_2023_3295895
crossref_primary_10_1155_2022_5425674
crossref_primary_10_1016_j_procs_2020_09_187
crossref_primary_10_1007_s11042_022_13938_1
crossref_primary_10_1016_j_jvcir_2024_104238
crossref_primary_10_1016_j_dsp_2024_104684
crossref_primary_10_1007_s00371_023_02967_y
crossref_primary_10_1007_s11263_025_02375_w
crossref_primary_10_3390_jimaging10060138
crossref_primary_10_1109_LSP_2024_3456673
crossref_primary_10_1007_s00530_021_00835_0
crossref_primary_10_1155_2022_9880038
crossref_primary_10_1007_s00530_025_01689_6
crossref_primary_10_1109_TCSS_2023_3268950
crossref_primary_10_3390_app132111852
crossref_primary_10_3390_math13040651
crossref_primary_10_1109_LSP_2024_3501285
crossref_primary_10_1155_2022_7259469
crossref_primary_10_1016_j_neunet_2023_03_037
crossref_primary_10_1109_TCSVT_2024_3448351
crossref_primary_10_1007_s11042_023_16963_w
crossref_primary_10_1002_cpe_8389
crossref_primary_10_1007_s11760_025_03867_5
crossref_primary_10_1016_j_jisa_2023_103657
crossref_primary_10_1109_TMM_2023_3333659
crossref_primary_10_1016_j_image_2021_116523
crossref_primary_10_1364_OE_498067
crossref_primary_10_1016_j_jvcir_2023_103934
crossref_primary_10_1109_TIFS_2025_3542992
crossref_primary_10_3390_e24121762
crossref_primary_10_1007_s00521_024_09496_2
crossref_primary_10_1007_s00034_023_02299_1
crossref_primary_10_3390_math11143134
crossref_primary_10_1007_s11042_023_15371_4
crossref_primary_10_3390_math11010209
crossref_primary_10_1109_TCSVT_2021_3138795
crossref_primary_10_1016_j_eswa_2023_122062
crossref_primary_10_1016_j_neucom_2022_02_083
crossref_primary_10_1016_j_future_2024_107523
crossref_primary_10_1145_3508365
crossref_primary_10_1109_ACCESS_2024_3446489
crossref_primary_10_1117_1_JEI_31_4_043041
crossref_primary_10_1016_j_asoc_2024_112556
crossref_primary_10_1631_FITEE_2200628
crossref_primary_10_1109_TMM_2024_3415415
crossref_primary_10_1109_JOE_2023_3310079
crossref_primary_10_3390_electronics12010074
crossref_primary_10_32604_cmc_2024_055150
crossref_primary_10_1007_s10044_022_01104_0
crossref_primary_10_1007_s11042_022_13314_z
crossref_primary_10_1109_TCSVT_2024_3454531
crossref_primary_10_1109_TAES_2023_3280468
crossref_primary_10_3390_app14166897
crossref_primary_10_11834_jig_220811
crossref_primary_10_1016_j_jvcir_2023_103794
crossref_primary_10_1109_ACCESS_2020_3022779
crossref_primary_10_1117_1_JEI_32_3_031804
crossref_primary_10_1109_TIM_2023_3285981
crossref_primary_10_1016_j_jvcir_2023_103837
crossref_primary_10_3390_sym15050964
crossref_primary_10_1007_s00371_023_03033_3
crossref_primary_10_1016_j_jvcir_2021_103244
crossref_primary_10_1016_j_jfranklin_2025_107511
crossref_primary_10_1109_TIFS_2024_3463547
crossref_primary_10_1016_j_isci_2024_110821
crossref_primary_10_1109_TCSVT_2024_3471891
crossref_primary_10_1109_TIFS_2023_3322315
crossref_primary_10_1016_j_jvcir_2024_104317
crossref_primary_10_1016_j_jvcir_2025_104438
crossref_primary_10_1109_TETCI_2024_3386916
crossref_primary_10_1016_j_cose_2025_104355
crossref_primary_10_1109_TAI_2024_3485519
crossref_primary_10_32604_cmc_2023_034748
crossref_primary_10_1016_j_neucom_2024_127499
crossref_primary_10_1016_j_patcog_2024_110691
crossref_primary_10_1109_TDSC_2022_3208934
crossref_primary_10_1016_j_eswa_2024_123486
crossref_primary_10_1109_ACCESS_2023_3337812
crossref_primary_10_1007_s41870_023_01232_8
crossref_primary_10_1109_TCSVT_2023_3252042
crossref_primary_10_1016_j_procs_2020_09_135
crossref_primary_10_1007_s10489_022_04047_5
crossref_primary_10_1007_s11276_023_03229_4
crossref_primary_10_3390_e23121650
crossref_primary_10_1117_1_JEI_32_2_021604
crossref_primary_10_3390_electronics12030553
crossref_primary_10_3390_s24113400
crossref_primary_10_1016_j_neucom_2024_129282
crossref_primary_10_1007_s10278_021_00524_4
crossref_primary_10_1016_j_eswa_2024_123159
crossref_primary_10_1007_s11042_023_16809_5
crossref_primary_10_3390_s21154977
crossref_primary_10_1093_comjnl_bxae014
crossref_primary_10_1109_TASLP_2024_3486206
crossref_primary_10_3390_app15010057
crossref_primary_10_1364_AO_469155
crossref_primary_10_3390_app12199780
crossref_primary_10_1109_TMM_2022_3149641
crossref_primary_10_3390_sym17010098
crossref_primary_10_1016_j_jksuci_2024_102259
crossref_primary_10_1109_TPAMI_2022_3141725
crossref_primary_10_1109_TCSVT_2022_3188524
crossref_primary_10_1109_TCSVT_2023_3265970
crossref_primary_10_1049_ipr2_12961
crossref_primary_10_3390_app13126886
crossref_primary_10_1007_s44196_024_00506_8
crossref_primary_10_1109_JIOT_2023_3242319
crossref_primary_10_1142_S0218001424540119
crossref_primary_10_1007_s00034_024_02651_z
crossref_primary_10_1007_s11042_023_15048_y
crossref_primary_10_1016_j_compeleceng_2022_108194
crossref_primary_10_3390_fi16110390
Cites_doi 10.1109/TSP.2017.2652383
10.1016/j.ins.2017.07.026
10.1016/j.cose.2016.11.016
10.1166/jmihi.2015.1407
10.1007/s11042-017-4452-0
10.1007/s11042-018-5759-1
10.1007/s11042-016-4278-1
10.1134/S1054661817030257
10.1109/TMM.2015.2508147
10.1007/s11042-016-3928-7
10.1109/TGRS.2013.2258676
10.1007/s40747-016-0023-7
10.1016/j.patcog.2007.02.016
10.1016/j.patcog.2017.12.006
10.1016/S0031-3203(00)00015-7
10.1109/TNN.2010.2040192
10.1016/j.dsp.2016.02.005
10.1109/ACCESS.2018.2799240
10.5120/12429-9124
10.1007/s11042-015-3200-6
10.1007/s11042-016-4150-3
10.1109/18.923725
10.1016/j.eswa.2018.02.002
10.1016/j.neucom.2015.03.115
10.1016/j.patcog.2008.01.007
10.1016/j.sigpro.2007.07.020
10.1016/j.patcog.2006.07.002
10.1007/BF02476026
10.1007/s11042-015-2786-z
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV May 15, 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV May 15, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.113157
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2019_113157
S0957417419308759
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-90e331fc54a0971ffc2ca66a3e53f34c8a98eb59355ce5042b71f2efb8a8cb403
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 04:51:49 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Tue Jul 01 04:05:47 EDT 2025
Fri Feb 23 02:48:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords FCN
CNN
Transparency
Blind watermarking
Deep convolutional networks
Data diffusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-90e331fc54a0971ffc2ca66a3e53f34c8a98eb59355ce5042b71f2efb8a8cb403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2431028106
PQPubID 2045477
ParticipantIDs proquest_journals_2431028106
crossref_primary_10_1016_j_eswa_2019_113157
crossref_citationtrail_10_1016_j_eswa_2019_113157
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_113157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sadreazami, Ahmad, Swamy (bib0040) 2016; 18
Everingham, M., Van~Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (a). The PASCAL visual object classes challenge 2012 (VOC2012) results.
Lin, Maire, Belongie, Hays, Perona, Ramanan, Zitnick (bib0028) 2014
Xue, Liao, Carin, Krishnapuram (bib0050) 2007; 8
Hagmüller, Hering, Kröpfl, Kubin (bib0019) 2004; 8
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0046) 2014; 15
Anbarjafari, Ozcinar (bib0003) 2018; 77
Chen, Wornell (bib0006) 2001; 47
Mun, Nam, Jang, Kim, Lee (bib0032) 2017
Liu, Han, Wu, Shao, Coatrieux, Shu (bib0029) 2017; 65
Li, Yu, Gupta, Ren (bib0027) 2018; 77
Daubechies, Sweldens (bib0011) 1998; 4
Fazlali, Samavi, Karimi, Shirani (bib0016) 2017; 76
Zhi-Ming, Rong-Yan, Lei (bib0052) 2003; 2
Etemad, Samavi, Soroushmehr, Karimi, Etemad, Shirani, Najarian (bib0012) 2018; 77
He, Zhang, Ren, Sun (bib0020) 2016
Kandi, Mishra, Gorthi (bib0024) 2017; 65
Singh, Dave, Mohan (bib0044) 2015; 5
Abdelhakim, Abdelhakim (bib0002) 2018; 100
Savakar, Ghuli (bib0042) 2017; 27
Sanping, Yusen, Hui (bib0041) 2007
Khan, Tahir, Majid, Choi (bib0025) 2008; 41
Szepanski (bib0047) 1979; 101
Faundez-Zanuy, Hagmüller, Kubin (bib0015) 2007; 40
Papakostas, Tsougenis, Koulouriotis (bib0035) 2016; 2
Zhu, Kaplan, Johnson, Fei-Fei (bib0053) 2018
.
Clevert, Unterthiner, Hochreiter (bib0008) 2015
Ng, Dorado, Yeung, Pedrycz, Izquierdo (bib0034) 2007; 40
Pasolli, Melgani, Tuia, Pacifici, Emery (bib0037) 2014; 52
Abadi, Barham, Chen, Chen, Davis, Dean, Isard (bib0001) 2016; 16
Shehab, Elhoseny, Muhammad, Sangaiah, Yang, Huang, Hou (bib0043) 2018; 6
Broughton, R. S., & Laumeister, W. C. (1989). Interactive video method and apparatus.
Krizhevsky, A., Nair, V., & Hinton, G. (2014). The CIFAR-10 dataset.
Hua, Zhao, Zhang, Bi, Xiang (bib0022) 2018
Ren, He, Girshick, Sun (bib0039) 2015
Heidari, Samavi, Soroushmehr, Shirani, Karimi, Najarian (bib0021) 2017; 76
Parah, Sheikh, Loan, Bhat (bib0036) 2016; 53
Singh, Dabas, Chaudhary (bib0045) 2016; 174
Makbol, Khoo, Rassem, Loukhaoukha (bib0031) 2017; 417
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Bengio (bib0018) 2014
Qi, Zheng, Zhao (bib0038) 2008; 88
Huang, Liu, Van Der Maaten, Weinberger (bib0023) 2017; 1
Narwaria, Lin (bib0033) 2010; 21
Cox, Miller, Bloom, Fridrich, Kalker (bib0009) 2007
Dabas, Khanna (bib0010) 2013; 71
Thakkar, Srivastava (bib0048) 2017; 76
Wang, Lin, Lin (bib0049) 2001; 34
Cheng (bib0007) 2001
Ma, Crawford, Tian (bib0030) 2010; 48
Benrhouma, Hermassi, El-Latif, Belghith (bib0004) 2016; 75
Fdez-Vidal, X. R. (b). COMPOUND GAIN: A visual distinctness metric for coder performance evaluation
Etemad, Amirmazlaghani (bib0013) 2018; 77
Zheng, Zheng, Yang (bib0051) 2017; 14
Xue (10.1016/j.eswa.2019.113157_bib0050) 2007; 8
He (10.1016/j.eswa.2019.113157_bib0020) 2016
Pasolli (10.1016/j.eswa.2019.113157_bib0037) 2014; 52
Zheng (10.1016/j.eswa.2019.113157_bib0051) 2017; 14
Srivastava (10.1016/j.eswa.2019.113157_bib0046) 2014; 15
Huang (10.1016/j.eswa.2019.113157_bib0023) 2017; 1
Ren (10.1016/j.eswa.2019.113157_bib0039) 2015
Savakar (10.1016/j.eswa.2019.113157_bib0042) 2017; 27
Shehab (10.1016/j.eswa.2019.113157_bib0043) 2018; 6
Chen (10.1016/j.eswa.2019.113157_bib0006) 2001; 47
Etemad (10.1016/j.eswa.2019.113157_bib0012) 2018; 77
Dabas (10.1016/j.eswa.2019.113157_bib0010) 2013; 71
10.1016/j.eswa.2019.113157_bib0014
Hua (10.1016/j.eswa.2019.113157_bib0022) 2018
10.1016/j.eswa.2019.113157_bib0017
Papakostas (10.1016/j.eswa.2019.113157_bib0035) 2016; 2
Makbol (10.1016/j.eswa.2019.113157_bib0031) 2017; 417
Zhi-Ming (10.1016/j.eswa.2019.113157_bib0052) 2003; 2
Heidari (10.1016/j.eswa.2019.113157_bib0021) 2017; 76
Benrhouma (10.1016/j.eswa.2019.113157_bib0004) 2016; 75
Sadreazami (10.1016/j.eswa.2019.113157_bib0040) 2016; 18
Singh (10.1016/j.eswa.2019.113157_bib0044) 2015; 5
Faundez-Zanuy (10.1016/j.eswa.2019.113157_bib0015) 2007; 40
Goodfellow (10.1016/j.eswa.2019.113157_bib0018) 2014
Ma (10.1016/j.eswa.2019.113157_bib0030) 2010; 48
10.1016/j.eswa.2019.113157_bib0005
Li (10.1016/j.eswa.2019.113157_bib0027) 2018; 77
Thakkar (10.1016/j.eswa.2019.113157_bib0048) 2017; 76
Wang (10.1016/j.eswa.2019.113157_bib0049) 2001; 34
Mun (10.1016/j.eswa.2019.113157_bib0032) 2017
Szepanski (10.1016/j.eswa.2019.113157_bib0047) 1979; 101
Cox (10.1016/j.eswa.2019.113157_bib0009) 2007
Narwaria (10.1016/j.eswa.2019.113157_sbref0029) 2010; 21
Kandi (10.1016/j.eswa.2019.113157_bib0024) 2017; 65
Daubechies (10.1016/j.eswa.2019.113157_bib0011) 1998; 4
Khan (10.1016/j.eswa.2019.113157_bib0025) 2008; 41
Lin (10.1016/j.eswa.2019.113157_bib0028) 2014
Cheng (10.1016/j.eswa.2019.113157_bib0007) 2001
Singh (10.1016/j.eswa.2019.113157_bib0045) 2016; 174
Ng (10.1016/j.eswa.2019.113157_bib0034) 2007; 40
Abdelhakim (10.1016/j.eswa.2019.113157_bib0002) 2018; 100
Qi (10.1016/j.eswa.2019.113157_bib0038) 2008; 88
Abadi (10.1016/j.eswa.2019.113157_bib0001) 2016; 16
Anbarjafari (10.1016/j.eswa.2019.113157_bib0003) 2018; 77
Sanping (10.1016/j.eswa.2019.113157_bib0041) 2007
Liu (10.1016/j.eswa.2019.113157_bib0029) 2017; 65
Clevert (10.1016/j.eswa.2019.113157_bib0008) 2015
Etemad (10.1016/j.eswa.2019.113157_bib0013) 2018; 77
Fazlali (10.1016/j.eswa.2019.113157_bib0016) 2017; 76
10.1016/j.eswa.2019.113157_bib0026
Zhu (10.1016/j.eswa.2019.113157_bib0053) 2018
Hagmüller (10.1016/j.eswa.2019.113157_bib0019) 2004; 8
Parah (10.1016/j.eswa.2019.113157_bib0036) 2016; 53
References_xml – volume: 27
  start-page: 511
  year: 2017
  end-page: 517
  ident: bib0042
  article-title: Non-blind digital watermarking with enhanced image embedding capacity using DMeyer wavelet decomposition, SVD, and DFT
  publication-title: Pattern Recognition and Image Analysis
– start-page: 91
  year: 2015
  end-page: 99
  ident: bib0039
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
– volume: 40
  start-page: 3027
  year: 2007
  end-page: 3034
  ident: bib0015
  article-title: Speaker identification security improvement by means of speech watermarking
– volume: 4
  start-page: 247
  year: 1998
  end-page: 269
  ident: bib0011
  article-title: Factoring wavelet transforms into lifting steps
– volume: 14
  start-page: 13
  year: 2017
  ident: bib0051
  article-title: A discriminatively learned CNN embedding for person reidentification
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)
– year: 2015
  ident: bib0008
  publication-title: Fast and accurate deep network learning by exponential linear units (ELUs)
– volume: 2
  start-page: 205
  year: 2016
  end-page: 220
  ident: bib0035
  article-title: Fuzzy knowledge-based adaptive image watermarking by the method of moments
  publication-title: Complex & Intelligent Systems
– volume: 18
  start-page: 196
  year: 2016
  end-page: 207
  ident: bib0040
  article-title: Multiplicative watermark decoder in contourlet domain using the normal inverse Gaussian distribution
  publication-title: IEEE Transactions on Multimedia
– volume: 76
  start-page: 3105
  year: 2017
  end-page: 3120
  ident: bib0016
  article-title: Adaptive blind image watermarking using edge pixel concentration
  publication-title: Multimedia Tools and Applications
– volume: 21
  year: 2010
  ident: bib0033
  article-title: Objective image quality assessment based on support vector regression
  publication-title: IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council
– volume: 47
  start-page: 1423
  year: 2001
  end-page: 1443
  ident: bib0006
  article-title: Quantization index modulation: A class of provably good methods for digital watermarking and information embedding
  publication-title: IEEE Transactions on Information Theory
– volume: 71
  year: 2013
  ident: bib0010
  article-title: A study on spatial and transform domain watermarking techniques
– volume: 417
  start-page: 381
  year: 2017
  end-page: 400
  ident: bib0031
  article-title: A new reliable optimized image watermarking scheme based on the integer wavelet transform and singular value decomposition for copyright protection
  publication-title: Information Sciences
– volume: 41
  start-page: 2594
  year: 2008
  end-page: 2610
  ident: bib0025
  article-title: Machine learning based adaptive watermark decoding in view of anticipated attack
  publication-title: Pattern Recognition
– volume: 174
  start-page: 238
  year: 2016
  end-page: 249
  ident: bib0045
  article-title: Online sequential extreme learning machine for watermarking in DWT domain
  publication-title: Neurocomputing
– reference: Broughton, R. S., & Laumeister, W. C. (1989). Interactive video method and apparatus.
– year: 2007
  ident: bib0009
  article-title: Digital watermarking and steganography
– volume: 101
  start-page: 368
  year: 1979
  ident: bib0047
  article-title: A signal theoretic method for creating forgery-proof documents for automatic verification
– volume: 40
  start-page: 19
  year: 2007
  end-page: 32
  ident: bib0034
  article-title: Image classification with the use of radial basis function neural networks and the minimization of the localized generalization error
  publication-title: Pattern Recognition
– volume: 76
  start-page: 3669
  year: 2017
  end-page: 3697
  ident: bib0048
  article-title: A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications
  publication-title: Multimedia Tools and Applications
– reference: Everingham, M., Van~Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (a). The PASCAL visual object classes challenge 2012 (VOC2012) results.
– volume: 65
  start-page: 1894
  year: 2017
  end-page: 1908
  ident: bib0029
  article-title: Fractional Krawtchouk transform with an application to image watermarking
  publication-title: IEEE Transactions on Signal Processing
– volume: 77
  start-page: 2033
  year: 2018
  end-page: 2055
  ident: bib0012
  article-title: Robust image watermarking scheme using bit-plane of hadamard coefficients
  publication-title: Multimedia Tools and Applications
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib0028
  article-title: Microsoft coco: Common objects in context
  publication-title: European conference on computer vision
– volume: 65
  start-page: 247
  year: 2017
  end-page: 268
  ident: bib0024
  article-title: Exploring the learning capabilities of convolutional neural networks for robust image watermarking
  publication-title: Computers & Security
– year: 2017
  ident: bib0032
  publication-title: A robust blind watermarking using convolutional neural network
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0018
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– volume: 88
  start-page: 174
  year: 2008
  end-page: 188
  ident: bib0038
  article-title: Human visual system based adaptive digital image watermarking
  publication-title: Signal Processing
– volume: 6
  start-page: 10269
  year: 2018
  end-page: 10278
  ident: bib0043
  article-title: Secure and robust fragile watermarking scheme for medical images
  publication-title: IEEE Access
– year: 2018
  ident: bib0022
  article-title: Random matching pursuit for image watermarking
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 77
  start-page: 4545
  year: 2018
  end-page: 4561
  ident: bib0027
  article-title: Color image watermarking scheme based on quaternion hadamard transform and schur decomposition
– volume: 5
  start-page: 406
  year: 2015
  end-page: 414
  ident: bib0044
  article-title: Robust and secure multiple watermarking in wavelet domain
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0046
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 2
  start-page: 1517
  year: 2003
  end-page: 1520
  ident: bib0052
  article-title: Adaptive watermark scheme with RBF neural networks
  publication-title: Neural networks and signal processing, 2003. proceedings of the 2003 international conference on
– volume: 48
  start-page: 4099
  year: 2010
  end-page: 4109
  ident: bib0030
  article-title: Local manifold learning-based
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 8
  start-page: 10
  year: 2004
  ident: bib0019
  article-title: Speech watermarking for air traffic control
  publication-title: Watermark
– volume: 53
  start-page: 11
  year: 2016
  end-page: 24
  ident: bib0036
  article-title: Robust and blind watermarking technique in DCT domain using inter-block coefficient differencing
  publication-title: Digital Signal Processing
– volume: 16
  start-page: 265
  year: 2016
  end-page: 283
  ident: bib0001
  article-title: Tensorflow: A system for large-scale machine learning
– volume: 77
  start-page: 24521
  year: 2018
  end-page: 24535
  ident: bib0003
  article-title: Imperceptible non-blind watermarking and robustness against tone mapping operation attacks for high dynamic range images
  publication-title: Multimedia Tools and Applications
– volume: 52
  start-page: 2217
  year: 2014
  end-page: 2233
  ident: bib0037
  article-title: SVM active learning approach for image classification using spatial information
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 75
  start-page: 8695
  year: 2016
  end-page: 8718
  ident: bib0004
  article-title: Chaotic watermark for blind forgery detection in images
  publication-title: Multimedia Tools and Applications
– reference: Fdez-Vidal, X. R. (b). COMPOUND GAIN: A visual distinctness metric for coder performance evaluation,
– reference: Krizhevsky, A., Nair, V., & Hinton, G. (2014). The CIFAR-10 dataset.
– volume: 8
  start-page: 35
  year: 2007
  end-page: 63
  ident: bib0050
  article-title: Multi-task learning for classification with dirichlet process priors
  publication-title: Journal of Machine Learning Research
– volume: 76
  start-page: 23459
  year: 2017
  end-page: 23479
  ident: bib0021
  article-title: Framework for robust blind image watermarking based on classification of attacks
  publication-title: Multimedia Tools and Applications
– start-page: 1112
  year: 2007
  end-page: 1116
  ident: bib0041
  article-title: A wavelet-domain watermarking technique based on support vector regression
  publication-title: Grey systems and intelligent services, 2007. gsis 2007. ieee international conference on
– volume: 1
  start-page: 3
  year: 2017
  ident: bib0023
  article-title: Densely connected convolutional networks.
– year: 2001
  ident: bib0007
  article-title: Music database retrieval based on spectral similarity
  publication-title: 2nd Int. Sympo-sium on Music Information Retrieval (IS-MIR), Oct., 2001
– reference: .
– volume: 100
  start-page: 197
  year: 2018
  end-page: 210
  ident: bib0002
  article-title: A time-efficient optimization for robust image watermarking using machine learning
  publication-title: Expert Systems with Applications
– volume: 77
  start-page: 99
  year: 2018
  end-page: 112
  ident: bib0013
  article-title: A new multiplicative watermark detector in the contourlet domain using t location-scale distribution
  publication-title: Pattern Recognition
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0020
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the ieee conference on computer vision and pattern recognition
– year: 2018
  ident: bib0053
  publication-title: HiDDeN: Hiding data with deep networks
– volume: 34
  start-page: 671
  year: 2001
  end-page: 683
  ident: bib0049
  article-title: Image hiding by optimal LSB substitution and genetic algorithm
– year: 2018
  ident: 10.1016/j.eswa.2019.113157_bib0022
  article-title: Random matching pursuit for image watermarking
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 48
  start-page: 4099
  issue: 11
  year: 2010
  ident: 10.1016/j.eswa.2019.113157_bib0030
  article-title: Local manifold learning-based k-nearest-neighbor for hyperspectral image classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 65
  start-page: 1894
  issue: 7
  year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0029
  article-title: Fractional Krawtchouk transform with an application to image watermarking
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2017.2652383
– ident: 10.1016/j.eswa.2019.113157_bib0017
– volume: 2
  start-page: 1517
  year: 2003
  ident: 10.1016/j.eswa.2019.113157_bib0052
  article-title: Adaptive watermark scheme with RBF neural networks
– volume: 1
  start-page: 3
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0023
  article-title: Densely connected convolutional networks.
– volume: 417
  start-page: 381
  year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0031
  article-title: A new reliable optimized image watermarking scheme based on the integer wavelet transform and singular value decomposition for copyright protection
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.07.026
– volume: 101
  start-page: 368
  issue: 109
  year: 1979
  ident: 10.1016/j.eswa.2019.113157_bib0047
  article-title: A signal theoretic method for creating forgery-proof documents for automatic verification
– volume: 65
  start-page: 247
  year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0024
  article-title: Exploring the learning capabilities of convolutional neural networks for robust image watermarking
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2016.11.016
– start-page: 1112
  year: 2007
  ident: 10.1016/j.eswa.2019.113157_bib0041
  article-title: A wavelet-domain watermarking technique based on support vector regression
– volume: 5
  start-page: 406
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2019.113157_bib0044
  article-title: Robust and secure multiple watermarking in wavelet domain
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2015.1407
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2019.113157_bib0046
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– start-page: 740
  year: 2014
  ident: 10.1016/j.eswa.2019.113157_bib0028
  article-title: Microsoft coco: Common objects in context
– volume: 77
  start-page: 4545
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2019.113157_bib0027
  article-title: Color image watermarking scheme based on quaternion hadamard transform and schur decomposition
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-4452-0
– year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0032
  publication-title: A robust blind watermarking using convolutional neural network
– year: 2007
  ident: 10.1016/j.eswa.2019.113157_bib0009
– volume: 77
  start-page: 24521
  issue: 18
  year: 2018
  ident: 10.1016/j.eswa.2019.113157_bib0003
  article-title: Imperceptible non-blind watermarking and robustness against tone mapping operation attacks for high dynamic range images
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-5759-1
– ident: 10.1016/j.eswa.2019.113157_bib0014
– volume: 77
  start-page: 2033
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2019.113157_bib0012
  article-title: Robust image watermarking scheme using bit-plane of hadamard coefficients
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-4278-1
– volume: 27
  start-page: 511
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0042
  article-title: Non-blind digital watermarking with enhanced image embedding capacity using DMeyer wavelet decomposition, SVD, and DFT
  publication-title: Pattern Recognition and Image Analysis
  doi: 10.1134/S1054661817030257
– volume: 18
  start-page: 196
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2019.113157_bib0040
  article-title: Multiplicative watermark decoder in contourlet domain using the normal inverse Gaussian distribution
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2015.2508147
– volume: 76
  start-page: 3669
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0048
  article-title: A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-3928-7
– volume: 16
  start-page: 265
  year: 2016
  ident: 10.1016/j.eswa.2019.113157_bib0001
  article-title: Tensorflow: A system for large-scale machine learning
– year: 2015
  ident: 10.1016/j.eswa.2019.113157_bib0008
  publication-title: Fast and accurate deep network learning by exponential linear units (ELUs)
– volume: 8
  start-page: 10
  issue: 9
  year: 2004
  ident: 10.1016/j.eswa.2019.113157_bib0019
  article-title: Speech watermarking for air traffic control
  publication-title: Watermark
– volume: 52
  start-page: 2217
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2019.113157_bib0037
  article-title: SVM active learning approach for image classification using spatial information
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2013.2258676
– volume: 2
  start-page: 205
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2019.113157_bib0035
  article-title: Fuzzy knowledge-based adaptive image watermarking by the method of moments
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-016-0023-7
– volume: 40
  start-page: 3027
  issue: 11
  year: 2007
  ident: 10.1016/j.eswa.2019.113157_bib0015
  article-title: Speaker identification security improvement by means of speech watermarking
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.02.016
– volume: 77
  start-page: 99
  year: 2018
  ident: 10.1016/j.eswa.2019.113157_bib0013
  article-title: A new multiplicative watermark detector in the contourlet domain using t location-scale distribution
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.12.006
– start-page: 91
  year: 2015
  ident: 10.1016/j.eswa.2019.113157_bib0039
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– volume: 34
  start-page: 671
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2019.113157_bib0049
  article-title: Image hiding by optimal LSB substitution and genetic algorithm
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(00)00015-7
– start-page: 2672
  year: 2014
  ident: 10.1016/j.eswa.2019.113157_bib0018
  article-title: Generative adversarial nets
– volume: 21
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2019.113157_sbref0029
  article-title: Objective image quality assessment based on support vector regression
  publication-title: IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council
  doi: 10.1109/TNN.2010.2040192
– volume: 53
  start-page: 11
  year: 2016
  ident: 10.1016/j.eswa.2019.113157_bib0036
  article-title: Robust and blind watermarking technique in DCT domain using inter-block coefficient differencing
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2016.02.005
– ident: 10.1016/j.eswa.2019.113157_bib0005
– volume: 6
  start-page: 10269
  year: 2018
  ident: 10.1016/j.eswa.2019.113157_bib0043
  article-title: Secure and robust fragile watermarking scheme for medical images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2799240
– volume: 71
  issue: 14
  year: 2013
  ident: 10.1016/j.eswa.2019.113157_bib0010
  article-title: A study on spatial and transform domain watermarking techniques
  publication-title: International Journal of Computer Applications
  doi: 10.5120/12429-9124
– volume: 76
  start-page: 3105
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0016
  article-title: Adaptive blind image watermarking using edge pixel concentration
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-015-3200-6
– volume: 76
  start-page: 23459
  issue: 22
  year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0021
  article-title: Framework for robust blind image watermarking based on classification of attacks
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-4150-3
– volume: 47
  start-page: 1423
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2019.113157_bib0006
  article-title: Quantization index modulation: A class of provably good methods for digital watermarking and information embedding
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.923725
– year: 2001
  ident: 10.1016/j.eswa.2019.113157_bib0007
  article-title: Music database retrieval based on spectral similarity
  publication-title: 2nd Int. Sympo-sium on Music Information Retrieval (IS-MIR), Oct., 2001
– volume: 14
  start-page: 13
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2019.113157_bib0051
  article-title: A discriminatively learned CNN embedding for person reidentification
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)
– ident: 10.1016/j.eswa.2019.113157_bib0026
– volume: 100
  start-page: 197
  year: 2018
  ident: 10.1016/j.eswa.2019.113157_bib0002
  article-title: A time-efficient optimization for robust image watermarking using machine learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.02.002
– volume: 8
  start-page: 35
  issue: Jan
  year: 2007
  ident: 10.1016/j.eswa.2019.113157_bib0050
  article-title: Multi-task learning for classification with dirichlet process priors
  publication-title: Journal of Machine Learning Research
– volume: 174
  start-page: 238
  year: 2016
  ident: 10.1016/j.eswa.2019.113157_bib0045
  article-title: Online sequential extreme learning machine for watermarking in DWT domain
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.115
– year: 2018
  ident: 10.1016/j.eswa.2019.113157_bib0053
  publication-title: HiDDeN: Hiding data with deep networks
– volume: 41
  start-page: 2594
  issue: 8
  year: 2008
  ident: 10.1016/j.eswa.2019.113157_bib0025
  article-title: Machine learning based adaptive watermark decoding in view of anticipated attack
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2008.01.007
– start-page: 770
  year: 2016
  ident: 10.1016/j.eswa.2019.113157_bib0020
  article-title: Deep residual learning for image recognition
– volume: 88
  start-page: 174
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2019.113157_bib0038
  article-title: Human visual system based adaptive digital image watermarking
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2007.07.020
– volume: 40
  start-page: 19
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2019.113157_bib0034
  article-title: Image classification with the use of radial basis function neural networks and the minimization of the localized generalization error
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.07.002
– volume: 4
  start-page: 247
  issue: 3
  year: 1998
  ident: 10.1016/j.eswa.2019.113157_bib0011
  article-title: Factoring wavelet transforms into lifting steps
  publication-title: Journal of Fourier Analysis and Applications
  doi: 10.1007/BF02476026
– volume: 75
  start-page: 8695
  issue: 14
  year: 2016
  ident: 10.1016/j.eswa.2019.113157_bib0004
  article-title: Chaotic watermark for blind forgery detection in images
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-015-2786-z
SSID ssj0017007
Score 2.6606662
Snippet •Learning new embedding patterns.•Customizing solutions for suggested transform domains and attacks.•Enhancing security and robustness by diffusing watermark...
Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, applications of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113157
SubjectTerms Algorithms
Artificial neural networks
Blind watermarking
CNN
Computer simulation
Computer vision
Data diffusion
Deep convolutional networks
Diffusion layers
FCN
Image enhancement
Image processing
Machine learning
Neural networks
Real time operation
Robustness
Transparency
Watermarking
Title ReDMark: Framework for residual diffusion watermarking based on deep networks
URI https://dx.doi.org/10.1016/j.eswa.2019.113157
https://www.proquest.com/docview/2431028106
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXrz4LVZrycGbrO1uku2ut1ItVWkPaqG3kGRnoSK12Io3f7szu9mCIj0IewpJWCbJm5cw84axC1BgcxPLALmqCmSUIQ7aVAbgcElAZVGcUXLyaBwPJ_J-qqY11q9yYSis0mN_iekFWvuWtrdmezGbtZ-QHKA7xC8lVTtFSXxSdmmXX32twzxIfq5b6u11A-rtE2fKGC9YfpL2UJhSaZOQXNTfzukXTBe-Z7DHdjxp5L3yv_ZZDeYHbLcqyMD9-Txko0e4oeSbaz6oYq44klKOV-oi54pTOZQPeh_jn6bA5OKlnJMryzi2ZgALPi8jw5dHbDK4fe4PA18vIXAiSlZB2gEhwtwpaUgZKs9d5EwcGwFK5EK6xKQJWEWK6g4UnlaLnSLIbWISZ2VHHLP6_G0OJ4x3IZW5SjrGgZBWxibGcTZ0LhIpSKcaLKwMpZ0XE6eaFq-6ihp70WRcTcbVpXEb7HI9ZlFKaWzsrSr76x8bQiPWbxzXrBZL--O41BHSJCRSeP09_ee0Z2w7ops26baqJquv3j_gHOnIyraK_dZiW727h-H4G07u3vI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHODCG_EmB26o2tokpeU2AdN4bAceErcoSV0JhMbEhvb3sdsUCYQ4IPUUxVXlxPaX1P4McIwaXWlTFRFW1ZFKCvKDLlcReloS1EWSFlycPBim_Ud1_aSf5uC8qYXhtMrg-2ufXnnrMNIO2myPn5_b9wQOKBzSkzOrnc7nYYHZqXQLFrpXN_3h18-E005dNU3zIxYItTN1mhdOZkw_FOfc3STmKPV7fPrhqavw01uF5YAbRbf-tDWYw9E6rDQ9GUQw0Q0Y3OEF19-ciV6TdiUIlwo6VVdlV4I7onzwFZmY2cotV5flgqNZIWi0QByLUZ0cPtmEx97lw3k_Ci0TIi-TbBrlHZQyLr1WlsmhytIn3qaplahlKZXPbJ6h00yq7lGTwTqalGDpMpt5pzpyC1qjtxFugzjFXJU661iPUjmV2pTkXOx9InNUXu9A3CjK-MAnzm0tXk2TOPZiWLmGlWtq5e7AyZfMuGbT-HO2bvRvvu0JQ-7-T7n9ZrFMsMiJSQgpEZaiE_DuP197BIv9h8Gtub0a3uzBUsIHb6Zx1fvQmr5_4AGhk6k7DLvvE_4t4aM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ReDMark%3A+Framework+for+residual+diffusion+watermarking+based+on+deep+networks&rft.jtitle=Expert+systems+with+applications&rft.au=Ahmadi%2C+Mahdi&rft.au=Norouzi%2C+Alireza&rft.au=Karimi%2C+Nader&rft.au=Samavi%2C+Shadrokh&rft.date=2020-05-15&rft.issn=0957-4174&rft.volume=146&rft.spage=113157&rft_id=info:doi/10.1016%2Fj.eswa.2019.113157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2019_113157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon