Soil carbon sequestration by root exudates
Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some e...
Saved in:
Published in | Trends in plant science Vol. 27; no. 8; pp. 749 - 757 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil.
Soil and plants are pivotal to the processes important for maintaining the integrity of biogeochemical cycles, such as the carbon cycle. Over the past few decades, anthropogenic activities have disturbed the atmospheric carbon cycle, leading to severe CO2 emissions into the atmosphere.Soil carbon sequestration by plant root exudates is an important means for net removal of CO2 content from the atmosphere.The rhizosphere environment in natural ecosystems, such as forests and grasslands, can help to stabilize root exudates in soil, while conditions in croplands do not appear favorable to stabilize root exudates as a soil organic carbon (SOC) source.Thus, preserving forests and grasslands with plant species secreting a high amount of carbon compounds might increase the SOC content in the soil of these ecosystems. |
---|---|
AbstractList | Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil.Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil. Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil. Soil and plants are pivotal to the processes important for maintaining the integrity of biogeochemical cycles, such as the carbon cycle. Over the past few decades, anthropogenic activities have disturbed the atmospheric carbon cycle, leading to severe CO2 emissions into the atmosphere.Soil carbon sequestration by plant root exudates is an important means for net removal of CO2 content from the atmosphere.The rhizosphere environment in natural ecosystems, such as forests and grasslands, can help to stabilize root exudates in soil, while conditions in croplands do not appear favorable to stabilize root exudates as a soil organic carbon (SOC) source.Thus, preserving forests and grasslands with plant species secreting a high amount of carbon compounds might increase the SOC content in the soil of these ecosystems. Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil. Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO₂ and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil. |
Author | Peñuelas, Josep Giri, Jitender Preece, Catherine Panchal, Poonam |
Author_xml | – sequence: 1 givenname: Poonam surname: Panchal fullname: Panchal, Poonam organization: National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India – sequence: 2 givenname: Catherine surname: Preece fullname: Preece, Catherine organization: Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, BE-2610 Wilrijk, Belgium – sequence: 3 givenname: Josep surname: Peñuelas fullname: Peñuelas, Josep organization: CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain – sequence: 4 givenname: Jitender orcidid: 0000-0001-6969-5187 surname: Giri fullname: Giri, Jitender email: jitender@nipgr.ac.in organization: National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35606255$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkE1LAzEQhoNUtFV_gtKjCLtOsrvZLB5ExC8oeFDPIcnOQsp2U5NU7L832urBi55mBp53JnkmZDS4AQk5ppBToPx8nsdlr4YYcgaM5VDmAM0OGVNRi6wsajZKfcEho4Wo9skkhDkA1FTwPbJfVBw4q6oxOXtytp8a5bUbpgFfVxiiV9GmSa-n3rk4xfdVqyKGQ7LbqT7g0bYekJfbm-fr-2z2ePdwfTXLTMFEzEQNDTa0SKeoqVujKmpYB0Jo1mnskLUtp8Jgo5XudCm4KlvT1YYqXnalLosDcrrZu_Tu6z1yYYPBPv0W3SpIxuuqqjll8A-UiwYa2vCEnmzRlV5gK5feLpRfy28VCag2gPEuBI_dD0JBfiqXc7lVLj-VSyhlUp5yF79yxsYvg0mk7f9MX27SmIy-WfQyGIuDwdZ6NFG2zv6x4QOxxZ_h |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_175009 crossref_primary_10_3390_atmos14050863 crossref_primary_10_3390_land12091691 crossref_primary_10_1016_j_jenvman_2024_123675 crossref_primary_10_1111_gcb_16701 crossref_primary_10_1016_j_jes_2024_05_041 crossref_primary_10_1016_j_still_2025_106523 crossref_primary_10_1016_j_catena_2023_107094 crossref_primary_10_1016_j_rama_2023_04_010 crossref_primary_10_1186_s13595_024_01224_z crossref_primary_10_1111_tpj_16405 crossref_primary_10_1007_s11104_024_06491_3 crossref_primary_10_1002_fee_2724 crossref_primary_10_1111_gcb_17591 crossref_primary_10_1002_ldr_5199 crossref_primary_10_1016_j_scitotenv_2023_167624 crossref_primary_10_3390_plants12213703 crossref_primary_10_5194_soil_10_619_2024 crossref_primary_10_1016_j_catena_2024_108629 crossref_primary_10_1016_j_marpolbul_2024_117203 crossref_primary_10_17221_106_2024_PSE crossref_primary_10_3390_microorganisms12091752 crossref_primary_10_1111_1365_2745_14272 crossref_primary_10_1038_s43247_024_01879_6 crossref_primary_10_3390_land13081296 crossref_primary_10_1016_j_scitotenv_2024_171439 crossref_primary_10_3724_EE_1672_9250_2025_53_002 crossref_primary_10_1111_1365_2435_14626 crossref_primary_10_1016_j_scitotenv_2023_167290 crossref_primary_10_1016_j_scitotenv_2024_174448 crossref_primary_10_3390_f15071102 crossref_primary_10_3390_agronomy14112584 crossref_primary_10_1016_j_apsoil_2024_105531 crossref_primary_10_3390_app14219851 crossref_primary_10_1016_j_still_2023_105782 crossref_primary_10_1007_s40626_024_00323_6 crossref_primary_10_1016_j_indcrop_2025_120776 crossref_primary_10_4491_eer_2023_568 crossref_primary_10_1029_2024JG008278 crossref_primary_10_1007_s00344_024_11466_w crossref_primary_10_1021_acs_est_3c06177 crossref_primary_10_1016_j_wasman_2023_10_021 crossref_primary_10_1016_j_seh_2024_100100 crossref_primary_10_1016_j_soilbio_2025_109753 crossref_primary_10_1016_j_agee_2024_109181 crossref_primary_10_3389_fsoil_2022_927148 crossref_primary_10_1016_j_jare_2023_06_015 crossref_primary_10_1016_j_soilbio_2024_109610 crossref_primary_10_1016_j_ecohyd_2024_01_011 crossref_primary_10_1007_s11356_025_36135_7 crossref_primary_10_1016_j_rhisph_2024_100946 crossref_primary_10_1007_s11427_024_2876_0 crossref_primary_10_1111_sum_12936 crossref_primary_10_1016_j_catena_2024_108454 crossref_primary_10_1038_s41467_023_37391_2 crossref_primary_10_1007_s00374_024_01807_y crossref_primary_10_3389_ffgc_2023_1152142 crossref_primary_10_1016_j_geoderma_2024_117024 crossref_primary_10_1016_j_geodrs_2023_e00705 crossref_primary_10_1016_j_scitotenv_2024_174933 crossref_primary_10_1016_j_xplc_2024_100812 crossref_primary_10_1007_s11104_023_06200_6 crossref_primary_10_1016_j_eehl_2022_11_005 crossref_primary_10_1016_j_geoderma_2024_117029 crossref_primary_10_1007_s11104_025_07315_8 crossref_primary_10_1016_j_soilbio_2022_108910 crossref_primary_10_1093_jxb_erad045 crossref_primary_10_1007_s11104_023_06284_0 crossref_primary_10_1002_ldr_4806 crossref_primary_10_1016_j_geodrs_2022_e00590 crossref_primary_10_32604_phyton_2023_046075 crossref_primary_10_1016_j_soilbio_2024_109642 crossref_primary_10_3389_fmicb_2024_1367725 crossref_primary_10_1111_gcb_16445 crossref_primary_10_1111_jac_12725 crossref_primary_10_1016_j_foreco_2024_122161 crossref_primary_10_3390_su152014721 crossref_primary_10_1016_j_catena_2025_108886 crossref_primary_10_1186_s12870_024_04724_2 crossref_primary_10_1016_j_soilbio_2022_108907 crossref_primary_10_1016_j_plaphy_2024_109230 crossref_primary_10_1016_j_scitotenv_2024_170980 crossref_primary_10_1016_j_agee_2024_109287 crossref_primary_10_3390_su141911866 crossref_primary_10_1007_s11356_023_26489_1 crossref_primary_10_1016_j_envint_2023_107799 crossref_primary_10_1002_csan_21287 crossref_primary_10_1016_j_agee_2025_109583 crossref_primary_10_1016_j_still_2024_106399 crossref_primary_10_1021_acs_est_3c07882 crossref_primary_10_1093_treephys_tpad030 crossref_primary_10_1038_s41598_024_73018_2 crossref_primary_10_1073_pnas_2210044120 crossref_primary_10_1016_j_scitotenv_2024_174935 crossref_primary_10_1134_S1995425523030034 crossref_primary_10_3390_agronomy13061456 crossref_primary_10_1002_ldr_5043 crossref_primary_10_1111_ejss_13493 crossref_primary_10_1007_s11104_023_06472_y crossref_primary_10_3390_plants12030630 crossref_primary_10_3389_fpls_2023_1277510 crossref_primary_10_1016_j_jenvman_2024_123356 crossref_primary_10_3389_fmicb_2024_1480484 crossref_primary_10_1002_saj2_20626 crossref_primary_10_3389_fpls_2023_1271490 crossref_primary_10_3769_radioisotopes_72_235 crossref_primary_10_1016_j_scitotenv_2025_178682 crossref_primary_10_1038_s41586_023_06999_1 crossref_primary_10_20961_stjssa_v21i2_89262 crossref_primary_10_1360_TB_2023_0475 crossref_primary_10_3390_f14091847 crossref_primary_10_1016_j_jenvman_2024_123761 crossref_primary_10_3390_w16020350 crossref_primary_10_1016_j_jhazmat_2023_130788 crossref_primary_10_3389_fpls_2023_1273546 crossref_primary_10_1080_00103624_2025_2474180 crossref_primary_10_1111_ejss_13528 crossref_primary_10_1111_gcb_70036 crossref_primary_10_1016_j_jenvman_2024_120754 crossref_primary_10_1016_j_geoderma_2022_116160 crossref_primary_10_1016_j_scitotenv_2024_176789 crossref_primary_10_1007_s44246_024_00149_6 crossref_primary_10_7717_peerj_15428 crossref_primary_10_3390_f14081518 crossref_primary_10_1016_j_stress_2023_100341 crossref_primary_10_1186_s12866_024_03558_0 crossref_primary_10_1016_j_soilbio_2025_109715 crossref_primary_10_1007_s11273_023_09936_1 crossref_primary_10_1134_S1064229324602038 crossref_primary_10_3390_microorganisms12050956 crossref_primary_10_1016_j_jhazmat_2023_132730 crossref_primary_10_1016_j_catena_2024_108252 crossref_primary_10_3390_su162310652 crossref_primary_10_3390_agronomy15030578 crossref_primary_10_1002_saj2_20642 crossref_primary_10_1016_j_eja_2025_127607 crossref_primary_10_1016_j_apsoil_2024_105385 crossref_primary_10_1007_s10653_024_02115_y crossref_primary_10_3390_agronomy15020286 crossref_primary_10_1111_1365_2664_14749 crossref_primary_10_3390_f14071468 crossref_primary_10_1016_j_catena_2024_107906 crossref_primary_10_1016_j_still_2024_106180 crossref_primary_10_1080_00103624_2022_2094396 crossref_primary_10_1016_j_catena_2024_108282 crossref_primary_10_3389_fagro_2024_1386671 crossref_primary_10_1007_s00374_022_01659_4 crossref_primary_10_1051_e3sconf_202341102004 crossref_primary_10_1002_advs_202410990 crossref_primary_10_36783_18069657rbcs20230065 crossref_primary_10_1007_s11105_025_01550_0 crossref_primary_10_1016_j_catena_2023_107030 crossref_primary_10_3390_f14091869 crossref_primary_10_1111_1365_2435_14396 crossref_primary_10_1016_j_catena_2024_107912 crossref_primary_10_1016_j_chemosphere_2023_139685 crossref_primary_10_1016_j_tplants_2024_06_006 crossref_primary_10_1016_j_pedsph_2024_05_012 crossref_primary_10_1016_j_earscirev_2024_104852 crossref_primary_10_1007_s11104_024_06696_6 crossref_primary_10_1016_j_scitotenv_2024_178147 crossref_primary_10_1007_s00344_024_11237_7 crossref_primary_10_3390_plants11212917 crossref_primary_10_3390_agronomy13123023 crossref_primary_10_1016_j_agee_2024_109365 crossref_primary_10_1016_j_still_2025_106496 crossref_primary_10_1038_s41598_025_85883_6 crossref_primary_10_1007_s42729_023_01165_y crossref_primary_10_1016_j_foreco_2023_120979 crossref_primary_10_1016_j_soilbio_2023_109256 crossref_primary_10_3390_plants13060780 crossref_primary_10_1016_j_ancene_2023_100423 crossref_primary_10_1016_j_envres_2023_116925 crossref_primary_10_3390_agronomy14102331 crossref_primary_10_1016_j_foreco_2023_121267 crossref_primary_10_3390_ijerph20020959 crossref_primary_10_1007_s43979_023_00076_2 |
Cites_doi | 10.3389/fagro.2020.00008 10.1038/s41561-019-0484-6 10.1111/nph.15361 10.1038/d41586-017-09010-w 10.1016/S0378-1127(02)00016-6 10.1126/science.1097396 10.1016/j.soilbio.2005.05.021 10.1111/gcb.13850 10.1186/s13750-016-0079-2 10.3390/sci3010018 10.1007/BF00000786 10.1111/ejss.13111 10.1007/s11104-014-2371-7 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 10.1111/gcb.12113 10.1111/nph.12440 10.1111/gcb.14859 10.1111/j.1574-6941.2010.00860.x 10.1038/nclimate2580 10.1046/j.1354-1013.2002.00486.x 10.1016/j.soilbio.2007.09.022 10.1029/2018JG004782 10.1038/nature16069 10.1111/nph.17082 10.1073/pnas.1700298114 10.1126/science.aav0550 10.1007/BF02205590 10.1007/BF02185481 10.1038/s41467-019-13119-z 10.1111/gcb.14787 10.1016/j.soilbio.2004.07.037 10.1073/pnas.2020790118 10.3390/agronomy11081553 10.1111/gcb.14781 10.1016/j.soilbio.2014.09.023 10.1111/j.1469-8137.2009.03001.x 10.1038/nclimate3276 10.1007/s10705-014-9658-1 10.1016/j.soilbio.2018.09.033 10.1016/S0065-2113(01)71014-0 10.1016/j.soilbio.2017.01.006 10.1016/j.geoderma.2004.01.032 10.1038/s41558-020-0797-x 10.1038/s41467-019-11472-7 10.1038/ncomms13630 10.1002/9781118297674.ch11 10.1111/geb.13371 10.1098/rstb.2011.0244 10.1038/s41561-018-0258-6 10.1016/j.scitotenv.2018.03.382 10.1007/s40333-014-0063-z 10.1007/s00442-010-1845-4 10.1007/s00216-010-4090-0 10.1007/BF03184131 10.1016/j.soilbio.2017.11.008 10.1038/nature10386 10.1111/gcb.12458 10.1016/S0168-1923(02)00102-8 10.1016/j.soilbio.2007.12.015 10.1016/j.soilbio.2019.107660 10.1016/j.rhisph.2018.06.004 10.1371/journal.pone.0222604 10.1111/gcbb.12194 10.1186/s13021-019-0133-9 10.3389/fenvs.2018.00140 10.1093/jexbot/53.366.131 10.1016/S0038-0717(00)00179-6 10.1038/74531 10.1016/j.soilbio.2020.107840 10.1111/gcb.14070 10.1371/journal.pone.0204128 10.1126/sciadv.abd3176 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R 10.1073/pnas.0406258101 10.1080/07352680902782711 10.1016/j.soilbio.2018.02.016 10.1016/j.soilbio.2015.04.011 10.1038/s41467-018-05667-7 10.1093/treephys/tpaa051 10.1038/s41558-020-0883-0 10.1007/s11104-004-0907-y 10.1016/j.soilbio.2015.08.005 10.1038/s41598-019-54309-5 10.1111/ele.12802 10.1038/nmicrobiol.2017.105 10.1093/jxb/erab019 10.1080/00103620903429976 10.1016/j.soilbio.2020.108024 10.3390/su10124757 10.1038/ncomms7707 10.1016/j.soilbio.2020.108069 10.1007/s10533-011-9658-z 10.1111/nph.17118 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.tplants.2022.04.009 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 1878-4372 |
EndPage | 757 |
ExternalDocumentID | 35606255 10_1016_j_tplants_2022_04_009 S1360138522001303 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RCE RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TWZ VQA XPP Y6R ZCA ~G- ~KM AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c328t-8709e9137181c7dca51c2f088b2fbefe2dd618ce9babfb486a4dcf7c1a64f4b43 |
IEDL.DBID | .~1 |
ISSN | 1360-1385 1878-4372 |
IngestDate | Fri Jul 11 12:09:22 EDT 2025 Fri Jul 11 15:13:02 EDT 2025 Wed Feb 19 02:23:56 EST 2025 Thu Apr 24 23:02:12 EDT 2025 Tue Jul 01 00:57:58 EDT 2025 Fri Feb 23 02:40:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | soil organic carbon labile microorganisms root exudates ecosystems rhizosphere |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-8709e9137181c7dca51c2f088b2fbefe2dd618ce9babfb486a4dcf7c1a64f4b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6969-5187 |
PMID | 35606255 |
PQID | 2668909196 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2675576120 proquest_miscellaneous_2668909196 pubmed_primary_35606255 crossref_primary_10_1016_j_tplants_2022_04_009 crossref_citationtrail_10_1016_j_tplants_2022_04_009 elsevier_sciencedirect_doi_10_1016_j_tplants_2022_04_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in plant science |
PublicationTitleAlternate | Trends Plant Sci |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wilson (bb0400) 2018; 24 Chen (bb0055) 2018; 115 Zhou (bb0095) 2021; 152 Akatsuki, Makita (bb0435) 2020; 40 Delhaize (bb0490) 2004; 101 Rumpel (bb0010) 2018; 553 Guo, Gifford (bb0370) 2002; 8 Wang (bb0480) 2021; 230 Girkin (bb0070) 2018; 117 Kallenbach (bb0260) 2016; 7 Baumert (bb0310) 2018; 6 Davidson, Ackerman (bb0190) 1993; 20 Augustine (bb0385) 2011; 165 Werth, Kuzyakov (bb0470) 2008; 40 Maestrini (bb0425) 2015; 7 Forster (bb0200) 2020; 10 Haddaway (bb0030) 2017; 6 Crowther (bb0275) 2019; 365 Lu (bb0300) 2021; 118 Poirier (bb0340) 2018; 120 Navarro-Pedreño (bb0040) 2021; 3 Rasse (bb0060) 2005; 269 Weller (bb0225) 2015; 101 Fang (bb0375) 2019; 124 Jaitz (bb0440) 2011; 400 Lal (bb0035) 2004; 123 Chai (bb0235) 2019; 14 Nath (bb0005) 2018; 634 Han Weng (bb0415) 2017; 7 Lorenz, Lal (bb0250) 2009 Rumpel, Chabbi (bb0240) 2021; 11 Cotrufo (bb0290) 2019; 12 Lal (bb0180) 2001; 71 Lavallee (bb0285) 2020; 26 Kuzyakov, Domanski (bb0455) 2000; 163 Shi (bb0450) 2013; 1 Miltner (bb0170) 2011; 111 Henry, Vesterga (bb0390) 2008; 40 Morais (bb0185) 2019; 14 Baumert (bb0320) 2018; 2018 Paterson (bb0475) 2009; 184 Riederer (bb0505) 2015; 390 Yang (bb0365) 2019; 10 Meharg (bb0465) 1994; 166 Dijkstra (bb0065) 2021; 230 Landi (bb0135) 2006; 38 Delgado-Baquerizo (bb0195) 2017; 4 Lal (bb0015) 2004; 304 Vetterlein (bb0360) 2020; 2 Dietz (bb0345) 2020; 10 Sokol, Bradford (bb0045) 2018; 12 Falge (bb0500) 2002; 113 Mizuta (bb0330) 2015; 87 Sulman (bb0280) 2017; 20 An (bb0405) 2010; 41 Jeewani (bb0160) 2020; 147 Oburger, Jones (bb0460) 2018; 6 Keiluweit (bb0140) 2015; 5 Chhabra (bb0315) 2003; 173 Bastida (bb0155) 2019; 10 Schmidt (bb0150) 2011; 478 Liang (bb0100) 2018; 9 Smith (bb0265) 2021; 10 Cooper (bb0220) 2021; 72 Herz (bb0445) 2018; 13 Pausch, Kuzyakov (bb0230) 2018; 24 Lehmann, Kleber (bb0295) 2015; 528 Abdullahi (bb0025) 2018; 1 Zhao (bb0495) 2004; 49 Le Quéré (bb0205) 2020; 10 Luo (bb0145) 2014; 6 (bb0215) 2015 Qiao (bb0255) 2014; 20 Cotrufo (bb0110) 2013; 19 Chen (bb0380) 2019; 10 Liang (bb0115) 2017; 2 López-Bucio (bb0485) 2000; 18 Merino (bb0085) 2015; 15 Sokol (bb0050) 2019; 221 Hu (bb0175) 2020; 141 Cagnarini (bb0350) 2019; 25 Liang (bb0355) 2019; 25 Hamilton, Frank (bb0395) 2001; 82 Lange (bb0120) 2015; 6 Kell (bb0020) 2012; 367 Clifford (bb0325) 2002; 53 FAO (bb0245) 2020 Six (bb0305) 2000; 32 Villarino (bb0105) 2021; 7 Weng (bb0420) 2015; 90 He (bb0270) 2020; 151 Cheng (bb0090) 2014; 201 Lal (bb0210) 2009; 28 Oades (bb0335) 1984; 76 Girkin (bb0075) 2018; 127 Dennis (bb0130) 2010; 72 Panchal (bb0165) 2021; 72 Xue, An (bb0410) 2018; 10 Tückmantel (bb0430) 2017; 107 Hamer, Marschner (bb0125) 2005; 37 Shahzad (bb0080) 2015; 80 Wilson (10.1016/j.tplants.2022.04.009_bb0400) 2018; 24 Abdullahi (10.1016/j.tplants.2022.04.009_bb0025) 2018; 1 Werth (10.1016/j.tplants.2022.04.009_bb0470) 2008; 40 Weller (10.1016/j.tplants.2022.04.009_bb0225) 2015; 101 Zhou (10.1016/j.tplants.2022.04.009_bb0095) 2021; 152 Bastida (10.1016/j.tplants.2022.04.009_bb0155) 2019; 10 Meharg (10.1016/j.tplants.2022.04.009_bb0465) 1994; 166 Crowther (10.1016/j.tplants.2022.04.009_bb0275) 2019; 365 Schmidt (10.1016/j.tplants.2022.04.009_bb0150) 2011; 478 Qiao (10.1016/j.tplants.2022.04.009_bb0255) 2014; 20 Sokol (10.1016/j.tplants.2022.04.009_bb0045) 2018; 12 Girkin (10.1016/j.tplants.2022.04.009_bb0075) 2018; 127 Delhaize (10.1016/j.tplants.2022.04.009_bb0490) 2004; 101 Navarro-Pedreño (10.1016/j.tplants.2022.04.009_bb0040) 2021; 3 Hamer (10.1016/j.tplants.2022.04.009_bb0125) 2005; 37 Wang (10.1016/j.tplants.2022.04.009_bb0480) 2021; 230 Falge (10.1016/j.tplants.2022.04.009_bb0500) 2002; 113 Fang (10.1016/j.tplants.2022.04.009_bb0375) 2019; 124 Chen (10.1016/j.tplants.2022.04.009_bb0380) 2019; 10 Oades (10.1016/j.tplants.2022.04.009_bb0335) 1984; 76 Tückmantel (10.1016/j.tplants.2022.04.009_bb0430) 2017; 107 Guo (10.1016/j.tplants.2022.04.009_bb0370) 2002; 8 Sokol (10.1016/j.tplants.2022.04.009_bb0050) 2019; 221 Paterson (10.1016/j.tplants.2022.04.009_bb0475) 2009; 184 Hamilton (10.1016/j.tplants.2022.04.009_bb0395) 2001; 82 Mizuta (10.1016/j.tplants.2022.04.009_bb0330) 2015; 87 Lal (10.1016/j.tplants.2022.04.009_bb0035) 2004; 123 Dennis (10.1016/j.tplants.2022.04.009_bb0130) 2010; 72 Jaitz (10.1016/j.tplants.2022.04.009_bb0440) 2011; 400 Dijkstra (10.1016/j.tplants.2022.04.009_bb0065) 2021; 230 Lavallee (10.1016/j.tplants.2022.04.009_bb0285) 2020; 26 Shahzad (10.1016/j.tplants.2022.04.009_bb0080) 2015; 80 Cheng (10.1016/j.tplants.2022.04.009_bb0090) 2014; 201 Delgado-Baquerizo (10.1016/j.tplants.2022.04.009_bb0195) 2017; 4 Baumert (10.1016/j.tplants.2022.04.009_bb0310) 2018; 6 (10.1016/j.tplants.2022.04.009_bb0215) 2015 López-Bucio (10.1016/j.tplants.2022.04.009_bb0485) 2000; 18 Kell (10.1016/j.tplants.2022.04.009_bb0020) 2012; 367 Landi (10.1016/j.tplants.2022.04.009_bb0135) 2006; 38 Liang (10.1016/j.tplants.2022.04.009_bb0100) 2018; 9 Villarino (10.1016/j.tplants.2022.04.009_bb0105) 2021; 7 Lal (10.1016/j.tplants.2022.04.009_bb0180) 2001; 71 Han Weng (10.1016/j.tplants.2022.04.009_bb0415) 2017; 7 Smith (10.1016/j.tplants.2022.04.009_bb0265) 2021; 10 Luo (10.1016/j.tplants.2022.04.009_bb0145) 2014; 6 Miltner (10.1016/j.tplants.2022.04.009_bb0170) 2011; 111 Dietz (10.1016/j.tplants.2022.04.009_bb0345) 2020; 10 Hu (10.1016/j.tplants.2022.04.009_bb0175) 2020; 141 Maestrini (10.1016/j.tplants.2022.04.009_bb0425) 2015; 7 Morais (10.1016/j.tplants.2022.04.009_bb0185) 2019; 14 Lange (10.1016/j.tplants.2022.04.009_bb0120) 2015; 6 Herz (10.1016/j.tplants.2022.04.009_bb0445) 2018; 13 Chai (10.1016/j.tplants.2022.04.009_bb0235) 2019; 14 Cotrufo (10.1016/j.tplants.2022.04.009_bb0110) 2013; 19 Henry (10.1016/j.tplants.2022.04.009_bb0390) 2008; 40 Chhabra (10.1016/j.tplants.2022.04.009_bb0315) 2003; 173 Lal (10.1016/j.tplants.2022.04.009_bb0015) 2004; 304 Lehmann (10.1016/j.tplants.2022.04.009_bb0295) 2015; 528 Clifford (10.1016/j.tplants.2022.04.009_bb0325) 2002; 53 Shi (10.1016/j.tplants.2022.04.009_bb0450) 2013; 1 Girkin (10.1016/j.tplants.2022.04.009_bb0070) 2018; 117 Oburger (10.1016/j.tplants.2022.04.009_bb0460) 2018; 6 Poirier (10.1016/j.tplants.2022.04.009_bb0340) 2018; 120 An (10.1016/j.tplants.2022.04.009_bb0405) 2010; 41 Cotrufo (10.1016/j.tplants.2022.04.009_bb0290) 2019; 12 Weng (10.1016/j.tplants.2022.04.009_bb0420) 2015; 90 FAO (10.1016/j.tplants.2022.04.009_bb0245) 2020 Kuzyakov (10.1016/j.tplants.2022.04.009_bb0455) 2000; 163 Yang (10.1016/j.tplants.2022.04.009_bb0365) 2019; 10 Le Quéré (10.1016/j.tplants.2022.04.009_bb0205) 2020; 10 Augustine (10.1016/j.tplants.2022.04.009_bb0385) 2011; 165 Pausch (10.1016/j.tplants.2022.04.009_bb0230) 2018; 24 Riederer (10.1016/j.tplants.2022.04.009_bb0505) 2015; 390 Liang (10.1016/j.tplants.2022.04.009_bb0115) 2017; 2 Rumpel (10.1016/j.tplants.2022.04.009_bb0240) 2021; 11 Sulman (10.1016/j.tplants.2022.04.009_bb0280) 2017; 20 Cooper (10.1016/j.tplants.2022.04.009_bb0220) 2021; 72 Davidson (10.1016/j.tplants.2022.04.009_bb0190) 1993; 20 He (10.1016/j.tplants.2022.04.009_bb0270) 2020; 151 Zhao (10.1016/j.tplants.2022.04.009_bb0495) 2004; 49 Rasse (10.1016/j.tplants.2022.04.009_bb0060) 2005; 269 Lorenz (10.1016/j.tplants.2022.04.009_bb0250) 2009 Lu (10.1016/j.tplants.2022.04.009_bb0300) 2021; 118 Keiluweit (10.1016/j.tplants.2022.04.009_bb0140) 2015; 5 Akatsuki (10.1016/j.tplants.2022.04.009_bb0435) 2020; 40 Rumpel (10.1016/j.tplants.2022.04.009_bb0010) 2018; 553 Nath (10.1016/j.tplants.2022.04.009_bb0005) 2018; 634 Haddaway (10.1016/j.tplants.2022.04.009_bb0030) 2017; 6 Xue (10.1016/j.tplants.2022.04.009_bb0410) 2018; 10 Panchal (10.1016/j.tplants.2022.04.009_bb0165) 2021; 72 Kallenbach (10.1016/j.tplants.2022.04.009_bb0260) 2016; 7 Six (10.1016/j.tplants.2022.04.009_bb0305) 2000; 32 Merino (10.1016/j.tplants.2022.04.009_bb0085) 2015; 15 Cagnarini (10.1016/j.tplants.2022.04.009_bb0350) 2019; 25 Chen (10.1016/j.tplants.2022.04.009_bb0055) 2018; 115 Vetterlein (10.1016/j.tplants.2022.04.009_bb0360) 2020; 2 Liang (10.1016/j.tplants.2022.04.009_bb0355) 2019; 25 Jeewani (10.1016/j.tplants.2022.04.009_bb0160) 2020; 147 Forster (10.1016/j.tplants.2022.04.009_bb0200) 2020; 10 Baumert (10.1016/j.tplants.2022.04.009_bb0320) 2018; 2018 Lal (10.1016/j.tplants.2022.04.009_bb0210) 2009; 28 |
References_xml | – volume: 107 start-page: 188 year: 2017 end-page: 197 ident: bb0430 article-title: Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment publication-title: Soil Biol. Biochem. – volume: 553 start-page: 27 year: 2018 ident: bb0010 article-title: Boost soil carbon for food and climate publication-title: Nature – volume: 25 start-page: 3996 year: 2019 end-page: 4007 ident: bb0350 article-title: Zones of influence for soil organic matter dynamics: a conceptual framework for data and models publication-title: Glob. Chang. Biol. – volume: 14 start-page: 1 year: 2019 end-page: 10 ident: bb0235 article-title: Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China publication-title: Carbon Balance Manag. – year: 2015 ident: bb0215 publication-title: Status of the World's Soil Resources: Main Report – volume: 10 start-page: 1 year: 2019 end-page: 9 ident: bb0155 article-title: Global ecological predictors of the soil priming effect publication-title: Nat. Commun. – volume: 82 start-page: 2397 year: 2001 end-page: 2402 ident: bb0395 article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass publication-title: Ecology – volume: 184 start-page: 19 year: 2009 end-page: 33 ident: bb0475 article-title: Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance publication-title: New Phytol. – volume: 221 start-page: 233 year: 2019 end-page: 246 ident: bb0050 article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon publication-title: New Phytol. – volume: 6 start-page: 116 year: 2018 end-page: 133 ident: bb0460 article-title: Sampling root exudates – mission impossible? publication-title: Rhizosphere – volume: 1 start-page: 125 year: 2013 end-page: 135 ident: bb0450 article-title: Challenges in assessing links between root exudates and the structure and function of soil microbial communities publication-title: Mol. Microb. Ecol. Rhizosph. – volume: 72 start-page: 4038 year: 2021 end-page: 4052 ident: bb0165 article-title: Organic acids: versatile stress-response roles in plants publication-title: J. Exp. Bot. – volume: 5 start-page: 588 year: 2015 end-page: 595 ident: bb0140 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nat. Clim. Chang. – volume: 400 start-page: 2587 year: 2011 end-page: 2596 ident: bb0440 article-title: LC-MS analysis of low molecular weight organic acids derived from root exudation publication-title: Anal. Bioanal. Chem. – volume: 25 start-page: 3578 year: 2019 end-page: 3590 ident: bb0355 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Glob. Chang. Biol. – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: bb0380 article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale publication-title: Nat. Commun. – volume: 4 start-page: 1 year: 2017 end-page: 8 ident: bb0195 article-title: Climate legacies drive global soil carbon stocks in terrestrial ecosystems publication-title: Sci. Adv. – volume: 12 start-page: 46 year: 2018 end-page: 53 ident: bb0045 article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input publication-title: Nat. Geosci. – volume: 113 start-page: 53 year: 2002 end-page: 74 ident: bb0500 article-title: Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements publication-title: Agric. For. Meteorol. – volume: 7 start-page: 1 year: 2021 end-page: 14 ident: bb0105 article-title: Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions publication-title: Sci. Adv. – volume: 117 start-page: 48 year: 2018 end-page: 55 ident: bb0070 article-title: Root exudate analogues accelerate CO publication-title: Soil Biol. Biochem. – volume: 115 start-page: 4027 year: 2018 end-page: 4032 ident: bb0055 article-title: Plant diversity enhances productivity and soil carbon storage publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 38 start-page: 509 year: 2006 end-page: 516 ident: bb0135 article-title: Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils publication-title: Soil Biol. Biochem. – volume: 2018 start-page: 8612 year: 2018 ident: bb0320 article-title: Artificial rhizospheres: exudate effects on soil organic carbon content, aggregation and microbial community composition in topsoil vs. subsoil publication-title: EGU Gen. Assem. Conf. Abstr. – volume: 151 year: 2020 ident: bb0270 article-title: Global biogeography of fungal and bacterial biomass carbon in topsoil publication-title: Soil Biol. Biochem. – volume: 365 year: 2019 ident: bb0275 article-title: The global soil community and its influence on biogeochemistry publication-title: Science – volume: 26 start-page: 261 year: 2020 end-page: 273 ident: bb0285 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Chang. Biol. – volume: 123 start-page: 1 year: 2004 end-page: 22 ident: bb0035 article-title: Soil carbon sequestration to mitigate climate change publication-title: Geoderma – volume: 72 start-page: 2477 year: 2021 end-page: 2492 ident: bb0220 article-title: Long-term zero-tillage enhances the protection of soil carbon in tropical agriculture publication-title: Eur. J. Soil Sci. – volume: 127 start-page: 280 year: 2018 end-page: 285 ident: bb0075 article-title: Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat publication-title: Soil Biol. Biochem. – volume: 7 start-page: 371 year: 2017 end-page: 376 ident: bb0415 article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits publication-title: Nat. Clim. Chang. – volume: 201 start-page: 31 year: 2014 end-page: 44 ident: bb0090 article-title: Synthesis and modeling perspectives of rhizosphere priming publication-title: New Phytol. – volume: 173 start-page: 187 year: 2003 end-page: 199 ident: bb0315 article-title: Soil organic carbon pool in Indian forests publication-title: For. Ecol. Manag. – volume: 141 year: 2020 ident: bb0175 article-title: Direct measurement of the in situ decomposition of microbial-derived soil organic matter publication-title: Soil Biol. Biochem. – volume: 3 start-page: 18 year: 2021 ident: bb0040 article-title: The increase of soil organic matter reduces global warming, myth or reality? publication-title: Sci – volume: 90 start-page: 111 year: 2015 end-page: 121 ident: bb0420 article-title: Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system publication-title: Soil Biol. Biochem. – volume: 19 start-page: 988 year: 2013 end-page: 995 ident: bb0110 article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Glob. Chang. Biol. – volume: 37 start-page: 445 year: 2005 end-page: 454 ident: bb0125 article-title: Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions publication-title: Soil Biol. Biochem. – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: bb0015 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 2 start-page: 1 year: 2020 end-page: 22 ident: bb0360 article-title: Rhizosphere spatiotemporal organization–a key to rhizosphere functions publication-title: Front. Agron. – volume: 390 start-page: 61 year: 2015 end-page: 76 ident: bb0505 article-title: Partitioning NEE for absolute C input into various ecosystem pools by combining results from eddy-covariance, atmospheric flux partitioning and publication-title: Plant Soil – volume: 1 start-page: 3 year: 2018 end-page: 16 ident: bb0025 article-title: Carbon sequestration in soils: the opportunities and challenges publication-title: Carbon Capture Util. Sequestration – volume: 152 year: 2021 ident: bb0095 article-title: Strong priming of soil organic matter induced by frequent input of labile carbon publication-title: Soil Biol. Biochem. – volume: 11 start-page: 1553 year: 2021 ident: bb0240 article-title: Managing soil organic carbon for mitigating climate change and increasing food security publication-title: Agronomy – volume: 634 start-page: 1024 year: 2018 end-page: 1033 ident: bb0005 article-title: Managing India’s small landholder farms for food security and achieving the ‘4 per Thousand’ target publication-title: Sci. Total Environ. – volume: 20 start-page: 1043 year: 2017 end-page: 1053 ident: bb0280 article-title: Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association publication-title: Ecol. Lett. – volume: 367 start-page: 1589 year: 2012 end-page: 1597 ident: bb0020 article-title: Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how publication-title: Philos. Trans. R. Soc. B Biol. Sci. – volume: 6 start-page: 1 year: 2018 end-page: 17 ident: bb0310 article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil publication-title: Front. Environ. Sci. – volume: 80 start-page: 146 year: 2015 end-page: 155 ident: bb0080 article-title: Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species publication-title: Soil Biol. Biochem. – volume: 2 start-page: 1 year: 2017 end-page: 6 ident: bb0115 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. – volume: 40 start-page: 1071 year: 2020 end-page: 1079 ident: bb0435 article-title: Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations publication-title: Tree Physiol. – volume: 28 start-page: 90 year: 2009 end-page: 96 ident: bb0210 article-title: Sequestering atmospheric carbon dioxide publication-title: CRC. Crit. Rev. Plant Sci. – volume: 101 start-page: 37 year: 2015 end-page: 53 ident: bb0225 article-title: Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems publication-title: Nutr. Cycl. Agroecosyst. – volume: 10 start-page: 1 year: 2020 end-page: 15 ident: bb0345 article-title: Root exudate composition of grass and forb species in natural grasslands publication-title: Sci. Rep. – volume: 10 start-page: 913 year: 2020 end-page: 919 ident: bb0200 article-title: Current and future global climate impacts resulting from COVID-19 publication-title: Nat. Clim. Chang. – volume: 111 start-page: 41 year: 2011 end-page: 45 ident: bb0170 article-title: SOM genesis: microbial biomass as a significant source publication-title: Biogeochemistry – volume: 87 start-page: 90 year: 2015 end-page: 96 ident: bb0330 article-title: Soil aggregate formation and stability induced by starch and cellulose publication-title: Soil Biol. Biochem. – volume: 166 start-page: 55 year: 1994 end-page: 62 ident: bb0465 article-title: A critical review of labelling techniques used to quantify rhizosphere carbon-flow publication-title: Plant Soil – volume: 120 start-page: 246 year: 2018 end-page: 259 ident: bb0340 article-title: The root of the matter: linking root traits and soil organic matter stabilization processes publication-title: Soil Biol. Biochem. – volume: 478 start-page: 49 year: 2011 end-page: 56 ident: bb0150 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 7 start-page: 577 year: 2015 end-page: 590 ident: bb0425 article-title: A meta-analysis on pyrogenic organic matter induced priming effect publication-title: GCB Bioenergy – volume: 14 start-page: 1 year: 2019 end-page: 27 ident: bb0185 article-title: Detailed global modelling of soil organic carbon in cropland, grassland and forest soils publication-title: PLoS One – volume: 53 start-page: 131 year: 2002 end-page: 138 ident: bb0325 article-title: Mucilages and polysaccharides in publication-title: J. Exp. Bot. – volume: 18 start-page: 450 year: 2000 end-page: 453 ident: bb0485 article-title: Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate publication-title: Nat. Biotechnol. – year: 2009 ident: bb0250 article-title: Carbon Sequestration in Forest Ecosystems – volume: 163 start-page: 421 year: 2000 end-page: 431 ident: bb0455 article-title: Carbon input by plants into the soil publication-title: J. Plant Nutr. Soil Sci. – volume: 40 start-page: 625 year: 2008 end-page: 637 ident: bb0470 article-title: Root-derived carbon in soil respiration and microbial biomass determined by publication-title: Soil Biol. Biochem. – volume: 124 start-page: 247 year: 2019 end-page: 259 ident: bb0375 article-title: Al/Fe mineral controls on soil organic carbon stock across Tibetan alpine grasslands publication-title: J. Geophys. Res. Biogeosci. – volume: 10 start-page: 2070 year: 2021 end-page: 2083 ident: bb0265 article-title: Large-scale drivers of relationships between soil microbial properties and organic carbon across Europe publication-title: Glob. Ecol. Biogeogr. – volume: 7 start-page: 1 year: 2016 end-page: 10 ident: bb0260 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nat. Commun. – volume: 13 start-page: 1 year: 2018 end-page: 14 ident: bb0445 article-title: Linking root exudates to functional plant traits publication-title: PLoS One – volume: 8 start-page: 345 year: 2002 end-page: 360 ident: bb0370 article-title: Soil carbon stocks and land use change: A meta analysis publication-title: Glob. Chang. Biol. – volume: 15 start-page: 321 year: 2015 end-page: 332 ident: bb0085 article-title: Soil carbon controlled by plant, microorganism and mineralogy interactions publication-title: J. Soil Sci. Plant Nutr. – volume: 6 start-page: 1 year: 2017 end-page: 48 ident: bb0030 article-title: How does tillage intensity affect soil organic carbon? A systematic review publication-title: Environ. Evid. – volume: 6 start-page: 423 year: 2014 end-page: 431 ident: bb0145 article-title: Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in northern China publication-title: J. Arid Land – volume: 10 start-page: 647 year: 2020 end-page: 653 ident: bb0205 article-title: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement publication-title: Nat. Clim. Chang. – volume: 9 start-page: 1 year: 2018 end-page: 9 ident: bb0100 article-title: More replenishment than priming loss of soil organic carbon with additional carbon input publication-title: Nat. Commun. – volume: 269 start-page: 341 year: 2005 end-page: 356 ident: bb0060 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation publication-title: Plant Soil – volume: 230 start-page: 60 year: 2021 end-page: 65 ident: bb0065 article-title: Root effects on soil organic carbon: a double-edged sword publication-title: New Phytol. – volume: 72 start-page: 313 year: 2010 end-page: 327 ident: bb0130 article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? publication-title: FEMS Microbiol. Ecol. – volume: 71 start-page: 145 year: 2001 end-page: 191 ident: bb0180 article-title: World cropland soils as a source or sink for atmospheric carbon publication-title: Adv. Agron. – volume: 20 start-page: 161 year: 1993 end-page: 193 ident: bb0190 article-title: Changes in soil carbon inventories following cultivation of previously untilled soils publication-title: Biogeochemistry – volume: 49 start-page: 1611 year: 2004 end-page: 1620 ident: bb0495 article-title: Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm publication-title: Chin. Sci. Bull. – volume: 40 start-page: 1264 year: 2008 end-page: 1267 ident: bb0390 article-title: Evidence for a transient increase of rhizodeposition within one and a half day after a severe defoliation of publication-title: Soil Biol. Biochem. – volume: 41 start-page: 181 year: 2010 end-page: 189 ident: bb0405 article-title: Soil organic carbon density and land restoration: example of southern mountain area of Ningxia Province, Northwest China publication-title: Commun. Soil Sci. Plant Anal. – volume: 147 year: 2020 ident: bb0160 article-title: Rusty sink of rhizodeposits and associated keystone microbiomes publication-title: Soil Biol. Biochem. – volume: 230 start-page: 857 year: 2021 end-page: 866 ident: bb0480 article-title: A novel publication-title: New Phytol. – year: 2020 ident: bb0245 article-title: Global Forest Resources Assessment 2020: Main Report – volume: 12 start-page: 989 year: 2019 end-page: 994 ident: bb0290 article-title: Soil carbon storage informed by particulate and mineral-associated organic matter publication-title: Nat. Geosci. – volume: 118 start-page: 1 year: 2021 end-page: 7 ident: bb0300 article-title: Nitrogen deposition accelerates soil carbon sequestration in tropical forests publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 1 year: 2019 end-page: 7 ident: bb0365 article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity publication-title: Nat. Commun. – volume: 101 start-page: 15249 year: 2004 end-page: 15254 ident: bb0490 article-title: Engineering high-level aluminum tolerance in barley with the ALMT1 gene publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 4757 year: 2018 ident: bb0410 article-title: Changes in soil organic carbon and total nitrogen at a small watershed scale as the result of land use conversion on the Loess Plateau publication-title: Sustainability – volume: 24 start-page: 1 year: 2018 end-page: 12 ident: bb0230 article-title: Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale publication-title: Glob. Chang. Biol. – volume: 32 start-page: 2099 year: 2000 end-page: 2103 ident: bb0305 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. – volume: 76 start-page: 319 year: 1984 end-page: 337 ident: bb0335 article-title: Soil organic matter and structural stability: mechanisms and implications for management publication-title: Plant Soil – volume: 24 start-page: 2997 year: 2018 end-page: 3009 ident: bb0400 article-title: Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland publication-title: Glob. Chang. Biol. – volume: 165 start-page: 755 year: 2011 end-page: 770 ident: bb0385 article-title: Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO publication-title: Oecologia – volume: 528 start-page: 60 year: 2015 end-page: 68 ident: bb0295 article-title: The contentious nature of soil organic matter publication-title: Nature – volume: 20 start-page: 1943 year: 2014 end-page: 1954 ident: bb0255 article-title: Labile carbon retention compensates for CO publication-title: Glob. Chang. Biol. – volume: 6 start-page: 6707 year: 2015 ident: bb0120 article-title: Plant diversity increases soil microbial activity and soil carbon storage publication-title: Nat. Commun. – volume: 2 start-page: 1 year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0360 article-title: Rhizosphere spatiotemporal organization–a key to rhizosphere functions publication-title: Front. Agron. doi: 10.3389/fagro.2020.00008 – volume: 12 start-page: 989 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0290 article-title: Soil carbon storage informed by particulate and mineral-associated organic matter publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0484-6 – volume: 221 start-page: 233 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0050 article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon publication-title: New Phytol. doi: 10.1111/nph.15361 – volume: 553 start-page: 27 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0010 article-title: Boost soil carbon for food and climate publication-title: Nature doi: 10.1038/d41586-017-09010-w – volume: 173 start-page: 187 year: 2003 ident: 10.1016/j.tplants.2022.04.009_bb0315 article-title: Soil organic carbon pool in Indian forests publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(02)00016-6 – volume: 304 start-page: 1623 year: 2004 ident: 10.1016/j.tplants.2022.04.009_bb0015 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – volume: 38 start-page: 509 year: 2006 ident: 10.1016/j.tplants.2022.04.009_bb0135 article-title: Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.05.021 – volume: 24 start-page: 1 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0230 article-title: Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13850 – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.tplants.2022.04.009_bb0030 article-title: How does tillage intensity affect soil organic carbon? A systematic review publication-title: Environ. Evid. doi: 10.1186/s13750-016-0079-2 – volume: 3 start-page: 18 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0040 article-title: The increase of soil organic matter reduces global warming, myth or reality? publication-title: Sci doi: 10.3390/sci3010018 – volume: 20 start-page: 161 year: 1993 ident: 10.1016/j.tplants.2022.04.009_bb0190 article-title: Changes in soil carbon inventories following cultivation of previously untilled soils publication-title: Biogeochemistry doi: 10.1007/BF00000786 – volume: 4 start-page: 1 year: 2017 ident: 10.1016/j.tplants.2022.04.009_bb0195 article-title: Climate legacies drive global soil carbon stocks in terrestrial ecosystems publication-title: Sci. Adv. – volume: 72 start-page: 2477 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0220 article-title: Long-term zero-tillage enhances the protection of soil carbon in tropical agriculture publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.13111 – volume: 390 start-page: 61 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0505 article-title: Partitioning NEE for absolute C input into various ecosystem pools by combining results from eddy-covariance, atmospheric flux partitioning and 13CO2 pulse labeling publication-title: Plant Soil doi: 10.1007/s11104-014-2371-7 – volume: 82 start-page: 2397 year: 2001 ident: 10.1016/j.tplants.2022.04.009_bb0395 article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass publication-title: Ecology doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 – volume: 19 start-page: 988 year: 2013 ident: 10.1016/j.tplants.2022.04.009_bb0110 article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12113 – volume: 201 start-page: 31 year: 2014 ident: 10.1016/j.tplants.2022.04.009_bb0090 article-title: Synthesis and modeling perspectives of rhizosphere priming publication-title: New Phytol. doi: 10.1111/nph.12440 – volume: 26 start-page: 261 year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0285 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14859 – volume: 72 start-page: 313 year: 2010 ident: 10.1016/j.tplants.2022.04.009_bb0130 article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2010.00860.x – volume: 5 start-page: 588 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0140 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2580 – volume: 8 start-page: 345 year: 2002 ident: 10.1016/j.tplants.2022.04.009_bb0370 article-title: Soil carbon stocks and land use change: A meta analysis publication-title: Glob. Chang. Biol. doi: 10.1046/j.1354-1013.2002.00486.x – volume: 40 start-page: 625 year: 2008 ident: 10.1016/j.tplants.2022.04.009_bb0470 article-title: Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.09.022 – volume: 124 start-page: 247 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0375 article-title: Al/Fe mineral controls on soil organic carbon stock across Tibetan alpine grasslands publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2018JG004782 – volume: 528 start-page: 60 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0295 article-title: The contentious nature of soil organic matter publication-title: Nature doi: 10.1038/nature16069 – volume: 230 start-page: 60 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0065 article-title: Root effects on soil organic carbon: a double-edged sword publication-title: New Phytol. doi: 10.1111/nph.17082 – volume: 115 start-page: 4027 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0055 article-title: Plant diversity enhances productivity and soil carbon storage publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1700298114 – volume: 365 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0275 article-title: The global soil community and its influence on biogeochemistry publication-title: Science doi: 10.1126/science.aav0550 – volume: 76 start-page: 319 year: 1984 ident: 10.1016/j.tplants.2022.04.009_bb0335 article-title: Soil organic matter and structural stability: mechanisms and implications for management publication-title: Plant Soil doi: 10.1007/BF02205590 – volume: 166 start-page: 55 year: 1994 ident: 10.1016/j.tplants.2022.04.009_bb0465 article-title: A critical review of labelling techniques used to quantify rhizosphere carbon-flow publication-title: Plant Soil doi: 10.1007/BF02185481 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0380 article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale publication-title: Nat. Commun. doi: 10.1038/s41467-019-13119-z – volume: 25 start-page: 3996 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0350 article-title: Zones of influence for soil organic matter dynamics: a conceptual framework for data and models publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14787 – volume: 37 start-page: 445 year: 2005 ident: 10.1016/j.tplants.2022.04.009_bb0125 article-title: Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.07.037 – volume: 118 start-page: 1 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0300 article-title: Nitrogen deposition accelerates soil carbon sequestration in tropical forests publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2020790118 – volume: 11 start-page: 1553 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0240 article-title: Managing soil organic carbon for mitigating climate change and increasing food security publication-title: Agronomy doi: 10.3390/agronomy11081553 – volume: 25 start-page: 3578 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0355 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14781 – volume: 80 start-page: 146 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0080 article-title: Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.09.023 – volume: 184 start-page: 19 year: 2009 ident: 10.1016/j.tplants.2022.04.009_bb0475 article-title: Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.03001.x – volume: 7 start-page: 371 year: 2017 ident: 10.1016/j.tplants.2022.04.009_bb0415 article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3276 – volume: 101 start-page: 37 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0225 article-title: Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-014-9658-1 – volume: 127 start-page: 280 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0075 article-title: Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.09.033 – volume: 71 start-page: 145 year: 2001 ident: 10.1016/j.tplants.2022.04.009_bb0180 article-title: World cropland soils as a source or sink for atmospheric carbon publication-title: Adv. Agron. doi: 10.1016/S0065-2113(01)71014-0 – volume: 107 start-page: 188 year: 2017 ident: 10.1016/j.tplants.2022.04.009_bb0430 article-title: Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.01.006 – year: 2009 ident: 10.1016/j.tplants.2022.04.009_bb0250 – volume: 123 start-page: 1 year: 2004 ident: 10.1016/j.tplants.2022.04.009_bb0035 article-title: Soil carbon sequestration to mitigate climate change publication-title: Geoderma doi: 10.1016/j.geoderma.2004.01.032 – volume: 10 start-page: 647 year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0205 article-title: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-0797-x – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0155 article-title: Global ecological predictors of the soil priming effect publication-title: Nat. Commun. doi: 10.1038/s41467-019-11472-7 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.tplants.2022.04.009_bb0260 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nat. Commun. doi: 10.1038/ncomms13630 – volume: 1 start-page: 125 year: 2013 ident: 10.1016/j.tplants.2022.04.009_bb0450 article-title: Challenges in assessing links between root exudates and the structure and function of soil microbial communities publication-title: Mol. Microb. Ecol. Rhizosph. doi: 10.1002/9781118297674.ch11 – volume: 10 start-page: 2070 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0265 article-title: Large-scale drivers of relationships between soil microbial properties and organic carbon across Europe publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.13371 – volume: 2018 start-page: 8612 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0320 article-title: Artificial rhizospheres: exudate effects on soil organic carbon content, aggregation and microbial community composition in topsoil vs. subsoil publication-title: EGU Gen. Assem. Conf. Abstr. – volume: 367 start-page: 1589 year: 2012 ident: 10.1016/j.tplants.2022.04.009_bb0020 article-title: Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2011.0244 – volume: 12 start-page: 46 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0045 article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input publication-title: Nat. Geosci. doi: 10.1038/s41561-018-0258-6 – volume: 634 start-page: 1024 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0005 article-title: Managing India’s small landholder farms for food security and achieving the ‘4 per Thousand’ target publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.382 – volume: 6 start-page: 423 year: 2014 ident: 10.1016/j.tplants.2022.04.009_bb0145 article-title: Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in northern China publication-title: J. Arid Land doi: 10.1007/s40333-014-0063-z – volume: 1 start-page: 3 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0025 article-title: Carbon sequestration in soils: the opportunities and challenges publication-title: Carbon Capture Util. Sequestration – volume: 165 start-page: 755 year: 2011 ident: 10.1016/j.tplants.2022.04.009_bb0385 article-title: Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO2 publication-title: Oecologia doi: 10.1007/s00442-010-1845-4 – volume: 400 start-page: 2587 year: 2011 ident: 10.1016/j.tplants.2022.04.009_bb0440 article-title: LC-MS analysis of low molecular weight organic acids derived from root exudation publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-010-4090-0 – volume: 49 start-page: 1611 year: 2004 ident: 10.1016/j.tplants.2022.04.009_bb0495 article-title: Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm publication-title: Chin. Sci. Bull. doi: 10.1007/BF03184131 – volume: 117 start-page: 48 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0070 article-title: Root exudate analogues accelerate CO2 and CH4 production in tropical peat publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.11.008 – volume: 478 start-page: 49 year: 2011 ident: 10.1016/j.tplants.2022.04.009_bb0150 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – volume: 20 start-page: 1943 year: 2014 ident: 10.1016/j.tplants.2022.04.009_bb0255 article-title: Labile carbon retention compensates for CO2 released by priming in forest soils publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12458 – volume: 113 start-page: 53 year: 2002 ident: 10.1016/j.tplants.2022.04.009_bb0500 article-title: Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(02)00102-8 – volume: 40 start-page: 1264 year: 2008 ident: 10.1016/j.tplants.2022.04.009_bb0390 article-title: Evidence for a transient increase of rhizodeposition within one and a half day after a severe defoliation of Plantago arenaria grown in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.12.015 – volume: 141 year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0175 article-title: Direct measurement of the in situ decomposition of microbial-derived soil organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107660 – volume: 6 start-page: 116 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0460 article-title: Sampling root exudates – mission impossible? publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.06.004 – volume: 14 start-page: 1 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0185 article-title: Detailed global modelling of soil organic carbon in cropland, grassland and forest soils publication-title: PLoS One doi: 10.1371/journal.pone.0222604 – volume: 7 start-page: 577 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0425 article-title: A meta-analysis on pyrogenic organic matter induced priming effect publication-title: GCB Bioenergy doi: 10.1111/gcbb.12194 – volume: 14 start-page: 1 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0235 article-title: Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China publication-title: Carbon Balance Manag. doi: 10.1186/s13021-019-0133-9 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0310 article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2018.00140 – volume: 53 start-page: 131 year: 2002 ident: 10.1016/j.tplants.2022.04.009_bb0325 article-title: Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress publication-title: J. Exp. Bot. doi: 10.1093/jexbot/53.366.131 – volume: 32 start-page: 2099 year: 2000 ident: 10.1016/j.tplants.2022.04.009_bb0305 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00179-6 – volume: 18 start-page: 450 year: 2000 ident: 10.1016/j.tplants.2022.04.009_bb0485 article-title: Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate publication-title: Nat. Biotechnol. doi: 10.1038/74531 – volume: 147 year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0160 article-title: Rusty sink of rhizodeposits and associated keystone microbiomes publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107840 – volume: 24 start-page: 2997 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0400 article-title: Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14070 – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0445 article-title: Linking root exudates to functional plant traits publication-title: PLoS One doi: 10.1371/journal.pone.0204128 – volume: 7 start-page: 1 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0105 article-title: Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions publication-title: Sci. Adv. doi: 10.1126/sciadv.abd3176 – volume: 163 start-page: 421 year: 2000 ident: 10.1016/j.tplants.2022.04.009_bb0455 article-title: Carbon input by plants into the soil publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R – volume: 101 start-page: 15249 year: 2004 ident: 10.1016/j.tplants.2022.04.009_bb0490 article-title: Engineering high-level aluminum tolerance in barley with the ALMT1 gene publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0406258101 – volume: 28 start-page: 90 year: 2009 ident: 10.1016/j.tplants.2022.04.009_bb0210 article-title: Sequestering atmospheric carbon dioxide publication-title: CRC. Crit. Rev. Plant Sci. doi: 10.1080/07352680902782711 – volume: 120 start-page: 246 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0340 article-title: The root of the matter: linking root traits and soil organic matter stabilization processes publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.02.016 – volume: 87 start-page: 90 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0330 article-title: Soil aggregate formation and stability induced by starch and cellulose publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.04.011 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0100 article-title: More replenishment than priming loss of soil organic carbon with additional carbon input publication-title: Nat. Commun. doi: 10.1038/s41467-018-05667-7 – volume: 40 start-page: 1071 year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0435 article-title: Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations publication-title: Tree Physiol. doi: 10.1093/treephys/tpaa051 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.tplants.2022.04.009_bb0365 article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity publication-title: Nat. Commun. – volume: 10 start-page: 913 year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0200 article-title: Current and future global climate impacts resulting from COVID-19 publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-0883-0 – volume: 269 start-page: 341 year: 2005 ident: 10.1016/j.tplants.2022.04.009_bb0060 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation publication-title: Plant Soil doi: 10.1007/s11104-004-0907-y – volume: 90 start-page: 111 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0420 article-title: Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.08.005 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0345 article-title: Root exudate composition of grass and forb species in natural grasslands publication-title: Sci. Rep. doi: 10.1038/s41598-019-54309-5 – volume: 20 start-page: 1043 year: 2017 ident: 10.1016/j.tplants.2022.04.009_bb0280 article-title: Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association publication-title: Ecol. Lett. doi: 10.1111/ele.12802 – volume: 15 start-page: 321 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0085 article-title: Soil carbon controlled by plant, microorganism and mineralogy interactions publication-title: J. Soil Sci. Plant Nutr. – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.tplants.2022.04.009_bb0115 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.105 – volume: 72 start-page: 4038 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0165 article-title: Organic acids: versatile stress-response roles in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/erab019 – volume: 41 start-page: 181 year: 2010 ident: 10.1016/j.tplants.2022.04.009_bb0405 article-title: Soil organic carbon density and land restoration: example of southern mountain area of Ningxia Province, Northwest China publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620903429976 – volume: 151 year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0270 article-title: Global biogeography of fungal and bacterial biomass carbon in topsoil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108024 – year: 2020 ident: 10.1016/j.tplants.2022.04.009_bb0245 – volume: 10 start-page: 4757 year: 2018 ident: 10.1016/j.tplants.2022.04.009_bb0410 article-title: Changes in soil organic carbon and total nitrogen at a small watershed scale as the result of land use conversion on the Loess Plateau publication-title: Sustainability doi: 10.3390/su10124757 – volume: 6 start-page: 6707 year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0120 article-title: Plant diversity increases soil microbial activity and soil carbon storage publication-title: Nat. Commun. doi: 10.1038/ncomms7707 – year: 2015 ident: 10.1016/j.tplants.2022.04.009_bb0215 – volume: 152 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0095 article-title: Strong priming of soil organic matter induced by frequent input of labile carbon publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108069 – volume: 111 start-page: 41 year: 2011 ident: 10.1016/j.tplants.2022.04.009_bb0170 article-title: SOM genesis: microbial biomass as a significant source publication-title: Biogeochemistry doi: 10.1007/s10533-011-9658-z – volume: 230 start-page: 857 year: 2021 ident: 10.1016/j.tplants.2022.04.009_bb0480 article-title: A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition publication-title: New Phytol. doi: 10.1111/nph.17118 |
SSID | ssj0007186 |
Score | 2.6963332 |
SecondaryResourceType | review_article |
Snippet | Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile... Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 749 |
SubjectTerms | carbon dioxide carbon sequestration climate change ecosystems labile labile carbon microbial activity microorganisms reforestation rhizosphere root exudates soil soil organic carbon |
Title | Soil carbon sequestration by root exudates |
URI | https://dx.doi.org/10.1016/j.tplants.2022.04.009 https://www.ncbi.nlm.nih.gov/pubmed/35606255 https://www.proquest.com/docview/2668909196 https://www.proquest.com/docview/2675576120 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL2M6YM-iM6v-TEq-CRsa9M0bR_nUKbCXuZgbyFJU9gY7dAO9MXf7k0_NgV14GNLA-nJzcm55OQG4NqPVBzhMtkmoa3b1HORBx2i28qVGM6KmVvdjdtiyAZj-jjxJjXoV2dhjK2y5P6C03O2Lt90SzS7i-m0O3JcZrbZUEDk22-m4ielvonyzsfa5oHcy4qzV7apt-etT_F0Z51sMTduE0wTCckrnhpf4s_r02_6M1-H7vdhrxSQVq_o4wHUdNKA7dsURd57A3a_1Bc8hJtROp1bSrzINLFy03RVJdeS7xZq5szSb0uT878ewfj-7rk_aJeXIyCMJMiQxexQh46L_-coRFx4jiIxcoYksdSxJlHEnEDpUAoZSxowQXFYfOUIRmMqqXsM9SRN9ClYno6Ypi4RONtpJLUUTCifsCBmVGN-1ARaQcJVWTncXGAx55VFbMZLJLlBktuUI5JN6KyaLYrSGZsaBBXe_FsMcKT3TU2vqvHhOD_MpodIdLrEjxgLQhRFIfvrG9_DvMshdhNOisFd9dhFSYgYeGf_79w57JinwjZ4AfXsZakvUcpkspXHagu2eg9Pg-EnXf_yvg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xScABsVPWIMEFqW3iOG5y4MCqsl4AiZuxHUdqVSUVTQW98FP8IOMsFCQWCYlrElvjZ3vmTTyeAdhphCoK0UxWSWDrKvVc1IMO0VXlSlzOipmq7iba4po17-j5vXc_Aq_lXRgTVlno_lynZ9q6eFIv0Kx3W636jeMyc8yGBCI7fisrWF_owRP6bb39s2Oc5F1CTk9uj5rVorQACkH8FHWAHejAcVEzOwrlFZ6jSIQ7TpJI6kiTMGSOr3QghYwk9ZmgOKiGcgSjEZXUxX5HYRzH5puyCbWXYVwJdsnyy162SfDnDa8N1du1tNsx4S3olxKSpVg1gZBfG8TvCG9m-E5nYaZgrNZBDsocjOh4HiYOE2SVg3mY_pDQcAH2bpJWx1LiUSaxlUVpl2l5LTmwkKSnln7um58MvUW4-xfIlmAsTmK9ApanQ6apSwSqFxpKLQUTqkGYHzGq0SGrAC0h4apIVW4qZnR4GZPW5gWS3CDJbcoRyQrU3pt181wdvzXwS7z5p0XH0Z781nS7nB-OG9KcsohYJ338iDE_QBYWsJ--aXjo6DnErsByPrnvErvIQREDb_Xvwm3BZPP26pJfnl1frMGUeZPHLK7DWPrY1xvIo1K5ma1bCx7-e6O8ATNOMIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+carbon+sequestration+by+root+exudates&rft.jtitle=Trends+in+plant+science&rft.au=Panchal%2C+Poonam&rft.au=Preece%2C+Catherine&rft.au=Pe%C3%B1uelas%2C+Josep&rft.au=Giri%2C+Jitender&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016%2Fj.tplants.2022.04.009&rft.externalDocID=S1360138522001303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |