Soil carbon sequestration by root exudates

Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some e...

Full description

Saved in:
Bibliographic Details
Published inTrends in plant science Vol. 27; no. 8; pp. 749 - 757
Main Authors Panchal, Poonam, Preece, Catherine, Peñuelas, Josep, Giri, Jitender
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil. Soil and plants are pivotal to the processes important for maintaining the integrity of biogeochemical cycles, such as the carbon cycle. Over the past few decades, anthropogenic activities have disturbed the atmospheric carbon cycle, leading to severe CO2 emissions into the atmosphere.Soil carbon sequestration by plant root exudates is an important means for net removal of CO2 content from the atmosphere.The rhizosphere environment in natural ecosystems, such as forests and grasslands, can help to stabilize root exudates in soil, while conditions in croplands do not appear favorable to stabilize root exudates as a soil organic carbon (SOC) source.Thus, preserving forests and grasslands with plant species secreting a high amount of carbon compounds might increase the SOC content in the soil of these ecosystems.
AbstractList Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil.Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil.
Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil. Soil and plants are pivotal to the processes important for maintaining the integrity of biogeochemical cycles, such as the carbon cycle. Over the past few decades, anthropogenic activities have disturbed the atmospheric carbon cycle, leading to severe CO2 emissions into the atmosphere.Soil carbon sequestration by plant root exudates is an important means for net removal of CO2 content from the atmosphere.The rhizosphere environment in natural ecosystems, such as forests and grasslands, can help to stabilize root exudates in soil, while conditions in croplands do not appear favorable to stabilize root exudates as a soil organic carbon (SOC) source.Thus, preserving forests and grasslands with plant species secreting a high amount of carbon compounds might increase the SOC content in the soil of these ecosystems.
Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil.
Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO₂ and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil.
Author Peñuelas, Josep
Giri, Jitender
Preece, Catherine
Panchal, Poonam
Author_xml – sequence: 1
  givenname: Poonam
  surname: Panchal
  fullname: Panchal, Poonam
  organization: National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
– sequence: 2
  givenname: Catherine
  surname: Preece
  fullname: Preece, Catherine
  organization: Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, BE-2610 Wilrijk, Belgium
– sequence: 3
  givenname: Josep
  surname: Peñuelas
  fullname: Peñuelas, Josep
  organization: CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
– sequence: 4
  givenname: Jitender
  orcidid: 0000-0001-6969-5187
  surname: Giri
  fullname: Giri, Jitender
  email: jitender@nipgr.ac.in
  organization: National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35606255$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1LAzEQhoNUtFV_gtKjCLtOsrvZLB5ExC8oeFDPIcnOQsp2U5NU7L832urBi55mBp53JnkmZDS4AQk5ppBToPx8nsdlr4YYcgaM5VDmAM0OGVNRi6wsajZKfcEho4Wo9skkhDkA1FTwPbJfVBw4q6oxOXtytp8a5bUbpgFfVxiiV9GmSa-n3rk4xfdVqyKGQ7LbqT7g0bYekJfbm-fr-2z2ePdwfTXLTMFEzEQNDTa0SKeoqVujKmpYB0Jo1mnskLUtp8Jgo5XudCm4KlvT1YYqXnalLosDcrrZu_Tu6z1yYYPBPv0W3SpIxuuqqjll8A-UiwYa2vCEnmzRlV5gK5feLpRfy28VCag2gPEuBI_dD0JBfiqXc7lVLj-VSyhlUp5yF79yxsYvg0mk7f9MX27SmIy-WfQyGIuDwdZ6NFG2zv6x4QOxxZ_h
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_175009
crossref_primary_10_3390_atmos14050863
crossref_primary_10_3390_land12091691
crossref_primary_10_1016_j_jenvman_2024_123675
crossref_primary_10_1111_gcb_16701
crossref_primary_10_1016_j_jes_2024_05_041
crossref_primary_10_1016_j_still_2025_106523
crossref_primary_10_1016_j_catena_2023_107094
crossref_primary_10_1016_j_rama_2023_04_010
crossref_primary_10_1186_s13595_024_01224_z
crossref_primary_10_1111_tpj_16405
crossref_primary_10_1007_s11104_024_06491_3
crossref_primary_10_1002_fee_2724
crossref_primary_10_1111_gcb_17591
crossref_primary_10_1002_ldr_5199
crossref_primary_10_1016_j_scitotenv_2023_167624
crossref_primary_10_3390_plants12213703
crossref_primary_10_5194_soil_10_619_2024
crossref_primary_10_1016_j_catena_2024_108629
crossref_primary_10_1016_j_marpolbul_2024_117203
crossref_primary_10_17221_106_2024_PSE
crossref_primary_10_3390_microorganisms12091752
crossref_primary_10_1111_1365_2745_14272
crossref_primary_10_1038_s43247_024_01879_6
crossref_primary_10_3390_land13081296
crossref_primary_10_1016_j_scitotenv_2024_171439
crossref_primary_10_3724_EE_1672_9250_2025_53_002
crossref_primary_10_1111_1365_2435_14626
crossref_primary_10_1016_j_scitotenv_2023_167290
crossref_primary_10_1016_j_scitotenv_2024_174448
crossref_primary_10_3390_f15071102
crossref_primary_10_3390_agronomy14112584
crossref_primary_10_1016_j_apsoil_2024_105531
crossref_primary_10_3390_app14219851
crossref_primary_10_1016_j_still_2023_105782
crossref_primary_10_1007_s40626_024_00323_6
crossref_primary_10_1016_j_indcrop_2025_120776
crossref_primary_10_4491_eer_2023_568
crossref_primary_10_1029_2024JG008278
crossref_primary_10_1007_s00344_024_11466_w
crossref_primary_10_1021_acs_est_3c06177
crossref_primary_10_1016_j_wasman_2023_10_021
crossref_primary_10_1016_j_seh_2024_100100
crossref_primary_10_1016_j_soilbio_2025_109753
crossref_primary_10_1016_j_agee_2024_109181
crossref_primary_10_3389_fsoil_2022_927148
crossref_primary_10_1016_j_jare_2023_06_015
crossref_primary_10_1016_j_soilbio_2024_109610
crossref_primary_10_1016_j_ecohyd_2024_01_011
crossref_primary_10_1007_s11356_025_36135_7
crossref_primary_10_1016_j_rhisph_2024_100946
crossref_primary_10_1007_s11427_024_2876_0
crossref_primary_10_1111_sum_12936
crossref_primary_10_1016_j_catena_2024_108454
crossref_primary_10_1038_s41467_023_37391_2
crossref_primary_10_1007_s00374_024_01807_y
crossref_primary_10_3389_ffgc_2023_1152142
crossref_primary_10_1016_j_geoderma_2024_117024
crossref_primary_10_1016_j_geodrs_2023_e00705
crossref_primary_10_1016_j_scitotenv_2024_174933
crossref_primary_10_1016_j_xplc_2024_100812
crossref_primary_10_1007_s11104_023_06200_6
crossref_primary_10_1016_j_eehl_2022_11_005
crossref_primary_10_1016_j_geoderma_2024_117029
crossref_primary_10_1007_s11104_025_07315_8
crossref_primary_10_1016_j_soilbio_2022_108910
crossref_primary_10_1093_jxb_erad045
crossref_primary_10_1007_s11104_023_06284_0
crossref_primary_10_1002_ldr_4806
crossref_primary_10_1016_j_geodrs_2022_e00590
crossref_primary_10_32604_phyton_2023_046075
crossref_primary_10_1016_j_soilbio_2024_109642
crossref_primary_10_3389_fmicb_2024_1367725
crossref_primary_10_1111_gcb_16445
crossref_primary_10_1111_jac_12725
crossref_primary_10_1016_j_foreco_2024_122161
crossref_primary_10_3390_su152014721
crossref_primary_10_1016_j_catena_2025_108886
crossref_primary_10_1186_s12870_024_04724_2
crossref_primary_10_1016_j_soilbio_2022_108907
crossref_primary_10_1016_j_plaphy_2024_109230
crossref_primary_10_1016_j_scitotenv_2024_170980
crossref_primary_10_1016_j_agee_2024_109287
crossref_primary_10_3390_su141911866
crossref_primary_10_1007_s11356_023_26489_1
crossref_primary_10_1016_j_envint_2023_107799
crossref_primary_10_1002_csan_21287
crossref_primary_10_1016_j_agee_2025_109583
crossref_primary_10_1016_j_still_2024_106399
crossref_primary_10_1021_acs_est_3c07882
crossref_primary_10_1093_treephys_tpad030
crossref_primary_10_1038_s41598_024_73018_2
crossref_primary_10_1073_pnas_2210044120
crossref_primary_10_1016_j_scitotenv_2024_174935
crossref_primary_10_1134_S1995425523030034
crossref_primary_10_3390_agronomy13061456
crossref_primary_10_1002_ldr_5043
crossref_primary_10_1111_ejss_13493
crossref_primary_10_1007_s11104_023_06472_y
crossref_primary_10_3390_plants12030630
crossref_primary_10_3389_fpls_2023_1277510
crossref_primary_10_1016_j_jenvman_2024_123356
crossref_primary_10_3389_fmicb_2024_1480484
crossref_primary_10_1002_saj2_20626
crossref_primary_10_3389_fpls_2023_1271490
crossref_primary_10_3769_radioisotopes_72_235
crossref_primary_10_1016_j_scitotenv_2025_178682
crossref_primary_10_1038_s41586_023_06999_1
crossref_primary_10_20961_stjssa_v21i2_89262
crossref_primary_10_1360_TB_2023_0475
crossref_primary_10_3390_f14091847
crossref_primary_10_1016_j_jenvman_2024_123761
crossref_primary_10_3390_w16020350
crossref_primary_10_1016_j_jhazmat_2023_130788
crossref_primary_10_3389_fpls_2023_1273546
crossref_primary_10_1080_00103624_2025_2474180
crossref_primary_10_1111_ejss_13528
crossref_primary_10_1111_gcb_70036
crossref_primary_10_1016_j_jenvman_2024_120754
crossref_primary_10_1016_j_geoderma_2022_116160
crossref_primary_10_1016_j_scitotenv_2024_176789
crossref_primary_10_1007_s44246_024_00149_6
crossref_primary_10_7717_peerj_15428
crossref_primary_10_3390_f14081518
crossref_primary_10_1016_j_stress_2023_100341
crossref_primary_10_1186_s12866_024_03558_0
crossref_primary_10_1016_j_soilbio_2025_109715
crossref_primary_10_1007_s11273_023_09936_1
crossref_primary_10_1134_S1064229324602038
crossref_primary_10_3390_microorganisms12050956
crossref_primary_10_1016_j_jhazmat_2023_132730
crossref_primary_10_1016_j_catena_2024_108252
crossref_primary_10_3390_su162310652
crossref_primary_10_3390_agronomy15030578
crossref_primary_10_1002_saj2_20642
crossref_primary_10_1016_j_eja_2025_127607
crossref_primary_10_1016_j_apsoil_2024_105385
crossref_primary_10_1007_s10653_024_02115_y
crossref_primary_10_3390_agronomy15020286
crossref_primary_10_1111_1365_2664_14749
crossref_primary_10_3390_f14071468
crossref_primary_10_1016_j_catena_2024_107906
crossref_primary_10_1016_j_still_2024_106180
crossref_primary_10_1080_00103624_2022_2094396
crossref_primary_10_1016_j_catena_2024_108282
crossref_primary_10_3389_fagro_2024_1386671
crossref_primary_10_1007_s00374_022_01659_4
crossref_primary_10_1051_e3sconf_202341102004
crossref_primary_10_1002_advs_202410990
crossref_primary_10_36783_18069657rbcs20230065
crossref_primary_10_1007_s11105_025_01550_0
crossref_primary_10_1016_j_catena_2023_107030
crossref_primary_10_3390_f14091869
crossref_primary_10_1111_1365_2435_14396
crossref_primary_10_1016_j_catena_2024_107912
crossref_primary_10_1016_j_chemosphere_2023_139685
crossref_primary_10_1016_j_tplants_2024_06_006
crossref_primary_10_1016_j_pedsph_2024_05_012
crossref_primary_10_1016_j_earscirev_2024_104852
crossref_primary_10_1007_s11104_024_06696_6
crossref_primary_10_1016_j_scitotenv_2024_178147
crossref_primary_10_1007_s00344_024_11237_7
crossref_primary_10_3390_plants11212917
crossref_primary_10_3390_agronomy13123023
crossref_primary_10_1016_j_agee_2024_109365
crossref_primary_10_1016_j_still_2025_106496
crossref_primary_10_1038_s41598_025_85883_6
crossref_primary_10_1007_s42729_023_01165_y
crossref_primary_10_1016_j_foreco_2023_120979
crossref_primary_10_1016_j_soilbio_2023_109256
crossref_primary_10_3390_plants13060780
crossref_primary_10_1016_j_ancene_2023_100423
crossref_primary_10_1016_j_envres_2023_116925
crossref_primary_10_3390_agronomy14102331
crossref_primary_10_1016_j_foreco_2023_121267
crossref_primary_10_3390_ijerph20020959
crossref_primary_10_1007_s43979_023_00076_2
Cites_doi 10.3389/fagro.2020.00008
10.1038/s41561-019-0484-6
10.1111/nph.15361
10.1038/d41586-017-09010-w
10.1016/S0378-1127(02)00016-6
10.1126/science.1097396
10.1016/j.soilbio.2005.05.021
10.1111/gcb.13850
10.1186/s13750-016-0079-2
10.3390/sci3010018
10.1007/BF00000786
10.1111/ejss.13111
10.1007/s11104-014-2371-7
10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
10.1111/gcb.12113
10.1111/nph.12440
10.1111/gcb.14859
10.1111/j.1574-6941.2010.00860.x
10.1038/nclimate2580
10.1046/j.1354-1013.2002.00486.x
10.1016/j.soilbio.2007.09.022
10.1029/2018JG004782
10.1038/nature16069
10.1111/nph.17082
10.1073/pnas.1700298114
10.1126/science.aav0550
10.1007/BF02205590
10.1007/BF02185481
10.1038/s41467-019-13119-z
10.1111/gcb.14787
10.1016/j.soilbio.2004.07.037
10.1073/pnas.2020790118
10.3390/agronomy11081553
10.1111/gcb.14781
10.1016/j.soilbio.2014.09.023
10.1111/j.1469-8137.2009.03001.x
10.1038/nclimate3276
10.1007/s10705-014-9658-1
10.1016/j.soilbio.2018.09.033
10.1016/S0065-2113(01)71014-0
10.1016/j.soilbio.2017.01.006
10.1016/j.geoderma.2004.01.032
10.1038/s41558-020-0797-x
10.1038/s41467-019-11472-7
10.1038/ncomms13630
10.1002/9781118297674.ch11
10.1111/geb.13371
10.1098/rstb.2011.0244
10.1038/s41561-018-0258-6
10.1016/j.scitotenv.2018.03.382
10.1007/s40333-014-0063-z
10.1007/s00442-010-1845-4
10.1007/s00216-010-4090-0
10.1007/BF03184131
10.1016/j.soilbio.2017.11.008
10.1038/nature10386
10.1111/gcb.12458
10.1016/S0168-1923(02)00102-8
10.1016/j.soilbio.2007.12.015
10.1016/j.soilbio.2019.107660
10.1016/j.rhisph.2018.06.004
10.1371/journal.pone.0222604
10.1111/gcbb.12194
10.1186/s13021-019-0133-9
10.3389/fenvs.2018.00140
10.1093/jexbot/53.366.131
10.1016/S0038-0717(00)00179-6
10.1038/74531
10.1016/j.soilbio.2020.107840
10.1111/gcb.14070
10.1371/journal.pone.0204128
10.1126/sciadv.abd3176
10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
10.1073/pnas.0406258101
10.1080/07352680902782711
10.1016/j.soilbio.2018.02.016
10.1016/j.soilbio.2015.04.011
10.1038/s41467-018-05667-7
10.1093/treephys/tpaa051
10.1038/s41558-020-0883-0
10.1007/s11104-004-0907-y
10.1016/j.soilbio.2015.08.005
10.1038/s41598-019-54309-5
10.1111/ele.12802
10.1038/nmicrobiol.2017.105
10.1093/jxb/erab019
10.1080/00103620903429976
10.1016/j.soilbio.2020.108024
10.3390/su10124757
10.1038/ncomms7707
10.1016/j.soilbio.2020.108069
10.1007/s10533-011-9658-z
10.1111/nph.17118
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.tplants.2022.04.009
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 1878-4372
EndPage 757
ExternalDocumentID 35606255
10_1016_j_tplants_2022_04_009
S1360138522001303
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RCE
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TWZ
VQA
XPP
Y6R
ZCA
~G-
~KM
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c328t-8709e9137181c7dca51c2f088b2fbefe2dd618ce9babfb486a4dcf7c1a64f4b43
IEDL.DBID .~1
ISSN 1360-1385
1878-4372
IngestDate Fri Jul 11 12:09:22 EDT 2025
Fri Jul 11 15:13:02 EDT 2025
Wed Feb 19 02:23:56 EST 2025
Thu Apr 24 23:02:12 EDT 2025
Tue Jul 01 00:57:58 EDT 2025
Fri Feb 23 02:40:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords soil organic carbon
labile
microorganisms
root exudates
ecosystems
rhizosphere
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-8709e9137181c7dca51c2f088b2fbefe2dd618ce9babfb486a4dcf7c1a64f4b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6969-5187
PMID 35606255
PQID 2668909196
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2675576120
proquest_miscellaneous_2668909196
pubmed_primary_35606255
crossref_primary_10_1016_j_tplants_2022_04_009
crossref_citationtrail_10_1016_j_tplants_2022_04_009
elsevier_sciencedirect_doi_10_1016_j_tplants_2022_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in plant science
PublicationTitleAlternate Trends Plant Sci
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wilson (bb0400) 2018; 24
Chen (bb0055) 2018; 115
Zhou (bb0095) 2021; 152
Akatsuki, Makita (bb0435) 2020; 40
Delhaize (bb0490) 2004; 101
Rumpel (bb0010) 2018; 553
Guo, Gifford (bb0370) 2002; 8
Wang (bb0480) 2021; 230
Girkin (bb0070) 2018; 117
Kallenbach (bb0260) 2016; 7
Baumert (bb0310) 2018; 6
Davidson, Ackerman (bb0190) 1993; 20
Augustine (bb0385) 2011; 165
Werth, Kuzyakov (bb0470) 2008; 40
Maestrini (bb0425) 2015; 7
Forster (bb0200) 2020; 10
Haddaway (bb0030) 2017; 6
Crowther (bb0275) 2019; 365
Lu (bb0300) 2021; 118
Poirier (bb0340) 2018; 120
Navarro-Pedreño (bb0040) 2021; 3
Rasse (bb0060) 2005; 269
Weller (bb0225) 2015; 101
Fang (bb0375) 2019; 124
Jaitz (bb0440) 2011; 400
Lal (bb0035) 2004; 123
Chai (bb0235) 2019; 14
Nath (bb0005) 2018; 634
Han Weng (bb0415) 2017; 7
Lorenz, Lal (bb0250) 2009
Rumpel, Chabbi (bb0240) 2021; 11
Cotrufo (bb0290) 2019; 12
Lal (bb0180) 2001; 71
Lavallee (bb0285) 2020; 26
Kuzyakov, Domanski (bb0455) 2000; 163
Shi (bb0450) 2013; 1
Miltner (bb0170) 2011; 111
Henry, Vesterga (bb0390) 2008; 40
Morais (bb0185) 2019; 14
Baumert (bb0320) 2018; 2018
Paterson (bb0475) 2009; 184
Riederer (bb0505) 2015; 390
Yang (bb0365) 2019; 10
Meharg (bb0465) 1994; 166
Dijkstra (bb0065) 2021; 230
Landi (bb0135) 2006; 38
Delgado-Baquerizo (bb0195) 2017; 4
Lal (bb0015) 2004; 304
Vetterlein (bb0360) 2020; 2
Dietz (bb0345) 2020; 10
Sokol, Bradford (bb0045) 2018; 12
Falge (bb0500) 2002; 113
Mizuta (bb0330) 2015; 87
Sulman (bb0280) 2017; 20
An (bb0405) 2010; 41
Jeewani (bb0160) 2020; 147
Oburger, Jones (bb0460) 2018; 6
Keiluweit (bb0140) 2015; 5
Chhabra (bb0315) 2003; 173
Bastida (bb0155) 2019; 10
Schmidt (bb0150) 2011; 478
Liang (bb0100) 2018; 9
Smith (bb0265) 2021; 10
Cooper (bb0220) 2021; 72
Herz (bb0445) 2018; 13
Pausch, Kuzyakov (bb0230) 2018; 24
Lehmann, Kleber (bb0295) 2015; 528
Abdullahi (bb0025) 2018; 1
Zhao (bb0495) 2004; 49
Le Quéré (bb0205) 2020; 10
Luo (bb0145) 2014; 6
(bb0215) 2015
Qiao (bb0255) 2014; 20
Cotrufo (bb0110) 2013; 19
Chen (bb0380) 2019; 10
Liang (bb0115) 2017; 2
López-Bucio (bb0485) 2000; 18
Merino (bb0085) 2015; 15
Sokol (bb0050) 2019; 221
Hu (bb0175) 2020; 141
Cagnarini (bb0350) 2019; 25
Liang (bb0355) 2019; 25
Hamilton, Frank (bb0395) 2001; 82
Lange (bb0120) 2015; 6
Kell (bb0020) 2012; 367
Clifford (bb0325) 2002; 53
FAO (bb0245) 2020
Six (bb0305) 2000; 32
Villarino (bb0105) 2021; 7
Weng (bb0420) 2015; 90
He (bb0270) 2020; 151
Cheng (bb0090) 2014; 201
Lal (bb0210) 2009; 28
Oades (bb0335) 1984; 76
Girkin (bb0075) 2018; 127
Dennis (bb0130) 2010; 72
Panchal (bb0165) 2021; 72
Xue, An (bb0410) 2018; 10
Tückmantel (bb0430) 2017; 107
Hamer, Marschner (bb0125) 2005; 37
Shahzad (bb0080) 2015; 80
Wilson (10.1016/j.tplants.2022.04.009_bb0400) 2018; 24
Abdullahi (10.1016/j.tplants.2022.04.009_bb0025) 2018; 1
Werth (10.1016/j.tplants.2022.04.009_bb0470) 2008; 40
Weller (10.1016/j.tplants.2022.04.009_bb0225) 2015; 101
Zhou (10.1016/j.tplants.2022.04.009_bb0095) 2021; 152
Bastida (10.1016/j.tplants.2022.04.009_bb0155) 2019; 10
Meharg (10.1016/j.tplants.2022.04.009_bb0465) 1994; 166
Crowther (10.1016/j.tplants.2022.04.009_bb0275) 2019; 365
Schmidt (10.1016/j.tplants.2022.04.009_bb0150) 2011; 478
Qiao (10.1016/j.tplants.2022.04.009_bb0255) 2014; 20
Sokol (10.1016/j.tplants.2022.04.009_bb0045) 2018; 12
Girkin (10.1016/j.tplants.2022.04.009_bb0075) 2018; 127
Delhaize (10.1016/j.tplants.2022.04.009_bb0490) 2004; 101
Navarro-Pedreño (10.1016/j.tplants.2022.04.009_bb0040) 2021; 3
Hamer (10.1016/j.tplants.2022.04.009_bb0125) 2005; 37
Wang (10.1016/j.tplants.2022.04.009_bb0480) 2021; 230
Falge (10.1016/j.tplants.2022.04.009_bb0500) 2002; 113
Fang (10.1016/j.tplants.2022.04.009_bb0375) 2019; 124
Chen (10.1016/j.tplants.2022.04.009_bb0380) 2019; 10
Oades (10.1016/j.tplants.2022.04.009_bb0335) 1984; 76
Tückmantel (10.1016/j.tplants.2022.04.009_bb0430) 2017; 107
Guo (10.1016/j.tplants.2022.04.009_bb0370) 2002; 8
Sokol (10.1016/j.tplants.2022.04.009_bb0050) 2019; 221
Paterson (10.1016/j.tplants.2022.04.009_bb0475) 2009; 184
Hamilton (10.1016/j.tplants.2022.04.009_bb0395) 2001; 82
Mizuta (10.1016/j.tplants.2022.04.009_bb0330) 2015; 87
Lal (10.1016/j.tplants.2022.04.009_bb0035) 2004; 123
Dennis (10.1016/j.tplants.2022.04.009_bb0130) 2010; 72
Jaitz (10.1016/j.tplants.2022.04.009_bb0440) 2011; 400
Dijkstra (10.1016/j.tplants.2022.04.009_bb0065) 2021; 230
Lavallee (10.1016/j.tplants.2022.04.009_bb0285) 2020; 26
Shahzad (10.1016/j.tplants.2022.04.009_bb0080) 2015; 80
Cheng (10.1016/j.tplants.2022.04.009_bb0090) 2014; 201
Delgado-Baquerizo (10.1016/j.tplants.2022.04.009_bb0195) 2017; 4
Baumert (10.1016/j.tplants.2022.04.009_bb0310) 2018; 6
(10.1016/j.tplants.2022.04.009_bb0215) 2015
López-Bucio (10.1016/j.tplants.2022.04.009_bb0485) 2000; 18
Kell (10.1016/j.tplants.2022.04.009_bb0020) 2012; 367
Landi (10.1016/j.tplants.2022.04.009_bb0135) 2006; 38
Liang (10.1016/j.tplants.2022.04.009_bb0100) 2018; 9
Villarino (10.1016/j.tplants.2022.04.009_bb0105) 2021; 7
Lal (10.1016/j.tplants.2022.04.009_bb0180) 2001; 71
Han Weng (10.1016/j.tplants.2022.04.009_bb0415) 2017; 7
Smith (10.1016/j.tplants.2022.04.009_bb0265) 2021; 10
Luo (10.1016/j.tplants.2022.04.009_bb0145) 2014; 6
Miltner (10.1016/j.tplants.2022.04.009_bb0170) 2011; 111
Dietz (10.1016/j.tplants.2022.04.009_bb0345) 2020; 10
Hu (10.1016/j.tplants.2022.04.009_bb0175) 2020; 141
Maestrini (10.1016/j.tplants.2022.04.009_bb0425) 2015; 7
Morais (10.1016/j.tplants.2022.04.009_bb0185) 2019; 14
Lange (10.1016/j.tplants.2022.04.009_bb0120) 2015; 6
Herz (10.1016/j.tplants.2022.04.009_bb0445) 2018; 13
Chai (10.1016/j.tplants.2022.04.009_bb0235) 2019; 14
Cotrufo (10.1016/j.tplants.2022.04.009_bb0110) 2013; 19
Henry (10.1016/j.tplants.2022.04.009_bb0390) 2008; 40
Chhabra (10.1016/j.tplants.2022.04.009_bb0315) 2003; 173
Lal (10.1016/j.tplants.2022.04.009_bb0015) 2004; 304
Lehmann (10.1016/j.tplants.2022.04.009_bb0295) 2015; 528
Clifford (10.1016/j.tplants.2022.04.009_bb0325) 2002; 53
Shi (10.1016/j.tplants.2022.04.009_bb0450) 2013; 1
Girkin (10.1016/j.tplants.2022.04.009_bb0070) 2018; 117
Oburger (10.1016/j.tplants.2022.04.009_bb0460) 2018; 6
Poirier (10.1016/j.tplants.2022.04.009_bb0340) 2018; 120
An (10.1016/j.tplants.2022.04.009_bb0405) 2010; 41
Cotrufo (10.1016/j.tplants.2022.04.009_bb0290) 2019; 12
Weng (10.1016/j.tplants.2022.04.009_bb0420) 2015; 90
FAO (10.1016/j.tplants.2022.04.009_bb0245) 2020
Kuzyakov (10.1016/j.tplants.2022.04.009_bb0455) 2000; 163
Yang (10.1016/j.tplants.2022.04.009_bb0365) 2019; 10
Le Quéré (10.1016/j.tplants.2022.04.009_bb0205) 2020; 10
Augustine (10.1016/j.tplants.2022.04.009_bb0385) 2011; 165
Pausch (10.1016/j.tplants.2022.04.009_bb0230) 2018; 24
Riederer (10.1016/j.tplants.2022.04.009_bb0505) 2015; 390
Liang (10.1016/j.tplants.2022.04.009_bb0115) 2017; 2
Rumpel (10.1016/j.tplants.2022.04.009_bb0240) 2021; 11
Sulman (10.1016/j.tplants.2022.04.009_bb0280) 2017; 20
Cooper (10.1016/j.tplants.2022.04.009_bb0220) 2021; 72
Davidson (10.1016/j.tplants.2022.04.009_bb0190) 1993; 20
He (10.1016/j.tplants.2022.04.009_bb0270) 2020; 151
Zhao (10.1016/j.tplants.2022.04.009_bb0495) 2004; 49
Rasse (10.1016/j.tplants.2022.04.009_bb0060) 2005; 269
Lorenz (10.1016/j.tplants.2022.04.009_bb0250) 2009
Lu (10.1016/j.tplants.2022.04.009_bb0300) 2021; 118
Keiluweit (10.1016/j.tplants.2022.04.009_bb0140) 2015; 5
Akatsuki (10.1016/j.tplants.2022.04.009_bb0435) 2020; 40
Rumpel (10.1016/j.tplants.2022.04.009_bb0010) 2018; 553
Nath (10.1016/j.tplants.2022.04.009_bb0005) 2018; 634
Haddaway (10.1016/j.tplants.2022.04.009_bb0030) 2017; 6
Xue (10.1016/j.tplants.2022.04.009_bb0410) 2018; 10
Panchal (10.1016/j.tplants.2022.04.009_bb0165) 2021; 72
Kallenbach (10.1016/j.tplants.2022.04.009_bb0260) 2016; 7
Six (10.1016/j.tplants.2022.04.009_bb0305) 2000; 32
Merino (10.1016/j.tplants.2022.04.009_bb0085) 2015; 15
Cagnarini (10.1016/j.tplants.2022.04.009_bb0350) 2019; 25
Chen (10.1016/j.tplants.2022.04.009_bb0055) 2018; 115
Vetterlein (10.1016/j.tplants.2022.04.009_bb0360) 2020; 2
Liang (10.1016/j.tplants.2022.04.009_bb0355) 2019; 25
Jeewani (10.1016/j.tplants.2022.04.009_bb0160) 2020; 147
Forster (10.1016/j.tplants.2022.04.009_bb0200) 2020; 10
Baumert (10.1016/j.tplants.2022.04.009_bb0320) 2018; 2018
Lal (10.1016/j.tplants.2022.04.009_bb0210) 2009; 28
References_xml – volume: 107
  start-page: 188
  year: 2017
  end-page: 197
  ident: bb0430
  article-title: Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment
  publication-title: Soil Biol. Biochem.
– volume: 553
  start-page: 27
  year: 2018
  ident: bb0010
  article-title: Boost soil carbon for food and climate
  publication-title: Nature
– volume: 25
  start-page: 3996
  year: 2019
  end-page: 4007
  ident: bb0350
  article-title: Zones of influence for soil organic matter dynamics: a conceptual framework for data and models
  publication-title: Glob. Chang. Biol.
– volume: 14
  start-page: 1
  year: 2019
  end-page: 10
  ident: bb0235
  article-title: Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China
  publication-title: Carbon Balance Manag.
– year: 2015
  ident: bb0215
  publication-title: Status of the World's Soil Resources: Main Report
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  ident: bb0155
  article-title: Global ecological predictors of the soil priming effect
  publication-title: Nat. Commun.
– volume: 82
  start-page: 2397
  year: 2001
  end-page: 2402
  ident: bb0395
  article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass
  publication-title: Ecology
– volume: 184
  start-page: 19
  year: 2009
  end-page: 33
  ident: bb0475
  article-title: Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance
  publication-title: New Phytol.
– volume: 221
  start-page: 233
  year: 2019
  end-page: 246
  ident: bb0050
  article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon
  publication-title: New Phytol.
– volume: 6
  start-page: 116
  year: 2018
  end-page: 133
  ident: bb0460
  article-title: Sampling root exudates – mission impossible?
  publication-title: Rhizosphere
– volume: 1
  start-page: 125
  year: 2013
  end-page: 135
  ident: bb0450
  article-title: Challenges in assessing links between root exudates and the structure and function of soil microbial communities
  publication-title: Mol. Microb. Ecol. Rhizosph.
– volume: 72
  start-page: 4038
  year: 2021
  end-page: 4052
  ident: bb0165
  article-title: Organic acids: versatile stress-response roles in plants
  publication-title: J. Exp. Bot.
– volume: 5
  start-page: 588
  year: 2015
  end-page: 595
  ident: bb0140
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nat. Clim. Chang.
– volume: 400
  start-page: 2587
  year: 2011
  end-page: 2596
  ident: bb0440
  article-title: LC-MS analysis of low molecular weight organic acids derived from root exudation
  publication-title: Anal. Bioanal. Chem.
– volume: 25
  start-page: 3578
  year: 2019
  end-page: 3590
  ident: bb0355
  article-title: Quantitative assessment of microbial necromass contribution to soil organic matter
  publication-title: Glob. Chang. Biol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: bb0380
  article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1
  year: 2017
  end-page: 8
  ident: bb0195
  article-title: Climate legacies drive global soil carbon stocks in terrestrial ecosystems
  publication-title: Sci. Adv.
– volume: 12
  start-page: 46
  year: 2018
  end-page: 53
  ident: bb0045
  article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input
  publication-title: Nat. Geosci.
– volume: 113
  start-page: 53
  year: 2002
  end-page: 74
  ident: bb0500
  article-title: Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements
  publication-title: Agric. For. Meteorol.
– volume: 7
  start-page: 1
  year: 2021
  end-page: 14
  ident: bb0105
  article-title: Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions
  publication-title: Sci. Adv.
– volume: 117
  start-page: 48
  year: 2018
  end-page: 55
  ident: bb0070
  article-title: Root exudate analogues accelerate CO
  publication-title: Soil Biol. Biochem.
– volume: 115
  start-page: 4027
  year: 2018
  end-page: 4032
  ident: bb0055
  article-title: Plant diversity enhances productivity and soil carbon storage
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 38
  start-page: 509
  year: 2006
  end-page: 516
  ident: bb0135
  article-title: Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils
  publication-title: Soil Biol. Biochem.
– volume: 2018
  start-page: 8612
  year: 2018
  ident: bb0320
  article-title: Artificial rhizospheres: exudate effects on soil organic carbon content, aggregation and microbial community composition in topsoil vs. subsoil
  publication-title: EGU Gen. Assem. Conf. Abstr.
– volume: 151
  year: 2020
  ident: bb0270
  article-title: Global biogeography of fungal and bacterial biomass carbon in topsoil
  publication-title: Soil Biol. Biochem.
– volume: 365
  year: 2019
  ident: bb0275
  article-title: The global soil community and its influence on biogeochemistry
  publication-title: Science
– volume: 26
  start-page: 261
  year: 2020
  end-page: 273
  ident: bb0285
  article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
  publication-title: Glob. Chang. Biol.
– volume: 123
  start-page: 1
  year: 2004
  end-page: 22
  ident: bb0035
  article-title: Soil carbon sequestration to mitigate climate change
  publication-title: Geoderma
– volume: 72
  start-page: 2477
  year: 2021
  end-page: 2492
  ident: bb0220
  article-title: Long-term zero-tillage enhances the protection of soil carbon in tropical agriculture
  publication-title: Eur. J. Soil Sci.
– volume: 127
  start-page: 280
  year: 2018
  end-page: 285
  ident: bb0075
  article-title: Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat
  publication-title: Soil Biol. Biochem.
– volume: 7
  start-page: 371
  year: 2017
  end-page: 376
  ident: bb0415
  article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits
  publication-title: Nat. Clim. Chang.
– volume: 201
  start-page: 31
  year: 2014
  end-page: 44
  ident: bb0090
  article-title: Synthesis and modeling perspectives of rhizosphere priming
  publication-title: New Phytol.
– volume: 173
  start-page: 187
  year: 2003
  end-page: 199
  ident: bb0315
  article-title: Soil organic carbon pool in Indian forests
  publication-title: For. Ecol. Manag.
– volume: 141
  year: 2020
  ident: bb0175
  article-title: Direct measurement of the in situ decomposition of microbial-derived soil organic matter
  publication-title: Soil Biol. Biochem.
– volume: 3
  start-page: 18
  year: 2021
  ident: bb0040
  article-title: The increase of soil organic matter reduces global warming, myth or reality?
  publication-title: Sci
– volume: 90
  start-page: 111
  year: 2015
  end-page: 121
  ident: bb0420
  article-title: Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system
  publication-title: Soil Biol. Biochem.
– volume: 19
  start-page: 988
  year: 2013
  end-page: 995
  ident: bb0110
  article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Glob. Chang. Biol.
– volume: 37
  start-page: 445
  year: 2005
  end-page: 454
  ident: bb0125
  article-title: Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions
  publication-title: Soil Biol. Biochem.
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: bb0015
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 2
  start-page: 1
  year: 2020
  end-page: 22
  ident: bb0360
  article-title: Rhizosphere spatiotemporal organization–a key to rhizosphere functions
  publication-title: Front. Agron.
– volume: 390
  start-page: 61
  year: 2015
  end-page: 76
  ident: bb0505
  article-title: Partitioning NEE for absolute C input into various ecosystem pools by combining results from eddy-covariance, atmospheric flux partitioning and
  publication-title: Plant Soil
– volume: 1
  start-page: 3
  year: 2018
  end-page: 16
  ident: bb0025
  article-title: Carbon sequestration in soils: the opportunities and challenges
  publication-title: Carbon Capture Util. Sequestration
– volume: 152
  year: 2021
  ident: bb0095
  article-title: Strong priming of soil organic matter induced by frequent input of labile carbon
  publication-title: Soil Biol. Biochem.
– volume: 11
  start-page: 1553
  year: 2021
  ident: bb0240
  article-title: Managing soil organic carbon for mitigating climate change and increasing food security
  publication-title: Agronomy
– volume: 634
  start-page: 1024
  year: 2018
  end-page: 1033
  ident: bb0005
  article-title: Managing India’s small landholder farms for food security and achieving the ‘4 per Thousand’ target
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 1043
  year: 2017
  end-page: 1053
  ident: bb0280
  article-title: Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association
  publication-title: Ecol. Lett.
– volume: 367
  start-page: 1589
  year: 2012
  end-page: 1597
  ident: bb0020
  article-title: Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 17
  ident: bb0310
  article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil
  publication-title: Front. Environ. Sci.
– volume: 80
  start-page: 146
  year: 2015
  end-page: 155
  ident: bb0080
  article-title: Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species
  publication-title: Soil Biol. Biochem.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 6
  ident: bb0115
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
– volume: 40
  start-page: 1071
  year: 2020
  end-page: 1079
  ident: bb0435
  article-title: Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations
  publication-title: Tree Physiol.
– volume: 28
  start-page: 90
  year: 2009
  end-page: 96
  ident: bb0210
  article-title: Sequestering atmospheric carbon dioxide
  publication-title: CRC. Crit. Rev. Plant Sci.
– volume: 101
  start-page: 37
  year: 2015
  end-page: 53
  ident: bb0225
  article-title: Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 15
  ident: bb0345
  article-title: Root exudate composition of grass and forb species in natural grasslands
  publication-title: Sci. Rep.
– volume: 10
  start-page: 913
  year: 2020
  end-page: 919
  ident: bb0200
  article-title: Current and future global climate impacts resulting from COVID-19
  publication-title: Nat. Clim. Chang.
– volume: 111
  start-page: 41
  year: 2011
  end-page: 45
  ident: bb0170
  article-title: SOM genesis: microbial biomass as a significant source
  publication-title: Biogeochemistry
– volume: 87
  start-page: 90
  year: 2015
  end-page: 96
  ident: bb0330
  article-title: Soil aggregate formation and stability induced by starch and cellulose
  publication-title: Soil Biol. Biochem.
– volume: 166
  start-page: 55
  year: 1994
  end-page: 62
  ident: bb0465
  article-title: A critical review of labelling techniques used to quantify rhizosphere carbon-flow
  publication-title: Plant Soil
– volume: 120
  start-page: 246
  year: 2018
  end-page: 259
  ident: bb0340
  article-title: The root of the matter: linking root traits and soil organic matter stabilization processes
  publication-title: Soil Biol. Biochem.
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  ident: bb0150
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 7
  start-page: 577
  year: 2015
  end-page: 590
  ident: bb0425
  article-title: A meta-analysis on pyrogenic organic matter induced priming effect
  publication-title: GCB Bioenergy
– volume: 14
  start-page: 1
  year: 2019
  end-page: 27
  ident: bb0185
  article-title: Detailed global modelling of soil organic carbon in cropland, grassland and forest soils
  publication-title: PLoS One
– volume: 53
  start-page: 131
  year: 2002
  end-page: 138
  ident: bb0325
  article-title: Mucilages and polysaccharides in
  publication-title: J. Exp. Bot.
– volume: 18
  start-page: 450
  year: 2000
  end-page: 453
  ident: bb0485
  article-title: Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate
  publication-title: Nat. Biotechnol.
– year: 2009
  ident: bb0250
  article-title: Carbon Sequestration in Forest Ecosystems
– volume: 163
  start-page: 421
  year: 2000
  end-page: 431
  ident: bb0455
  article-title: Carbon input by plants into the soil
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 40
  start-page: 625
  year: 2008
  end-page: 637
  ident: bb0470
  article-title: Root-derived carbon in soil respiration and microbial biomass determined by
  publication-title: Soil Biol. Biochem.
– volume: 124
  start-page: 247
  year: 2019
  end-page: 259
  ident: bb0375
  article-title: Al/Fe mineral controls on soil organic carbon stock across Tibetan alpine grasslands
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 10
  start-page: 2070
  year: 2021
  end-page: 2083
  ident: bb0265
  article-title: Large-scale drivers of relationships between soil microbial properties and organic carbon across Europe
  publication-title: Glob. Ecol. Biogeogr.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 10
  ident: bb0260
  article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1
  year: 2018
  end-page: 14
  ident: bb0445
  article-title: Linking root exudates to functional plant traits
  publication-title: PLoS One
– volume: 8
  start-page: 345
  year: 2002
  end-page: 360
  ident: bb0370
  article-title: Soil carbon stocks and land use change: A meta analysis
  publication-title: Glob. Chang. Biol.
– volume: 15
  start-page: 321
  year: 2015
  end-page: 332
  ident: bb0085
  article-title: Soil carbon controlled by plant, microorganism and mineralogy interactions
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 6
  start-page: 1
  year: 2017
  end-page: 48
  ident: bb0030
  article-title: How does tillage intensity affect soil organic carbon? A systematic review
  publication-title: Environ. Evid.
– volume: 6
  start-page: 423
  year: 2014
  end-page: 431
  ident: bb0145
  article-title: Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in northern China
  publication-title: J. Arid Land
– volume: 10
  start-page: 647
  year: 2020
  end-page: 653
  ident: bb0205
  article-title: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement
  publication-title: Nat. Clim. Chang.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 9
  ident: bb0100
  article-title: More replenishment than priming loss of soil organic carbon with additional carbon input
  publication-title: Nat. Commun.
– volume: 269
  start-page: 341
  year: 2005
  end-page: 356
  ident: bb0060
  article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation
  publication-title: Plant Soil
– volume: 230
  start-page: 60
  year: 2021
  end-page: 65
  ident: bb0065
  article-title: Root effects on soil organic carbon: a double-edged sword
  publication-title: New Phytol.
– volume: 72
  start-page: 313
  year: 2010
  end-page: 327
  ident: bb0130
  article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?
  publication-title: FEMS Microbiol. Ecol.
– volume: 71
  start-page: 145
  year: 2001
  end-page: 191
  ident: bb0180
  article-title: World cropland soils as a source or sink for atmospheric carbon
  publication-title: Adv. Agron.
– volume: 20
  start-page: 161
  year: 1993
  end-page: 193
  ident: bb0190
  article-title: Changes in soil carbon inventories following cultivation of previously untilled soils
  publication-title: Biogeochemistry
– volume: 49
  start-page: 1611
  year: 2004
  end-page: 1620
  ident: bb0495
  article-title: Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm
  publication-title: Chin. Sci. Bull.
– volume: 40
  start-page: 1264
  year: 2008
  end-page: 1267
  ident: bb0390
  article-title: Evidence for a transient increase of rhizodeposition within one and a half day after a severe defoliation of
  publication-title: Soil Biol. Biochem.
– volume: 41
  start-page: 181
  year: 2010
  end-page: 189
  ident: bb0405
  article-title: Soil organic carbon density and land restoration: example of southern mountain area of Ningxia Province, Northwest China
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 147
  year: 2020
  ident: bb0160
  article-title: Rusty sink of rhizodeposits and associated keystone microbiomes
  publication-title: Soil Biol. Biochem.
– volume: 230
  start-page: 857
  year: 2021
  end-page: 866
  ident: bb0480
  article-title: A novel
  publication-title: New Phytol.
– year: 2020
  ident: bb0245
  article-title: Global Forest Resources Assessment 2020: Main Report
– volume: 12
  start-page: 989
  year: 2019
  end-page: 994
  ident: bb0290
  article-title: Soil carbon storage informed by particulate and mineral-associated organic matter
  publication-title: Nat. Geosci.
– volume: 118
  start-page: 1
  year: 2021
  end-page: 7
  ident: bb0300
  article-title: Nitrogen deposition accelerates soil carbon sequestration in tropical forests
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 7
  ident: bb0365
  article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity
  publication-title: Nat. Commun.
– volume: 101
  start-page: 15249
  year: 2004
  end-page: 15254
  ident: bb0490
  article-title: Engineering high-level aluminum tolerance in barley with the ALMT1 gene
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: 4757
  year: 2018
  ident: bb0410
  article-title: Changes in soil organic carbon and total nitrogen at a small watershed scale as the result of land use conversion on the Loess Plateau
  publication-title: Sustainability
– volume: 24
  start-page: 1
  year: 2018
  end-page: 12
  ident: bb0230
  article-title: Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale
  publication-title: Glob. Chang. Biol.
– volume: 32
  start-page: 2099
  year: 2000
  end-page: 2103
  ident: bb0305
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
– volume: 76
  start-page: 319
  year: 1984
  end-page: 337
  ident: bb0335
  article-title: Soil organic matter and structural stability: mechanisms and implications for management
  publication-title: Plant Soil
– volume: 24
  start-page: 2997
  year: 2018
  end-page: 3009
  ident: bb0400
  article-title: Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland
  publication-title: Glob. Chang. Biol.
– volume: 165
  start-page: 755
  year: 2011
  end-page: 770
  ident: bb0385
  article-title: Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO
  publication-title: Oecologia
– volume: 528
  start-page: 60
  year: 2015
  end-page: 68
  ident: bb0295
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
– volume: 20
  start-page: 1943
  year: 2014
  end-page: 1954
  ident: bb0255
  article-title: Labile carbon retention compensates for CO
  publication-title: Glob. Chang. Biol.
– volume: 6
  start-page: 6707
  year: 2015
  ident: bb0120
  article-title: Plant diversity increases soil microbial activity and soil carbon storage
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1
  year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0360
  article-title: Rhizosphere spatiotemporal organization–a key to rhizosphere functions
  publication-title: Front. Agron.
  doi: 10.3389/fagro.2020.00008
– volume: 12
  start-page: 989
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0290
  article-title: Soil carbon storage informed by particulate and mineral-associated organic matter
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0484-6
– volume: 221
  start-page: 233
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0050
  article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon
  publication-title: New Phytol.
  doi: 10.1111/nph.15361
– volume: 553
  start-page: 27
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0010
  article-title: Boost soil carbon for food and climate
  publication-title: Nature
  doi: 10.1038/d41586-017-09010-w
– volume: 173
  start-page: 187
  year: 2003
  ident: 10.1016/j.tplants.2022.04.009_bb0315
  article-title: Soil organic carbon pool in Indian forests
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(02)00016-6
– volume: 304
  start-page: 1623
  year: 2004
  ident: 10.1016/j.tplants.2022.04.009_bb0015
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– volume: 38
  start-page: 509
  year: 2006
  ident: 10.1016/j.tplants.2022.04.009_bb0135
  article-title: Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.05.021
– volume: 24
  start-page: 1
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0230
  article-title: Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13850
– volume: 6
  start-page: 1
  year: 2017
  ident: 10.1016/j.tplants.2022.04.009_bb0030
  article-title: How does tillage intensity affect soil organic carbon? A systematic review
  publication-title: Environ. Evid.
  doi: 10.1186/s13750-016-0079-2
– volume: 3
  start-page: 18
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0040
  article-title: The increase of soil organic matter reduces global warming, myth or reality?
  publication-title: Sci
  doi: 10.3390/sci3010018
– volume: 20
  start-page: 161
  year: 1993
  ident: 10.1016/j.tplants.2022.04.009_bb0190
  article-title: Changes in soil carbon inventories following cultivation of previously untilled soils
  publication-title: Biogeochemistry
  doi: 10.1007/BF00000786
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.tplants.2022.04.009_bb0195
  article-title: Climate legacies drive global soil carbon stocks in terrestrial ecosystems
  publication-title: Sci. Adv.
– volume: 72
  start-page: 2477
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0220
  article-title: Long-term zero-tillage enhances the protection of soil carbon in tropical agriculture
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.13111
– volume: 390
  start-page: 61
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0505
  article-title: Partitioning NEE for absolute C input into various ecosystem pools by combining results from eddy-covariance, atmospheric flux partitioning and 13CO2 pulse labeling
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2371-7
– volume: 82
  start-page: 2397
  year: 2001
  ident: 10.1016/j.tplants.2022.04.009_bb0395
  article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
– volume: 19
  start-page: 988
  year: 2013
  ident: 10.1016/j.tplants.2022.04.009_bb0110
  article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12113
– volume: 201
  start-page: 31
  year: 2014
  ident: 10.1016/j.tplants.2022.04.009_bb0090
  article-title: Synthesis and modeling perspectives of rhizosphere priming
  publication-title: New Phytol.
  doi: 10.1111/nph.12440
– volume: 26
  start-page: 261
  year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0285
  article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14859
– volume: 72
  start-page: 313
  year: 2010
  ident: 10.1016/j.tplants.2022.04.009_bb0130
  article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2010.00860.x
– volume: 5
  start-page: 588
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0140
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2580
– volume: 8
  start-page: 345
  year: 2002
  ident: 10.1016/j.tplants.2022.04.009_bb0370
  article-title: Soil carbon stocks and land use change: A meta analysis
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1354-1013.2002.00486.x
– volume: 40
  start-page: 625
  year: 2008
  ident: 10.1016/j.tplants.2022.04.009_bb0470
  article-title: Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.09.022
– volume: 124
  start-page: 247
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0375
  article-title: Al/Fe mineral controls on soil organic carbon stock across Tibetan alpine grasslands
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2018JG004782
– volume: 528
  start-page: 60
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0295
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
  doi: 10.1038/nature16069
– volume: 230
  start-page: 60
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0065
  article-title: Root effects on soil organic carbon: a double-edged sword
  publication-title: New Phytol.
  doi: 10.1111/nph.17082
– volume: 115
  start-page: 4027
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0055
  article-title: Plant diversity enhances productivity and soil carbon storage
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1700298114
– volume: 365
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0275
  article-title: The global soil community and its influence on biogeochemistry
  publication-title: Science
  doi: 10.1126/science.aav0550
– volume: 76
  start-page: 319
  year: 1984
  ident: 10.1016/j.tplants.2022.04.009_bb0335
  article-title: Soil organic matter and structural stability: mechanisms and implications for management
  publication-title: Plant Soil
  doi: 10.1007/BF02205590
– volume: 166
  start-page: 55
  year: 1994
  ident: 10.1016/j.tplants.2022.04.009_bb0465
  article-title: A critical review of labelling techniques used to quantify rhizosphere carbon-flow
  publication-title: Plant Soil
  doi: 10.1007/BF02185481
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0380
  article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13119-z
– volume: 25
  start-page: 3996
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0350
  article-title: Zones of influence for soil organic matter dynamics: a conceptual framework for data and models
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14787
– volume: 37
  start-page: 445
  year: 2005
  ident: 10.1016/j.tplants.2022.04.009_bb0125
  article-title: Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.07.037
– volume: 118
  start-page: 1
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0300
  article-title: Nitrogen deposition accelerates soil carbon sequestration in tropical forests
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2020790118
– volume: 11
  start-page: 1553
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0240
  article-title: Managing soil organic carbon for mitigating climate change and increasing food security
  publication-title: Agronomy
  doi: 10.3390/agronomy11081553
– volume: 25
  start-page: 3578
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0355
  article-title: Quantitative assessment of microbial necromass contribution to soil organic matter
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14781
– volume: 80
  start-page: 146
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0080
  article-title: Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.09.023
– volume: 184
  start-page: 19
  year: 2009
  ident: 10.1016/j.tplants.2022.04.009_bb0475
  article-title: Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.03001.x
– volume: 7
  start-page: 371
  year: 2017
  ident: 10.1016/j.tplants.2022.04.009_bb0415
  article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3276
– volume: 101
  start-page: 37
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0225
  article-title: Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-014-9658-1
– volume: 127
  start-page: 280
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0075
  article-title: Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.09.033
– volume: 71
  start-page: 145
  year: 2001
  ident: 10.1016/j.tplants.2022.04.009_bb0180
  article-title: World cropland soils as a source or sink for atmospheric carbon
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(01)71014-0
– volume: 107
  start-page: 188
  year: 2017
  ident: 10.1016/j.tplants.2022.04.009_bb0430
  article-title: Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.01.006
– year: 2009
  ident: 10.1016/j.tplants.2022.04.009_bb0250
– volume: 123
  start-page: 1
  year: 2004
  ident: 10.1016/j.tplants.2022.04.009_bb0035
  article-title: Soil carbon sequestration to mitigate climate change
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.01.032
– volume: 10
  start-page: 647
  year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0205
  article-title: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-020-0797-x
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0155
  article-title: Global ecological predictors of the soil priming effect
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11472-7
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.tplants.2022.04.009_bb0260
  article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13630
– volume: 1
  start-page: 125
  year: 2013
  ident: 10.1016/j.tplants.2022.04.009_bb0450
  article-title: Challenges in assessing links between root exudates and the structure and function of soil microbial communities
  publication-title: Mol. Microb. Ecol. Rhizosph.
  doi: 10.1002/9781118297674.ch11
– volume: 10
  start-page: 2070
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0265
  article-title: Large-scale drivers of relationships between soil microbial properties and organic carbon across Europe
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.13371
– volume: 2018
  start-page: 8612
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0320
  article-title: Artificial rhizospheres: exudate effects on soil organic carbon content, aggregation and microbial community composition in topsoil vs. subsoil
  publication-title: EGU Gen. Assem. Conf. Abstr.
– volume: 367
  start-page: 1589
  year: 2012
  ident: 10.1016/j.tplants.2022.04.009_bb0020
  article-title: Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2011.0244
– volume: 12
  start-page: 46
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0045
  article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-018-0258-6
– volume: 634
  start-page: 1024
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0005
  article-title: Managing India’s small landholder farms for food security and achieving the ‘4 per Thousand’ target
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.382
– volume: 6
  start-page: 423
  year: 2014
  ident: 10.1016/j.tplants.2022.04.009_bb0145
  article-title: Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in northern China
  publication-title: J. Arid Land
  doi: 10.1007/s40333-014-0063-z
– volume: 1
  start-page: 3
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0025
  article-title: Carbon sequestration in soils: the opportunities and challenges
  publication-title: Carbon Capture Util. Sequestration
– volume: 165
  start-page: 755
  year: 2011
  ident: 10.1016/j.tplants.2022.04.009_bb0385
  article-title: Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO2
  publication-title: Oecologia
  doi: 10.1007/s00442-010-1845-4
– volume: 400
  start-page: 2587
  year: 2011
  ident: 10.1016/j.tplants.2022.04.009_bb0440
  article-title: LC-MS analysis of low molecular weight organic acids derived from root exudation
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-010-4090-0
– volume: 49
  start-page: 1611
  year: 2004
  ident: 10.1016/j.tplants.2022.04.009_bb0495
  article-title: Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/BF03184131
– volume: 117
  start-page: 48
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0070
  article-title: Root exudate analogues accelerate CO2 and CH4 production in tropical peat
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.11.008
– volume: 478
  start-page: 49
  year: 2011
  ident: 10.1016/j.tplants.2022.04.009_bb0150
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: 20
  start-page: 1943
  year: 2014
  ident: 10.1016/j.tplants.2022.04.009_bb0255
  article-title: Labile carbon retention compensates for CO2 released by priming in forest soils
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12458
– volume: 113
  start-page: 53
  year: 2002
  ident: 10.1016/j.tplants.2022.04.009_bb0500
  article-title: Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(02)00102-8
– volume: 40
  start-page: 1264
  year: 2008
  ident: 10.1016/j.tplants.2022.04.009_bb0390
  article-title: Evidence for a transient increase of rhizodeposition within one and a half day after a severe defoliation of Plantago arenaria grown in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.12.015
– volume: 141
  year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0175
  article-title: Direct measurement of the in situ decomposition of microbial-derived soil organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.107660
– volume: 6
  start-page: 116
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0460
  article-title: Sampling root exudates – mission impossible?
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2018.06.004
– volume: 14
  start-page: 1
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0185
  article-title: Detailed global modelling of soil organic carbon in cropland, grassland and forest soils
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0222604
– volume: 7
  start-page: 577
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0425
  article-title: A meta-analysis on pyrogenic organic matter induced priming effect
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12194
– volume: 14
  start-page: 1
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0235
  article-title: Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China
  publication-title: Carbon Balance Manag.
  doi: 10.1186/s13021-019-0133-9
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0310
  article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2018.00140
– volume: 53
  start-page: 131
  year: 2002
  ident: 10.1016/j.tplants.2022.04.009_bb0325
  article-title: Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/53.366.131
– volume: 32
  start-page: 2099
  year: 2000
  ident: 10.1016/j.tplants.2022.04.009_bb0305
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00179-6
– volume: 18
  start-page: 450
  year: 2000
  ident: 10.1016/j.tplants.2022.04.009_bb0485
  article-title: Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate
  publication-title: Nat. Biotechnol.
  doi: 10.1038/74531
– volume: 147
  year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0160
  article-title: Rusty sink of rhizodeposits and associated keystone microbiomes
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107840
– volume: 24
  start-page: 2997
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0400
  article-title: Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14070
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0445
  article-title: Linking root exudates to functional plant traits
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204128
– volume: 7
  start-page: 1
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0105
  article-title: Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd3176
– volume: 163
  start-page: 421
  year: 2000
  ident: 10.1016/j.tplants.2022.04.009_bb0455
  article-title: Carbon input by plants into the soil
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
– volume: 101
  start-page: 15249
  year: 2004
  ident: 10.1016/j.tplants.2022.04.009_bb0490
  article-title: Engineering high-level aluminum tolerance in barley with the ALMT1 gene
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0406258101
– volume: 28
  start-page: 90
  year: 2009
  ident: 10.1016/j.tplants.2022.04.009_bb0210
  article-title: Sequestering atmospheric carbon dioxide
  publication-title: CRC. Crit. Rev. Plant Sci.
  doi: 10.1080/07352680902782711
– volume: 120
  start-page: 246
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0340
  article-title: The root of the matter: linking root traits and soil organic matter stabilization processes
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.02.016
– volume: 87
  start-page: 90
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0330
  article-title: Soil aggregate formation and stability induced by starch and cellulose
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.04.011
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0100
  article-title: More replenishment than priming loss of soil organic carbon with additional carbon input
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05667-7
– volume: 40
  start-page: 1071
  year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0435
  article-title: Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpaa051
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.tplants.2022.04.009_bb0365
  article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity
  publication-title: Nat. Commun.
– volume: 10
  start-page: 913
  year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0200
  article-title: Current and future global climate impacts resulting from COVID-19
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-020-0883-0
– volume: 269
  start-page: 341
  year: 2005
  ident: 10.1016/j.tplants.2022.04.009_bb0060
  article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-0907-y
– volume: 90
  start-page: 111
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0420
  article-title: Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.08.005
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0345
  article-title: Root exudate composition of grass and forb species in natural grasslands
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54309-5
– volume: 20
  start-page: 1043
  year: 2017
  ident: 10.1016/j.tplants.2022.04.009_bb0280
  article-title: Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12802
– volume: 15
  start-page: 321
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0085
  article-title: Soil carbon controlled by plant, microorganism and mineralogy interactions
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.tplants.2022.04.009_bb0115
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.105
– volume: 72
  start-page: 4038
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0165
  article-title: Organic acids: versatile stress-response roles in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erab019
– volume: 41
  start-page: 181
  year: 2010
  ident: 10.1016/j.tplants.2022.04.009_bb0405
  article-title: Soil organic carbon density and land restoration: example of southern mountain area of Ningxia Province, Northwest China
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620903429976
– volume: 151
  year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0270
  article-title: Global biogeography of fungal and bacterial biomass carbon in topsoil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.108024
– year: 2020
  ident: 10.1016/j.tplants.2022.04.009_bb0245
– volume: 10
  start-page: 4757
  year: 2018
  ident: 10.1016/j.tplants.2022.04.009_bb0410
  article-title: Changes in soil organic carbon and total nitrogen at a small watershed scale as the result of land use conversion on the Loess Plateau
  publication-title: Sustainability
  doi: 10.3390/su10124757
– volume: 6
  start-page: 6707
  year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0120
  article-title: Plant diversity increases soil microbial activity and soil carbon storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7707
– year: 2015
  ident: 10.1016/j.tplants.2022.04.009_bb0215
– volume: 152
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0095
  article-title: Strong priming of soil organic matter induced by frequent input of labile carbon
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.108069
– volume: 111
  start-page: 41
  year: 2011
  ident: 10.1016/j.tplants.2022.04.009_bb0170
  article-title: SOM genesis: microbial biomass as a significant source
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9658-z
– volume: 230
  start-page: 857
  year: 2021
  ident: 10.1016/j.tplants.2022.04.009_bb0480
  article-title: A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition
  publication-title: New Phytol.
  doi: 10.1111/nph.17118
SSID ssj0007186
Score 2.6963332
SecondaryResourceType review_article
Snippet Root exudates are well-known ‘labile’ sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile...
Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 749
SubjectTerms carbon dioxide
carbon sequestration
climate change
ecosystems
labile
labile carbon
microbial activity
microorganisms
reforestation
rhizosphere
root exudates
soil
soil organic carbon
Title Soil carbon sequestration by root exudates
URI https://dx.doi.org/10.1016/j.tplants.2022.04.009
https://www.ncbi.nlm.nih.gov/pubmed/35606255
https://www.proquest.com/docview/2668909196
https://www.proquest.com/docview/2675576120
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL2M6YM-iM6v-TEq-CRsa9M0bR_nUKbCXuZgbyFJU9gY7dAO9MXf7k0_NgV14GNLA-nJzcm55OQG4NqPVBzhMtkmoa3b1HORBx2i28qVGM6KmVvdjdtiyAZj-jjxJjXoV2dhjK2y5P6C03O2Lt90SzS7i-m0O3JcZrbZUEDk22-m4ielvonyzsfa5oHcy4qzV7apt-etT_F0Z51sMTduE0wTCckrnhpf4s_r02_6M1-H7vdhrxSQVq_o4wHUdNKA7dsURd57A3a_1Bc8hJtROp1bSrzINLFy03RVJdeS7xZq5szSb0uT878ewfj-7rk_aJeXIyCMJMiQxexQh46L_-coRFx4jiIxcoYksdSxJlHEnEDpUAoZSxowQXFYfOUIRmMqqXsM9SRN9ClYno6Ypi4RONtpJLUUTCifsCBmVGN-1ARaQcJVWTncXGAx55VFbMZLJLlBktuUI5JN6KyaLYrSGZsaBBXe_FsMcKT3TU2vqvHhOD_MpodIdLrEjxgLQhRFIfvrG9_DvMshdhNOisFd9dhFSYgYeGf_79w57JinwjZ4AfXsZakvUcpkspXHagu2eg9Pg-EnXf_yvg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xScABsVPWIMEFqW3iOG5y4MCqsl4AiZuxHUdqVSUVTQW98FP8IOMsFCQWCYlrElvjZ3vmTTyeAdhphCoK0UxWSWDrKvVc1IMO0VXlSlzOipmq7iba4po17-j5vXc_Aq_lXRgTVlno_lynZ9q6eFIv0Kx3W636jeMyc8yGBCI7fisrWF_owRP6bb39s2Oc5F1CTk9uj5rVorQACkH8FHWAHejAcVEzOwrlFZ6jSIQ7TpJI6kiTMGSOr3QghYwk9ZmgOKiGcgSjEZXUxX5HYRzH5puyCbWXYVwJdsnyy162SfDnDa8N1du1tNsx4S3olxKSpVg1gZBfG8TvCG9m-E5nYaZgrNZBDsocjOh4HiYOE2SVg3mY_pDQcAH2bpJWx1LiUSaxlUVpl2l5LTmwkKSnln7um58MvUW4-xfIlmAsTmK9ApanQ6apSwSqFxpKLQUTqkGYHzGq0SGrAC0h4apIVW4qZnR4GZPW5gWS3CDJbcoRyQrU3pt181wdvzXwS7z5p0XH0Z781nS7nB-OG9KcsohYJ338iDE_QBYWsJ--aXjo6DnErsByPrnvErvIQREDb_Xvwm3BZPP26pJfnl1frMGUeZPHLK7DWPrY1xvIo1K5ma1bCx7-e6O8ATNOMIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+carbon+sequestration+by+root+exudates&rft.jtitle=Trends+in+plant+science&rft.au=Panchal%2C+Poonam&rft.au=Preece%2C+Catherine&rft.au=Pe%C3%B1uelas%2C+Josep&rft.au=Giri%2C+Jitender&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016%2Fj.tplants.2022.04.009&rft.externalDocID=S1360138522001303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon