Very high cycle fatigue properties at 973 K of additively manufactured and conventionally processed intermetallic TiAl 48-2-2 alloy
The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as well as conventional casting process by vacuum arc remelting for comparison (REF) were investigated. Both batches (EB-PBF and REF) were subje...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 862; p. 144507 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
18.01.2023
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as well as conventional casting process by vacuum arc remelting for comparison (REF) were investigated. Both batches (EB-PBF and REF) were subject to the common treatment process, i.e. hot isostatic pressing and heat treatment to achieve a duplex microstructure. As a result, a fine- and a coarse-grained microstructure consisting of γ-grains and colonies of α2/γ lamellae have evolved for the EB-PBF and conventionally cast material, respectively. Uniaxial fatigue tests were performed in the very high cycle fatigue (VHCF) range up to 109 cycles at a load ratio of R = −1 using ultrasonic fatigue testing equipment at an elevated temperature of 973 K. The SN data of both batches were discussed with respect to the influence of microstructure and temperature on the processes of crack initiation and propagation. The additive manufactured material showed superior fatigue strength compared to the conventional material due to its smaller grain size. It was shown that the fine-grained duplex microstructure of the batch EB-PBF is particularly appropriate to decrease short crack propagation at elevated temperatures due to its microstructural characteristics. |
---|---|
AbstractList | The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as well as conventional casting process by vacuum arc remelting for comparison (REF) were investigated. Both batches (EB-PBF and REF) were subject to the common treatment process, i.e. hot isostatic pressing and heat treatment to achieve a duplex microstructure. As a result, a fine- and a coarse-grained microstructure consisting of γ-grains and colonies of α2/γ lamellae have evolved for the EB-PBF and conventionally cast material, respectively. Uniaxial fatigue tests were performed in the very high cycle fatigue (VHCF) range up to 109 cycles at a load ratio of R = −1 using ultrasonic fatigue testing equipment at an elevated temperature of 973 K. The SN data of both batches were discussed with respect to the influence of microstructure and temperature on the processes of crack initiation and propagation. The additive manufactured material showed superior fatigue strength compared to the conventional material due to its smaller grain size. It was shown that the fine-grained duplex microstructure of the batch EB-PBF is particularly appropriate to decrease short crack propagation at elevated temperatures due to its microstructural characteristics. The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as well as conventional casting process by vacuum arc remelting for comparison (REF) were investigated. Both batches (EB-PBF and REF) were subject to the common treatment process, i.e. hot isostatic pressing and heat treatment to achieve a duplex microstructure. As a result, a fine- and a coarse-grained microstructure consisting of γ-grains and colonies of α2/γ lamellae have evolved for the EB-PBF and conventionally cast material, respectively. Uniaxial fatigue tests were performed in the very high cycle fatigue (VHCF) range up to 109 cycles at a load ratio of R = −1 using ultrasonic fatigue testing equipment at an elevated temperature of 973 K. The SN data of both batches were discussed with respect to the influence of microstructure and temperature on the processes of crack initiation and propagation. The additive manufactured material showed superior fatigue strength compared to the conventional material due to its smaller grain size. It was shown that the fine-grained duplex microstructure of the batch EB-PBF is particularly appropriate to decrease short crack propagation at elevated temperatures due to its microstructural characteristics. |
ArticleNumber | 144507 |
Author | Schmiedel, Alexander Biermann, Horst Burkhardt, Christina Weidner, Anja Rudolph, Sebastian M. |
Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0003-0008-5473 surname: Schmiedel fullname: Schmiedel, Alexander email: Alexander.Schmiedel@iwt.tu-freiberg.de – sequence: 2 givenname: Christina surname: Burkhardt fullname: Burkhardt, Christina – sequence: 3 givenname: Sebastian M. surname: Rudolph fullname: Rudolph, Sebastian M. – sequence: 4 givenname: Anja surname: Weidner fullname: Weidner, Anja – sequence: 5 givenname: Horst orcidid: 0000-0002-6036-0687 surname: Biermann fullname: Biermann, Horst |
BookMark | eNp9kE1LAzEQhoMoWKt_wFPA89Z87G6y4EXELxS8qNeQJrOask1qki3s2T9uSj158DQw8z7DzHOCDn3wgNA5JQtKaHu5WqwT6AUjjC1oXTdEHKAZlYJXdcfbQzQjHaNVQzp-jE5SWhFCaE2aGfp-hzjhT_fxic1kBsC9zu5jBLyJYQMxO0hYZ9wJjp9w6LG21mW3hWHCa-3HXps8RrBYe4tN8Fvw2QWvhzIvGwykVIbOZ4hryKXtDH511wOuZcUqhksnTKfoqNdDgrPfOkdvd7evNw_V88v94831c2U4k7kSsqbAl7Zl3ZIseWeBtZRzCY3gUjRQA7dcSNk2WlOiu5b1Rhiguu2tMLLhc3Sx31su-xohZbUKYyzHJsWEpIJTwdqSYvuUiSGlCL3aRLfWcVKUqJ1stVI72WonW-1lF0j-gYzLeqciR-2G_9GrPQrl9a2DqJJx4A1YF8FkZYP7D_8B3NWcsg |
CitedBy_id | crossref_primary_10_1007_s44210_023_00014_y crossref_primary_10_1016_j_jmrt_2025_03_080 crossref_primary_10_1016_j_ijfatigue_2024_108367 crossref_primary_10_1016_j_amf_2024_200187 crossref_primary_10_1016_j_intermet_2024_108365 crossref_primary_10_1016_j_intermet_2023_108087 crossref_primary_10_1016_j_matchar_2024_114526 crossref_primary_10_1111_ffe_14532 crossref_primary_10_1016_j_msea_2023_145890 crossref_primary_10_1016_j_msea_2024_146187 crossref_primary_10_1002_adfm_202409381 |
Cites_doi | 10.1016/j.intermet.2004.09.007 10.1111/ffe.13316 10.1016/j.intermet.2018.09.006 10.1016/S0966-9795(00)00073-X 10.1080/09603409.2016.1183068 10.1299/jsmea1988.32.2_167 10.3390/met9101043 10.1016/j.msea.2014.10.083 10.1520/JTE11341J 10.1016/S1359-6462(97)00154-1 10.1016/0921-5093(95)80019-0 10.1016/j.intermet.2010.11.017 10.1016/S1359-0286(99)00023-6 10.1007/s11661-997-0084-8 10.1016/j.ijfatigue.2012.11.016 10.1111/ffe.12323 10.1007/s11661-999-0048-2 10.1179/1432891715Z.0000000001530 10.1016/S0927-796X(97)00018-1 10.1016/S0966-9795(01)00121-2 10.1016/S1359-6454(01)00091-X 10.1016/j.intermet.2013.09.010 10.1016/S1359-6454(98)00409-1 10.1016/S0921-5093(00)00702-4 10.1016/j.ijfatigue.2004.05.002 10.4028/www.scientific.net/MSF.941.1597 10.1016/j.ijfatigue.2007.03.018 10.1016/0921-5093(94)03263-7 10.1007/BF02661644 10.1007/BF03223047 10.1016/j.proeng.2010.03.246 10.1016/j.mprp.2016.02.058 10.1016/0921-5093(94)03264-5 10.1016/j.ijfatigue.2017.02.019 10.1557/PROC-39-3 10.1016/0956-716X(95)00088-D 10.1007/BF02657854 10.1016/j.intermet.2018.01.009 10.1179/1743284714Y.0000000510 10.1016/0025-5416(88)90547-2 10.1007/BF02804362 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Jan 18, 2023 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Jan 18, 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.msea.2022.144507 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4936 |
ExternalDocumentID | 10_1016_j_msea_2022_144507 S0921509322018871 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SSH WUQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c328t-7841e3bd629b0b39de261338e573875e4e3d378865aa10a962fc7ce1a6fd7c853 |
IEDL.DBID | .~1 |
ISSN | 0921-5093 |
IngestDate | Fri Jul 25 02:40:26 EDT 2025 Thu Apr 24 23:16:09 EDT 2025 Tue Jul 01 01:26:58 EDT 2025 Fri Feb 23 02:37:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Very high cycle fatigue Additive manufacturing Gamma TiAl alloys High-temperature materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-7841e3bd629b0b39de261338e573875e4e3d378865aa10a962fc7ce1a6fd7c853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0008-5473 0000-0002-6036-0687 |
PQID | 2781731726 |
PQPubID | 2045432 |
ParticipantIDs | proquest_journals_2781731726 crossref_primary_10_1016_j_msea_2022_144507 crossref_citationtrail_10_1016_j_msea_2022_144507 elsevier_sciencedirect_doi_10_1016_j_msea_2022_144507 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-18 |
PublicationDateYYYYMMDD | 2023-01-18 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Ritchie (bib45) 1988; 103 Filippini, Beretta, Patriarca, Sabbadini (bib13) 2014 Koeppe, Bartels, Seeger, Mecking (bib25) 1993; 24 Schwaighofer, Clemens, Mayer, Lindemann, Klose, Smarsly, Güther (bib27) 2014; 44 Wessel, Zeismann, Brueckner-Foit (bib47) 2015; 38 Appel, Paul, Oehring (bib6) 2011 Bowen, Chave, James (bib44) 1995; 192–193 Mercer, Lou, Soboyejo (bib7) 2000; 284 Kumpfert, Kim, Dimiduk (bib22) 1995; 192–193 Campbell, Kruzic, Lillibridge, Rao, Ritchie (bib46) 1997; 37 Güther, Allen, Klose, Clemens (bib30) 2018; 103 Chan (bib49) 1992; 44 (bib33) 1993 Campbell, Ritchie, Venkateswara Rao (bib9) 1999; 30 Loria (bib4) 2000; 8 (bib32) 2018 Kruml, Petrenec, Obrtlíka, Polák, Buček (bib40) 2010; 2 Chan, Shih (bib48) 1997; 28 Cho, Kobayashi, Fukuoka, Oh, Yasuda, Todai, Nakano, Ikeda, Ueda, Takeyama (bib11) 2018; 941 Clark (bib28) 2012 Stanzl-Tschegg (bib35) 2014; 60 Bayraktar (bib39) 2004; 26 Tang, Zhu, Bi, Liu, Li (bib23) 2019; 9 Ding, Liang, Xu, Yu, Dong, Lin (bib42) 2017; 99 Cho, Kobayashi, Oh, Yasuda, Todai, Nakano, Ikeda, Ueda, Takeyama (bib43) 2018; 95 Tetsui (bib2) 2002; 10 Baudana, Biamino, Ugues, Lombardi, Fino, Pavese, Badini (bib10) 2016; 71 Bewlay, Nag, Suzuki, Weimer (bib29) 2016; 33 Hénaff, Gloanec (bib5) 2005; 13 Stoloff (bib1) 1984; 39 Han, Wan, Zhu, Zhang, Yi (bib15) 2015; 19 Sastry, Lipsitt (bib21) 1977; 8 Yang, Li, Hu, Martin, Dixon (bib14) 2014; 30 Min, Xi-ping, Long, Hong-liang, Ze-hui, Hui-chen (bib18) 2015; 622 (bib34) 2018 Viswanathan, Vasudevan (bib20) 1995; 32 Kruzic, Campbell, Ritchie (bib17) 1999; 47 Botten, Wu, Hu, Loretto (bib19) 2001; 49 Appel, Wagner (bib26) 1998; 22 Biamino, Penna, Ackelid, Sabbadini, Tassa, Fino, Pavese, Gennaro, Badini (bib12) 2011; 19 Venkateswara Rao, Kim, Muhlstein, Ritchie (bib16) 1995; 192–193 Chan, Kim (bib24) 1992; 23 (bib31) 2019 Schmiedel, Henkel, Kirste, Morgenstern, Weidner, Biermann (bib36) 2020; 43 Worth, Larsen, Balsone, Jones (bib8) 1997; 28 Pascual, Meeker (bib38) 1997; 25 Tetsui (bib3) 1999; 4 Xue, Tao, Montembault, Wang, Bathias (bib41) 2007; 29 Murakami (bib37) 1989; 32 Pascual (10.1016/j.msea.2022.144507_bib38) 1997; 25 Tetsui (10.1016/j.msea.2022.144507_bib3) 1999; 4 Loria (10.1016/j.msea.2022.144507_bib4) 2000; 8 (10.1016/j.msea.2022.144507_bib34) 2018 Sastry (10.1016/j.msea.2022.144507_bib21) 1977; 8 Schmiedel (10.1016/j.msea.2022.144507_bib36) 2020; 43 Stoloff (10.1016/j.msea.2022.144507_bib1) 1984; 39 Koeppe (10.1016/j.msea.2022.144507_bib25) 1993; 24 Worth (10.1016/j.msea.2022.144507_bib8) 1997; 28 (10.1016/j.msea.2022.144507_bib33) 1993 Han (10.1016/j.msea.2022.144507_bib15) 2015; 19 Campbell (10.1016/j.msea.2022.144507_bib46) 1997; 37 Tang (10.1016/j.msea.2022.144507_bib23) 2019; 9 Bowen (10.1016/j.msea.2022.144507_bib44) 1995; 192–193 Kumpfert (10.1016/j.msea.2022.144507_bib22) 1995; 192–193 (10.1016/j.msea.2022.144507_bib31) 2019 Kruml (10.1016/j.msea.2022.144507_bib40) 2010; 2 Botten (10.1016/j.msea.2022.144507_bib19) 2001; 49 Ritchie (10.1016/j.msea.2022.144507_bib45) 1988; 103 Min (10.1016/j.msea.2022.144507_bib18) 2015; 622 Stanzl-Tschegg (10.1016/j.msea.2022.144507_bib35) 2014; 60 Cho (10.1016/j.msea.2022.144507_bib43) 2018; 95 Campbell (10.1016/j.msea.2022.144507_bib9) 1999; 30 Ding (10.1016/j.msea.2022.144507_bib42) 2017; 99 Tetsui (10.1016/j.msea.2022.144507_bib2) 2002; 10 Bewlay (10.1016/j.msea.2022.144507_bib29) 2016; 33 (10.1016/j.msea.2022.144507_bib32) 2018 Bayraktar (10.1016/j.msea.2022.144507_bib39) 2004; 26 Viswanathan (10.1016/j.msea.2022.144507_bib20) 1995; 32 Hénaff (10.1016/j.msea.2022.144507_bib5) 2005; 13 Appel (10.1016/j.msea.2022.144507_bib6) 2011 Chan (10.1016/j.msea.2022.144507_bib49) 1992; 44 Kruzic (10.1016/j.msea.2022.144507_bib17) 1999; 47 Yang (10.1016/j.msea.2022.144507_bib14) 2014; 30 Appel (10.1016/j.msea.2022.144507_bib26) 1998; 22 Baudana (10.1016/j.msea.2022.144507_bib10) 2016; 71 Venkateswara Rao (10.1016/j.msea.2022.144507_bib16) 1995; 192–193 Schwaighofer (10.1016/j.msea.2022.144507_bib27) 2014; 44 Murakami (10.1016/j.msea.2022.144507_bib37) 1989; 32 Güther (10.1016/j.msea.2022.144507_bib30) 2018; 103 Chan (10.1016/j.msea.2022.144507_bib48) 1997; 28 Xue (10.1016/j.msea.2022.144507_bib41) 2007; 29 Wessel (10.1016/j.msea.2022.144507_bib47) 2015; 38 Clark (10.1016/j.msea.2022.144507_bib28) 2012 Cho (10.1016/j.msea.2022.144507_bib11) 2018; 941 Filippini (10.1016/j.msea.2022.144507_bib13) 2014 Biamino (10.1016/j.msea.2022.144507_bib12) 2011; 19 Mercer (10.1016/j.msea.2022.144507_bib7) 2000; 284 Chan (10.1016/j.msea.2022.144507_bib24) 1992; 23 |
References_xml | – volume: 26 start-page: 1263 year: 2004 end-page: 1275 ident: bib39 article-title: On the giga cycle fatigue behaviour of two-phase (?2+?) TiAl alloy publication-title: Int. J. Fatig. – start-page: 189 year: 2014 end-page: 193 ident: bib13 article-title: Effect of the microstructure on the deformation and fatigue damage in a gamma-TiAl produced by additive manufacturing publication-title: TMS Annual Meeting – year: 1993 ident: bib33 article-title: Hochleistungskeramik; Monolithische Keramik; Allgemeine und strukturelle Eigenschaften; Teil 2: bestimmung von Dichte und Porosität; Deutsche Fassung EN 623-2 publication-title: Beuth Verlag GmbH – volume: 33 start-page: 549 year: 2016 end-page: 559 ident: bib29 article-title: TiAl alloys in commercial aircraft engines publication-title: Mater. A. T. High. Temp. – volume: 47 start-page: 801 year: 1999 end-page: 816 ident: bib17 article-title: On the fatigue behavior of γ-based titanium aluminides: role of small cracks publication-title: Acta Mater. – volume: 22 start-page: 187 year: 1998 end-page: 268 ident: bib26 article-title: Microstructure and deformation of two-phase γ-titanium aluminides publication-title: Mater. Sci. Eng. R Rep. – start-page: 5 year: 2012 end-page: 13 ident: bib28 article-title: 787 propulsion system publication-title: Aeronaut. Q. – volume: 23 start-page: 1663 year: 1992 end-page: 1677 ident: bib24 article-title: Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy publication-title: Met. Mat. Trans. A. – volume: 19 start-page: S142 year: 2015 end-page: S146 ident: bib15 article-title: Effect of casting defects on high cycle fatigue life of fully lamellar TiAl alloy publication-title: Mater. Res. Innovat. – volume: 9 start-page: 1043 year: 2019 ident: bib23 article-title: Effect of microstructure on the high-cycle fatigue behavior of Ti(43-44)Al4Nb1Mo (TNM) alloys publication-title: Metals – volume: 28 start-page: 79 year: 1997 end-page: 90 ident: bib48 article-title: Fatigue and fracture behavior of a fine-grained lamellar TiAl alloy publication-title: Metall. Mater. Trans. – volume: 38 start-page: 1507 year: 2015 end-page: 1518 ident: bib47 article-title: Short fatigue cracks in intermetallic γ-TiAl-alloys: short cracks in intermetallic TiAl publication-title: Fatig. Fract. Eng. Mater. Struct. – volume: 24 start-page: 1795 year: 1993 end-page: 1806 ident: bib25 article-title: General aspects of the thermomechanical treatment of two-phase intermetallic TiAl compounds publication-title: Met. Mat. Trans. A. – volume: 99 start-page: 68 year: 2017 end-page: 77 ident: bib42 article-title: Cyclic deformation and microstructure evolution of high Nb containing TiAl alloy during high temperature low cycle fatigue publication-title: Int. J. Fatig. – volume: 71 start-page: 193 year: 2016 end-page: 199 ident: bib10 article-title: Titanium aluminides for aerospace and automotive applications processed by electron beam melting: contribution of politecnico di Torino publication-title: Met. Powder Rep. – volume: 39 start-page: 3 year: 1984 ident: bib1 article-title: Ordered alloys for high temperature applications publication-title: MRS Proc – volume: 44 start-page: 30 year: 1992 end-page: 38 ident: bib49 article-title: Understanding fracture toughness in gamma TiAl publication-title: JOM – volume: 192–193 start-page: 474 year: 1995 end-page: 482 ident: bib16 article-title: Fatigue-crack growth and fracture resistance of a two-phase (γ + α2) TiAl alloy in duplex and lamellar microstructures publication-title: Mater. Sci. Eng. – volume: 32 start-page: 1705 year: 1995 end-page: 1711 ident: bib20 article-title: Processing, microstructure and tensile properties of a Ti-48 at.% Al alloy publication-title: Scripta Metall. Mater. – volume: 29 start-page: 2085 year: 2007 end-page: 2093 ident: bib41 article-title: Development of a three-point bending fatigue testing methodology at 20kHz frequency publication-title: Int. J. Fatig. – volume: 37 start-page: 707 year: 1997 end-page: 712 ident: bib46 article-title: On the growth of small fatigue cracks in γ-based titanium aluminides publication-title: Scripta Mater. – year: 2011 ident: bib6 article-title: Gamma Titanium Aluminide Alloys: Science and Technology – volume: 2 start-page: 2297 year: 2010 end-page: 2305 ident: bib40 article-title: Influence of niobium alloying on the low cycle fatigue of cast TiAl alloys at room and high temperatures publication-title: Procedia Eng. – volume: 44 start-page: 128 year: 2014 end-page: 140 ident: bib27 article-title: Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy publication-title: Intermetallics – volume: 103 start-page: 15 year: 1988 end-page: 28 ident: bib45 article-title: Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding publication-title: Mater. Sci. Eng., A – volume: 622 start-page: 30 year: 2015 end-page: 36 ident: bib18 article-title: In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750°C publication-title: Mater. Sci. Eng., A – volume: 43 start-page: 2455 year: 2020 end-page: 2475 ident: bib36 article-title: Ultrasonic fatigue testing of cast steel G42CrMo4 at elevated temperatures publication-title: Fatig. Fract. Eng. Mater. Struct. – volume: 8 start-page: 299 year: 1977 end-page: 308 ident: bib21 article-title: Fatigue deformation of TiAl base alloys publication-title: Metall. Trans. A – volume: 60 start-page: 2 year: 2014 end-page: 17 ident: bib35 article-title: Very high cycle fatigue measuring techniques publication-title: Int. J. Fatig. – year: 2018 ident: bib32 article-title: Metallische Werkstoffe- Zugversuch- Teil 2: prüfverfahren bei erhöhter Temperatur (ISO 6892-2:2018); Deutsche Fassung EN ISO 6892-2 publication-title: Beuth Verlag – volume: 25 start-page: 292 year: 1997 end-page: 301 ident: bib38 article-title: Analysis of fatigue data with runouts based on a model with nonconstant standard deviation and a fatigue limit parameter publication-title: J. Test. Eval. – volume: 28 start-page: 825 year: 1997 end-page: 835 ident: bib8 article-title: Mechanisms of ambient temperature fatigue crack growth in Ti−46.5Al−3Nb−2Cr−0.2W publication-title: Met. Mat. Trans. A. – volume: 284 start-page: 235 year: 2000 end-page: 245 ident: bib7 article-title: An investigation of fatigue crack growth in a cast lamellar Ti-48Al-2Cr-2Nb alloy publication-title: Mater. Sci. Eng., A – year: 2018 ident: bib34 article-title: Metallische Werkstoffe- Härteprüfung nach Vickers- Teil 1: prüfverfahren (ISO 6507-1:2018); Deutsche Fassung EN ISO 6507-1 publication-title: Beuth Verlag – volume: 49 start-page: 1687 year: 2001 end-page: 1691 ident: bib19 article-title: The significance of acoustic emission during stressing of TiAl-based alloys. Part I: detection of cracking during loading up in tension publication-title: Acta Mater. – volume: 103 start-page: 12 year: 2018 end-page: 22 ident: bib30 article-title: Metallurgical processing of titanium aluminides on industrial scale publication-title: Intermetallics – volume: 30 start-page: 563 year: 1999 end-page: 577 ident: bib9 article-title: The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics publication-title: Met. Mat. Trans. A. – volume: 941 start-page: 1597 year: 2018 end-page: 1602 ident: bib11 article-title: Microstructure and fatigue properties of TiAl with unique layered microstructure fabricated by electron beam melting publication-title: Mater. Sci. Forum – volume: 4 start-page: 243 year: 1999 end-page: 248 ident: bib3 article-title: Gamma Ti aluminides for non-aerospace applications publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 192–193 start-page: 465 year: 1995 end-page: 473 ident: bib22 article-title: Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W publication-title: Mater. Sci. Eng., A – volume: 10 start-page: 239 year: 2002 end-page: 245 ident: bib2 article-title: Effects of high niobium addition on the mechanical properties and high-temperature deformability of gamma TiAl alloy publication-title: Intermetallics – volume: 13 start-page: 543 year: 2005 end-page: 558 ident: bib5 article-title: Fatigue properties of TiAl alloys publication-title: Intermetallics – year: 2019 ident: bib31 article-title: Metallische Werkstoffe- Zugversuch- Teil 1: prüfverfahren bei Raumtemperatur (ISO 6892-1:2019); Deutsche Fassung EN ISO 6892-1 publication-title: Beuth Verlag – volume: 32 start-page: 167 year: 1989 end-page: 180 ident: bib37 article-title: Effects of small defects and nonmetallic inclusions on the fatigue strength of metals publication-title: JSME International Journal. Ser. 1, Solid Mechanics, Strength of Materials – volume: 30 start-page: 1905 year: 2014 end-page: 1910 ident: bib14 article-title: Lamellar orientation effect on fatigue crack propagation threshold in coarse grained Ti46Al8Nb publication-title: Mater. Sci. Technol. – volume: 8 start-page: 1339 year: 2000 end-page: 1345 ident: bib4 article-title: Gamma titanium aluminides as prospective structural materials publication-title: Intermetallics – volume: 192–193 start-page: 443 year: 1995 end-page: 456 ident: bib44 article-title: Cyclic crack growth in titanium aluminides publication-title: Mater. Sci. Eng. – volume: 19 start-page: 776 year: 2011 end-page: 781 ident: bib12 article-title: Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation publication-title: Intermetallics – volume: 95 start-page: 1 year: 2018 end-page: 10 ident: bib43 article-title: Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting publication-title: Intermetallics – volume: 13 start-page: 543 year: 2005 ident: 10.1016/j.msea.2022.144507_bib5 article-title: Fatigue properties of TiAl alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2004.09.007 – volume: 43 start-page: 2455 year: 2020 ident: 10.1016/j.msea.2022.144507_bib36 article-title: Ultrasonic fatigue testing of cast steel G42CrMo4 at elevated temperatures publication-title: Fatig. Fract. Eng. Mater. Struct. doi: 10.1111/ffe.13316 – volume: 103 start-page: 12 year: 2018 ident: 10.1016/j.msea.2022.144507_bib30 article-title: Metallurgical processing of titanium aluminides on industrial scale publication-title: Intermetallics doi: 10.1016/j.intermet.2018.09.006 – volume: 8 start-page: 1339 year: 2000 ident: 10.1016/j.msea.2022.144507_bib4 article-title: Gamma titanium aluminides as prospective structural materials publication-title: Intermetallics doi: 10.1016/S0966-9795(00)00073-X – volume: 33 start-page: 549 year: 2016 ident: 10.1016/j.msea.2022.144507_bib29 article-title: TiAl alloys in commercial aircraft engines publication-title: Mater. A. T. High. Temp. doi: 10.1080/09603409.2016.1183068 – start-page: 5 year: 2012 ident: 10.1016/j.msea.2022.144507_bib28 article-title: 787 propulsion system publication-title: Aeronaut. Q. – volume: 32 start-page: 167 year: 1989 ident: 10.1016/j.msea.2022.144507_bib37 article-title: Effects of small defects and nonmetallic inclusions on the fatigue strength of metals publication-title: JSME International Journal. Ser. 1, Solid Mechanics, Strength of Materials doi: 10.1299/jsmea1988.32.2_167 – volume: 9 start-page: 1043 year: 2019 ident: 10.1016/j.msea.2022.144507_bib23 article-title: Effect of microstructure on the high-cycle fatigue behavior of Ti(43-44)Al4Nb1Mo (TNM) alloys publication-title: Metals doi: 10.3390/met9101043 – volume: 622 start-page: 30 year: 2015 ident: 10.1016/j.msea.2022.144507_bib18 article-title: In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750°C publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2014.10.083 – volume: 25 start-page: 292 year: 1997 ident: 10.1016/j.msea.2022.144507_bib38 article-title: Analysis of fatigue data with runouts based on a model with nonconstant standard deviation and a fatigue limit parameter publication-title: J. Test. Eval. doi: 10.1520/JTE11341J – volume: 37 start-page: 707 year: 1997 ident: 10.1016/j.msea.2022.144507_bib46 article-title: On the growth of small fatigue cracks in γ-based titanium aluminides publication-title: Scripta Mater. doi: 10.1016/S1359-6462(97)00154-1 – volume: 192–193 start-page: 443 year: 1995 ident: 10.1016/j.msea.2022.144507_bib44 article-title: Cyclic crack growth in titanium aluminides publication-title: Mater. Sci. Eng. doi: 10.1016/0921-5093(95)80019-0 – volume: 19 start-page: 776 year: 2011 ident: 10.1016/j.msea.2022.144507_bib12 article-title: Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation publication-title: Intermetallics doi: 10.1016/j.intermet.2010.11.017 – volume: 4 start-page: 243 year: 1999 ident: 10.1016/j.msea.2022.144507_bib3 article-title: Gamma Ti aluminides for non-aerospace applications publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/S1359-0286(99)00023-6 – year: 2019 ident: 10.1016/j.msea.2022.144507_bib31 article-title: Metallische Werkstoffe- Zugversuch- Teil 1: prüfverfahren bei Raumtemperatur (ISO 6892-1:2019); Deutsche Fassung EN ISO 6892-1 publication-title: Beuth Verlag – volume: 28 start-page: 79 year: 1997 ident: 10.1016/j.msea.2022.144507_bib48 article-title: Fatigue and fracture behavior of a fine-grained lamellar TiAl alloy publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-997-0084-8 – volume: 60 start-page: 2 year: 2014 ident: 10.1016/j.msea.2022.144507_bib35 article-title: Very high cycle fatigue measuring techniques publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2012.11.016 – volume: 38 start-page: 1507 year: 2015 ident: 10.1016/j.msea.2022.144507_bib47 article-title: Short fatigue cracks in intermetallic γ-TiAl-alloys: short cracks in intermetallic TiAl publication-title: Fatig. Fract. Eng. Mater. Struct. doi: 10.1111/ffe.12323 – volume: 30 start-page: 563 year: 1999 ident: 10.1016/j.msea.2022.144507_bib9 article-title: The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics publication-title: Met. Mat. Trans. A. doi: 10.1007/s11661-999-0048-2 – volume: 19 start-page: S142 year: 2015 ident: 10.1016/j.msea.2022.144507_bib15 article-title: Effect of casting defects on high cycle fatigue life of fully lamellar TiAl alloy publication-title: Mater. Res. Innovat. doi: 10.1179/1432891715Z.0000000001530 – volume: 22 start-page: 187 year: 1998 ident: 10.1016/j.msea.2022.144507_bib26 article-title: Microstructure and deformation of two-phase γ-titanium aluminides publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/S0927-796X(97)00018-1 – volume: 10 start-page: 239 year: 2002 ident: 10.1016/j.msea.2022.144507_bib2 article-title: Effects of high niobium addition on the mechanical properties and high-temperature deformability of gamma TiAl alloy publication-title: Intermetallics doi: 10.1016/S0966-9795(01)00121-2 – volume: 49 start-page: 1687 year: 2001 ident: 10.1016/j.msea.2022.144507_bib19 article-title: The significance of acoustic emission during stressing of TiAl-based alloys. Part I: detection of cracking during loading up in tension publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00091-X – volume: 44 start-page: 128 year: 2014 ident: 10.1016/j.msea.2022.144507_bib27 article-title: Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2013.09.010 – volume: 47 start-page: 801 year: 1999 ident: 10.1016/j.msea.2022.144507_bib17 article-title: On the fatigue behavior of γ-based titanium aluminides: role of small cracks publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00409-1 – volume: 284 start-page: 235 year: 2000 ident: 10.1016/j.msea.2022.144507_bib7 article-title: An investigation of fatigue crack growth in a cast lamellar Ti-48Al-2Cr-2Nb alloy publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(00)00702-4 – volume: 28 start-page: 825 year: 1997 ident: 10.1016/j.msea.2022.144507_bib8 article-title: Mechanisms of ambient temperature fatigue crack growth in Ti−46.5Al−3Nb−2Cr−0.2W publication-title: Met. Mat. Trans. A. – volume: 26 start-page: 1263 year: 2004 ident: 10.1016/j.msea.2022.144507_bib39 article-title: On the giga cycle fatigue behaviour of two-phase (?2+?) TiAl alloy publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2004.05.002 – volume: 941 start-page: 1597 year: 2018 ident: 10.1016/j.msea.2022.144507_bib11 article-title: Microstructure and fatigue properties of TiAl with unique layered microstructure fabricated by electron beam melting publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.941.1597 – volume: 29 start-page: 2085 year: 2007 ident: 10.1016/j.msea.2022.144507_bib41 article-title: Development of a three-point bending fatigue testing methodology at 20kHz frequency publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2007.03.018 – volume: 192–193 start-page: 465 year: 1995 ident: 10.1016/j.msea.2022.144507_bib22 article-title: Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W publication-title: Mater. Sci. Eng., A doi: 10.1016/0921-5093(94)03263-7 – year: 2018 ident: 10.1016/j.msea.2022.144507_bib32 article-title: Metallische Werkstoffe- Zugversuch- Teil 2: prüfverfahren bei erhöhter Temperatur (ISO 6892-2:2018); Deutsche Fassung EN ISO 6892-2 publication-title: Beuth Verlag – volume: 8 start-page: 299 year: 1977 ident: 10.1016/j.msea.2022.144507_bib21 article-title: Fatigue deformation of TiAl base alloys publication-title: Metall. Trans. A doi: 10.1007/BF02661644 – year: 2018 ident: 10.1016/j.msea.2022.144507_bib34 article-title: Metallische Werkstoffe- Härteprüfung nach Vickers- Teil 1: prüfverfahren (ISO 6507-1:2018); Deutsche Fassung EN ISO 6507-1 publication-title: Beuth Verlag – volume: 44 start-page: 30 year: 1992 ident: 10.1016/j.msea.2022.144507_bib49 article-title: Understanding fracture toughness in gamma TiAl publication-title: JOM doi: 10.1007/BF03223047 – volume: 2 start-page: 2297 year: 2010 ident: 10.1016/j.msea.2022.144507_bib40 article-title: Influence of niobium alloying on the low cycle fatigue of cast TiAl alloys at room and high temperatures publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.03.246 – year: 2011 ident: 10.1016/j.msea.2022.144507_bib6 – volume: 71 start-page: 193 year: 2016 ident: 10.1016/j.msea.2022.144507_bib10 article-title: Titanium aluminides for aerospace and automotive applications processed by electron beam melting: contribution of politecnico di Torino publication-title: Met. Powder Rep. doi: 10.1016/j.mprp.2016.02.058 – volume: 192–193 start-page: 474 year: 1995 ident: 10.1016/j.msea.2022.144507_bib16 article-title: Fatigue-crack growth and fracture resistance of a two-phase (γ + α2) TiAl alloy in duplex and lamellar microstructures publication-title: Mater. Sci. Eng. doi: 10.1016/0921-5093(94)03264-5 – volume: 99 start-page: 68 year: 2017 ident: 10.1016/j.msea.2022.144507_bib42 article-title: Cyclic deformation and microstructure evolution of high Nb containing TiAl alloy during high temperature low cycle fatigue publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2017.02.019 – volume: 39 start-page: 3 year: 1984 ident: 10.1016/j.msea.2022.144507_bib1 article-title: Ordered alloys for high temperature applications publication-title: MRS Proc doi: 10.1557/PROC-39-3 – volume: 32 start-page: 1705 year: 1995 ident: 10.1016/j.msea.2022.144507_bib20 article-title: Processing, microstructure and tensile properties of a Ti-48 at.% Al alloy publication-title: Scripta Metall. Mater. doi: 10.1016/0956-716X(95)00088-D – year: 1993 ident: 10.1016/j.msea.2022.144507_bib33 article-title: Hochleistungskeramik; Monolithische Keramik; Allgemeine und strukturelle Eigenschaften; Teil 2: bestimmung von Dichte und Porosität; Deutsche Fassung EN 623-2 publication-title: Beuth Verlag GmbH – volume: 24 start-page: 1795 year: 1993 ident: 10.1016/j.msea.2022.144507_bib25 article-title: General aspects of the thermomechanical treatment of two-phase intermetallic TiAl compounds publication-title: Met. Mat. Trans. A. doi: 10.1007/BF02657854 – volume: 95 start-page: 1 year: 2018 ident: 10.1016/j.msea.2022.144507_bib43 article-title: Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting publication-title: Intermetallics doi: 10.1016/j.intermet.2018.01.009 – volume: 30 start-page: 1905 year: 2014 ident: 10.1016/j.msea.2022.144507_bib14 article-title: Lamellar orientation effect on fatigue crack propagation threshold in coarse grained Ti46Al8Nb publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000510 – volume: 103 start-page: 15 year: 1988 ident: 10.1016/j.msea.2022.144507_bib45 article-title: Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding publication-title: Mater. Sci. Eng., A doi: 10.1016/0025-5416(88)90547-2 – start-page: 189 year: 2014 ident: 10.1016/j.msea.2022.144507_bib13 article-title: Effect of the microstructure on the deformation and fatigue damage in a gamma-TiAl produced by additive manufacturing publication-title: TMS Annual Meeting – volume: 23 start-page: 1663 year: 1992 ident: 10.1016/j.msea.2022.144507_bib24 article-title: Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy publication-title: Met. Mat. Trans. A. doi: 10.1007/BF02804362 |
SSID | ssj0001405 |
Score | 2.472047 |
Snippet | The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 144507 |
SubjectTerms | Additive manufacturing Crack initiation Crack propagation Electron beams Fatigue life Fatigue strength Fatigue tests Gamma TiAl alloys Grain size Heat treating Heat treatment High cycle fatigue High temperature High-temperature materials Hot isostatic pressing Intermetallic compounds Melting Metal fatigue Microstructure Powder beds Short cracks Titanium aluminides Titanium base alloys Ultrasonic testing Vacuum arc melting Very high cycle fatigue |
Title | Very high cycle fatigue properties at 973 K of additively manufactured and conventionally processed intermetallic TiAl 48-2-2 alloy |
URI | https://dx.doi.org/10.1016/j.msea.2022.144507 https://www.proquest.com/docview/2781731726 |
Volume | 862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuJR0A1sKDRxnLgZK0RVQLDwEJvl2A4qatMqtEMXFv44d3lAQYiBNT5bke98D_vuO8ZOOlJkxljtidiXHlo830ssZQBIapvmUhGURWI3t3H_QVw9RU9L7LyphaG0ylr3Vzq91Nb1l3a9m-3JYNC-8xM0VxiQc7RheFTKCnYhScrP3r7SPDCAKNMYkdgj6rpwpsrxGqE4YYzIOb1xRtRS9nfj9ENNl7ant8HWa6cRutV_bbIll2-xtQUowW32_uiKORD4MJg5EkGGW_48czCh2_aCYFNBTyGRIVzDOAPKIyJNN5zDSOczqm-YFc6Czi0sZqLj-KSqJcBBwpYoRg799eHAwP2gOwSBJ8DjQM_38x320Lu4P-97dYMFz4S8M_XozdGFqY15kvppmFiH8RTGrC6SIcYxTrjQEt58HGkd-DqJeWakcYGOMysNGvpdtpyPc7fHwEQlkI9wPHSCZ0iCS2qbWB6aINPRPguanVWmRh-nJhhD1aSZvSjihiJuqIob--z0c86kwt74kzpqGKa-SZBC4_DnvFbDXVWf31fFZSeQ6Frx-OCfyx6yVepMT7c1QafFlqfFzB2h_zJNj0sBPWYr3cvr_u0H0SftrQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RRvbmBDURPn4WasEKhQ6EJBbJZjO6ioDVVoh878ce4SBwFCDKzx2Yp89j18d98xdtYRUa61UV6U-MJDjed7qaEMAEFt02wWBVWR2N0g6T1EN0_x0xK7aGphKK3Syf5aplfS2n1pu91sT0ej9r2forpCh5yjDsOrgi7QMqFTxS223L3u9wafAhl9iCqTEek9muBqZ-o0rwmeKHQTOacwZ0xdZX_XTz8kdaV-rjbYurMboVv_2iZbssUWW_uCJrjN3h9tuQDCHwa9QCLIcdef5xam9OBeEnIqqBmkIoQ-vOZAqUQk7MYLmKhiTiUO89IaUIWBr8noOD6tywlwkOAlyolFk3080jAcdccQ4SXwOFAEf7HDHq4uhxc9z_VY8HTIOzOPwo42zEzC08zPwtRYdKnQbbWxCNGVsZENDUHOJ7FSga_ShOdaaBuoJDdCo67fZa3itbB7DHRcYflEloc24jmS4JLKpIaHOshVvM-CZmeldgDk1AdjLJtMsxdJ3JDEDVlzY5-df86Z1vAbf1LHDcPkt0MkUT_8Oe-o4a50V_hNctEJBFpXPDn457KnbKU3vLuVt9eD_iFbpUb19HgTdI5Ya1bO7TGaM7PsxB3XD_s48F4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Very+high+cycle+fatigue+properties+at+973+K+of+additively+manufactured+and+conventionally+processed+intermetallic+TiAl+48-2-2+alloy&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Schmiedel%2C+Alexander&rft.au=Burkhardt%2C+Christina&rft.au=Rudolph%2C+Sebastian+M.&rft.au=Weidner%2C+Anja&rft.date=2023-01-18&rft.issn=0921-5093&rft.volume=862&rft.spage=144507&rft_id=info:doi/10.1016%2Fj.msea.2022.144507&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2022_144507 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |