Very high cycle fatigue properties at 973 K of additively manufactured and conventionally processed intermetallic TiAl 48-2-2 alloy

The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as well as conventional casting process by vacuum arc remelting for comparison (REF) were investigated. Both batches (EB-PBF and REF) were subje...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 862; p. 144507
Main Authors Schmiedel, Alexander, Burkhardt, Christina, Rudolph, Sebastian M., Weidner, Anja, Biermann, Horst
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 18.01.2023
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as well as conventional casting process by vacuum arc remelting for comparison (REF) were investigated. Both batches (EB-PBF and REF) were subject to the common treatment process, i.e. hot isostatic pressing and heat treatment to achieve a duplex microstructure. As a result, a fine- and a coarse-grained microstructure consisting of γ-grains and colonies of α2/γ lamellae have evolved for the EB-PBF and conventionally cast material, respectively. Uniaxial fatigue tests were performed in the very high cycle fatigue (VHCF) range up to 109 cycles at a load ratio of R = −1 using ultrasonic fatigue testing equipment at an elevated temperature of 973 K. The SN data of both batches were discussed with respect to the influence of microstructure and temperature on the processes of crack initiation and propagation. The additive manufactured material showed superior fatigue strength compared to the conventional material due to its smaller grain size. It was shown that the fine-grained duplex microstructure of the batch EB-PBF is particularly appropriate to decrease short crack propagation at elevated temperatures due to its microstructural characteristics.
AbstractList The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as well as conventional casting process by vacuum arc remelting for comparison (REF) were investigated. Both batches (EB-PBF and REF) were subject to the common treatment process, i.e. hot isostatic pressing and heat treatment to achieve a duplex microstructure. As a result, a fine- and a coarse-grained microstructure consisting of γ-grains and colonies of α2/γ lamellae have evolved for the EB-PBF and conventionally cast material, respectively. Uniaxial fatigue tests were performed in the very high cycle fatigue (VHCF) range up to 109 cycles at a load ratio of R = −1 using ultrasonic fatigue testing equipment at an elevated temperature of 973 K. The SN data of both batches were discussed with respect to the influence of microstructure and temperature on the processes of crack initiation and propagation. The additive manufactured material showed superior fatigue strength compared to the conventional material due to its smaller grain size. It was shown that the fine-grained duplex microstructure of the batch EB-PBF is particularly appropriate to decrease short crack propagation at elevated temperatures due to its microstructural characteristics.
The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as well as conventional casting process by vacuum arc remelting for comparison (REF) were investigated. Both batches (EB-PBF and REF) were subject to the common treatment process, i.e. hot isostatic pressing and heat treatment to achieve a duplex microstructure. As a result, a fine- and a coarse-grained microstructure consisting of γ-grains and colonies of α2/γ lamellae have evolved for the EB-PBF and conventionally cast material, respectively. Uniaxial fatigue tests were performed in the very high cycle fatigue (VHCF) range up to 109 cycles at a load ratio of R = −1 using ultrasonic fatigue testing equipment at an elevated temperature of 973 K. The SN data of both batches were discussed with respect to the influence of microstructure and temperature on the processes of crack initiation and propagation. The additive manufactured material showed superior fatigue strength compared to the conventional material due to its smaller grain size. It was shown that the fine-grained duplex microstructure of the batch EB-PBF is particularly appropriate to decrease short crack propagation at elevated temperatures due to its microstructural characteristics.
ArticleNumber 144507
Author Schmiedel, Alexander
Biermann, Horst
Burkhardt, Christina
Weidner, Anja
Rudolph, Sebastian M.
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0003-0008-5473
  surname: Schmiedel
  fullname: Schmiedel, Alexander
  email: Alexander.Schmiedel@iwt.tu-freiberg.de
– sequence: 2
  givenname: Christina
  surname: Burkhardt
  fullname: Burkhardt, Christina
– sequence: 3
  givenname: Sebastian M.
  surname: Rudolph
  fullname: Rudolph, Sebastian M.
– sequence: 4
  givenname: Anja
  surname: Weidner
  fullname: Weidner, Anja
– sequence: 5
  givenname: Horst
  orcidid: 0000-0002-6036-0687
  surname: Biermann
  fullname: Biermann, Horst
BookMark eNp9kE1LAzEQhoMoWKt_wFPA89Z87G6y4EXELxS8qNeQJrOask1qki3s2T9uSj158DQw8z7DzHOCDn3wgNA5JQtKaHu5WqwT6AUjjC1oXTdEHKAZlYJXdcfbQzQjHaNVQzp-jE5SWhFCaE2aGfp-hzjhT_fxic1kBsC9zu5jBLyJYQMxO0hYZ9wJjp9w6LG21mW3hWHCa-3HXps8RrBYe4tN8Fvw2QWvhzIvGwykVIbOZ4hryKXtDH511wOuZcUqhksnTKfoqNdDgrPfOkdvd7evNw_V88v94831c2U4k7kSsqbAl7Zl3ZIseWeBtZRzCY3gUjRQA7dcSNk2WlOiu5b1Rhiguu2tMLLhc3Sx31su-xohZbUKYyzHJsWEpIJTwdqSYvuUiSGlCL3aRLfWcVKUqJ1stVI72WonW-1lF0j-gYzLeqciR-2G_9GrPQrl9a2DqJJx4A1YF8FkZYP7D_8B3NWcsg
CitedBy_id crossref_primary_10_1007_s44210_023_00014_y
crossref_primary_10_1016_j_jmrt_2025_03_080
crossref_primary_10_1016_j_ijfatigue_2024_108367
crossref_primary_10_1016_j_amf_2024_200187
crossref_primary_10_1016_j_intermet_2024_108365
crossref_primary_10_1016_j_intermet_2023_108087
crossref_primary_10_1016_j_matchar_2024_114526
crossref_primary_10_1111_ffe_14532
crossref_primary_10_1016_j_msea_2023_145890
crossref_primary_10_1016_j_msea_2024_146187
crossref_primary_10_1002_adfm_202409381
Cites_doi 10.1016/j.intermet.2004.09.007
10.1111/ffe.13316
10.1016/j.intermet.2018.09.006
10.1016/S0966-9795(00)00073-X
10.1080/09603409.2016.1183068
10.1299/jsmea1988.32.2_167
10.3390/met9101043
10.1016/j.msea.2014.10.083
10.1520/JTE11341J
10.1016/S1359-6462(97)00154-1
10.1016/0921-5093(95)80019-0
10.1016/j.intermet.2010.11.017
10.1016/S1359-0286(99)00023-6
10.1007/s11661-997-0084-8
10.1016/j.ijfatigue.2012.11.016
10.1111/ffe.12323
10.1007/s11661-999-0048-2
10.1179/1432891715Z.0000000001530
10.1016/S0927-796X(97)00018-1
10.1016/S0966-9795(01)00121-2
10.1016/S1359-6454(01)00091-X
10.1016/j.intermet.2013.09.010
10.1016/S1359-6454(98)00409-1
10.1016/S0921-5093(00)00702-4
10.1016/j.ijfatigue.2004.05.002
10.4028/www.scientific.net/MSF.941.1597
10.1016/j.ijfatigue.2007.03.018
10.1016/0921-5093(94)03263-7
10.1007/BF02661644
10.1007/BF03223047
10.1016/j.proeng.2010.03.246
10.1016/j.mprp.2016.02.058
10.1016/0921-5093(94)03264-5
10.1016/j.ijfatigue.2017.02.019
10.1557/PROC-39-3
10.1016/0956-716X(95)00088-D
10.1007/BF02657854
10.1016/j.intermet.2018.01.009
10.1179/1743284714Y.0000000510
10.1016/0025-5416(88)90547-2
10.1007/BF02804362
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Jan 18, 2023
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 18, 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2022.144507
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4936
ExternalDocumentID 10_1016_j_msea_2022_144507
S0921509322018871
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SSH
WUQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c328t-7841e3bd629b0b39de261338e573875e4e3d378865aa10a962fc7ce1a6fd7c853
IEDL.DBID .~1
ISSN 0921-5093
IngestDate Fri Jul 25 02:40:26 EDT 2025
Thu Apr 24 23:16:09 EDT 2025
Tue Jul 01 01:26:58 EDT 2025
Fri Feb 23 02:37:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Very high cycle fatigue
Additive manufacturing
Gamma TiAl alloys
High-temperature materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-7841e3bd629b0b39de261338e573875e4e3d378865aa10a962fc7ce1a6fd7c853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0008-5473
0000-0002-6036-0687
PQID 2781731726
PQPubID 2045432
ParticipantIDs proquest_journals_2781731726
crossref_primary_10_1016_j_msea_2022_144507
crossref_citationtrail_10_1016_j_msea_2022_144507
elsevier_sciencedirect_doi_10_1016_j_msea_2022_144507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-18
PublicationDateYYYYMMDD 2023-01-18
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-18
  day: 18
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2023
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ritchie (bib45) 1988; 103
Filippini, Beretta, Patriarca, Sabbadini (bib13) 2014
Koeppe, Bartels, Seeger, Mecking (bib25) 1993; 24
Schwaighofer, Clemens, Mayer, Lindemann, Klose, Smarsly, Güther (bib27) 2014; 44
Wessel, Zeismann, Brueckner-Foit (bib47) 2015; 38
Appel, Paul, Oehring (bib6) 2011
Bowen, Chave, James (bib44) 1995; 192–193
Mercer, Lou, Soboyejo (bib7) 2000; 284
Kumpfert, Kim, Dimiduk (bib22) 1995; 192–193
Campbell, Kruzic, Lillibridge, Rao, Ritchie (bib46) 1997; 37
Güther, Allen, Klose, Clemens (bib30) 2018; 103
Chan (bib49) 1992; 44
(bib33) 1993
Campbell, Ritchie, Venkateswara Rao (bib9) 1999; 30
Loria (bib4) 2000; 8
(bib32) 2018
Kruml, Petrenec, Obrtlíka, Polák, Buček (bib40) 2010; 2
Chan, Shih (bib48) 1997; 28
Cho, Kobayashi, Fukuoka, Oh, Yasuda, Todai, Nakano, Ikeda, Ueda, Takeyama (bib11) 2018; 941
Clark (bib28) 2012
Stanzl-Tschegg (bib35) 2014; 60
Bayraktar (bib39) 2004; 26
Tang, Zhu, Bi, Liu, Li (bib23) 2019; 9
Ding, Liang, Xu, Yu, Dong, Lin (bib42) 2017; 99
Cho, Kobayashi, Oh, Yasuda, Todai, Nakano, Ikeda, Ueda, Takeyama (bib43) 2018; 95
Tetsui (bib2) 2002; 10
Baudana, Biamino, Ugues, Lombardi, Fino, Pavese, Badini (bib10) 2016; 71
Bewlay, Nag, Suzuki, Weimer (bib29) 2016; 33
Hénaff, Gloanec (bib5) 2005; 13
Stoloff (bib1) 1984; 39
Han, Wan, Zhu, Zhang, Yi (bib15) 2015; 19
Sastry, Lipsitt (bib21) 1977; 8
Yang, Li, Hu, Martin, Dixon (bib14) 2014; 30
Min, Xi-ping, Long, Hong-liang, Ze-hui, Hui-chen (bib18) 2015; 622
(bib34) 2018
Viswanathan, Vasudevan (bib20) 1995; 32
Kruzic, Campbell, Ritchie (bib17) 1999; 47
Botten, Wu, Hu, Loretto (bib19) 2001; 49
Appel, Wagner (bib26) 1998; 22
Biamino, Penna, Ackelid, Sabbadini, Tassa, Fino, Pavese, Gennaro, Badini (bib12) 2011; 19
Venkateswara Rao, Kim, Muhlstein, Ritchie (bib16) 1995; 192–193
Chan, Kim (bib24) 1992; 23
(bib31) 2019
Schmiedel, Henkel, Kirste, Morgenstern, Weidner, Biermann (bib36) 2020; 43
Worth, Larsen, Balsone, Jones (bib8) 1997; 28
Pascual, Meeker (bib38) 1997; 25
Tetsui (bib3) 1999; 4
Xue, Tao, Montembault, Wang, Bathias (bib41) 2007; 29
Murakami (bib37) 1989; 32
Pascual (10.1016/j.msea.2022.144507_bib38) 1997; 25
Tetsui (10.1016/j.msea.2022.144507_bib3) 1999; 4
Loria (10.1016/j.msea.2022.144507_bib4) 2000; 8
(10.1016/j.msea.2022.144507_bib34) 2018
Sastry (10.1016/j.msea.2022.144507_bib21) 1977; 8
Schmiedel (10.1016/j.msea.2022.144507_bib36) 2020; 43
Stoloff (10.1016/j.msea.2022.144507_bib1) 1984; 39
Koeppe (10.1016/j.msea.2022.144507_bib25) 1993; 24
Worth (10.1016/j.msea.2022.144507_bib8) 1997; 28
(10.1016/j.msea.2022.144507_bib33) 1993
Han (10.1016/j.msea.2022.144507_bib15) 2015; 19
Campbell (10.1016/j.msea.2022.144507_bib46) 1997; 37
Tang (10.1016/j.msea.2022.144507_bib23) 2019; 9
Bowen (10.1016/j.msea.2022.144507_bib44) 1995; 192–193
Kumpfert (10.1016/j.msea.2022.144507_bib22) 1995; 192–193
(10.1016/j.msea.2022.144507_bib31) 2019
Kruml (10.1016/j.msea.2022.144507_bib40) 2010; 2
Botten (10.1016/j.msea.2022.144507_bib19) 2001; 49
Ritchie (10.1016/j.msea.2022.144507_bib45) 1988; 103
Min (10.1016/j.msea.2022.144507_bib18) 2015; 622
Stanzl-Tschegg (10.1016/j.msea.2022.144507_bib35) 2014; 60
Cho (10.1016/j.msea.2022.144507_bib43) 2018; 95
Campbell (10.1016/j.msea.2022.144507_bib9) 1999; 30
Ding (10.1016/j.msea.2022.144507_bib42) 2017; 99
Tetsui (10.1016/j.msea.2022.144507_bib2) 2002; 10
Bewlay (10.1016/j.msea.2022.144507_bib29) 2016; 33
(10.1016/j.msea.2022.144507_bib32) 2018
Bayraktar (10.1016/j.msea.2022.144507_bib39) 2004; 26
Viswanathan (10.1016/j.msea.2022.144507_bib20) 1995; 32
Hénaff (10.1016/j.msea.2022.144507_bib5) 2005; 13
Appel (10.1016/j.msea.2022.144507_bib6) 2011
Chan (10.1016/j.msea.2022.144507_bib49) 1992; 44
Kruzic (10.1016/j.msea.2022.144507_bib17) 1999; 47
Yang (10.1016/j.msea.2022.144507_bib14) 2014; 30
Appel (10.1016/j.msea.2022.144507_bib26) 1998; 22
Baudana (10.1016/j.msea.2022.144507_bib10) 2016; 71
Venkateswara Rao (10.1016/j.msea.2022.144507_bib16) 1995; 192–193
Schwaighofer (10.1016/j.msea.2022.144507_bib27) 2014; 44
Murakami (10.1016/j.msea.2022.144507_bib37) 1989; 32
Güther (10.1016/j.msea.2022.144507_bib30) 2018; 103
Chan (10.1016/j.msea.2022.144507_bib48) 1997; 28
Xue (10.1016/j.msea.2022.144507_bib41) 2007; 29
Wessel (10.1016/j.msea.2022.144507_bib47) 2015; 38
Clark (10.1016/j.msea.2022.144507_bib28) 2012
Cho (10.1016/j.msea.2022.144507_bib11) 2018; 941
Filippini (10.1016/j.msea.2022.144507_bib13) 2014
Biamino (10.1016/j.msea.2022.144507_bib12) 2011; 19
Mercer (10.1016/j.msea.2022.144507_bib7) 2000; 284
Chan (10.1016/j.msea.2022.144507_bib24) 1992; 23
References_xml – volume: 26
  start-page: 1263
  year: 2004
  end-page: 1275
  ident: bib39
  article-title: On the giga cycle fatigue behaviour of two-phase (?2+?) TiAl alloy
  publication-title: Int. J. Fatig.
– start-page: 189
  year: 2014
  end-page: 193
  ident: bib13
  article-title: Effect of the microstructure on the deformation and fatigue damage in a gamma-TiAl produced by additive manufacturing
  publication-title: TMS Annual Meeting
– year: 1993
  ident: bib33
  article-title: Hochleistungskeramik; Monolithische Keramik; Allgemeine und strukturelle Eigenschaften; Teil 2: bestimmung von Dichte und Porosität; Deutsche Fassung EN 623-2
  publication-title: Beuth Verlag GmbH
– volume: 33
  start-page: 549
  year: 2016
  end-page: 559
  ident: bib29
  article-title: TiAl alloys in commercial aircraft engines
  publication-title: Mater. A. T. High. Temp.
– volume: 47
  start-page: 801
  year: 1999
  end-page: 816
  ident: bib17
  article-title: On the fatigue behavior of γ-based titanium aluminides: role of small cracks
  publication-title: Acta Mater.
– volume: 22
  start-page: 187
  year: 1998
  end-page: 268
  ident: bib26
  article-title: Microstructure and deformation of two-phase γ-titanium aluminides
  publication-title: Mater. Sci. Eng. R Rep.
– start-page: 5
  year: 2012
  end-page: 13
  ident: bib28
  article-title: 787 propulsion system
  publication-title: Aeronaut. Q.
– volume: 23
  start-page: 1663
  year: 1992
  end-page: 1677
  ident: bib24
  article-title: Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy
  publication-title: Met. Mat. Trans. A.
– volume: 19
  start-page: S142
  year: 2015
  end-page: S146
  ident: bib15
  article-title: Effect of casting defects on high cycle fatigue life of fully lamellar TiAl alloy
  publication-title: Mater. Res. Innovat.
– volume: 9
  start-page: 1043
  year: 2019
  ident: bib23
  article-title: Effect of microstructure on the high-cycle fatigue behavior of Ti(43-44)Al4Nb1Mo (TNM) alloys
  publication-title: Metals
– volume: 28
  start-page: 79
  year: 1997
  end-page: 90
  ident: bib48
  article-title: Fatigue and fracture behavior of a fine-grained lamellar TiAl alloy
  publication-title: Metall. Mater. Trans.
– volume: 38
  start-page: 1507
  year: 2015
  end-page: 1518
  ident: bib47
  article-title: Short fatigue cracks in intermetallic γ-TiAl-alloys: short cracks in intermetallic TiAl
  publication-title: Fatig. Fract. Eng. Mater. Struct.
– volume: 24
  start-page: 1795
  year: 1993
  end-page: 1806
  ident: bib25
  article-title: General aspects of the thermomechanical treatment of two-phase intermetallic TiAl compounds
  publication-title: Met. Mat. Trans. A.
– volume: 99
  start-page: 68
  year: 2017
  end-page: 77
  ident: bib42
  article-title: Cyclic deformation and microstructure evolution of high Nb containing TiAl alloy during high temperature low cycle fatigue
  publication-title: Int. J. Fatig.
– volume: 71
  start-page: 193
  year: 2016
  end-page: 199
  ident: bib10
  article-title: Titanium aluminides for aerospace and automotive applications processed by electron beam melting: contribution of politecnico di Torino
  publication-title: Met. Powder Rep.
– volume: 39
  start-page: 3
  year: 1984
  ident: bib1
  article-title: Ordered alloys for high temperature applications
  publication-title: MRS Proc
– volume: 44
  start-page: 30
  year: 1992
  end-page: 38
  ident: bib49
  article-title: Understanding fracture toughness in gamma TiAl
  publication-title: JOM
– volume: 192–193
  start-page: 474
  year: 1995
  end-page: 482
  ident: bib16
  article-title: Fatigue-crack growth and fracture resistance of a two-phase (γ + α2) TiAl alloy in duplex and lamellar microstructures
  publication-title: Mater. Sci. Eng.
– volume: 32
  start-page: 1705
  year: 1995
  end-page: 1711
  ident: bib20
  article-title: Processing, microstructure and tensile properties of a Ti-48 at.% Al alloy
  publication-title: Scripta Metall. Mater.
– volume: 29
  start-page: 2085
  year: 2007
  end-page: 2093
  ident: bib41
  article-title: Development of a three-point bending fatigue testing methodology at 20kHz frequency
  publication-title: Int. J. Fatig.
– volume: 37
  start-page: 707
  year: 1997
  end-page: 712
  ident: bib46
  article-title: On the growth of small fatigue cracks in γ-based titanium aluminides
  publication-title: Scripta Mater.
– year: 2011
  ident: bib6
  article-title: Gamma Titanium Aluminide Alloys: Science and Technology
– volume: 2
  start-page: 2297
  year: 2010
  end-page: 2305
  ident: bib40
  article-title: Influence of niobium alloying on the low cycle fatigue of cast TiAl alloys at room and high temperatures
  publication-title: Procedia Eng.
– volume: 44
  start-page: 128
  year: 2014
  end-page: 140
  ident: bib27
  article-title: Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy
  publication-title: Intermetallics
– volume: 103
  start-page: 15
  year: 1988
  end-page: 28
  ident: bib45
  article-title: Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding
  publication-title: Mater. Sci. Eng., A
– volume: 622
  start-page: 30
  year: 2015
  end-page: 36
  ident: bib18
  article-title: In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750°C
  publication-title: Mater. Sci. Eng., A
– volume: 43
  start-page: 2455
  year: 2020
  end-page: 2475
  ident: bib36
  article-title: Ultrasonic fatigue testing of cast steel G42CrMo4 at elevated temperatures
  publication-title: Fatig. Fract. Eng. Mater. Struct.
– volume: 8
  start-page: 299
  year: 1977
  end-page: 308
  ident: bib21
  article-title: Fatigue deformation of TiAl base alloys
  publication-title: Metall. Trans. A
– volume: 60
  start-page: 2
  year: 2014
  end-page: 17
  ident: bib35
  article-title: Very high cycle fatigue measuring techniques
  publication-title: Int. J. Fatig.
– year: 2018
  ident: bib32
  article-title: Metallische Werkstoffe- Zugversuch- Teil 2: prüfverfahren bei erhöhter Temperatur (ISO 6892-2:2018); Deutsche Fassung EN ISO 6892-2
  publication-title: Beuth Verlag
– volume: 25
  start-page: 292
  year: 1997
  end-page: 301
  ident: bib38
  article-title: Analysis of fatigue data with runouts based on a model with nonconstant standard deviation and a fatigue limit parameter
  publication-title: J. Test. Eval.
– volume: 28
  start-page: 825
  year: 1997
  end-page: 835
  ident: bib8
  article-title: Mechanisms of ambient temperature fatigue crack growth in Ti−46.5Al−3Nb−2Cr−0.2W
  publication-title: Met. Mat. Trans. A.
– volume: 284
  start-page: 235
  year: 2000
  end-page: 245
  ident: bib7
  article-title: An investigation of fatigue crack growth in a cast lamellar Ti-48Al-2Cr-2Nb alloy
  publication-title: Mater. Sci. Eng., A
– year: 2018
  ident: bib34
  article-title: Metallische Werkstoffe- Härteprüfung nach Vickers- Teil 1: prüfverfahren (ISO 6507-1:2018); Deutsche Fassung EN ISO 6507-1
  publication-title: Beuth Verlag
– volume: 49
  start-page: 1687
  year: 2001
  end-page: 1691
  ident: bib19
  article-title: The significance of acoustic emission during stressing of TiAl-based alloys. Part I: detection of cracking during loading up in tension
  publication-title: Acta Mater.
– volume: 103
  start-page: 12
  year: 2018
  end-page: 22
  ident: bib30
  article-title: Metallurgical processing of titanium aluminides on industrial scale
  publication-title: Intermetallics
– volume: 30
  start-page: 563
  year: 1999
  end-page: 577
  ident: bib9
  article-title: The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics
  publication-title: Met. Mat. Trans. A.
– volume: 941
  start-page: 1597
  year: 2018
  end-page: 1602
  ident: bib11
  article-title: Microstructure and fatigue properties of TiAl with unique layered microstructure fabricated by electron beam melting
  publication-title: Mater. Sci. Forum
– volume: 4
  start-page: 243
  year: 1999
  end-page: 248
  ident: bib3
  article-title: Gamma Ti aluminides for non-aerospace applications
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 192–193
  start-page: 465
  year: 1995
  end-page: 473
  ident: bib22
  article-title: Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W
  publication-title: Mater. Sci. Eng., A
– volume: 10
  start-page: 239
  year: 2002
  end-page: 245
  ident: bib2
  article-title: Effects of high niobium addition on the mechanical properties and high-temperature deformability of gamma TiAl alloy
  publication-title: Intermetallics
– volume: 13
  start-page: 543
  year: 2005
  end-page: 558
  ident: bib5
  article-title: Fatigue properties of TiAl alloys
  publication-title: Intermetallics
– year: 2019
  ident: bib31
  article-title: Metallische Werkstoffe- Zugversuch- Teil 1: prüfverfahren bei Raumtemperatur (ISO 6892-1:2019); Deutsche Fassung EN ISO 6892-1
  publication-title: Beuth Verlag
– volume: 32
  start-page: 167
  year: 1989
  end-page: 180
  ident: bib37
  article-title: Effects of small defects and nonmetallic inclusions on the fatigue strength of metals
  publication-title: JSME International Journal. Ser. 1, Solid Mechanics, Strength of Materials
– volume: 30
  start-page: 1905
  year: 2014
  end-page: 1910
  ident: bib14
  article-title: Lamellar orientation effect on fatigue crack propagation threshold in coarse grained Ti46Al8Nb
  publication-title: Mater. Sci. Technol.
– volume: 8
  start-page: 1339
  year: 2000
  end-page: 1345
  ident: bib4
  article-title: Gamma titanium aluminides as prospective structural materials
  publication-title: Intermetallics
– volume: 192–193
  start-page: 443
  year: 1995
  end-page: 456
  ident: bib44
  article-title: Cyclic crack growth in titanium aluminides
  publication-title: Mater. Sci. Eng.
– volume: 19
  start-page: 776
  year: 2011
  end-page: 781
  ident: bib12
  article-title: Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation
  publication-title: Intermetallics
– volume: 95
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib43
  article-title: Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting
  publication-title: Intermetallics
– volume: 13
  start-page: 543
  year: 2005
  ident: 10.1016/j.msea.2022.144507_bib5
  article-title: Fatigue properties of TiAl alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2004.09.007
– volume: 43
  start-page: 2455
  year: 2020
  ident: 10.1016/j.msea.2022.144507_bib36
  article-title: Ultrasonic fatigue testing of cast steel G42CrMo4 at elevated temperatures
  publication-title: Fatig. Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.13316
– volume: 103
  start-page: 12
  year: 2018
  ident: 10.1016/j.msea.2022.144507_bib30
  article-title: Metallurgical processing of titanium aluminides on industrial scale
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.09.006
– volume: 8
  start-page: 1339
  year: 2000
  ident: 10.1016/j.msea.2022.144507_bib4
  article-title: Gamma titanium aluminides as prospective structural materials
  publication-title: Intermetallics
  doi: 10.1016/S0966-9795(00)00073-X
– volume: 33
  start-page: 549
  year: 2016
  ident: 10.1016/j.msea.2022.144507_bib29
  article-title: TiAl alloys in commercial aircraft engines
  publication-title: Mater. A. T. High. Temp.
  doi: 10.1080/09603409.2016.1183068
– start-page: 5
  year: 2012
  ident: 10.1016/j.msea.2022.144507_bib28
  article-title: 787 propulsion system
  publication-title: Aeronaut. Q.
– volume: 32
  start-page: 167
  year: 1989
  ident: 10.1016/j.msea.2022.144507_bib37
  article-title: Effects of small defects and nonmetallic inclusions on the fatigue strength of metals
  publication-title: JSME International Journal. Ser. 1, Solid Mechanics, Strength of Materials
  doi: 10.1299/jsmea1988.32.2_167
– volume: 9
  start-page: 1043
  year: 2019
  ident: 10.1016/j.msea.2022.144507_bib23
  article-title: Effect of microstructure on the high-cycle fatigue behavior of Ti(43-44)Al4Nb1Mo (TNM) alloys
  publication-title: Metals
  doi: 10.3390/met9101043
– volume: 622
  start-page: 30
  year: 2015
  ident: 10.1016/j.msea.2022.144507_bib18
  article-title: In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750°C
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2014.10.083
– volume: 25
  start-page: 292
  year: 1997
  ident: 10.1016/j.msea.2022.144507_bib38
  article-title: Analysis of fatigue data with runouts based on a model with nonconstant standard deviation and a fatigue limit parameter
  publication-title: J. Test. Eval.
  doi: 10.1520/JTE11341J
– volume: 37
  start-page: 707
  year: 1997
  ident: 10.1016/j.msea.2022.144507_bib46
  article-title: On the growth of small fatigue cracks in γ-based titanium aluminides
  publication-title: Scripta Mater.
  doi: 10.1016/S1359-6462(97)00154-1
– volume: 192–193
  start-page: 443
  year: 1995
  ident: 10.1016/j.msea.2022.144507_bib44
  article-title: Cyclic crack growth in titanium aluminides
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0921-5093(95)80019-0
– volume: 19
  start-page: 776
  year: 2011
  ident: 10.1016/j.msea.2022.144507_bib12
  article-title: Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.11.017
– volume: 4
  start-page: 243
  year: 1999
  ident: 10.1016/j.msea.2022.144507_bib3
  article-title: Gamma Ti aluminides for non-aerospace applications
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/S1359-0286(99)00023-6
– year: 2019
  ident: 10.1016/j.msea.2022.144507_bib31
  article-title: Metallische Werkstoffe- Zugversuch- Teil 1: prüfverfahren bei Raumtemperatur (ISO 6892-1:2019); Deutsche Fassung EN ISO 6892-1
  publication-title: Beuth Verlag
– volume: 28
  start-page: 79
  year: 1997
  ident: 10.1016/j.msea.2022.144507_bib48
  article-title: Fatigue and fracture behavior of a fine-grained lamellar TiAl alloy
  publication-title: Metall. Mater. Trans.
  doi: 10.1007/s11661-997-0084-8
– volume: 60
  start-page: 2
  year: 2014
  ident: 10.1016/j.msea.2022.144507_bib35
  article-title: Very high cycle fatigue measuring techniques
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2012.11.016
– volume: 38
  start-page: 1507
  year: 2015
  ident: 10.1016/j.msea.2022.144507_bib47
  article-title: Short fatigue cracks in intermetallic γ-TiAl-alloys: short cracks in intermetallic TiAl
  publication-title: Fatig. Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.12323
– volume: 30
  start-page: 563
  year: 1999
  ident: 10.1016/j.msea.2022.144507_bib9
  article-title: The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics
  publication-title: Met. Mat. Trans. A.
  doi: 10.1007/s11661-999-0048-2
– volume: 19
  start-page: S142
  year: 2015
  ident: 10.1016/j.msea.2022.144507_bib15
  article-title: Effect of casting defects on high cycle fatigue life of fully lamellar TiAl alloy
  publication-title: Mater. Res. Innovat.
  doi: 10.1179/1432891715Z.0000000001530
– volume: 22
  start-page: 187
  year: 1998
  ident: 10.1016/j.msea.2022.144507_bib26
  article-title: Microstructure and deformation of two-phase γ-titanium aluminides
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/S0927-796X(97)00018-1
– volume: 10
  start-page: 239
  year: 2002
  ident: 10.1016/j.msea.2022.144507_bib2
  article-title: Effects of high niobium addition on the mechanical properties and high-temperature deformability of gamma TiAl alloy
  publication-title: Intermetallics
  doi: 10.1016/S0966-9795(01)00121-2
– volume: 49
  start-page: 1687
  year: 2001
  ident: 10.1016/j.msea.2022.144507_bib19
  article-title: The significance of acoustic emission during stressing of TiAl-based alloys. Part I: detection of cracking during loading up in tension
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00091-X
– volume: 44
  start-page: 128
  year: 2014
  ident: 10.1016/j.msea.2022.144507_bib27
  article-title: Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.09.010
– volume: 47
  start-page: 801
  year: 1999
  ident: 10.1016/j.msea.2022.144507_bib17
  article-title: On the fatigue behavior of γ-based titanium aluminides: role of small cracks
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00409-1
– volume: 284
  start-page: 235
  year: 2000
  ident: 10.1016/j.msea.2022.144507_bib7
  article-title: An investigation of fatigue crack growth in a cast lamellar Ti-48Al-2Cr-2Nb alloy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(00)00702-4
– volume: 28
  start-page: 825
  year: 1997
  ident: 10.1016/j.msea.2022.144507_bib8
  article-title: Mechanisms of ambient temperature fatigue crack growth in Ti−46.5Al−3Nb−2Cr−0.2W
  publication-title: Met. Mat. Trans. A.
– volume: 26
  start-page: 1263
  year: 2004
  ident: 10.1016/j.msea.2022.144507_bib39
  article-title: On the giga cycle fatigue behaviour of two-phase (?2+?) TiAl alloy
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2004.05.002
– volume: 941
  start-page: 1597
  year: 2018
  ident: 10.1016/j.msea.2022.144507_bib11
  article-title: Microstructure and fatigue properties of TiAl with unique layered microstructure fabricated by electron beam melting
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.941.1597
– volume: 29
  start-page: 2085
  year: 2007
  ident: 10.1016/j.msea.2022.144507_bib41
  article-title: Development of a three-point bending fatigue testing methodology at 20kHz frequency
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2007.03.018
– volume: 192–193
  start-page: 465
  year: 1995
  ident: 10.1016/j.msea.2022.144507_bib22
  article-title: Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/0921-5093(94)03263-7
– year: 2018
  ident: 10.1016/j.msea.2022.144507_bib32
  article-title: Metallische Werkstoffe- Zugversuch- Teil 2: prüfverfahren bei erhöhter Temperatur (ISO 6892-2:2018); Deutsche Fassung EN ISO 6892-2
  publication-title: Beuth Verlag
– volume: 8
  start-page: 299
  year: 1977
  ident: 10.1016/j.msea.2022.144507_bib21
  article-title: Fatigue deformation of TiAl base alloys
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02661644
– year: 2018
  ident: 10.1016/j.msea.2022.144507_bib34
  article-title: Metallische Werkstoffe- Härteprüfung nach Vickers- Teil 1: prüfverfahren (ISO 6507-1:2018); Deutsche Fassung EN ISO 6507-1
  publication-title: Beuth Verlag
– volume: 44
  start-page: 30
  year: 1992
  ident: 10.1016/j.msea.2022.144507_bib49
  article-title: Understanding fracture toughness in gamma TiAl
  publication-title: JOM
  doi: 10.1007/BF03223047
– volume: 2
  start-page: 2297
  year: 2010
  ident: 10.1016/j.msea.2022.144507_bib40
  article-title: Influence of niobium alloying on the low cycle fatigue of cast TiAl alloys at room and high temperatures
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.03.246
– year: 2011
  ident: 10.1016/j.msea.2022.144507_bib6
– volume: 71
  start-page: 193
  year: 2016
  ident: 10.1016/j.msea.2022.144507_bib10
  article-title: Titanium aluminides for aerospace and automotive applications processed by electron beam melting: contribution of politecnico di Torino
  publication-title: Met. Powder Rep.
  doi: 10.1016/j.mprp.2016.02.058
– volume: 192–193
  start-page: 474
  year: 1995
  ident: 10.1016/j.msea.2022.144507_bib16
  article-title: Fatigue-crack growth and fracture resistance of a two-phase (γ + α2) TiAl alloy in duplex and lamellar microstructures
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0921-5093(94)03264-5
– volume: 99
  start-page: 68
  year: 2017
  ident: 10.1016/j.msea.2022.144507_bib42
  article-title: Cyclic deformation and microstructure evolution of high Nb containing TiAl alloy during high temperature low cycle fatigue
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2017.02.019
– volume: 39
  start-page: 3
  year: 1984
  ident: 10.1016/j.msea.2022.144507_bib1
  article-title: Ordered alloys for high temperature applications
  publication-title: MRS Proc
  doi: 10.1557/PROC-39-3
– volume: 32
  start-page: 1705
  year: 1995
  ident: 10.1016/j.msea.2022.144507_bib20
  article-title: Processing, microstructure and tensile properties of a Ti-48 at.% Al alloy
  publication-title: Scripta Metall. Mater.
  doi: 10.1016/0956-716X(95)00088-D
– year: 1993
  ident: 10.1016/j.msea.2022.144507_bib33
  article-title: Hochleistungskeramik; Monolithische Keramik; Allgemeine und strukturelle Eigenschaften; Teil 2: bestimmung von Dichte und Porosität; Deutsche Fassung EN 623-2
  publication-title: Beuth Verlag GmbH
– volume: 24
  start-page: 1795
  year: 1993
  ident: 10.1016/j.msea.2022.144507_bib25
  article-title: General aspects of the thermomechanical treatment of two-phase intermetallic TiAl compounds
  publication-title: Met. Mat. Trans. A.
  doi: 10.1007/BF02657854
– volume: 95
  start-page: 1
  year: 2018
  ident: 10.1016/j.msea.2022.144507_bib43
  article-title: Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.01.009
– volume: 30
  start-page: 1905
  year: 2014
  ident: 10.1016/j.msea.2022.144507_bib14
  article-title: Lamellar orientation effect on fatigue crack propagation threshold in coarse grained Ti46Al8Nb
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000510
– volume: 103
  start-page: 15
  year: 1988
  ident: 10.1016/j.msea.2022.144507_bib45
  article-title: Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/0025-5416(88)90547-2
– start-page: 189
  year: 2014
  ident: 10.1016/j.msea.2022.144507_bib13
  article-title: Effect of the microstructure on the deformation and fatigue damage in a gamma-TiAl produced by additive manufacturing
  publication-title: TMS Annual Meeting
– volume: 23
  start-page: 1663
  year: 1992
  ident: 10.1016/j.msea.2022.144507_bib24
  article-title: Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy
  publication-title: Met. Mat. Trans. A.
  doi: 10.1007/BF02804362
SSID ssj0001405
Score 2.472047
Snippet The fatigue lives of 2nd generation γ-TiAl alloy Ti–48Al–2Cr–2Nb manufactured both by additive manufacturing using electron beam powder bed fusion (EB-PBF) as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 144507
SubjectTerms Additive manufacturing
Crack initiation
Crack propagation
Electron beams
Fatigue life
Fatigue strength
Fatigue tests
Gamma TiAl alloys
Grain size
Heat treating
Heat treatment
High cycle fatigue
High temperature
High-temperature materials
Hot isostatic pressing
Intermetallic compounds
Melting
Metal fatigue
Microstructure
Powder beds
Short cracks
Titanium aluminides
Titanium base alloys
Ultrasonic testing
Vacuum arc melting
Very high cycle fatigue
Title Very high cycle fatigue properties at 973 K of additively manufactured and conventionally processed intermetallic TiAl 48-2-2 alloy
URI https://dx.doi.org/10.1016/j.msea.2022.144507
https://www.proquest.com/docview/2781731726
Volume 862
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuJR0A1sKDRxnLgZK0RVQLDwEJvl2A4qatMqtEMXFv44d3lAQYiBNT5bke98D_vuO8ZOOlJkxljtidiXHlo830ssZQBIapvmUhGURWI3t3H_QVw9RU9L7LyphaG0ylr3Vzq91Nb1l3a9m-3JYNC-8xM0VxiQc7RheFTKCnYhScrP3r7SPDCAKNMYkdgj6rpwpsrxGqE4YYzIOb1xRtRS9nfj9ENNl7ant8HWa6cRutV_bbIll2-xtQUowW32_uiKORD4MJg5EkGGW_48czCh2_aCYFNBTyGRIVzDOAPKIyJNN5zDSOczqm-YFc6Czi0sZqLj-KSqJcBBwpYoRg799eHAwP2gOwSBJ8DjQM_38x320Lu4P-97dYMFz4S8M_XozdGFqY15kvppmFiH8RTGrC6SIcYxTrjQEt58HGkd-DqJeWakcYGOMysNGvpdtpyPc7fHwEQlkI9wPHSCZ0iCS2qbWB6aINPRPguanVWmRh-nJhhD1aSZvSjihiJuqIob--z0c86kwt74kzpqGKa-SZBC4_DnvFbDXVWf31fFZSeQ6Frx-OCfyx6yVepMT7c1QafFlqfFzB2h_zJNj0sBPWYr3cvr_u0H0SftrQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RRvbmBDURPn4WasEKhQ6EJBbJZjO6ioDVVoh878ce4SBwFCDKzx2Yp89j18d98xdtYRUa61UV6U-MJDjed7qaEMAEFt02wWBVWR2N0g6T1EN0_x0xK7aGphKK3Syf5aplfS2n1pu91sT0ej9r2forpCh5yjDsOrgi7QMqFTxS223L3u9wafAhl9iCqTEek9muBqZ-o0rwmeKHQTOacwZ0xdZX_XTz8kdaV-rjbYurMboVv_2iZbssUWW_uCJrjN3h9tuQDCHwa9QCLIcdef5xam9OBeEnIqqBmkIoQ-vOZAqUQk7MYLmKhiTiUO89IaUIWBr8noOD6tywlwkOAlyolFk3080jAcdccQ4SXwOFAEf7HDHq4uhxc9z_VY8HTIOzOPwo42zEzC08zPwtRYdKnQbbWxCNGVsZENDUHOJ7FSga_ShOdaaBuoJDdCo67fZa3itbB7DHRcYflEloc24jmS4JLKpIaHOshVvM-CZmeldgDk1AdjLJtMsxdJ3JDEDVlzY5-df86Z1vAbf1LHDcPkt0MkUT_8Oe-o4a50V_hNctEJBFpXPDn457KnbKU3vLuVt9eD_iFbpUb19HgTdI5Ya1bO7TGaM7PsxB3XD_s48F4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Very+high+cycle+fatigue+properties+at+973+K+of+additively+manufactured+and+conventionally+processed+intermetallic+TiAl+48-2-2+alloy&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Schmiedel%2C+Alexander&rft.au=Burkhardt%2C+Christina&rft.au=Rudolph%2C+Sebastian+M.&rft.au=Weidner%2C+Anja&rft.date=2023-01-18&rft.issn=0921-5093&rft.volume=862&rft.spage=144507&rft_id=info:doi/10.1016%2Fj.msea.2022.144507&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2022_144507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon