Analysis of Wu's slip and CNTs (single and multi-wall carbon nanotubes) in Darcy-Forchheimer mixed convective nanofluid flow with magnetic dipole: Intelligent nano-coating simulation
•Here ferromagnetic flow of viscous fluid is addressed.•Wu’s slip effects is considered.•Dipole moment interaction is accounted.•Both single and multi-walls carbon nanotubes are considered as a nanoparticles.•Water is considered as base fluid. The analysis of viscous materials flow subject to divers...
Saved in:
Published in | Materials science & engineering. B, Solid-state materials for advanced technology Vol. 277; p. 115586 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.03.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Here ferromagnetic flow of viscous fluid is addressed.•Wu’s slip effects is considered.•Dipole moment interaction is accounted.•Both single and multi-walls carbon nanotubes are considered as a nanoparticles.•Water is considered as base fluid.
The analysis of viscous materials flow subject to diverse configurations with remarkable physical applications has many utilizations in the electrical, mechanical, industrial, applied physics and mathematics fields. Besides these, carbon nanotubes (CNTs) have numerous applications in energy storage, nanotechnology, chemical sensors, industry, optics, structural diverse materials and conductive plastics. Such consideration in mind, ferro-fluid flow of viscous liquid submerged in CNTs towards a stretchable surface affected by magnetic dipole interaction is addressed. Mixed convection and Darcy-Forchheimer effects are accounted. The energy relation is discussed in the presence of radiative heat flux and viscous dissipation. First and second order velocity slips are implemented at the boundary surface. The governing expressions specifying the flow are altered into ordinary ones with the assistance of appropriate similarity quantities. The obtained ordinary system is computationally tackled via Runge-Kutta 4th Order Method (RK4OM). Our obtained outcomes reveal that velocity of working fluid particles declines with an enhancement in ferromagnetic interaction parameter and Darcy-Forchheimer number. Also, behavior of temperature distribution increases more speedily for heightening of radiative parameter and Biot number. Coefficient of skin friction (surface drag force) and Nusselt number (heat transport rate) are calculated in view of important flow parameter numerically. The range of parameters are β=0.0,0.3,0.5,ε=0.1,0.5,1.0,Fr=0.1,0.5,1.0,γ1=0.0,0.5,1.0,γ2=0.0,0.1,0.2,δ=1.0,5.0,10.0,R=0.0,0.2,0.5,Bi=0.5,1.0,1.5 and.λ=0.0,1.0,3.0. |
---|---|
AbstractList | The analysis of viscous materials flow subject to diverse configurations with remarkable physical applications has many utilizations in the electrical, mechanical, industrial, applied physics and mathematics fields. Besides these, carbon nanotubes (CNTs) have numerous applications in energy storage, nanotechnology, chemical sensors, industry, optics, structural diverse materials and conductive plastics. Such consideration in mind, ferro-fluid flow of viscous liquid submerged in CNTs towards a stretchable surface affected by magnetic dipole interaction is addressed. Mixed convection and Darcy-Forchheimer effects are accounted. The energy relation is discussed in the presence of radiative heat flux and viscous dissipation. First and second order velocity slips are implemented at the boundary surface. The governing expressions specifying the flow are altered into ordinary ones with the assistance of appropriate similarity quantities. The obtained ordinary system is computationally tackled via Runge-Kutta 4th Order Method (RK4OM). Our obtained outcomes reveal that velocity of working fluid particles declines with an enhancement in ferromagnetic interaction parameter and Darcy-Forchheimer number. Also, behavior of temperature distribution increases more speedily for heightening of radiative parameter and Biot number. Coefficient of skin friction (surface drag force) and Nusselt number (heat transport rate) are calculated in view of important flow parameter numerically. The range of parameters are β=0.0, 0.3, 0.5, ε=0.1, 0.5, 1.0, Fr=0.1, 0.5, 1.0, γ1=0.0, 0.5, 1.0, γ2=0.0, 0.1, 0.2, δ=1.0, 5.0, 10.0, R=0.0, 0.2, 0.5, Bi=0.5, 1.0, 1.5 and λ=0.0, 1.0, 3.0. •Here ferromagnetic flow of viscous fluid is addressed.•Wu’s slip effects is considered.•Dipole moment interaction is accounted.•Both single and multi-walls carbon nanotubes are considered as a nanoparticles.•Water is considered as base fluid. The analysis of viscous materials flow subject to diverse configurations with remarkable physical applications has many utilizations in the electrical, mechanical, industrial, applied physics and mathematics fields. Besides these, carbon nanotubes (CNTs) have numerous applications in energy storage, nanotechnology, chemical sensors, industry, optics, structural diverse materials and conductive plastics. Such consideration in mind, ferro-fluid flow of viscous liquid submerged in CNTs towards a stretchable surface affected by magnetic dipole interaction is addressed. Mixed convection and Darcy-Forchheimer effects are accounted. The energy relation is discussed in the presence of radiative heat flux and viscous dissipation. First and second order velocity slips are implemented at the boundary surface. The governing expressions specifying the flow are altered into ordinary ones with the assistance of appropriate similarity quantities. The obtained ordinary system is computationally tackled via Runge-Kutta 4th Order Method (RK4OM). Our obtained outcomes reveal that velocity of working fluid particles declines with an enhancement in ferromagnetic interaction parameter and Darcy-Forchheimer number. Also, behavior of temperature distribution increases more speedily for heightening of radiative parameter and Biot number. Coefficient of skin friction (surface drag force) and Nusselt number (heat transport rate) are calculated in view of important flow parameter numerically. The range of parameters are β=0.0,0.3,0.5,ε=0.1,0.5,1.0,Fr=0.1,0.5,1.0,γ1=0.0,0.5,1.0,γ2=0.0,0.1,0.2,δ=1.0,5.0,10.0,R=0.0,0.2,0.5,Bi=0.5,1.0,1.5 and.λ=0.0,1.0,3.0. |
ArticleNumber | 115586 |
Author | Ijaz Khan, M. Alzahrani, Faris |
Author_xml | – sequence: 1 givenname: Faris surname: Alzahrani fullname: Alzahrani, Faris organization: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia – sequence: 2 givenname: M. surname: Ijaz Khan fullname: Ijaz Khan, M. email: mikhan@math.qau.edu.pk organization: Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan |
BookMark | eNp9kc9uEzEQxi3USqQtL8DJEgfoYVPb-x9xqQKllapyKeJo2d7ZZCKvHWxvQl6M52OTcOqhpxmNvt_om_kuyJnzDgh5z9mcM17drOdDBD0XTPA552XZVG_IjDd1nhVtUZyRGWsFz0rO6rfkIsY1Y4wLIWbk761Tdh8xUt_TX-PHSKPFDVWuo4un50g_RXRLC8fBMNqE2U5ZS40K2jvqlPNp1BCvKTr6VQWzz-58MKsV4ACBDvgHOmq824JJuIUj0NsRO9pbv6M7TCs6qKWDhIZ2uPEWPtMHl8BaXIJLRyAzXqXJBo04WZha767Iea9shHf_6yX5effteXGfPf74_rC4fcxMLpqU1SVo3XDdKFabvGVQ9dBrrjsA6MumbSrOi9q0LIdccyjbUhVtyQpQihVlV-eX5MNp7yb43yPEJNd-DNPLohRVVYuKNxWbVM1JZYKPMUAvDaajzxQUWsmZPKQk1_KQkjykJE8pTah4gW4CDirsX4e-nCCYTt8iBBkNgjPQYZgeLTuPr-H_ALcRsV0 |
CitedBy_id | crossref_primary_10_1080_17455030_2023_2196348 crossref_primary_10_1016_j_triboint_2023_108685 crossref_primary_10_3390_en15196891 crossref_primary_10_1002_zamm_202100603 crossref_primary_10_1134_S1810232822040154 crossref_primary_10_1142_S0217979223503125 crossref_primary_10_1155_2023_3468295 crossref_primary_10_1155_2022_1865763 crossref_primary_10_4236_wjet_2023_114068 crossref_primary_10_1016_j_cplett_2022_139661 crossref_primary_10_1016_j_rineng_2024_103055 crossref_primary_10_1016_j_heliyon_2023_e14740 crossref_primary_10_1016_j_diamond_2024_111447 |
Cites_doi | 10.1016/j.cmpb.2019.105166 10.1016/j.aej.2020.09.053 10.1115/1.4049434 10.1140/epjp/s13360-021-01294-2 10.1177/09544089211005291 10.1140/epjs/s11734-021-00054-8 10.1016/j.ijhydene.2020.09.240 10.4028/www.scientific.net/DDF.409.90 10.1007/s10973-019-09010-0 10.1016/j.icheatmasstransfer.2021.105395 10.3390/pr9040702 10.1007/s42452-021-04364-3 10.1016/j.ijheatmasstransfer.2018.12.168 10.1002/htj.21817 10.1016/j.cam.2006.07.029 10.1016/j.matcom.2021.07.002 10.1007/s13204-020-01498-5 10.1088/1402-4896/abe324 10.1002/htj.22058 10.1016/j.ijhydene.2017.09.114 10.1016/j.jksus.2017.02.003 10.1088/1402-4896/ab0f65 10.1007/s40430-019-1698-7 10.1177/09544089211001353 10.1016/j.molliq.2018.11.055 10.1007/s10973-020-09488-z 10.1016/j.icheatmasstransfer.2020.104707 10.1016/j.cmpb.2019.105298 10.3390/sym12020276 10.1016/j.padiff.2021.100064 10.1016/j.cnsns.2009.05.051 10.1007/s11012-020-01240-z |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Mar 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Mar 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.mseb.2021.115586 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4944 |
ExternalDocumentID | 10_1016_j_mseb_2021_115586 S0921510721005390 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSM SSQ SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c328t-75ebb81b8a07c390e6fefb1bdeeef589861147c903e3b1e595a49504eaa045d73 |
IEDL.DBID | .~1 |
ISSN | 0921-5107 |
IngestDate | Fri Jul 25 05:10:49 EDT 2025 Tue Jul 01 02:44:28 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Fri Feb 23 02:40:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Darcy-Forchheimer porous medium Radiative heat flux Mixed convection Magnetic dipole CNTs (Carbon nanotubes) Ferromagnetic force |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-75ebb81b8a07c390e6fefb1bdeeef589861147c903e3b1e595a49504eaa045d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2667261860 |
PQPubID | 2045431 |
ParticipantIDs | proquest_journals_2667261860 crossref_citationtrail_10_1016_j_mseb_2021_115586 crossref_primary_10_1016_j_mseb_2021_115586 elsevier_sciencedirect_doi_10_1016_j_mseb_2021_115586 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Materials science & engineering. B, Solid-state materials for advanced technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Animasaun, Makinde, Saleem (b0140) 2019; 41 Gnaneswara Reddy, Punith Gowda, Naveen Kumar, Prasannakumara, Ganesh Kumar (b0065) 2021; 235 Lund, Omar, Khan, Sherif (b0110) 2020; 12 Hayat, Khan, Tamoor, Waqas, Alsaedi (b0185) 2017; 7 Gireesha, Sowmya, Khan, Öztop (b0205) 2020; 185 Punith Gowda, Naveen Kumar, Jyothi, Prasannakumara, Sarris (b0120) 2021; 9 Wakif, Animasaun, Sehaqui (b0190) 2021; 409 Khalil-Ur-Rehman, Malik, Makinde (b0130) 2018; 30 Pal, Mondal (b0155) 2010; 15 Ganji, Jannatabadi, Mohseni (b0050) 2007; 207 Alinejad, Peiravi (b0030) 2020; 55 Khan, Qayyum, Hayat, Khan, Alsaedi (b0165) 2019; 133 Xia, Animasaun, Wakif, Shah, Yook (b0180) 2021; 126 Prasannakumara (b0025) 2021; 4 Khan, Alzahrani (b0085) 2021; 46 Hayat, Aslam, Khan, Khan, Alsaedi (b0195) 2019; 275 Khan, Pan, Khan, Ullah (b0055) 2020; 116 Wakif, Sehaqui (b0200) 2020 Nadeem, Khan, Hussain (b0060) 2017; 42 Hayat, Khan, Khan, Alsaedi (b0175) 2019; 94 Zeeshan, Majeed, Akram, Alzahrani (b0125) 2021; 190 Olanrewaju (b0160) 2012; 16 Ahmad, Shehzad, Taj, Ramesh (b0145) 2020; 49 Khan, Alzahrani (b0080) 2021; 13 Xiong, Hamid, Chu, Khan, Gowda, Kumar, Prasannakumara, Qayyum (b0095) 2021; 136 Yusuf, Mabood, Khan, Gbadeyan (b0105) Dec. 2020; 59 Muhammad, Khan, Jameel, Khan (b0135) 2020; 188 Wakif, Chamkha, Thumma, Animasaun, Sehaqui (b0170) 2021; 143 Peiravi, Alinejad, Ganji, Maddah (b0040) 2019; 7 Ganji, Peiravi, Abbasi (b0045) 2015; 6 Irfan, Anwar, Rashid, Waqas, Khan (b0115) 2020; 10 Gowda, Naveenkumar, Madhukesh, Prasannakumara, Gorla (b0075) 2021; 235 Varun Kumar, Punith Gowda, Naveen Kumar, Radhika, Prasannakumara (b0150) 2021; 3 Punith Gowda, Naveen Kumar, Jyothi, Prasannakumara, Nisar (b0020) 2021; 101 Mallikarjuna, Nirmala, Punith Gowda, Manghat, Varun Kumar (b0100) 2021; 50 Kumar, Gowda, Abusorrah, Mahrous, Abu-Hamdeh, Issakhov, Rahimi-Gorji, Prasannakumara (b0015) 2021; 96 Naveen Kumar, Gowda, Gireesha, Prasannakumara (b0090) 2021; 230 Hayat, Khan, Alsaedi, Waqas (b0005) 2017; 7 Peiravi, Alinejad (b0035) 2020; 140 Naveen Kumar, Mallikarjuna, Tigalappa, Punith Gowda, Umrao Sarwe (b0070) 2021 Naveen Kumar, Punith Gowda, Prasanna, Prasannakumara, Nisar, Jamshed (b0010) 2021; 235 Khan (10.1016/j.mseb.2021.115586_b0165) 2019; 133 Zeeshan (10.1016/j.mseb.2021.115586_b0125) 2021; 190 Hayat (10.1016/j.mseb.2021.115586_b0195) 2019; 275 Mallikarjuna (10.1016/j.mseb.2021.115586_b0100) 2021; 50 Animasaun (10.1016/j.mseb.2021.115586_b0140) 2019; 41 Hayat (10.1016/j.mseb.2021.115586_b0185) 2017; 7 Prasannakumara (10.1016/j.mseb.2021.115586_b0025) 2021; 4 Xia (10.1016/j.mseb.2021.115586_b0180) 2021; 126 Peiravi (10.1016/j.mseb.2021.115586_b0040) 2019; 7 Khalil-Ur-Rehman (10.1016/j.mseb.2021.115586_b0130) 2018; 30 Ganji (10.1016/j.mseb.2021.115586_b0050) 2007; 207 Muhammad (10.1016/j.mseb.2021.115586_b0135) 2020; 188 Pal (10.1016/j.mseb.2021.115586_b0155) 2010; 15 Varun Kumar (10.1016/j.mseb.2021.115586_b0150) 2021; 3 Naveen Kumar (10.1016/j.mseb.2021.115586_b0010) 2021; 235 Ganji (10.1016/j.mseb.2021.115586_b0045) 2015; 6 Gowda (10.1016/j.mseb.2021.115586_b0075) 2021; 235 Yusuf (10.1016/j.mseb.2021.115586_b0105) 2020; 59 Wakif (10.1016/j.mseb.2021.115586_b0170) 2021; 143 Olanrewaju (10.1016/j.mseb.2021.115586_b0160) 2012; 16 Lund (10.1016/j.mseb.2021.115586_b0110) 2020; 12 Gireesha (10.1016/j.mseb.2021.115586_b0205) 2020; 185 Khan (10.1016/j.mseb.2021.115586_b0055) 2020; 116 Punith Gowda (10.1016/j.mseb.2021.115586_b0020) 2021; 101 Nadeem (10.1016/j.mseb.2021.115586_b0060) 2017; 42 Khan (10.1016/j.mseb.2021.115586_b0085) 2021; 46 Wakif (10.1016/j.mseb.2021.115586_b0190) 2021; 409 Kumar (10.1016/j.mseb.2021.115586_b0015) 2021; 96 Naveen Kumar (10.1016/j.mseb.2021.115586_b0070) 2021 Irfan (10.1016/j.mseb.2021.115586_b0115) 2020; 10 Khan (10.1016/j.mseb.2021.115586_b0080) 2021; 13 Ahmad (10.1016/j.mseb.2021.115586_b0145) 2020; 49 Xiong (10.1016/j.mseb.2021.115586_b0095) 2021; 136 Peiravi (10.1016/j.mseb.2021.115586_b0035) 2020; 140 Gnaneswara Reddy (10.1016/j.mseb.2021.115586_b0065) 2021; 235 Hayat (10.1016/j.mseb.2021.115586_b0005) 2017; 7 Naveen Kumar (10.1016/j.mseb.2021.115586_b0090) 2021; 230 Hayat (10.1016/j.mseb.2021.115586_b0175) 2019; 94 Alinejad (10.1016/j.mseb.2021.115586_b0030) 2020; 55 Punith Gowda (10.1016/j.mseb.2021.115586_b0120) 2021; 9 Wakif (10.1016/j.mseb.2021.115586_b0200) 2020 |
References_xml | – volume: 235 start-page: 1479 year: 2021 end-page: 1489 ident: b0010 article-title: Comprehensive study of thermophoretic diffusion deposition velocity effect on heat and mass transfer of ferromagnetic fluid flow along a stretching cylinder publication-title: Proc. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng. – volume: 9 year: 2021 ident: b0120 article-title: Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-newtonian nanofluid publication-title: Processes – volume: 42 start-page: 28945 year: 2017 end-page: 28957 ident: b0060 article-title: Model based study of SWCNT and MWCNT thermal conductivities effect on the heat transfer due to the oscillating wall conditions publication-title: Int. J. Hydrogen Energy – volume: 409 start-page: 90 year: 2021 end-page: 94 ident: b0190 article-title: A brief technical note on the onset of convection in a horizontal nanofluid layer of finite depth via Wakif-Galerkin weighted residuals technique (WGWRT) publication-title: Defect Diffus. Forum – volume: 235 start-page: 97 year: 2021 end-page: 106 ident: b0075 article-title: Theoretical analysis of SWCNT- MWCNT/H2O hybrid flow over an upward/downward moving rotating disk publication-title: Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst. – volume: 230 start-page: 1227 year: 2021 end-page: 1237 ident: b0090 article-title: Non-Newtonian hybrid nanofluid flow over vertically upward/downward moving rotating disk in a Darcy–Forchheimer porous medium publication-title: Eur. Phys. J. Spec. Top. – volume: 235 start-page: 1259 year: 2021 end-page: 1268 ident: b0065 article-title: Analysis of modified Fourier law and melting heat transfer in a flow involving carbon nanotubes publication-title: Proc. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng. – volume: 12 year: 2020 ident: b0110 article-title: Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow publication-title: Symmetry – volume: 16 start-page: 37 year: 2012 end-page: 45 ident: b0160 article-title: Effects of internal heat generation on hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation publication-title: World Appl. Sci. J. – volume: 140 start-page: 2733 year: 2020 end-page: 2747 ident: b0035 article-title: Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder publication-title: J. Therm. Anal. Calo. – start-page: 1 year: 2021 end-page: 10 ident: b0070 article-title: Carbon nanotubes suspended dusty nanofluid flow over stretching porous rotating disk with non-uniform heat source/sink publication-title: Int. J. Comput. Methods Eng. Sci. Mech. – volume: 185 start-page: 105166 year: 2020 ident: b0205 article-title: Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection publication-title: Comput. Meth. Prog. Biomed. – volume: 94 start-page: 085001 year: 2019 ident: b0175 article-title: Optimizing the theoretical analysis of entropy generation in flow of second grade nanofluid publication-title: Phys. Scripta – volume: 101 year: 2021 ident: b0020 article-title: KKL correlation for simulation of nanofluid flow over a stretching sheet considering magnetic dipole and chemical reaction publication-title: ZAMM – J. Appl. Math. Mech/Zeitschrift für Angewandte Mathematik und Mechanik – volume: 3 year: 2021 ident: b0150 article-title: Two-phase flow of dusty fluid with suspended hybrid nanoparticles over a stretching cylinder with modified Fourier heat flux publication-title: SN Appl. Sci. – volume: 55 start-page: 1975 year: 2020 end-page: 2002 ident: b0030 article-title: Numerical analysis of secondary droplets characteristics due to drop impacting on 3D cylinders considering dynamic contact angle publication-title: Meccanica – volume: 143 start-page: 1201 year: 2021 end-page: 1220 ident: b0170 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model publication-title: J. Thermal Anal. Calo. – volume: 7 start-page: 4162 year: 2017 end-page: 4167 ident: b0005 article-title: Mechanism of chemical aspect in ferromagnetic flow of second grade liquid publication-title: Res. Phys. – volume: 15 start-page: 1197 year: 2010 end-page: 1209 ident: b0155 article-title: Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation publication-title: Commun. Nonlinear Sci. Numer. Simul. – year: 2020 ident: b0200 article-title: Generalized differential quadrature scrutinization of an advanced MHD stability problem concerned water-based nanofluids with metal/metal oxide nanomaterials: a proper application of the revised two-phase nanofluid model with convective heating and through-flow boundary conditions publication-title: Numer. Meth. Partial Diff. Equ. – volume: 190 start-page: 1080 year: 2021 end-page: 1109 ident: b0125 article-title: Numerical investigation of MHD radiative heat and mass transfer of nanofluid flow towards a vertical wavy surface with viscous dissipation and Joule heating effects using Keller-box method publication-title: Math. Comput. Simul. – volume: 207 start-page: 35 year: 2007 end-page: 45 ident: b0050 article-title: Application of He's variational iteration method to nonlinear Jaulent-Miodek equations and comparing it with ADM publication-title: J. Comput. Appl. Math. – volume: 7 start-page: 97 year: 2019 end-page: 112 ident: b0040 article-title: Numerical study of fins arrangement and nanofluids effects on three-dimensional natural convection in the cubical enclosure publication-title: Trans. Phenom. Nano Micro Scales – volume: 275 start-page: 599 year: 2019 end-page: 615 ident: b0195 article-title: Physical significance of heat generation/absorption and Soret effects on peristalsis flow of pseudoplastic fluid in an inclined channel publication-title: J. Mol. Liq. – volume: 188 start-page: 105298 year: 2020 ident: b0135 article-title: Fully developed Darcy- Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation publication-title: Comput. Methods Programs Biomed. – volume: 133 start-page: 959 year: 2019 end-page: 967 ident: b0165 article-title: Entropy optimization in flow of Williamson nanofluid in the presence of chemical reaction and Joule heating publication-title: Int. J. Heat Mass Transf. – volume: 116 start-page: 104707 year: 2020 ident: b0055 article-title: Comparative study on heat transfer in CNTs-water nanofluid over a curved surface publication-title: Int. Commun. Heat Mass Transf. – volume: 6 start-page: 385 year: 2015 end-page: 398 ident: b0045 article-title: Evaluation of the heat transfer rate increases in retention pools nuclear waste publication-title: Int. J. Nano Dimens. – volume: 59 start-page: 5247 year: Dec. 2020 end-page: 5261 ident: b0105 article-title: Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: darcy-Forchhiemer’s model publication-title: Alex. Eng. J. – volume: 4 start-page: 100064 year: 2021 ident: b0025 article-title: Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect publication-title: Partial Differ. Equ. Appl. Math. – volume: 13 year: 2021 ident: b0080 article-title: Dynamics of activation energy and nonlinear mixed convection in darcy-forchheimer radiated flow of carreau nanofluid near stagnation point region publication-title: J. Therm. Sci. Eng. Appl. – volume: 46 start-page: 1362 year: 2021 end-page: 1369 ident: b0085 article-title: Free convection and radiation effects in nanofluid (Silicon dioxide and Molybdenum disulfide) with second order velocity slip, entropy generation, Darcy-Forchheimer porous medium publication-title: Int. J. Hydrog. Energy – volume: 7 start-page: 1824 year: 2017 end-page: 1827 ident: b0185 article-title: Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface publication-title: Res. Phys. – volume: 49 start-page: 3958 year: 2020 end-page: 3978 ident: b0145 article-title: Magnetized mixed convection second-grade fluid flow adjacent to a lubricated vertical surface publication-title: Heat Transf. – volume: 50 start-page: 3934 year: 2021 end-page: 3947 ident: b0100 article-title: Two-dimensional Darcy-Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation publication-title: Heat Transf. – volume: 30 start-page: 440 year: 2018 end-page: 449 ident: b0130 article-title: Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface publication-title: J. King Saud Univ. – Sci. – volume: 41 start-page: 197 year: 2019 ident: b0140 article-title: Mixed convection flow of Newtonian fluids over an upper horizontal thermally stratified melting surface of a paraboloid of revolution publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 96 start-page: 045215 year: 2021 ident: b0015 article-title: Impact of magnetic dipole on ferromagnetic hybrid nanofluid flow over a stretching cylinder publication-title: Phys. Scr. – volume: 10 start-page: 4403 year: 2020 end-page: 4413 ident: b0115 article-title: Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation publication-title: Appl. Nanosci. – volume: 126 start-page: 105395 year: 2021 ident: b0180 article-title: Shah and Se-Jin Yook, Gear-generalized differential quadrature analysis of oscillatory convective Taylor-Couette flows of second-grade fluids subject to Lorentz and Darcy-Forchheimer quadratic drag forces publication-title: Int. Commu. Heat Mass Transf. – volume: 136 year: 2021 ident: b0095 article-title: Dynamics of multiple solutions of Darcy-Forchheimer saturated flow of Cross nanofluid by a vertical thin needle point publication-title: Eur. Phys. J. Plus – volume: 185 start-page: 105166 year: 2020 ident: 10.1016/j.mseb.2021.115586_b0205 article-title: Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection publication-title: Comput. Meth. Prog. Biomed. doi: 10.1016/j.cmpb.2019.105166 – volume: 59 start-page: 5247 issue: 6 year: 2020 ident: 10.1016/j.mseb.2021.115586_b0105 article-title: Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: darcy-Forchhiemer’s model publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.09.053 – start-page: 1 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0070 article-title: Carbon nanotubes suspended dusty nanofluid flow over stretching porous rotating disk with non-uniform heat source/sink publication-title: Int. J. Comput. Methods Eng. Sci. Mech. – volume: 13 issue: 5 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0080 article-title: Dynamics of activation energy and nonlinear mixed convection in darcy-forchheimer radiated flow of carreau nanofluid near stagnation point region publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4049434 – volume: 136 issue: 3 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0095 article-title: Dynamics of multiple solutions of Darcy-Forchheimer saturated flow of Cross nanofluid by a vertical thin needle point publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-01294-2 – year: 2020 ident: 10.1016/j.mseb.2021.115586_b0200 publication-title: Numer. Meth. Partial Diff. Equ. – volume: 235 start-page: 1479 issue: 5 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0010 article-title: Comprehensive study of thermophoretic diffusion deposition velocity effect on heat and mass transfer of ferromagnetic fluid flow along a stretching cylinder publication-title: Proc. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng. doi: 10.1177/09544089211005291 – volume: 230 start-page: 1227 issue: 5 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0090 article-title: Non-Newtonian hybrid nanofluid flow over vertically upward/downward moving rotating disk in a Darcy–Forchheimer porous medium publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjs/s11734-021-00054-8 – volume: 16 start-page: 37 year: 2012 ident: 10.1016/j.mseb.2021.115586_b0160 article-title: Effects of internal heat generation on hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation publication-title: World Appl. Sci. J. – volume: 46 start-page: 1362 issue: 1 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0085 article-title: Free convection and radiation effects in nanofluid (Silicon dioxide and Molybdenum disulfide) with second order velocity slip, entropy generation, Darcy-Forchheimer porous medium publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.09.240 – volume: 409 start-page: 90 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0190 article-title: A brief technical note on the onset of convection in a horizontal nanofluid layer of finite depth via Wakif-Galerkin weighted residuals technique (WGWRT) publication-title: Defect Diffus. Forum doi: 10.4028/www.scientific.net/DDF.409.90 – volume: 140 start-page: 2733 year: 2020 ident: 10.1016/j.mseb.2021.115586_b0035 article-title: Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder publication-title: J. Therm. Anal. Calo. doi: 10.1007/s10973-019-09010-0 – volume: 7 start-page: 97 year: 2019 ident: 10.1016/j.mseb.2021.115586_b0040 article-title: Numerical study of fins arrangement and nanofluids effects on three-dimensional natural convection in the cubical enclosure publication-title: Trans. Phenom. Nano Micro Scales – volume: 7 start-page: 1824 year: 2017 ident: 10.1016/j.mseb.2021.115586_b0185 article-title: Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface publication-title: Res. Phys. – volume: 126 start-page: 105395 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0180 article-title: Shah and Se-Jin Yook, Gear-generalized differential quadrature analysis of oscillatory convective Taylor-Couette flows of second-grade fluids subject to Lorentz and Darcy-Forchheimer quadratic drag forces publication-title: Int. Commu. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105395 – volume: 101 issue: 11 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0020 article-title: KKL correlation for simulation of nanofluid flow over a stretching sheet considering magnetic dipole and chemical reaction publication-title: ZAMM – J. Appl. Math. Mech/Zeitschrift für Angewandte Mathematik und Mechanik – volume: 9 issue: 4 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0120 article-title: Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-newtonian nanofluid publication-title: Processes doi: 10.3390/pr9040702 – volume: 3 issue: 3 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0150 article-title: Two-phase flow of dusty fluid with suspended hybrid nanoparticles over a stretching cylinder with modified Fourier heat flux publication-title: SN Appl. Sci. doi: 10.1007/s42452-021-04364-3 – volume: 133 start-page: 959 year: 2019 ident: 10.1016/j.mseb.2021.115586_b0165 article-title: Entropy optimization in flow of Williamson nanofluid in the presence of chemical reaction and Joule heating publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.12.168 – volume: 49 start-page: 3958 issue: 6 year: 2020 ident: 10.1016/j.mseb.2021.115586_b0145 article-title: Magnetized mixed convection second-grade fluid flow adjacent to a lubricated vertical surface publication-title: Heat Transf. doi: 10.1002/htj.21817 – volume: 207 start-page: 35 year: 2007 ident: 10.1016/j.mseb.2021.115586_b0050 article-title: Application of He's variational iteration method to nonlinear Jaulent-Miodek equations and comparing it with ADM publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2006.07.029 – volume: 190 start-page: 1080 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0125 article-title: Numerical investigation of MHD radiative heat and mass transfer of nanofluid flow towards a vertical wavy surface with viscous dissipation and Joule heating effects using Keller-box method publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2021.07.002 – volume: 10 start-page: 4403 issue: 12 year: 2020 ident: 10.1016/j.mseb.2021.115586_b0115 article-title: Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01498-5 – volume: 96 start-page: 045215 issue: 4 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0015 article-title: Impact of magnetic dipole on ferromagnetic hybrid nanofluid flow over a stretching cylinder publication-title: Phys. Scr. doi: 10.1088/1402-4896/abe324 – volume: 7 start-page: 4162 year: 2017 ident: 10.1016/j.mseb.2021.115586_b0005 article-title: Mechanism of chemical aspect in ferromagnetic flow of second grade liquid publication-title: Res. Phys. – volume: 50 start-page: 3934 issue: 4 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0100 article-title: Two-dimensional Darcy-Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation publication-title: Heat Transf. doi: 10.1002/htj.22058 – volume: 42 start-page: 28945 issue: 48 year: 2017 ident: 10.1016/j.mseb.2021.115586_b0060 article-title: Model based study of SWCNT and MWCNT thermal conductivities effect on the heat transfer due to the oscillating wall conditions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.09.114 – volume: 30 start-page: 440 issue: 4 year: 2018 ident: 10.1016/j.mseb.2021.115586_b0130 article-title: Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface publication-title: J. King Saud Univ. – Sci. doi: 10.1016/j.jksus.2017.02.003 – volume: 94 start-page: 085001 year: 2019 ident: 10.1016/j.mseb.2021.115586_b0175 article-title: Optimizing the theoretical analysis of entropy generation in flow of second grade nanofluid publication-title: Phys. Scripta doi: 10.1088/1402-4896/ab0f65 – volume: 235 start-page: 97 issue: 3-4 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0075 article-title: Theoretical analysis of SWCNT- MWCNT/H2O hybrid flow over an upward/downward moving rotating disk publication-title: Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst. – volume: 41 start-page: 197 issue: 4 year: 2019 ident: 10.1016/j.mseb.2021.115586_b0140 article-title: Mixed convection flow of Newtonian fluids over an upper horizontal thermally stratified melting surface of a paraboloid of revolution publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-019-1698-7 – volume: 235 start-page: 1259 issue: 5 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0065 article-title: Analysis of modified Fourier law and melting heat transfer in a flow involving carbon nanotubes publication-title: Proc. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng. doi: 10.1177/09544089211001353 – volume: 275 start-page: 599 year: 2019 ident: 10.1016/j.mseb.2021.115586_b0195 article-title: Physical significance of heat generation/absorption and Soret effects on peristalsis flow of pseudoplastic fluid in an inclined channel publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.11.055 – volume: 143 start-page: 1201 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0170 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model publication-title: J. Thermal Anal. Calo. doi: 10.1007/s10973-020-09488-z – volume: 116 start-page: 104707 year: 2020 ident: 10.1016/j.mseb.2021.115586_b0055 article-title: Comparative study on heat transfer in CNTs-water nanofluid over a curved surface publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104707 – volume: 188 start-page: 105298 year: 2020 ident: 10.1016/j.mseb.2021.115586_b0135 article-title: Fully developed Darcy- Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105298 – volume: 6 start-page: 385 year: 2015 ident: 10.1016/j.mseb.2021.115586_b0045 article-title: Evaluation of the heat transfer rate increases in retention pools nuclear waste publication-title: Int. J. Nano Dimens. – volume: 12 issue: 2 year: 2020 ident: 10.1016/j.mseb.2021.115586_b0110 article-title: Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow publication-title: Symmetry doi: 10.3390/sym12020276 – volume: 4 start-page: 100064 year: 2021 ident: 10.1016/j.mseb.2021.115586_b0025 article-title: Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect publication-title: Partial Differ. Equ. Appl. Math. doi: 10.1016/j.padiff.2021.100064 – volume: 15 start-page: 1197 issue: 5 year: 2010 ident: 10.1016/j.mseb.2021.115586_b0155 article-title: Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.05.051 – volume: 55 start-page: 1975 issue: 10 year: 2020 ident: 10.1016/j.mseb.2021.115586_b0030 article-title: Numerical analysis of secondary droplets characteristics due to drop impacting on 3D cylinders considering dynamic contact angle publication-title: Meccanica doi: 10.1007/s11012-020-01240-z |
SSID | ssj0001222 |
Score | 2.4033358 |
Snippet | •Here ferromagnetic flow of viscous fluid is addressed.•Wu’s slip effects is considered.•Dipole moment interaction is accounted.•Both single and multi-walls... The analysis of viscous materials flow subject to diverse configurations with remarkable physical applications has many utilizations in the electrical,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115586 |
SubjectTerms | Biot number Chemical sensors CNTs (Carbon nanotubes) Darcy-Forchheimer porous medium Dipole interactions Drag Energy storage Ferromagnetic force Ferromagnetism Fluid dynamics Fluid flow Heat flux Interaction parameters Magnetic dipole Magnetic dipoles Mixed convection Multi wall carbon nanotubes Nanofluids Radiative heat flux Runge-Kutta method Skin friction Temperature distribution Transport rate Working fluids |
Title | Analysis of Wu's slip and CNTs (single and multi-wall carbon nanotubes) in Darcy-Forchheimer mixed convective nanofluid flow with magnetic dipole: Intelligent nano-coating simulation |
URI | https://dx.doi.org/10.1016/j.mseb.2021.115586 https://www.proquest.com/docview/2667261860 |
Volume | 277 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4ikKpZoDEiBkNsnGeXCrFlZbEHuhFb1FfkwgKI_VJqvChZ_F78PjOOUh1APXyBNFnvE8nG--YexJpA0maAQ3skx4bFNWrsos5xhlocbMpJGhe8j362R1Fr89F-d7bDH1whCs0vv-0ac7b-2fzPxuzjZVNfsQ5BSuiN-LLCmnuj2OU7Lyl99_wTxC_yfBLua02jfOjBivpkdla8QotJ5DCOqn_ndw-stNu9izvMVu-qQRjsfvus32sL3DbvxGJXiX_ZjYRaAr4ePuaQ82gdyAbA0s1qc9PKM7gRrdAwci5BeyrkHLrepaaGXbDTuF_XOoWnhtjf8bX3b2CHzGqsEtNNVXNOAQ6s4_OoGy3lUGyrq7ALrNhUZ-aqklEky16Wp8BSeXdJ-DE-C6k4Syhr5q_NSwe-xs-eZ0seJ-JgPX8ygbeCpQKZvqZjJItd10TEosVagMIpYiy7PEFlipzoM5zlWIIhfSlmBBjFLa5NGk8_tsv-1afMAgioicMsCsJEKgOFTCEPMN6hSDLI_FAQsnZRTaE5bT3Iy6mJBpXwpSYEEKLEYFHrAXlzKbka7jytVi0nHxh9EVNp5cKXc4GUThj3xf2EwnjWj6QPDwP1_7iF2PqLnCIdwO2f6w3eFjm_IM6sjZ9BG7dnzybrX-CdomAvw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMUCswBBAiZTbxxHkgcUMtql7Z7YSt6S-14QlPlsdrsaumFP4XE78N2nPIQ6gGp1yhjWZ7JPJxvviHkGcsUhqg4VSIPaaBTVirzOKHIYj_DWEVMmXvIg2k4Pgw-HvGjDfK974UxsErn-zufbr21ezJwpzmYF8Xgk5eYcGX4vYwlJZ5DVu7h2VrXbe27ya5W8nPGRh9mO2PqRgvQbMjiJY04Sqkztlh4UaZlMcwxl75UiJjzOIlDXSdEWeINcSh95AkXupLwAhRC50AqGup1r5CrgXYXZmzCm2-_cCW--3Whd0fN9lynTgcqq1qUuihlvnZVnJsG7n9Hw7_igg12o1vkpstS4X13ELfJBtZ3yI3fuAvvkh89nQk0OXxevWhBZ6xzELWCnemshZfmEqJE-8CiFulalCVkYiGbGmpRN8uVxPYVFDXs6hM9o6NGn-sJFhUuoCq-ogILibcO2Qrk5apQkJfNGsz1MVTiS216MEEV86bEtzA55xddWgGaNcLAuqEtKjem7B45vBRN3SebdVPjAwKMGTZMD-PcMBAFvuTKUO1gFqEXJwHfIn6vjDRzDOlmUEeZ9lC409QoMDUKTDsFbpHX5zLzjh_kwrd5r-P0DytPdQC7UG67N4jU-Zg21alVxMy4A-_hfy77lFwbzw720_3JdO8Ruc5MZ4eF122TzeVihY91vrWUT6x9Azm-7A_qJ5KZPzY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Wu%27s+slip+and+CNTs+%28single+and+multi-wall+carbon+nanotubes%29+in+Darcy-Forchheimer+mixed+convective+nanofluid+flow+with+magnetic+dipole%3A+Intelligent+nano-coating+simulation&rft.jtitle=Materials+science+%26+engineering.+B%2C+Solid-state+materials+for+advanced+technology&rft.au=Alzahrani%2C+Faris&rft.au=Ijaz+Khan%2C+M.&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=0921-5107&rft.eissn=1873-4944&rft.volume=277&rft_id=info:doi/10.1016%2Fj.mseb.2021.115586&rft.externalDocID=S0921510721005390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5107&client=summon |