Analysis of Wu's slip and CNTs (single and multi-wall carbon nanotubes) in Darcy-Forchheimer mixed convective nanofluid flow with magnetic dipole: Intelligent nano-coating simulation

•Here ferromagnetic flow of viscous fluid is addressed.•Wu’s slip effects is considered.•Dipole moment interaction is accounted.•Both single and multi-walls carbon nanotubes are considered as a nanoparticles.•Water is considered as base fluid. The analysis of viscous materials flow subject to divers...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. B, Solid-state materials for advanced technology Vol. 277; p. 115586
Main Authors Alzahrani, Faris, Ijaz Khan, M.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.03.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Here ferromagnetic flow of viscous fluid is addressed.•Wu’s slip effects is considered.•Dipole moment interaction is accounted.•Both single and multi-walls carbon nanotubes are considered as a nanoparticles.•Water is considered as base fluid. The analysis of viscous materials flow subject to diverse configurations with remarkable physical applications has many utilizations in the electrical, mechanical, industrial, applied physics and mathematics fields. Besides these, carbon nanotubes (CNTs) have numerous applications in energy storage, nanotechnology, chemical sensors, industry, optics, structural diverse materials and conductive plastics. Such consideration in mind, ferro-fluid flow of viscous liquid submerged in CNTs towards a stretchable surface affected by magnetic dipole interaction is addressed. Mixed convection and Darcy-Forchheimer effects are accounted. The energy relation is discussed in the presence of radiative heat flux and viscous dissipation. First and second order velocity slips are implemented at the boundary surface. The governing expressions specifying the flow are altered into ordinary ones with the assistance of appropriate similarity quantities. The obtained ordinary system is computationally tackled via Runge-Kutta 4th Order Method (RK4OM). Our obtained outcomes reveal that velocity of working fluid particles declines with an enhancement in ferromagnetic interaction parameter and Darcy-Forchheimer number. Also, behavior of temperature distribution increases more speedily for heightening of radiative parameter and Biot number. Coefficient of skin friction (surface drag force) and Nusselt number (heat transport rate) are calculated in view of important flow parameter numerically. The range of parameters are β=0.0,0.3,0.5,ε=0.1,0.5,1.0,Fr=0.1,0.5,1.0,γ1=0.0,0.5,1.0,γ2=0.0,0.1,0.2,δ=1.0,5.0,10.0,R=0.0,0.2,0.5,Bi=0.5,1.0,1.5 and.λ=0.0,1.0,3.0.
AbstractList The analysis of viscous materials flow subject to diverse configurations with remarkable physical applications has many utilizations in the electrical, mechanical, industrial, applied physics and mathematics fields. Besides these, carbon nanotubes (CNTs) have numerous applications in energy storage, nanotechnology, chemical sensors, industry, optics, structural diverse materials and conductive plastics. Such consideration in mind, ferro-fluid flow of viscous liquid submerged in CNTs towards a stretchable surface affected by magnetic dipole interaction is addressed. Mixed convection and Darcy-Forchheimer effects are accounted. The energy relation is discussed in the presence of radiative heat flux and viscous dissipation. First and second order velocity slips are implemented at the boundary surface. The governing expressions specifying the flow are altered into ordinary ones with the assistance of appropriate similarity quantities. The obtained ordinary system is computationally tackled via Runge-Kutta 4th Order Method (RK4OM). Our obtained outcomes reveal that velocity of working fluid particles declines with an enhancement in ferromagnetic interaction parameter and Darcy-Forchheimer number. Also, behavior of temperature distribution increases more speedily for heightening of radiative parameter and Biot number. Coefficient of skin friction (surface drag force) and Nusselt number (heat transport rate) are calculated in view of important flow parameter numerically. The range of parameters are β=0.0, 0.3, 0.5, ε=0.1, 0.5, 1.0, Fr=0.1, 0.5, 1.0, γ1=0.0, 0.5, 1.0, γ2=0.0, 0.1, 0.2, δ=1.0, 5.0, 10.0, R=0.0, 0.2, 0.5, Bi=0.5, 1.0, 1.5 and λ=0.0, 1.0, 3.0.
•Here ferromagnetic flow of viscous fluid is addressed.•Wu’s slip effects is considered.•Dipole moment interaction is accounted.•Both single and multi-walls carbon nanotubes are considered as a nanoparticles.•Water is considered as base fluid. The analysis of viscous materials flow subject to diverse configurations with remarkable physical applications has many utilizations in the electrical, mechanical, industrial, applied physics and mathematics fields. Besides these, carbon nanotubes (CNTs) have numerous applications in energy storage, nanotechnology, chemical sensors, industry, optics, structural diverse materials and conductive plastics. Such consideration in mind, ferro-fluid flow of viscous liquid submerged in CNTs towards a stretchable surface affected by magnetic dipole interaction is addressed. Mixed convection and Darcy-Forchheimer effects are accounted. The energy relation is discussed in the presence of radiative heat flux and viscous dissipation. First and second order velocity slips are implemented at the boundary surface. The governing expressions specifying the flow are altered into ordinary ones with the assistance of appropriate similarity quantities. The obtained ordinary system is computationally tackled via Runge-Kutta 4th Order Method (RK4OM). Our obtained outcomes reveal that velocity of working fluid particles declines with an enhancement in ferromagnetic interaction parameter and Darcy-Forchheimer number. Also, behavior of temperature distribution increases more speedily for heightening of radiative parameter and Biot number. Coefficient of skin friction (surface drag force) and Nusselt number (heat transport rate) are calculated in view of important flow parameter numerically. The range of parameters are β=0.0,0.3,0.5,ε=0.1,0.5,1.0,Fr=0.1,0.5,1.0,γ1=0.0,0.5,1.0,γ2=0.0,0.1,0.2,δ=1.0,5.0,10.0,R=0.0,0.2,0.5,Bi=0.5,1.0,1.5 and.λ=0.0,1.0,3.0.
ArticleNumber 115586
Author Ijaz Khan, M.
Alzahrani, Faris
Author_xml – sequence: 1
  givenname: Faris
  surname: Alzahrani
  fullname: Alzahrani, Faris
  organization: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
– sequence: 2
  givenname: M.
  surname: Ijaz Khan
  fullname: Ijaz Khan, M.
  email: mikhan@math.qau.edu.pk
  organization: Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
BookMark eNp9kc9uEzEQxi3USqQtL8DJEgfoYVPb-x9xqQKllapyKeJo2d7ZZCKvHWxvQl6M52OTcOqhpxmNvt_om_kuyJnzDgh5z9mcM17drOdDBD0XTPA552XZVG_IjDd1nhVtUZyRGWsFz0rO6rfkIsY1Y4wLIWbk761Tdh8xUt_TX-PHSKPFDVWuo4un50g_RXRLC8fBMNqE2U5ZS40K2jvqlPNp1BCvKTr6VQWzz-58MKsV4ACBDvgHOmq824JJuIUj0NsRO9pbv6M7TCs6qKWDhIZ2uPEWPtMHl8BaXIJLRyAzXqXJBo04WZha767Iea9shHf_6yX5effteXGfPf74_rC4fcxMLpqU1SVo3XDdKFabvGVQ9dBrrjsA6MumbSrOi9q0LIdccyjbUhVtyQpQihVlV-eX5MNp7yb43yPEJNd-DNPLohRVVYuKNxWbVM1JZYKPMUAvDaajzxQUWsmZPKQk1_KQkjykJE8pTah4gW4CDirsX4e-nCCYTt8iBBkNgjPQYZgeLTuPr-H_ALcRsV0
CitedBy_id crossref_primary_10_1080_17455030_2023_2196348
crossref_primary_10_1016_j_triboint_2023_108685
crossref_primary_10_3390_en15196891
crossref_primary_10_1002_zamm_202100603
crossref_primary_10_1134_S1810232822040154
crossref_primary_10_1142_S0217979223503125
crossref_primary_10_1155_2023_3468295
crossref_primary_10_1155_2022_1865763
crossref_primary_10_4236_wjet_2023_114068
crossref_primary_10_1016_j_cplett_2022_139661
crossref_primary_10_1016_j_rineng_2024_103055
crossref_primary_10_1016_j_heliyon_2023_e14740
crossref_primary_10_1016_j_diamond_2024_111447
Cites_doi 10.1016/j.cmpb.2019.105166
10.1016/j.aej.2020.09.053
10.1115/1.4049434
10.1140/epjp/s13360-021-01294-2
10.1177/09544089211005291
10.1140/epjs/s11734-021-00054-8
10.1016/j.ijhydene.2020.09.240
10.4028/www.scientific.net/DDF.409.90
10.1007/s10973-019-09010-0
10.1016/j.icheatmasstransfer.2021.105395
10.3390/pr9040702
10.1007/s42452-021-04364-3
10.1016/j.ijheatmasstransfer.2018.12.168
10.1002/htj.21817
10.1016/j.cam.2006.07.029
10.1016/j.matcom.2021.07.002
10.1007/s13204-020-01498-5
10.1088/1402-4896/abe324
10.1002/htj.22058
10.1016/j.ijhydene.2017.09.114
10.1016/j.jksus.2017.02.003
10.1088/1402-4896/ab0f65
10.1007/s40430-019-1698-7
10.1177/09544089211001353
10.1016/j.molliq.2018.11.055
10.1007/s10973-020-09488-z
10.1016/j.icheatmasstransfer.2020.104707
10.1016/j.cmpb.2019.105298
10.3390/sym12020276
10.1016/j.padiff.2021.100064
10.1016/j.cnsns.2009.05.051
10.1007/s11012-020-01240-z
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Mar 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.mseb.2021.115586
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4944
ExternalDocumentID 10_1016_j_mseb_2021_115586
S0921510721005390
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c328t-75ebb81b8a07c390e6fefb1bdeeef589861147c903e3b1e595a49504eaa045d73
IEDL.DBID .~1
ISSN 0921-5107
IngestDate Fri Jul 25 05:10:49 EDT 2025
Tue Jul 01 02:44:28 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Fri Feb 23 02:40:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Darcy-Forchheimer porous medium
Radiative heat flux
Mixed convection
Magnetic dipole
CNTs (Carbon nanotubes)
Ferromagnetic force
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-75ebb81b8a07c390e6fefb1bdeeef589861147c903e3b1e595a49504eaa045d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2667261860
PQPubID 2045431
ParticipantIDs proquest_journals_2667261860
crossref_citationtrail_10_1016_j_mseb_2021_115586
crossref_primary_10_1016_j_mseb_2021_115586
elsevier_sciencedirect_doi_10_1016_j_mseb_2021_115586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials science & engineering. B, Solid-state materials for advanced technology
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Animasaun, Makinde, Saleem (b0140) 2019; 41
Gnaneswara Reddy, Punith Gowda, Naveen Kumar, Prasannakumara, Ganesh Kumar (b0065) 2021; 235
Lund, Omar, Khan, Sherif (b0110) 2020; 12
Hayat, Khan, Tamoor, Waqas, Alsaedi (b0185) 2017; 7
Gireesha, Sowmya, Khan, Öztop (b0205) 2020; 185
Punith Gowda, Naveen Kumar, Jyothi, Prasannakumara, Sarris (b0120) 2021; 9
Wakif, Animasaun, Sehaqui (b0190) 2021; 409
Khalil-Ur-Rehman, Malik, Makinde (b0130) 2018; 30
Pal, Mondal (b0155) 2010; 15
Ganji, Jannatabadi, Mohseni (b0050) 2007; 207
Alinejad, Peiravi (b0030) 2020; 55
Khan, Qayyum, Hayat, Khan, Alsaedi (b0165) 2019; 133
Xia, Animasaun, Wakif, Shah, Yook (b0180) 2021; 126
Prasannakumara (b0025) 2021; 4
Khan, Alzahrani (b0085) 2021; 46
Hayat, Aslam, Khan, Khan, Alsaedi (b0195) 2019; 275
Khan, Pan, Khan, Ullah (b0055) 2020; 116
Wakif, Sehaqui (b0200) 2020
Nadeem, Khan, Hussain (b0060) 2017; 42
Hayat, Khan, Khan, Alsaedi (b0175) 2019; 94
Zeeshan, Majeed, Akram, Alzahrani (b0125) 2021; 190
Olanrewaju (b0160) 2012; 16
Ahmad, Shehzad, Taj, Ramesh (b0145) 2020; 49
Khan, Alzahrani (b0080) 2021; 13
Xiong, Hamid, Chu, Khan, Gowda, Kumar, Prasannakumara, Qayyum (b0095) 2021; 136
Yusuf, Mabood, Khan, Gbadeyan (b0105) Dec. 2020; 59
Muhammad, Khan, Jameel, Khan (b0135) 2020; 188
Wakif, Chamkha, Thumma, Animasaun, Sehaqui (b0170) 2021; 143
Peiravi, Alinejad, Ganji, Maddah (b0040) 2019; 7
Ganji, Peiravi, Abbasi (b0045) 2015; 6
Irfan, Anwar, Rashid, Waqas, Khan (b0115) 2020; 10
Gowda, Naveenkumar, Madhukesh, Prasannakumara, Gorla (b0075) 2021; 235
Varun Kumar, Punith Gowda, Naveen Kumar, Radhika, Prasannakumara (b0150) 2021; 3
Punith Gowda, Naveen Kumar, Jyothi, Prasannakumara, Nisar (b0020) 2021; 101
Mallikarjuna, Nirmala, Punith Gowda, Manghat, Varun Kumar (b0100) 2021; 50
Kumar, Gowda, Abusorrah, Mahrous, Abu-Hamdeh, Issakhov, Rahimi-Gorji, Prasannakumara (b0015) 2021; 96
Naveen Kumar, Gowda, Gireesha, Prasannakumara (b0090) 2021; 230
Hayat, Khan, Alsaedi, Waqas (b0005) 2017; 7
Peiravi, Alinejad (b0035) 2020; 140
Naveen Kumar, Mallikarjuna, Tigalappa, Punith Gowda, Umrao Sarwe (b0070) 2021
Naveen Kumar, Punith Gowda, Prasanna, Prasannakumara, Nisar, Jamshed (b0010) 2021; 235
Khan (10.1016/j.mseb.2021.115586_b0165) 2019; 133
Zeeshan (10.1016/j.mseb.2021.115586_b0125) 2021; 190
Hayat (10.1016/j.mseb.2021.115586_b0195) 2019; 275
Mallikarjuna (10.1016/j.mseb.2021.115586_b0100) 2021; 50
Animasaun (10.1016/j.mseb.2021.115586_b0140) 2019; 41
Hayat (10.1016/j.mseb.2021.115586_b0185) 2017; 7
Prasannakumara (10.1016/j.mseb.2021.115586_b0025) 2021; 4
Xia (10.1016/j.mseb.2021.115586_b0180) 2021; 126
Peiravi (10.1016/j.mseb.2021.115586_b0040) 2019; 7
Khalil-Ur-Rehman (10.1016/j.mseb.2021.115586_b0130) 2018; 30
Ganji (10.1016/j.mseb.2021.115586_b0050) 2007; 207
Muhammad (10.1016/j.mseb.2021.115586_b0135) 2020; 188
Pal (10.1016/j.mseb.2021.115586_b0155) 2010; 15
Varun Kumar (10.1016/j.mseb.2021.115586_b0150) 2021; 3
Naveen Kumar (10.1016/j.mseb.2021.115586_b0010) 2021; 235
Ganji (10.1016/j.mseb.2021.115586_b0045) 2015; 6
Gowda (10.1016/j.mseb.2021.115586_b0075) 2021; 235
Yusuf (10.1016/j.mseb.2021.115586_b0105) 2020; 59
Wakif (10.1016/j.mseb.2021.115586_b0170) 2021; 143
Olanrewaju (10.1016/j.mseb.2021.115586_b0160) 2012; 16
Lund (10.1016/j.mseb.2021.115586_b0110) 2020; 12
Gireesha (10.1016/j.mseb.2021.115586_b0205) 2020; 185
Khan (10.1016/j.mseb.2021.115586_b0055) 2020; 116
Punith Gowda (10.1016/j.mseb.2021.115586_b0020) 2021; 101
Nadeem (10.1016/j.mseb.2021.115586_b0060) 2017; 42
Khan (10.1016/j.mseb.2021.115586_b0085) 2021; 46
Wakif (10.1016/j.mseb.2021.115586_b0190) 2021; 409
Kumar (10.1016/j.mseb.2021.115586_b0015) 2021; 96
Naveen Kumar (10.1016/j.mseb.2021.115586_b0070) 2021
Irfan (10.1016/j.mseb.2021.115586_b0115) 2020; 10
Khan (10.1016/j.mseb.2021.115586_b0080) 2021; 13
Ahmad (10.1016/j.mseb.2021.115586_b0145) 2020; 49
Xiong (10.1016/j.mseb.2021.115586_b0095) 2021; 136
Peiravi (10.1016/j.mseb.2021.115586_b0035) 2020; 140
Gnaneswara Reddy (10.1016/j.mseb.2021.115586_b0065) 2021; 235
Hayat (10.1016/j.mseb.2021.115586_b0005) 2017; 7
Naveen Kumar (10.1016/j.mseb.2021.115586_b0090) 2021; 230
Hayat (10.1016/j.mseb.2021.115586_b0175) 2019; 94
Alinejad (10.1016/j.mseb.2021.115586_b0030) 2020; 55
Punith Gowda (10.1016/j.mseb.2021.115586_b0120) 2021; 9
Wakif (10.1016/j.mseb.2021.115586_b0200) 2020
References_xml – volume: 235
  start-page: 1479
  year: 2021
  end-page: 1489
  ident: b0010
  article-title: Comprehensive study of thermophoretic diffusion deposition velocity effect on heat and mass transfer of ferromagnetic fluid flow along a stretching cylinder
  publication-title: Proc. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng.
– volume: 9
  year: 2021
  ident: b0120
  article-title: Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-newtonian nanofluid
  publication-title: Processes
– volume: 42
  start-page: 28945
  year: 2017
  end-page: 28957
  ident: b0060
  article-title: Model based study of SWCNT and MWCNT thermal conductivities effect on the heat transfer due to the oscillating wall conditions
  publication-title: Int. J. Hydrogen Energy
– volume: 409
  start-page: 90
  year: 2021
  end-page: 94
  ident: b0190
  article-title: A brief technical note on the onset of convection in a horizontal nanofluid layer of finite depth via Wakif-Galerkin weighted residuals technique (WGWRT)
  publication-title: Defect Diffus. Forum
– volume: 235
  start-page: 97
  year: 2021
  end-page: 106
  ident: b0075
  article-title: Theoretical analysis of SWCNT- MWCNT/H2O hybrid flow over an upward/downward moving rotating disk
  publication-title: Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst.
– volume: 230
  start-page: 1227
  year: 2021
  end-page: 1237
  ident: b0090
  article-title: Non-Newtonian hybrid nanofluid flow over vertically upward/downward moving rotating disk in a Darcy–Forchheimer porous medium
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 235
  start-page: 1259
  year: 2021
  end-page: 1268
  ident: b0065
  article-title: Analysis of modified Fourier law and melting heat transfer in a flow involving carbon nanotubes
  publication-title: Proc. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng.
– volume: 12
  year: 2020
  ident: b0110
  article-title: Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow
  publication-title: Symmetry
– volume: 16
  start-page: 37
  year: 2012
  end-page: 45
  ident: b0160
  article-title: Effects of internal heat generation on hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation
  publication-title: World Appl. Sci. J.
– volume: 140
  start-page: 2733
  year: 2020
  end-page: 2747
  ident: b0035
  article-title: Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder
  publication-title: J. Therm. Anal. Calo.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b0070
  article-title: Carbon nanotubes suspended dusty nanofluid flow over stretching porous rotating disk with non-uniform heat source/sink
  publication-title: Int. J. Comput. Methods Eng. Sci. Mech.
– volume: 185
  start-page: 105166
  year: 2020
  ident: b0205
  article-title: Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection
  publication-title: Comput. Meth. Prog. Biomed.
– volume: 94
  start-page: 085001
  year: 2019
  ident: b0175
  article-title: Optimizing the theoretical analysis of entropy generation in flow of second grade nanofluid
  publication-title: Phys. Scripta
– volume: 101
  year: 2021
  ident: b0020
  article-title: KKL correlation for simulation of nanofluid flow over a stretching sheet considering magnetic dipole and chemical reaction
  publication-title: ZAMM – J. Appl. Math. Mech/Zeitschrift für Angewandte Mathematik und Mechanik
– volume: 3
  year: 2021
  ident: b0150
  article-title: Two-phase flow of dusty fluid with suspended hybrid nanoparticles over a stretching cylinder with modified Fourier heat flux
  publication-title: SN Appl. Sci.
– volume: 55
  start-page: 1975
  year: 2020
  end-page: 2002
  ident: b0030
  article-title: Numerical analysis of secondary droplets characteristics due to drop impacting on 3D cylinders considering dynamic contact angle
  publication-title: Meccanica
– volume: 143
  start-page: 1201
  year: 2021
  end-page: 1220
  ident: b0170
  article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model
  publication-title: J. Thermal Anal. Calo.
– volume: 7
  start-page: 4162
  year: 2017
  end-page: 4167
  ident: b0005
  article-title: Mechanism of chemical aspect in ferromagnetic flow of second grade liquid
  publication-title: Res. Phys.
– volume: 15
  start-page: 1197
  year: 2010
  end-page: 1209
  ident: b0155
  article-title: Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– year: 2020
  ident: b0200
  article-title: Generalized differential quadrature scrutinization of an advanced MHD stability problem concerned water-based nanofluids with metal/metal oxide nanomaterials: a proper application of the revised two-phase nanofluid model with convective heating and through-flow boundary conditions
  publication-title: Numer. Meth. Partial Diff. Equ.
– volume: 190
  start-page: 1080
  year: 2021
  end-page: 1109
  ident: b0125
  article-title: Numerical investigation of MHD radiative heat and mass transfer of nanofluid flow towards a vertical wavy surface with viscous dissipation and Joule heating effects using Keller-box method
  publication-title: Math. Comput. Simul.
– volume: 207
  start-page: 35
  year: 2007
  end-page: 45
  ident: b0050
  article-title: Application of He's variational iteration method to nonlinear Jaulent-Miodek equations and comparing it with ADM
  publication-title: J. Comput. Appl. Math.
– volume: 7
  start-page: 97
  year: 2019
  end-page: 112
  ident: b0040
  article-title: Numerical study of fins arrangement and nanofluids effects on three-dimensional natural convection in the cubical enclosure
  publication-title: Trans. Phenom. Nano Micro Scales
– volume: 275
  start-page: 599
  year: 2019
  end-page: 615
  ident: b0195
  article-title: Physical significance of heat generation/absorption and Soret effects on peristalsis flow of pseudoplastic fluid in an inclined channel
  publication-title: J. Mol. Liq.
– volume: 188
  start-page: 105298
  year: 2020
  ident: b0135
  article-title: Fully developed Darcy- Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation
  publication-title: Comput. Methods Programs Biomed.
– volume: 133
  start-page: 959
  year: 2019
  end-page: 967
  ident: b0165
  article-title: Entropy optimization in flow of Williamson nanofluid in the presence of chemical reaction and Joule heating
  publication-title: Int. J. Heat Mass Transf.
– volume: 116
  start-page: 104707
  year: 2020
  ident: b0055
  article-title: Comparative study on heat transfer in CNTs-water nanofluid over a curved surface
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 6
  start-page: 385
  year: 2015
  end-page: 398
  ident: b0045
  article-title: Evaluation of the heat transfer rate increases in retention pools nuclear waste
  publication-title: Int. J. Nano Dimens.
– volume: 59
  start-page: 5247
  year: Dec. 2020
  end-page: 5261
  ident: b0105
  article-title: Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: darcy-Forchhiemer’s model
  publication-title: Alex. Eng. J.
– volume: 4
  start-page: 100064
  year: 2021
  ident: b0025
  article-title: Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect
  publication-title: Partial Differ. Equ. Appl. Math.
– volume: 13
  year: 2021
  ident: b0080
  article-title: Dynamics of activation energy and nonlinear mixed convection in darcy-forchheimer radiated flow of carreau nanofluid near stagnation point region
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 46
  start-page: 1362
  year: 2021
  end-page: 1369
  ident: b0085
  article-title: Free convection and radiation effects in nanofluid (Silicon dioxide and Molybdenum disulfide) with second order velocity slip, entropy generation, Darcy-Forchheimer porous medium
  publication-title: Int. J. Hydrog. Energy
– volume: 7
  start-page: 1824
  year: 2017
  end-page: 1827
  ident: b0185
  article-title: Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface
  publication-title: Res. Phys.
– volume: 49
  start-page: 3958
  year: 2020
  end-page: 3978
  ident: b0145
  article-title: Magnetized mixed convection second-grade fluid flow adjacent to a lubricated vertical surface
  publication-title: Heat Transf.
– volume: 50
  start-page: 3934
  year: 2021
  end-page: 3947
  ident: b0100
  article-title: Two-dimensional Darcy-Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation
  publication-title: Heat Transf.
– volume: 30
  start-page: 440
  year: 2018
  end-page: 449
  ident: b0130
  article-title: Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface
  publication-title: J. King Saud Univ. – Sci.
– volume: 41
  start-page: 197
  year: 2019
  ident: b0140
  article-title: Mixed convection flow of Newtonian fluids over an upper horizontal thermally stratified melting surface of a paraboloid of revolution
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 96
  start-page: 045215
  year: 2021
  ident: b0015
  article-title: Impact of magnetic dipole on ferromagnetic hybrid nanofluid flow over a stretching cylinder
  publication-title: Phys. Scr.
– volume: 10
  start-page: 4403
  year: 2020
  end-page: 4413
  ident: b0115
  article-title: Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation
  publication-title: Appl. Nanosci.
– volume: 126
  start-page: 105395
  year: 2021
  ident: b0180
  article-title: Shah and Se-Jin Yook, Gear-generalized differential quadrature analysis of oscillatory convective Taylor-Couette flows of second-grade fluids subject to Lorentz and Darcy-Forchheimer quadratic drag forces
  publication-title: Int. Commu. Heat Mass Transf.
– volume: 136
  year: 2021
  ident: b0095
  article-title: Dynamics of multiple solutions of Darcy-Forchheimer saturated flow of Cross nanofluid by a vertical thin needle point
  publication-title: Eur. Phys. J. Plus
– volume: 185
  start-page: 105166
  year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0205
  article-title: Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection
  publication-title: Comput. Meth. Prog. Biomed.
  doi: 10.1016/j.cmpb.2019.105166
– volume: 59
  start-page: 5247
  issue: 6
  year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0105
  article-title: Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: darcy-Forchhiemer’s model
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.09.053
– start-page: 1
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0070
  article-title: Carbon nanotubes suspended dusty nanofluid flow over stretching porous rotating disk with non-uniform heat source/sink
  publication-title: Int. J. Comput. Methods Eng. Sci. Mech.
– volume: 13
  issue: 5
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0080
  article-title: Dynamics of activation energy and nonlinear mixed convection in darcy-forchheimer radiated flow of carreau nanofluid near stagnation point region
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4049434
– volume: 136
  issue: 3
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0095
  article-title: Dynamics of multiple solutions of Darcy-Forchheimer saturated flow of Cross nanofluid by a vertical thin needle point
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01294-2
– year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0200
  publication-title: Numer. Meth. Partial Diff. Equ.
– volume: 235
  start-page: 1479
  issue: 5
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0010
  article-title: Comprehensive study of thermophoretic diffusion deposition velocity effect on heat and mass transfer of ferromagnetic fluid flow along a stretching cylinder
  publication-title: Proc. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng.
  doi: 10.1177/09544089211005291
– volume: 230
  start-page: 1227
  issue: 5
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0090
  article-title: Non-Newtonian hybrid nanofluid flow over vertically upward/downward moving rotating disk in a Darcy–Forchheimer porous medium
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-021-00054-8
– volume: 16
  start-page: 37
  year: 2012
  ident: 10.1016/j.mseb.2021.115586_b0160
  article-title: Effects of internal heat generation on hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation
  publication-title: World Appl. Sci. J.
– volume: 46
  start-page: 1362
  issue: 1
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0085
  article-title: Free convection and radiation effects in nanofluid (Silicon dioxide and Molybdenum disulfide) with second order velocity slip, entropy generation, Darcy-Forchheimer porous medium
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.09.240
– volume: 409
  start-page: 90
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0190
  article-title: A brief technical note on the onset of convection in a horizontal nanofluid layer of finite depth via Wakif-Galerkin weighted residuals technique (WGWRT)
  publication-title: Defect Diffus. Forum
  doi: 10.4028/www.scientific.net/DDF.409.90
– volume: 140
  start-page: 2733
  year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0035
  article-title: Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder
  publication-title: J. Therm. Anal. Calo.
  doi: 10.1007/s10973-019-09010-0
– volume: 7
  start-page: 97
  year: 2019
  ident: 10.1016/j.mseb.2021.115586_b0040
  article-title: Numerical study of fins arrangement and nanofluids effects on three-dimensional natural convection in the cubical enclosure
  publication-title: Trans. Phenom. Nano Micro Scales
– volume: 7
  start-page: 1824
  year: 2017
  ident: 10.1016/j.mseb.2021.115586_b0185
  article-title: Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface
  publication-title: Res. Phys.
– volume: 126
  start-page: 105395
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0180
  article-title: Shah and Se-Jin Yook, Gear-generalized differential quadrature analysis of oscillatory convective Taylor-Couette flows of second-grade fluids subject to Lorentz and Darcy-Forchheimer quadratic drag forces
  publication-title: Int. Commu. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105395
– volume: 101
  issue: 11
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0020
  article-title: KKL correlation for simulation of nanofluid flow over a stretching sheet considering magnetic dipole and chemical reaction
  publication-title: ZAMM – J. Appl. Math. Mech/Zeitschrift für Angewandte Mathematik und Mechanik
– volume: 9
  issue: 4
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0120
  article-title: Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-newtonian nanofluid
  publication-title: Processes
  doi: 10.3390/pr9040702
– volume: 3
  issue: 3
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0150
  article-title: Two-phase flow of dusty fluid with suspended hybrid nanoparticles over a stretching cylinder with modified Fourier heat flux
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-021-04364-3
– volume: 133
  start-page: 959
  year: 2019
  ident: 10.1016/j.mseb.2021.115586_b0165
  article-title: Entropy optimization in flow of Williamson nanofluid in the presence of chemical reaction and Joule heating
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.12.168
– volume: 49
  start-page: 3958
  issue: 6
  year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0145
  article-title: Magnetized mixed convection second-grade fluid flow adjacent to a lubricated vertical surface
  publication-title: Heat Transf.
  doi: 10.1002/htj.21817
– volume: 207
  start-page: 35
  year: 2007
  ident: 10.1016/j.mseb.2021.115586_b0050
  article-title: Application of He's variational iteration method to nonlinear Jaulent-Miodek equations and comparing it with ADM
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.07.029
– volume: 190
  start-page: 1080
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0125
  article-title: Numerical investigation of MHD radiative heat and mass transfer of nanofluid flow towards a vertical wavy surface with viscous dissipation and Joule heating effects using Keller-box method
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.07.002
– volume: 10
  start-page: 4403
  issue: 12
  year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0115
  article-title: Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01498-5
– volume: 96
  start-page: 045215
  issue: 4
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0015
  article-title: Impact of magnetic dipole on ferromagnetic hybrid nanofluid flow over a stretching cylinder
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abe324
– volume: 7
  start-page: 4162
  year: 2017
  ident: 10.1016/j.mseb.2021.115586_b0005
  article-title: Mechanism of chemical aspect in ferromagnetic flow of second grade liquid
  publication-title: Res. Phys.
– volume: 50
  start-page: 3934
  issue: 4
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0100
  article-title: Two-dimensional Darcy-Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation
  publication-title: Heat Transf.
  doi: 10.1002/htj.22058
– volume: 42
  start-page: 28945
  issue: 48
  year: 2017
  ident: 10.1016/j.mseb.2021.115586_b0060
  article-title: Model based study of SWCNT and MWCNT thermal conductivities effect on the heat transfer due to the oscillating wall conditions
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.09.114
– volume: 30
  start-page: 440
  issue: 4
  year: 2018
  ident: 10.1016/j.mseb.2021.115586_b0130
  article-title: Parabolic curve fitting study subject to Joule heating in MHD thermally stratified mixed convection stagnation point flow of Eyring-Powell fluid induced by an inclined cylindrical surface
  publication-title: J. King Saud Univ. – Sci.
  doi: 10.1016/j.jksus.2017.02.003
– volume: 94
  start-page: 085001
  year: 2019
  ident: 10.1016/j.mseb.2021.115586_b0175
  article-title: Optimizing the theoretical analysis of entropy generation in flow of second grade nanofluid
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/ab0f65
– volume: 235
  start-page: 97
  issue: 3-4
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0075
  article-title: Theoretical analysis of SWCNT- MWCNT/H2O hybrid flow over an upward/downward moving rotating disk
  publication-title: Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst.
– volume: 41
  start-page: 197
  issue: 4
  year: 2019
  ident: 10.1016/j.mseb.2021.115586_b0140
  article-title: Mixed convection flow of Newtonian fluids over an upper horizontal thermally stratified melting surface of a paraboloid of revolution
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-019-1698-7
– volume: 235
  start-page: 1259
  issue: 5
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0065
  article-title: Analysis of modified Fourier law and melting heat transfer in a flow involving carbon nanotubes
  publication-title: Proc. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng.
  doi: 10.1177/09544089211001353
– volume: 275
  start-page: 599
  year: 2019
  ident: 10.1016/j.mseb.2021.115586_b0195
  article-title: Physical significance of heat generation/absorption and Soret effects on peristalsis flow of pseudoplastic fluid in an inclined channel
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.11.055
– volume: 143
  start-page: 1201
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0170
  article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model
  publication-title: J. Thermal Anal. Calo.
  doi: 10.1007/s10973-020-09488-z
– volume: 116
  start-page: 104707
  year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0055
  article-title: Comparative study on heat transfer in CNTs-water nanofluid over a curved surface
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104707
– volume: 188
  start-page: 105298
  year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0135
  article-title: Fully developed Darcy- Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105298
– volume: 6
  start-page: 385
  year: 2015
  ident: 10.1016/j.mseb.2021.115586_b0045
  article-title: Evaluation of the heat transfer rate increases in retention pools nuclear waste
  publication-title: Int. J. Nano Dimens.
– volume: 12
  issue: 2
  year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0110
  article-title: Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow
  publication-title: Symmetry
  doi: 10.3390/sym12020276
– volume: 4
  start-page: 100064
  year: 2021
  ident: 10.1016/j.mseb.2021.115586_b0025
  article-title: Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect
  publication-title: Partial Differ. Equ. Appl. Math.
  doi: 10.1016/j.padiff.2021.100064
– volume: 15
  start-page: 1197
  issue: 5
  year: 2010
  ident: 10.1016/j.mseb.2021.115586_b0155
  article-title: Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.05.051
– volume: 55
  start-page: 1975
  issue: 10
  year: 2020
  ident: 10.1016/j.mseb.2021.115586_b0030
  article-title: Numerical analysis of secondary droplets characteristics due to drop impacting on 3D cylinders considering dynamic contact angle
  publication-title: Meccanica
  doi: 10.1007/s11012-020-01240-z
SSID ssj0001222
Score 2.4033358
Snippet •Here ferromagnetic flow of viscous fluid is addressed.•Wu’s slip effects is considered.•Dipole moment interaction is accounted.•Both single and multi-walls...
The analysis of viscous materials flow subject to diverse configurations with remarkable physical applications has many utilizations in the electrical,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115586
SubjectTerms Biot number
Chemical sensors
CNTs (Carbon nanotubes)
Darcy-Forchheimer porous medium
Dipole interactions
Drag
Energy storage
Ferromagnetic force
Ferromagnetism
Fluid dynamics
Fluid flow
Heat flux
Interaction parameters
Magnetic dipole
Magnetic dipoles
Mixed convection
Multi wall carbon nanotubes
Nanofluids
Radiative heat flux
Runge-Kutta method
Skin friction
Temperature distribution
Transport rate
Working fluids
Title Analysis of Wu's slip and CNTs (single and multi-wall carbon nanotubes) in Darcy-Forchheimer mixed convective nanofluid flow with magnetic dipole: Intelligent nano-coating simulation
URI https://dx.doi.org/10.1016/j.mseb.2021.115586
https://www.proquest.com/docview/2667261860
Volume 277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4ikKpZoDEiBkNsnGeXCrFlZbEHuhFb1FfkwgKI_VJqvChZ_F78PjOOUh1APXyBNFnvE8nG--YexJpA0maAQ3skx4bFNWrsos5xhlocbMpJGhe8j362R1Fr89F-d7bDH1whCs0vv-0ac7b-2fzPxuzjZVNfsQ5BSuiN-LLCmnuj2OU7Lyl99_wTxC_yfBLua02jfOjBivpkdla8QotJ5DCOqn_ndw-stNu9izvMVu-qQRjsfvus32sL3DbvxGJXiX_ZjYRaAr4ePuaQ82gdyAbA0s1qc9PKM7gRrdAwci5BeyrkHLrepaaGXbDTuF_XOoWnhtjf8bX3b2CHzGqsEtNNVXNOAQ6s4_OoGy3lUGyrq7ALrNhUZ-aqklEky16Wp8BSeXdJ-DE-C6k4Syhr5q_NSwe-xs-eZ0seJ-JgPX8ygbeCpQKZvqZjJItd10TEosVagMIpYiy7PEFlipzoM5zlWIIhfSlmBBjFLa5NGk8_tsv-1afMAgioicMsCsJEKgOFTCEPMN6hSDLI_FAQsnZRTaE5bT3Iy6mJBpXwpSYEEKLEYFHrAXlzKbka7jytVi0nHxh9EVNp5cKXc4GUThj3xf2EwnjWj6QPDwP1_7iF2PqLnCIdwO2f6w3eFjm_IM6sjZ9BG7dnzybrX-CdomAvw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMUCswBBAiZTbxxHkgcUMtql7Z7YSt6S-14QlPlsdrsaumFP4XE78N2nPIQ6gGp1yhjWZ7JPJxvviHkGcsUhqg4VSIPaaBTVirzOKHIYj_DWEVMmXvIg2k4Pgw-HvGjDfK974UxsErn-zufbr21ezJwpzmYF8Xgk5eYcGX4vYwlJZ5DVu7h2VrXbe27ya5W8nPGRh9mO2PqRgvQbMjiJY04Sqkztlh4UaZlMcwxl75UiJjzOIlDXSdEWeINcSh95AkXupLwAhRC50AqGup1r5CrgXYXZmzCm2-_cCW--3Whd0fN9lynTgcqq1qUuihlvnZVnJsG7n9Hw7_igg12o1vkpstS4X13ELfJBtZ3yI3fuAvvkh89nQk0OXxevWhBZ6xzELWCnemshZfmEqJE-8CiFulalCVkYiGbGmpRN8uVxPYVFDXs6hM9o6NGn-sJFhUuoCq-ogILibcO2Qrk5apQkJfNGsz1MVTiS216MEEV86bEtzA55xddWgGaNcLAuqEtKjem7B45vBRN3SebdVPjAwKMGTZMD-PcMBAFvuTKUO1gFqEXJwHfIn6vjDRzDOlmUEeZ9lC409QoMDUKTDsFbpHX5zLzjh_kwrd5r-P0DytPdQC7UG67N4jU-Zg21alVxMy4A-_hfy77lFwbzw720_3JdO8Ruc5MZ4eF122TzeVihY91vrWUT6x9Azm-7A_qJ5KZPzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Wu%27s+slip+and+CNTs+%28single+and+multi-wall+carbon+nanotubes%29+in+Darcy-Forchheimer+mixed+convective+nanofluid+flow+with+magnetic+dipole%3A+Intelligent+nano-coating+simulation&rft.jtitle=Materials+science+%26+engineering.+B%2C+Solid-state+materials+for+advanced+technology&rft.au=Alzahrani%2C+Faris&rft.au=Ijaz+Khan%2C+M.&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=0921-5107&rft.eissn=1873-4944&rft.volume=277&rft_id=info:doi/10.1016%2Fj.mseb.2021.115586&rft.externalDocID=S0921510721005390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5107&client=summon