Atrial fibrillation detection using heart rate variability and atrial activity: A hybrid approach
•A hybrid model for low resolution, real-time detection of atrial fibrillation.•Subject wise cross validation reveals over optimism of conventional evaluation.•A hybrid classification approach leading to improvements on all metrics.•A total of 24 statistical features and three classifiers were used...
Saved in:
Published in | Expert systems with applications Vol. 169; p. 114452 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.05.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2020.114452 |
Cover
Loading…
Abstract | •A hybrid model for low resolution, real-time detection of atrial fibrillation.•Subject wise cross validation reveals over optimism of conventional evaluation.•A hybrid classification approach leading to improvements on all metrics.•A total of 24 statistical features and three classifiers were used and evaluated.•Empirical mode decomposition combines filtering and feature pre-processing.
Goal: Develop a real-time hybrid scheme for the automatic detection of atrial fibrillation (AF), based on the RR interval (RRI) time series and the atrial activity (AA) derived from the electrocardiogram (ECG) signals. Method: The whole scheme was developed and tested on the MIT-BIH AF database (AFDB). First the R-peak detection and the filtering was performed. Following, all features regarding the RRI time series and AA were extracted. These features were then fed into three popular classifiers (boosted trees (BoT), random forest (RF), and linear discriminant analysis (LDA) with random subspace method (RSM)). Sampling training and test data from the same subject (23 overall) was strictly avoided. Furthermore, for each ECG, individual performance statistics were analyzed to elaborate on the subject-wise performance dependencies. Results: From a 4-fold cross validation (CV) analysis, the RF classifier provided the best results with a sensitivity (Sn), specificity (Sp), accuracy (Acc), and F1 score of 98.0%, 97.4%, 97.6%, and 97.1%, respectively for the AF prediction. Test results on individual ECG’s however, have slightly reduced these performances to 95.9%, 96.1%, 97.4% and 88.4%, respectively. Conclusion: Using the RRI features alone were found to provide satisfying prediction performance of the model. The addition of AA features to the model enhanced the model performance by up to 3%. Overall, the results obtained in this study are comparable or even superior to the state-of-the-art algorithms using RRI and AA based features. Significance The hybrid model allows us to detect AF even with regular RRI. The performance was evaluated under real-world conditions, and no manual labelling, exclusion, or pre-processing was performed. Furthermore, we evaluated the performance for each ECG individually and kept the subjects strictly unknown for the classifier. Finally, we show that the overall performance on a data set, especially from a standard CV, results in an over-optimistic estimation. |
---|---|
AbstractList | Goal: Develop a real-time hybrid scheme for the automatic detection of atrial fibrillation (AF), based on the RR interval (RRI) time series and the atrial activity (AA) derived from the electrocardiogram (ECG) signals. Method: The whole scheme was developed and tested on the MIT-BIH AF database (AFDB). First the R-peak detection and the filtering was performed. Following, all features regarding the RRI time series and AA were extracted. These features were then fed into three popular classifiers (boosted trees (BoT), random forest (RF), and linear discriminant analysis (LDA) with random subspace method (RSM)). Sampling training and test data from the same subject (23 overall) was strictly avoided. Furthermore, for each ECG, individual performance statistics were analyzed to elaborate on the subject-wise performance dependencies. Results: From a 4-fold cross validation (CV) analysis, the RF classifier provided the best results with a sensitivity (Sn), specificity (Sp), accuracy (Acc), and F1 score of 98.0%, 97.4%, 97.6%, and 97.1%, respectively for the AF prediction. Test results on individual ECG's however, have slightly reduced these performances to 95.9%, 96.1%, 97.4% and 88.4%, respectively. Conclusion: Using the RRI features alone were found to provide satisfying prediction performance of the model. The addition of AA features to the model enhanced the model performance by up to 3%. Overall, the results obtained in this study are comparable or even superior to the state-of-the-art algorithms using RRI and AA based features. Significance The hybrid model allows us to detect AF even with regular RRI. The performance was evaluated under real-world conditions, and no manual labelling, exclusion, or pre-processing was performed. Furthermore, we evaluated the performance for each ECG individually and kept the subjects strictly unknown for the classifier. Finally, we show that the overall performance on a data set, especially from a standard CV, results in an over-optimistic estimation. •A hybrid model for low resolution, real-time detection of atrial fibrillation.•Subject wise cross validation reveals over optimism of conventional evaluation.•A hybrid classification approach leading to improvements on all metrics.•A total of 24 statistical features and three classifiers were used and evaluated.•Empirical mode decomposition combines filtering and feature pre-processing. Goal: Develop a real-time hybrid scheme for the automatic detection of atrial fibrillation (AF), based on the RR interval (RRI) time series and the atrial activity (AA) derived from the electrocardiogram (ECG) signals. Method: The whole scheme was developed and tested on the MIT-BIH AF database (AFDB). First the R-peak detection and the filtering was performed. Following, all features regarding the RRI time series and AA were extracted. These features were then fed into three popular classifiers (boosted trees (BoT), random forest (RF), and linear discriminant analysis (LDA) with random subspace method (RSM)). Sampling training and test data from the same subject (23 overall) was strictly avoided. Furthermore, for each ECG, individual performance statistics were analyzed to elaborate on the subject-wise performance dependencies. Results: From a 4-fold cross validation (CV) analysis, the RF classifier provided the best results with a sensitivity (Sn), specificity (Sp), accuracy (Acc), and F1 score of 98.0%, 97.4%, 97.6%, and 97.1%, respectively for the AF prediction. Test results on individual ECG’s however, have slightly reduced these performances to 95.9%, 96.1%, 97.4% and 88.4%, respectively. Conclusion: Using the RRI features alone were found to provide satisfying prediction performance of the model. The addition of AA features to the model enhanced the model performance by up to 3%. Overall, the results obtained in this study are comparable or even superior to the state-of-the-art algorithms using RRI and AA based features. Significance The hybrid model allows us to detect AF even with regular RRI. The performance was evaluated under real-world conditions, and no manual labelling, exclusion, or pre-processing was performed. Furthermore, we evaluated the performance for each ECG individually and kept the subjects strictly unknown for the classifier. Finally, we show that the overall performance on a data set, especially from a standard CV, results in an over-optimistic estimation. |
ArticleNumber | 114452 |
Author | Poulsen, Erik S. Hirsch, Gerald Jensen, Søren H. Puthusserypady, Sadasivan |
Author_xml | – sequence: 1 givenname: Gerald surname: Hirsch fullname: Hirsch, Gerald email: e11771143@student.tuwien.ac.at organization: Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark – sequence: 2 givenname: Søren H. surname: Jensen fullname: Jensen, Søren H. email: shjje@dtu.dk organization: Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark – sequence: 3 givenname: Erik S. surname: Poulsen fullname: Poulsen, Erik S. email: eriksp@cortrium.com organization: Cortrium ApS, Erik Husfeldst Vej 7, 2630 Taastrup, Denmark – sequence: 4 givenname: Sadasivan orcidid: 0000-0001-7564-2612 surname: Puthusserypady fullname: Puthusserypady, Sadasivan email: sapu@dtu.dk organization: Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark |
BookMark | eNp9kD1PwzAQhi0EEm3hDzBZYk45J07tIJaq4kuqxAKzdXFs6iokxXaL-u9xGyaGTrbu3udO94zJedd3hpAbBlMGbHa3nprwg9Mc8lRgnJf5GRkxKYpsJqrinIygKkXGmeCXZBzCGoAJADEiOI_eYUutq71rW4yu72hjotHH3za47pOuDPpIPUZDd5jitWtd3FPsGooDjim-S7V7OqerfRqVOpuN71GvrsiFxTaY6793Qj6eHt8XL9ny7fl1MV9mushlzGZFLRpji0ICA7B1roXQhnEpuAXOK6kFWFtUWJtKCFlyWdkaUbOSQd1IVkzI7TA3rf3emhDVut_6Lq1UeQlMlpWEKqXkkNK-D8Ebq7SLx6ujR9cqBuogVK3VQag6CFWD0ITm_9CNd1_o96ehhwEy6fSdM14F7UynTeN8cqya3p3CfwE7CZHh |
CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105920 crossref_primary_10_1155_2021_6455053 crossref_primary_10_1016_j_bspc_2022_103663 crossref_primary_10_3390_app132212187 crossref_primary_10_1016_j_bspc_2023_105683 crossref_primary_10_1016_j_compbiomed_2022_105407 crossref_primary_10_2478_jaiscr_2024_0004 crossref_primary_10_1016_j_medengphy_2023_104050 crossref_primary_10_3390_s23073700 crossref_primary_10_1016_j_eswa_2022_118948 crossref_primary_10_1109_ACCESS_2023_3317793 crossref_primary_10_2139_ssrn_4098697 crossref_primary_10_1016_j_asoc_2022_109552 crossref_primary_10_1016_j_bspc_2024_106683 crossref_primary_10_2139_ssrn_4017037 crossref_primary_10_3390_s22155606 crossref_primary_10_1016_j_artmed_2024_102865 crossref_primary_10_1016_j_bspc_2023_105797 crossref_primary_10_1016_j_eswa_2024_123869 crossref_primary_10_1007_s42979_022_01309_4 crossref_primary_10_1016_j_bspc_2024_106107 crossref_primary_10_1063_5_0217416 crossref_primary_10_1016_j_bspc_2023_105750 crossref_primary_10_1016_j_ins_2021_06_009 crossref_primary_10_1007_s11831_023_09935_8 crossref_primary_10_3390_cells11162576 crossref_primary_10_3390_ijerph182111302 crossref_primary_10_1016_j_ijmedinf_2022_104790 crossref_primary_10_1016_j_eswa_2022_117206 crossref_primary_10_31083_j_rcm2203090 crossref_primary_10_3389_fcvm_2024_1432876 crossref_primary_10_1016_j_compbiomed_2022_105270 |
Cites_doi | 10.1016/j.cmpb.2005.06.012 10.1016/j.jelectrocard.2018.08.008 10.1016/j.ijcard.2012.12.093 10.1016/0167-2789(93)90009-P 10.1016/j.eswa.2018.08.011 10.1098/rspa.2006.1761 10.3389/fphys.2018.01206 10.1136/heart.89.8.939 10.1016/j.compbiomed.2017.12.007 10.1155/2018/2102918 10.1007/s100440200011 10.3390/e17096179 10.1142/S1793536909000047 10.1016/j.compbiomed.2019.103386 10.1093/europace/euw295 10.22489/CinC.2017.069-336 10.1016/j.jelectrocard.2016.07.033 10.1109/TBME.1985.325532 10.3390/s20030765 10.1016/0167-2789(88)90081-4 10.1016/j.bspc.2019.101662 10.1109/CISTEM.2014.7349356 10.1088/1361-6579/aad386 10.1007/s10527-016-9610-6 10.22489/CinC.2017.065-469 10.1016/j.cmpb.2016.04.009 10.1016/j.jelectrocard.2009.06.006 10.1214/aoms/1177730491 10.1109/TBME.2005.859782 10.1016/j.compeleceng.2013.11.024 10.1098/rspa.1998.0193 10.1161/CIRCULATIONAHA.113.005119 10.1007/s10439-009-9740-z 10.1007/s10654-009-9404-1 10.1109/MCAS.2006.1688199 10.1371/journal.pone.0136544 10.22489/CinC.2017.173-154 10.1016/0010-4825(88)90041-8 10.1088/0967-3334/36/9/1873 10.1016/j.compbiomed.2015.03.005 10.1103/PhysRevA.45.3403 10.1007/s40846-016-0168-2 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV May 1, 2021 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV May 1, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2020.114452 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2020_114452 S0957417420311064 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-63b7def3380100fb2c77ce14874f04498c70ff39abe97785489fbaac1510bd813 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 06:10:07 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 Tue Jul 01 04:05:50 EDT 2025 Fri Feb 23 02:49:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Empirical mode decomposition Atrial activity Heart rate variability Atrial fibrillation Ensemble classifier Automatic detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-63b7def3380100fb2c77ce14874f04498c70ff39abe97785489fbaac1510bd813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7564-2612 |
PQID | 2501859809 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2501859809 crossref_citationtrail_10_1016_j_eswa_2020_114452 crossref_primary_10_1016_j_eswa_2020_114452 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114452 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Skurichina, Duin (b0235) 2002; 5 Xia, Wulan, Wang, Zhang (b0275) 2018; 93 Mann, Whitney (b0175) 1947; 18 227–230. http://ecg.mit.edu/george/publications/afib-cinc-1983.pdf. Czabanski, Horoba, Wrobel, Matonia, Martinek, Kupka, Jezewski, Kahankova, Jezewski, Leski (b0050) 2020; 20 Lal, Chapelle, Weston, Elisseeff (b0160) 2006 Takens (b0245) 1981 (pp. 1–4). IEEE. Frei, Osorio (b0075) 2007; 463 Couceiro, R., Carvalho, P., Henriques, J., Antunes, M., Harris, M., & Habetha, J. (2008). Detection of Atrial Fibrillation using model-based ECG analysis. In Hu, Gao, Tung (b0105) 2009; 19 Dietterich (b0070) 2000 Kalidas, Tamil (b0120) 2019; 113 Kirchhof, Benussi, Kotecha, Ahlsson, Atar, Casadei, Castella, Diener, Heidbuchel, Hendriks, Hindricks, Manolis, Oldgren, Popescu, Schotten, Van Putte, Vardas, Agewall, Camm, Baron Esquivias, Budts, Carerj, Casselman, Coca, De Caterina, Deftereos, Dobrev, Ferro, Filippatos, Fitzsimons, Gorenek, Guenoun, Hohnloser, Kolh, Lip, Manolis, McMurray, Ponikowski, Rosenhek, Ruschitzka, Savelieva, Sharma, Suwalski, Tamargo, Taylor, Van Gelder, Voors, Windecker, Zamorano, Zeppenfeld (b0145) 2016; 18 Ródenas, J., García, M., Alcaraz, R., & Rieta, J. J. (2015). Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. Zhou, X., Ding, H., Wu, W., & Zhang, Y. (2015). A Real-Time Atrial Fibrillation Detection Algorithm Based on the Instantaneous State of Heart Rate. Teijeiro, García, Castro, Félix (b0250) 2017 Niu, Gokana, Goh, Lissorgues, Phua (b0195) 2014; 2 Chandrashekar, Sahin (b0030) 2014; 40 Wang, Wang, Wang (b0260) 2020; 55 Pal, Maji, Mitra (b0200) 2016; 36 e215 LP – e220. http://circ.ahajournals.org/content/101/23/e215.abstract. 1–16. doi: 10.1371/journal.pone.0136544. Lake (b0150) 2006; 53 . Babaeizadeh, Gregg, Helfenbein, Lindauer, Zhou (b0015) 2009; 42 Rosenstein, Collins, Luca (b0225) 1993; 65 H2039–H2049. Smith, Platonov, Hedblad, Engström, Melander (b0240) 2010; 25 6179–6199. doi: 10.3390/e17096179. Kennedy, Finlay, Guldenring, Bond, Moran, McLaughlin (b0135) 2016; 49 Xu, X., Wei, S., Ma, C., Luo, K., Zhang, L., & Liu, C. (2018). Atrial fibrillation beat identification using the combination of modified frequency slice wavelet transform and convolutional neural networks. Polikar (b0210) 2006; 6 García, Ródenas, Alcaraz, Rieta (b0080) 2016; 131 Izenman (b0110) 2013 (pp. 411–443). Springer. (First edit ed.). Kannathal, Choo, Acharya, Sadasivan (b0125) 2005; 80 Warrick, Homsi (b0265) 2018; 39 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0100) 1998; 454 Chugh, Havmoeller, Narayanan, Singh, Rienstra, Benjamin, Gillum, Kim, McAnulty, Zheng, Forouzanfar, Naghavi, Mensah, Ezzati, Murray (b0035) 2014; 129 Pan, Tompkins (b0205) 1985; BME-32 Andersen, Peimankar, Puthusserypady (b0005) 2019; 115 Dash, Chon, Lu, Raeder (b0055) 2009; 37 Desai, Nayak, Seshikala (b0065) 2016 Asgari, Mehrnia, Moussavi (b0010) 2015; 60 Datta, S., Puri, C., Mukherjee, A., Banerjee, R., Choudhury, A. D., Singh, R., Ukil, A., Bandyopadhyay, S., Pal, A., & Khandelwal, S. (2017). Identifying normal, af and other abnormal ecg rhythms using a cascaded binary classifier. In Rubin, Parvaneh, Rahman, Conroy, Babaeizadeh (b0230) 2018; 51 Carrara, M., Carozzi, L., Moss, T.J., Pasquale, M.D., Cerutti, S., & Ferrario, M. (2015). Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy. Institute of Physics and Engineering in Medicine, (pp. 1873–1888). doi: 10.1088/0967-3334/36/9/1873. DOI: 10.1088/0967-3334/36/9/1873. Katz (b0130) 1988; 18 (pp. 1–5). IEEE. http://ieeexplore.ieee.org/document/4761755/. 10.1109/ICPR.2008.4761755. Motorina, Kalinichenko (b0190) 2016; 50 Ball, Carrington, McMurray, Stewart (b0020) 2013; 167 Wu, Huang (b0270) 2009; 01 He, Wang, Zhao, Liu, Yuan, Li, Zhang (b0090) 2018; 9 (pp. 1–6). IEEE. http://ieeexplore.ieee.org/document/7349356/. DOI: 10.1109/CISTEM.2014.7349356. Higuchi (b0095) 1988; 31 Richman, J. S., & R., M. J. (2000). Physiological time-series analysis using approximate entropy and sample entropy. January, Wann, Alpert, Calkins, Cigarroa, Cleveland, Conti, Ellinor, Ezekowitz, Field, Murray, Sacco, Stevenson, Tchou, Tracy, Yancy (b0115) 2014; 130 Moody, G. B., & Mark, R. G. (1983). A new method for detecting atrial fibrilation using r-r intervals. Lake, Moorman (b0155) 2010; 300 Zabihi, M., Rad, A. B., Katsaggelos, A. K., Kiranyaz, S., Narkilahti, S., & Gabbouj, M. (2017). Detection of atrial fibrillation in ecg hand-held devices using a random forest classifier. In Mabrouki, R., Khaddoumi, B., & Sayadi, M. (2014). Nonlinear statistical methods for atrial fibrillation detection on electrocardiogram. In Torres, Colominas, Schlotthauer, Flandrin (b0255) 2011 Lü, F., & Li, X.-H. (2009). Catheter Ablation. In P. A. Iaizzo (Ed.) Kennel, Brown, Abarbanel (b0140) 1992; 45 Clifford, G. D., Liu, C., Moody, B., Li-wei, H.L., Silva, I., Li, Q., Johnson, A., & Mark, R. G. (2017). Af classification from a short single lead ecg recording: the physionet/computing in cardiology challenge 2017. In Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Markides (b0180) 2003; 89 Babaeizadeh (10.1016/j.eswa.2020.114452_b0015) 2009; 42 Czabanski (10.1016/j.eswa.2020.114452_b0050) 2020; 20 Frei (10.1016/j.eswa.2020.114452_b0075) 2007; 463 Lake (10.1016/j.eswa.2020.114452_b0150) 2006; 53 Motorina (10.1016/j.eswa.2020.114452_b0190) 2016; 50 Asgari (10.1016/j.eswa.2020.114452_b0010) 2015; 60 10.1016/j.eswa.2020.114452_b0215 Teijeiro (10.1016/j.eswa.2020.114452_b0250) 2017 10.1016/j.eswa.2020.114452_b0025 Mann (10.1016/j.eswa.2020.114452_b0175) 1947; 18 Markides (10.1016/j.eswa.2020.114452_b0180) 2003; 89 10.1016/j.eswa.2020.114452_b0220 10.1016/j.eswa.2020.114452_b0185 García (10.1016/j.eswa.2020.114452_b0080) 2016; 131 10.1016/j.eswa.2020.114452_b0060 January (10.1016/j.eswa.2020.114452_b0115) 2014; 130 Pal (10.1016/j.eswa.2020.114452_b0200) 2016; 36 Kennel (10.1016/j.eswa.2020.114452_b0140) 1992; 45 Takens (10.1016/j.eswa.2020.114452_b0245) 1981 Wang (10.1016/j.eswa.2020.114452_b0260) 2020; 55 Rubin (10.1016/j.eswa.2020.114452_b0230) 2018; 51 Katz (10.1016/j.eswa.2020.114452_b0130) 1988; 18 Skurichina (10.1016/j.eswa.2020.114452_b0235) 2002; 5 10.1016/j.eswa.2020.114452_b0170 Rosenstein (10.1016/j.eswa.2020.114452_b0225) 1993; 65 10.1016/j.eswa.2020.114452_b0290 Xia (10.1016/j.eswa.2020.114452_b0275) 2018; 93 Kirchhof (10.1016/j.eswa.2020.114452_b0145) 2016; 18 Lal (10.1016/j.eswa.2020.114452_b0160) 2006 He (10.1016/j.eswa.2020.114452_b0090) 2018; 9 Smith (10.1016/j.eswa.2020.114452_b0240) 2010; 25 Kannathal (10.1016/j.eswa.2020.114452_b0125) 2005; 80 Andersen (10.1016/j.eswa.2020.114452_b0005) 2019; 115 Lake (10.1016/j.eswa.2020.114452_b0155) 2010; 300 Polikar (10.1016/j.eswa.2020.114452_b0210) 2006; 6 10.1016/j.eswa.2020.114452_b0045 10.1016/j.eswa.2020.114452_b0165 10.1016/j.eswa.2020.114452_b0285 10.1016/j.eswa.2020.114452_b0085 Torres (10.1016/j.eswa.2020.114452_b0255) 2011 10.1016/j.eswa.2020.114452_b0040 Kalidas (10.1016/j.eswa.2020.114452_b0120) 2019; 113 Warrick (10.1016/j.eswa.2020.114452_b0265) 2018; 39 10.1016/j.eswa.2020.114452_b0280 Chugh (10.1016/j.eswa.2020.114452_b0035) 2014; 129 Ball (10.1016/j.eswa.2020.114452_b0020) 2013; 167 Higuchi (10.1016/j.eswa.2020.114452_b0095) 1988; 31 Pan (10.1016/j.eswa.2020.114452_b0205) 1985; BME-32 Huang (10.1016/j.eswa.2020.114452_b0100) 1998; 454 Wu (10.1016/j.eswa.2020.114452_b0270) 2009; 01 Dash (10.1016/j.eswa.2020.114452_b0055) 2009; 37 Kennedy (10.1016/j.eswa.2020.114452_b0135) 2016; 49 Desai (10.1016/j.eswa.2020.114452_b0065) 2016 Chandrashekar (10.1016/j.eswa.2020.114452_b0030) 2014; 40 Izenman (10.1016/j.eswa.2020.114452_b0110) 2013 Niu (10.1016/j.eswa.2020.114452_b0195) 2014; 2 Dietterich (10.1016/j.eswa.2020.114452_b0070) 2000 Hu (10.1016/j.eswa.2020.114452_b0105) 2009; 19 |
References_xml | – volume: 300 start-page: H319 year: 2010 end-page: H325 ident: b0155 article-title: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices publication-title: AJP: Heart and Circulatory Physiology – volume: 89 start-page: 939 year: 2003 end-page: 943 ident: b0180 article-title: Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment publication-title: Heart – volume: 60 start-page: 132 year: 2015 end-page: 142 ident: b0010 article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine publication-title: Computers in Biology and Medicine – volume: 37 start-page: 1701 year: 2009 end-page: 1709 ident: b0055 article-title: Automatic real time detection of atrial fibrillation publication-title: Annals of Biomedical Engineering – volume: 49 start-page: 871 year: 2016 end-page: 876 ident: b0135 article-title: Automated detection of atrial fibrillation using r-r intervals and multivariate-based classification publication-title: Journal of Electrocardiology – volume: 9 start-page: 1206 year: 2018 ident: b0090 article-title: Automatic detection of atrial fibrillation based on continuous wavelet transform and 2d convolutional neural networks publication-title: Frontiers in Physiology – volume: 18 start-page: 50 year: 1947 end-page: 60 ident: b0175 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Annals of Mathematical Statistics – reference: Couceiro, R., Carvalho, P., Henriques, J., Antunes, M., Harris, M., & Habetha, J. (2008). Detection of Atrial Fibrillation using model-based ECG analysis. In – reference: Clifford, G. D., Liu, C., Moody, B., Li-wei, H.L., Silva, I., Li, Q., Johnson, A., & Mark, R. G. (2017). Af classification from a short single lead ecg recording: the physionet/computing in cardiology challenge 2017. In – volume: 42 start-page: 522 year: 2009 end-page: 526 ident: b0015 article-title: Improvements in atrial fibrillation detection for real-time monitoring publication-title: Journal of Electrocardiology – reference: Carrara, M., Carozzi, L., Moss, T.J., Pasquale, M.D., Cerutti, S., & Ferrario, M. (2015). Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy. Institute of Physics and Engineering in Medicine, (pp. 1873–1888). doi: 10.1088/0967-3334/36/9/1873. DOI: 10.1088/0967-3334/36/9/1873. – volume: 45 start-page: 3403 year: 1992 end-page: 3411 ident: b0140 article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction publication-title: Physical Review A. General Physics; (United States) – volume: 93 start-page: 84 year: 2018 end-page: 92 ident: b0275 article-title: Detecting atrial fibrillation by deep convolutional neural networks publication-title: Computers in Biology and Medicine – reference: Richman, J. S., & R., M. J. (2000). Physiological time-series analysis using approximate entropy and sample entropy. – reference: Lü, F., & Li, X.-H. (2009). Catheter Ablation. In P. A. Iaizzo (Ed.), – reference: Mabrouki, R., Khaddoumi, B., & Sayadi, M. (2014). Nonlinear statistical methods for atrial fibrillation detection on electrocardiogram. In – reference: Moody, G. B., & Mark, R. G. (1983). A new method for detecting atrial fibrilation using r-r intervals. – volume: 131 start-page: 157 year: 2016 end-page: 168 ident: b0080 article-title: Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation publication-title: Computer Methods and Programs in Biomedicine – volume: 20 start-page: 765 year: 2020 ident: b0050 article-title: Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine publication-title: Sensors – start-page: 237 year: 2013 end-page: 280 ident: b0110 article-title: Linear discriminant analysis publication-title: Modern multivariate statistical techniques – reference: Zabihi, M., Rad, A. B., Katsaggelos, A. K., Kiranyaz, S., Narkilahti, S., & Gabbouj, M. (2017). Detection of atrial fibrillation in ecg hand-held devices using a random forest classifier. In – reference: (pp. 1–4). IEEE. – volume: 31 start-page: 277 year: 1988 end-page: 283 ident: b0095 article-title: Approach to an irregular time series on the basis of the fractal theory publication-title: Physica D: Nonlinear Phenomena – reference: , 1–16. doi: 10.1371/journal.pone.0136544. – volume: 463 start-page: 321 year: 2007 end-page: 342 ident: b0075 article-title: Intrinsic time-scale decomposition: Time–frequency–energy analysis and real-time filtering of non-stationary signals publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 80 start-page: 187 year: 2005 end-page: 194 ident: b0125 article-title: Entropies for detection of epilepsy in EEG publication-title: Computer Methods and Programs in Biomedicine – reference: Xu, X., Wei, S., Ma, C., Luo, K., Zhang, L., & Liu, C. (2018). Atrial fibrillation beat identification using the combination of modified frequency slice wavelet transform and convolutional neural networks. – reference: , 6179–6199. doi: 10.3390/e17096179. – volume: 65 start-page: 117 year: 1993 end-page: 134 ident: b0225 article-title: A practical method for calculating largest lyapunov exponents from small data sets publication-title: Physica D: Nonlinear Phenomena – volume: 18 start-page: 1609 year: 2016 end-page: 1678 ident: b0145 article-title: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS publication-title: Europace – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: b0030 article-title: A survey on feature selection methods publication-title: Computers & Electrical Engineering – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0100 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences – volume: 39 year: 2018 ident: b0265 article-title: Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection publication-title: Physiological Measurement – reference: . (pp. 411–443). Springer. (First edit ed.). – reference: (pp. 1–5). IEEE. http://ieeexplore.ieee.org/document/4761755/. 10.1109/ICPR.2008.4761755. – volume: 25 start-page: 95 year: 2010 end-page: 102 ident: b0240 article-title: Atrial fibrillation in the Malm?? diet and cancer study: A study of occurrence, risk factors and diagnostic validity publication-title: European Journal of Epidemiology – volume: 50 start-page: 161 year: 2016 end-page: 165 ident: b0190 article-title: Real-time algorithm for detection of atrial fibrillation publication-title: Biomedical Engineering – volume: 113 year: 2019 ident: b0120 article-title: Detection of atrial fibrillation using discrete-state markov models and random forests publication-title: Computers in Biology and Medicine – volume: 6 start-page: 21 year: 2006 end-page: 45 ident: b0210 article-title: Polikar, r.: Ensemble based systems in decision making publication-title: Circuits and Systems Magazine, IEEE – reference: , e215 LP – e220. http://circ.ahajournals.org/content/101/23/e215.abstract. – reference: Zhou, X., Ding, H., Wu, W., & Zhang, Y. (2015). A Real-Time Atrial Fibrillation Detection Algorithm Based on the Instantaneous State of Heart Rate. – reference: Datta, S., Puri, C., Mukherjee, A., Banerjee, R., Choudhury, A. D., Singh, R., Ukil, A., Bandyopadhyay, S., Pal, A., & Khandelwal, S. (2017). Identifying normal, af and other abnormal ecg rhythms using a cascaded binary classifier. In – start-page: 1420 year: 2016 end-page: 1424 ident: b0065 article-title: An application of EMD technique in detection of tachycardia beats publication-title: 2016 International conference on communication and signal processing (ICCSP) – start-page: 366 year: 1981 end-page: 381 ident: b0245 article-title: Detecting strange attractors in turbulence publication-title: Dynamical systems and turbulence, Warwick 1980 – volume: BME-32 start-page: 230 year: 1985 end-page: 236 ident: b0205 article-title: A real-time QRS detection algorithm publication-title: IEEE Transactions on Biomedical Engineering – start-page: 4144 year: 2011 end-page: 4147 ident: b0255 article-title: A complete ensemble empirical mode decomposition with adaptive noise publication-title: IEEE international conference on acoustics, speech and signal processing (ICASSP) – volume: 2 start-page: 1 year: 2014 end-page: 6 ident: b0195 article-title: A novel approach to detect Atrial Fibrillation efficiently and accurately from 48 hours of ECG data publication-title: Quest Journals – volume: 19 year: 2009 ident: b0105 article-title: Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos: An Interdisciplinary publication-title: Journal of Nonlinear Science – volume: 5 start-page: 121 year: 2002 end-page: 135 ident: b0235 article-title: Bagging, boosting and the random subspace method for linear classifiers publication-title: Pattern Analysis & Applications – volume: 18 start-page: 145 year: 1988 end-page: 156 ident: b0130 article-title: Fractals and the analysis of waveforms publication-title: Computers in Biology and Medicine – reference: Ródenas, J., García, M., Alcaraz, R., & Rieta, J. J. (2015). Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. – start-page: 1 year: 2000 end-page: 15 ident: b0070 article-title: Ensemble methods in machine learning publication-title: International workshop on multiple classifier systems – volume: 51 start-page: S18 year: 2018 end-page: S21 ident: b0230 article-title: Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ecg recordings publication-title: Journal of Electrocardiology – volume: 130 start-page: e199 year: 2014 end-page: e267 ident: b0115 article-title: 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the american college of cardiology/american heart association task force on practice guidelines and the heart rhythm society publication-title: Circulation – reference: (pp. 1–6). IEEE. http://ieeexplore.ieee.org/document/7349356/. DOI: 10.1109/CISTEM.2014.7349356. – volume: 55 year: 2020 ident: b0260 article-title: Automated detection of atrial fibrillation in ecg signals based on wavelet packet transform and correlation function of random process publication-title: Biomedical Signal Processing and Control – start-page: 137 year: 2006 end-page: 165 ident: b0160 article-title: Embedded methods publication-title: Feature extraction: Foundations and applications – reference: , 227–230. http://ecg.mit.edu/george/publications/afib-cinc-1983.pdf. – volume: 115 start-page: 465 year: 2019 end-page: 473 ident: b0005 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Systems with Applications – reference: , H2039–H2049. – reference: . – reference: Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. – volume: 36 start-page: 693 year: 2016 end-page: 703 ident: b0200 article-title: Characterizing atrial fibrillation in empirical mode decomposition domain publication-title: Journal of Medical and Biological Engineering – volume: 53 start-page: 21 year: 2006 end-page: 27 ident: b0150 article-title: Renyi entropy measures of heart rate gaussianity publication-title: IEEE Transactions on Biomedical Engineering – volume: 167 start-page: 1807 year: 2013 end-page: 1824 ident: b0020 article-title: Atrial fibrillation: Profile and burden of an evolving epidemic in the 21st century publication-title: International Journal of Cardiology – volume: 129 start-page: 837 year: 2014 end-page: 847 ident: b0035 article-title: Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study publication-title: Circulation – start-page: 1 year: 2017 end-page: 4 ident: b0250 article-title: Arrhythmia classification from the abductive interpretation of short single-lead ecg records publication-title: 2017 Computing in cardiology (CinC) – volume: 01 start-page: 1 year: 2009 end-page: 41 ident: b0270 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Advances in Adaptive Data Analysis – volume: 80 start-page: 187 year: 2005 ident: 10.1016/j.eswa.2020.114452_b0125 article-title: Entropies for detection of epilepsy in EEG publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2005.06.012 – volume: 51 start-page: S18 year: 2018 ident: 10.1016/j.eswa.2020.114452_b0230 article-title: Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ecg recordings publication-title: Journal of Electrocardiology doi: 10.1016/j.jelectrocard.2018.08.008 – volume: 167 start-page: 1807 year: 2013 ident: 10.1016/j.eswa.2020.114452_b0020 article-title: Atrial fibrillation: Profile and burden of an evolving epidemic in the 21st century publication-title: International Journal of Cardiology doi: 10.1016/j.ijcard.2012.12.093 – ident: 10.1016/j.eswa.2020.114452_b0185 – ident: 10.1016/j.eswa.2020.114452_b0085 – start-page: 1 year: 2000 ident: 10.1016/j.eswa.2020.114452_b0070 article-title: Ensemble methods in machine learning – volume: 65 start-page: 117 year: 1993 ident: 10.1016/j.eswa.2020.114452_b0225 article-title: A practical method for calculating largest lyapunov exponents from small data sets publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(93)90009-P – volume: 115 start-page: 465 year: 2019 ident: 10.1016/j.eswa.2020.114452_b0005 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.011 – volume: 463 start-page: 321 year: 2007 ident: 10.1016/j.eswa.2020.114452_b0075 article-title: Intrinsic time-scale decomposition: Time–frequency–energy analysis and real-time filtering of non-stationary signals publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2006.1761 – start-page: 137 year: 2006 ident: 10.1016/j.eswa.2020.114452_b0160 article-title: Embedded methods – volume: 9 start-page: 1206 year: 2018 ident: 10.1016/j.eswa.2020.114452_b0090 article-title: Automatic detection of atrial fibrillation based on continuous wavelet transform and 2d convolutional neural networks publication-title: Frontiers in Physiology doi: 10.3389/fphys.2018.01206 – volume: 89 start-page: 939 year: 2003 ident: 10.1016/j.eswa.2020.114452_b0180 article-title: Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment publication-title: Heart doi: 10.1136/heart.89.8.939 – volume: 93 start-page: 84 year: 2018 ident: 10.1016/j.eswa.2020.114452_b0275 article-title: Detecting atrial fibrillation by deep convolutional neural networks publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2017.12.007 – ident: 10.1016/j.eswa.2020.114452_b0280 doi: 10.1155/2018/2102918 – start-page: 1 year: 2017 ident: 10.1016/j.eswa.2020.114452_b0250 article-title: Arrhythmia classification from the abductive interpretation of short single-lead ecg records – start-page: 1420 year: 2016 ident: 10.1016/j.eswa.2020.114452_b0065 article-title: An application of EMD technique in detection of tachycardia beats – volume: 2 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2020.114452_b0195 article-title: A novel approach to detect Atrial Fibrillation efficiently and accurately from 48 hours of ECG data publication-title: Quest Journals – ident: 10.1016/j.eswa.2020.114452_b0165 – volume: 5 start-page: 121 year: 2002 ident: 10.1016/j.eswa.2020.114452_b0235 article-title: Bagging, boosting and the random subspace method for linear classifiers publication-title: Pattern Analysis & Applications doi: 10.1007/s100440200011 – ident: 10.1016/j.eswa.2020.114452_b0220 doi: 10.3390/e17096179 – volume: 01 start-page: 1 year: 2009 ident: 10.1016/j.eswa.2020.114452_b0270 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Advances in Adaptive Data Analysis doi: 10.1142/S1793536909000047 – volume: 113 year: 2019 ident: 10.1016/j.eswa.2020.114452_b0120 article-title: Detection of atrial fibrillation using discrete-state markov models and random forests publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2019.103386 – volume: 18 start-page: 1609 year: 2016 ident: 10.1016/j.eswa.2020.114452_b0145 article-title: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS publication-title: Europace doi: 10.1093/europace/euw295 – ident: 10.1016/j.eswa.2020.114452_b0285 doi: 10.22489/CinC.2017.069-336 – volume: 49 start-page: 871 year: 2016 ident: 10.1016/j.eswa.2020.114452_b0135 article-title: Automated detection of atrial fibrillation using r-r intervals and multivariate-based classification publication-title: Journal of Electrocardiology doi: 10.1016/j.jelectrocard.2016.07.033 – ident: 10.1016/j.eswa.2020.114452_b0215 – volume: BME-32 start-page: 230 year: 1985 ident: 10.1016/j.eswa.2020.114452_b0205 article-title: A real-time QRS detection algorithm publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.1985.325532 – volume: 20 start-page: 765 year: 2020 ident: 10.1016/j.eswa.2020.114452_b0050 article-title: Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine publication-title: Sensors doi: 10.3390/s20030765 – volume: 31 start-page: 277 year: 1988 ident: 10.1016/j.eswa.2020.114452_b0095 article-title: Approach to an irregular time series on the basis of the fractal theory publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(88)90081-4 – volume: 55 year: 2020 ident: 10.1016/j.eswa.2020.114452_b0260 article-title: Automated detection of atrial fibrillation in ecg signals based on wavelet packet transform and correlation function of random process publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2019.101662 – volume: 130 start-page: e199 year: 2014 ident: 10.1016/j.eswa.2020.114452_b0115 article-title: 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the american college of cardiology/american heart association task force on practice guidelines and the heart rhythm society publication-title: Circulation – ident: 10.1016/j.eswa.2020.114452_b0170 doi: 10.1109/CISTEM.2014.7349356 – volume: 39 year: 2018 ident: 10.1016/j.eswa.2020.114452_b0265 article-title: Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection publication-title: Physiological Measurement doi: 10.1088/1361-6579/aad386 – volume: 50 start-page: 161 year: 2016 ident: 10.1016/j.eswa.2020.114452_b0190 article-title: Real-time algorithm for detection of atrial fibrillation publication-title: Biomedical Engineering doi: 10.1007/s10527-016-9610-6 – ident: 10.1016/j.eswa.2020.114452_b0040 doi: 10.22489/CinC.2017.065-469 – volume: 131 start-page: 157 year: 2016 ident: 10.1016/j.eswa.2020.114452_b0080 article-title: Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2016.04.009 – volume: 42 start-page: 522 year: 2009 ident: 10.1016/j.eswa.2020.114452_b0015 article-title: Improvements in atrial fibrillation detection for real-time monitoring publication-title: Journal of Electrocardiology doi: 10.1016/j.jelectrocard.2009.06.006 – start-page: 4144 year: 2011 ident: 10.1016/j.eswa.2020.114452_b0255 article-title: A complete ensemble empirical mode decomposition with adaptive noise – ident: 10.1016/j.eswa.2020.114452_b0045 – volume: 19 year: 2009 ident: 10.1016/j.eswa.2020.114452_b0105 article-title: Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos: An Interdisciplinary publication-title: Journal of Nonlinear Science – volume: 18 start-page: 50 year: 1947 ident: 10.1016/j.eswa.2020.114452_b0175 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Annals of Mathematical Statistics doi: 10.1214/aoms/1177730491 – volume: 53 start-page: 21 year: 2006 ident: 10.1016/j.eswa.2020.114452_b0150 article-title: Renyi entropy measures of heart rate gaussianity publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2005.859782 – volume: 40 start-page: 16 year: 2014 ident: 10.1016/j.eswa.2020.114452_b0030 article-title: A survey on feature selection methods publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2013.11.024 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.eswa.2020.114452_b0100 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.1998.0193 – start-page: 237 year: 2013 ident: 10.1016/j.eswa.2020.114452_b0110 article-title: Linear discriminant analysis – volume: 129 start-page: 837 year: 2014 ident: 10.1016/j.eswa.2020.114452_b0035 article-title: Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.005119 – volume: 37 start-page: 1701 year: 2009 ident: 10.1016/j.eswa.2020.114452_b0055 article-title: Automatic real time detection of atrial fibrillation publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-009-9740-z – volume: 25 start-page: 95 year: 2010 ident: 10.1016/j.eswa.2020.114452_b0240 article-title: Atrial fibrillation in the Malm?? diet and cancer study: A study of occurrence, risk factors and diagnostic validity publication-title: European Journal of Epidemiology doi: 10.1007/s10654-009-9404-1 – volume: 300 start-page: H319 year: 2010 ident: 10.1016/j.eswa.2020.114452_b0155 article-title: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices publication-title: AJP: Heart and Circulatory Physiology – volume: 6 start-page: 21 year: 2006 ident: 10.1016/j.eswa.2020.114452_b0210 article-title: Polikar, r.: Ensemble based systems in decision making publication-title: Circuits and Systems Magazine, IEEE doi: 10.1109/MCAS.2006.1688199 – ident: 10.1016/j.eswa.2020.114452_b0290 doi: 10.1371/journal.pone.0136544 – ident: 10.1016/j.eswa.2020.114452_b0060 doi: 10.22489/CinC.2017.173-154 – start-page: 366 year: 1981 ident: 10.1016/j.eswa.2020.114452_b0245 article-title: Detecting strange attractors in turbulence – volume: 18 start-page: 145 year: 1988 ident: 10.1016/j.eswa.2020.114452_b0130 article-title: Fractals and the analysis of waveforms publication-title: Computers in Biology and Medicine doi: 10.1016/0010-4825(88)90041-8 – ident: 10.1016/j.eswa.2020.114452_b0025 doi: 10.1088/0967-3334/36/9/1873 – volume: 60 start-page: 132 year: 2015 ident: 10.1016/j.eswa.2020.114452_b0010 article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2015.03.005 – volume: 45 start-page: 3403 year: 1992 ident: 10.1016/j.eswa.2020.114452_b0140 article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction publication-title: Physical Review A. General Physics; (United States) doi: 10.1103/PhysRevA.45.3403 – volume: 36 start-page: 693 year: 2016 ident: 10.1016/j.eswa.2020.114452_b0200 article-title: Characterizing atrial fibrillation in empirical mode decomposition domain publication-title: Journal of Medical and Biological Engineering doi: 10.1007/s40846-016-0168-2 |
SSID | ssj0017007 |
Score | 2.4921975 |
Snippet | •A hybrid model for low resolution, real-time detection of atrial fibrillation.•Subject wise cross validation reveals over optimism of conventional... Goal: Develop a real-time hybrid scheme for the automatic detection of atrial fibrillation (AF), based on the RR interval (RRI) time series and the atrial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114452 |
SubjectTerms | Algorithms Atrial activity Atrial fibrillation Automatic detection Cardiac arrhythmia Classifiers Discriminant analysis Electrocardiography Empirical mode decomposition Ensemble classifier Feature extraction Fibrillation Heart rate Heart rate variability Performance evaluation Subspace methods Time series |
Title | Atrial fibrillation detection using heart rate variability and atrial activity: A hybrid approach |
URI | https://dx.doi.org/10.1016/j.eswa.2020.114452 https://www.proquest.com/docview/2501859809 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYM3qWubtGm9leGYirvoYLfQH4lORh2uKrv4t_tekwoK7uC1JKW8JC_fR7_3PULOPD_UeayYo5RgDldcOGkICxJxrplW2vMK_KN7Nw5HE34zDaYtMmhqYVBWaXO_yel1trZP-jaa_cVs1r8HcADXIVA72JdAbNATlHOB_vkXn98yD7SfE8ZvTzg42hbOGI2XWn6g95BfW-bywP_rcvqVpuu7Z7hDtixopIn5rl3SUuUe2W4aMlB7PvdJmtRNOKhGHf_cqNxooapablVS1Lg_UmxhXVF0iKDvQJSNT_eKpmVBUzMdax2wpcQlTejTCku6aGM9fkAmw6uHwcixPRScnPlR5YQsE4XSQESBeLk683MhcgUcSHDtch5HuXC1ZnGaKUCCEfCXWGdpmgMQcLMi8tghaZcvpToiVBUKuKPmEdMQZ8Fi5WYAvlgRxIDR_KBDvCZ4MrcG49jnYi4bJdmzxIBLDLg0Ae-Q8-85C2OvsXZ00KyJ_LFJJOT_tfO6zQJKe0SX0kcrwyCO3Pj4n689IZs-Klxq-WOXtKvXN3UKEKXKevUe7JGN5Pp2NP4Cg3Pk1g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HvTiW3ysmoM3KdsmadN4K4uyvvaigrfQR6IrUkWrsv_emSYVFPTgtSSlTCYz89FvviHkIGKJLZXhgTGSB8IIGeQJHEgqhOXW2Ciq8I_u5TgZ3Yiz2_h2hgy7XhikVfrY72J6G639k4G35uB5MhlcQXEA6RCgHfglABsxS-ZQnQqcfS47PR-Nv34myNB1TcP6ADf43hlH8zKvHyg_xFrVXBGz3_LTj0jdpp-TZbLo60aauU9bITOmXiVL3UwG6q_oGsmzdg4HtUjlf3REN1qZpmVc1RRp7ncUp1g3FEUi6DtgZSfVPaV5XdHcbcd2B5wqcUQzej_Fri7aqY-vk5uT4-vhKPBjFIKSs7QJEl7IyljAooC9QluwUsrSAAySwoZCqLSUobVc5YWBYjAFCKNskecl1AJhUaUR3yC9-qk2m4SaygB8tCLlVggpuTJhAfUXr2IFZRqLt0jUGU-XXmMcR1086o5M9qDR4BoNrp3Bt8jh155np7Dx5-q4OxP9zU80pIA_9_W7A9T-lr5qhmqGsUpDtf3P1-6T-dH15YW-OB2f75AFhoSXlg3ZJ73m5c3sQsXSFHveIz8BZP7nhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atrial+fibrillation+detection+using+heart+rate+variability+and+atrial+activity%3A+A+hybrid+approach&rft.jtitle=Expert+systems+with+applications&rft.au=Hirsch%2C+Gerald&rft.au=Jensen%2C+S%C3%B8ren+H.&rft.au=Poulsen%2C+Erik+S.&rft.au=Puthusserypady%2C+Sadasivan&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=169&rft_id=info:doi/10.1016%2Fj.eswa.2020.114452&rft.externalDocID=S0957417420311064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |