Atrial fibrillation detection using heart rate variability and atrial activity: A hybrid approach

•A hybrid model for low resolution, real-time detection of atrial fibrillation.•Subject wise cross validation reveals over optimism of conventional evaluation.•A hybrid classification approach leading to improvements on all metrics.•A total of 24 statistical features and three classifiers were used...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 169; p. 114452
Main Authors Hirsch, Gerald, Jensen, Søren H., Poulsen, Erik S., Puthusserypady, Sadasivan
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2020.114452

Cover

Loading…
Abstract •A hybrid model for low resolution, real-time detection of atrial fibrillation.•Subject wise cross validation reveals over optimism of conventional evaluation.•A hybrid classification approach leading to improvements on all metrics.•A total of 24 statistical features and three classifiers were used and evaluated.•Empirical mode decomposition combines filtering and feature pre-processing. Goal: Develop a real-time hybrid scheme for the automatic detection of atrial fibrillation (AF), based on the RR interval (RRI) time series and the atrial activity (AA) derived from the electrocardiogram (ECG) signals. Method: The whole scheme was developed and tested on the MIT-BIH AF database (AFDB). First the R-peak detection and the filtering was performed. Following, all features regarding the RRI time series and AA were extracted. These features were then fed into three popular classifiers (boosted trees (BoT), random forest (RF), and linear discriminant analysis (LDA) with random subspace method (RSM)). Sampling training and test data from the same subject (23 overall) was strictly avoided. Furthermore, for each ECG, individual performance statistics were analyzed to elaborate on the subject-wise performance dependencies. Results: From a 4-fold cross validation (CV) analysis, the RF classifier provided the best results with a sensitivity (Sn), specificity (Sp), accuracy (Acc), and F1 score of 98.0%, 97.4%, 97.6%, and 97.1%, respectively for the AF prediction. Test results on individual ECG’s however, have slightly reduced these performances to 95.9%, 96.1%, 97.4% and 88.4%, respectively. Conclusion: Using the RRI features alone were found to provide satisfying prediction performance of the model. The addition of AA features to the model enhanced the model performance by up to 3%. Overall, the results obtained in this study are comparable or even superior to the state-of-the-art algorithms using RRI and AA based features. Significance The hybrid model allows us to detect AF even with regular RRI. The performance was evaluated under real-world conditions, and no manual labelling, exclusion, or pre-processing was performed. Furthermore, we evaluated the performance for each ECG individually and kept the subjects strictly unknown for the classifier. Finally, we show that the overall performance on a data set, especially from a standard CV, results in an over-optimistic estimation.
AbstractList Goal: Develop a real-time hybrid scheme for the automatic detection of atrial fibrillation (AF), based on the RR interval (RRI) time series and the atrial activity (AA) derived from the electrocardiogram (ECG) signals. Method: The whole scheme was developed and tested on the MIT-BIH AF database (AFDB). First the R-peak detection and the filtering was performed. Following, all features regarding the RRI time series and AA were extracted. These features were then fed into three popular classifiers (boosted trees (BoT), random forest (RF), and linear discriminant analysis (LDA) with random subspace method (RSM)). Sampling training and test data from the same subject (23 overall) was strictly avoided. Furthermore, for each ECG, individual performance statistics were analyzed to elaborate on the subject-wise performance dependencies. Results: From a 4-fold cross validation (CV) analysis, the RF classifier provided the best results with a sensitivity (Sn), specificity (Sp), accuracy (Acc), and F1 score of 98.0%, 97.4%, 97.6%, and 97.1%, respectively for the AF prediction. Test results on individual ECG's however, have slightly reduced these performances to 95.9%, 96.1%, 97.4% and 88.4%, respectively. Conclusion: Using the RRI features alone were found to provide satisfying prediction performance of the model. The addition of AA features to the model enhanced the model performance by up to 3%. Overall, the results obtained in this study are comparable or even superior to the state-of-the-art algorithms using RRI and AA based features. Significance The hybrid model allows us to detect AF even with regular RRI. The performance was evaluated under real-world conditions, and no manual labelling, exclusion, or pre-processing was performed. Furthermore, we evaluated the performance for each ECG individually and kept the subjects strictly unknown for the classifier. Finally, we show that the overall performance on a data set, especially from a standard CV, results in an over-optimistic estimation.
•A hybrid model for low resolution, real-time detection of atrial fibrillation.•Subject wise cross validation reveals over optimism of conventional evaluation.•A hybrid classification approach leading to improvements on all metrics.•A total of 24 statistical features and three classifiers were used and evaluated.•Empirical mode decomposition combines filtering and feature pre-processing. Goal: Develop a real-time hybrid scheme for the automatic detection of atrial fibrillation (AF), based on the RR interval (RRI) time series and the atrial activity (AA) derived from the electrocardiogram (ECG) signals. Method: The whole scheme was developed and tested on the MIT-BIH AF database (AFDB). First the R-peak detection and the filtering was performed. Following, all features regarding the RRI time series and AA were extracted. These features were then fed into three popular classifiers (boosted trees (BoT), random forest (RF), and linear discriminant analysis (LDA) with random subspace method (RSM)). Sampling training and test data from the same subject (23 overall) was strictly avoided. Furthermore, for each ECG, individual performance statistics were analyzed to elaborate on the subject-wise performance dependencies. Results: From a 4-fold cross validation (CV) analysis, the RF classifier provided the best results with a sensitivity (Sn), specificity (Sp), accuracy (Acc), and F1 score of 98.0%, 97.4%, 97.6%, and 97.1%, respectively for the AF prediction. Test results on individual ECG’s however, have slightly reduced these performances to 95.9%, 96.1%, 97.4% and 88.4%, respectively. Conclusion: Using the RRI features alone were found to provide satisfying prediction performance of the model. The addition of AA features to the model enhanced the model performance by up to 3%. Overall, the results obtained in this study are comparable or even superior to the state-of-the-art algorithms using RRI and AA based features. Significance The hybrid model allows us to detect AF even with regular RRI. The performance was evaluated under real-world conditions, and no manual labelling, exclusion, or pre-processing was performed. Furthermore, we evaluated the performance for each ECG individually and kept the subjects strictly unknown for the classifier. Finally, we show that the overall performance on a data set, especially from a standard CV, results in an over-optimistic estimation.
ArticleNumber 114452
Author Poulsen, Erik S.
Hirsch, Gerald
Jensen, Søren H.
Puthusserypady, Sadasivan
Author_xml – sequence: 1
  givenname: Gerald
  surname: Hirsch
  fullname: Hirsch, Gerald
  email: e11771143@student.tuwien.ac.at
  organization: Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
– sequence: 2
  givenname: Søren H.
  surname: Jensen
  fullname: Jensen, Søren H.
  email: shjje@dtu.dk
  organization: Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
– sequence: 3
  givenname: Erik S.
  surname: Poulsen
  fullname: Poulsen, Erik S.
  email: eriksp@cortrium.com
  organization: Cortrium ApS, Erik Husfeldst Vej 7, 2630 Taastrup, Denmark
– sequence: 4
  givenname: Sadasivan
  orcidid: 0000-0001-7564-2612
  surname: Puthusserypady
  fullname: Puthusserypady, Sadasivan
  email: sapu@dtu.dk
  organization: Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
BookMark eNp9kD1PwzAQhi0EEm3hDzBZYk45J07tIJaq4kuqxAKzdXFs6iokxXaL-u9xGyaGTrbu3udO94zJedd3hpAbBlMGbHa3nprwg9Mc8lRgnJf5GRkxKYpsJqrinIygKkXGmeCXZBzCGoAJADEiOI_eYUutq71rW4yu72hjotHH3za47pOuDPpIPUZDd5jitWtd3FPsGooDjim-S7V7OqerfRqVOpuN71GvrsiFxTaY6793Qj6eHt8XL9ny7fl1MV9mushlzGZFLRpji0ICA7B1roXQhnEpuAXOK6kFWFtUWJtKCFlyWdkaUbOSQd1IVkzI7TA3rf3emhDVut_6Lq1UeQlMlpWEKqXkkNK-D8Ebq7SLx6ujR9cqBuogVK3VQag6CFWD0ITm_9CNd1_o96ehhwEy6fSdM14F7UynTeN8cqya3p3CfwE7CZHh
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105920
crossref_primary_10_1155_2021_6455053
crossref_primary_10_1016_j_bspc_2022_103663
crossref_primary_10_3390_app132212187
crossref_primary_10_1016_j_bspc_2023_105683
crossref_primary_10_1016_j_compbiomed_2022_105407
crossref_primary_10_2478_jaiscr_2024_0004
crossref_primary_10_1016_j_medengphy_2023_104050
crossref_primary_10_3390_s23073700
crossref_primary_10_1016_j_eswa_2022_118948
crossref_primary_10_1109_ACCESS_2023_3317793
crossref_primary_10_2139_ssrn_4098697
crossref_primary_10_1016_j_asoc_2022_109552
crossref_primary_10_1016_j_bspc_2024_106683
crossref_primary_10_2139_ssrn_4017037
crossref_primary_10_3390_s22155606
crossref_primary_10_1016_j_artmed_2024_102865
crossref_primary_10_1016_j_bspc_2023_105797
crossref_primary_10_1016_j_eswa_2024_123869
crossref_primary_10_1007_s42979_022_01309_4
crossref_primary_10_1016_j_bspc_2024_106107
crossref_primary_10_1063_5_0217416
crossref_primary_10_1016_j_bspc_2023_105750
crossref_primary_10_1016_j_ins_2021_06_009
crossref_primary_10_1007_s11831_023_09935_8
crossref_primary_10_3390_cells11162576
crossref_primary_10_3390_ijerph182111302
crossref_primary_10_1016_j_ijmedinf_2022_104790
crossref_primary_10_1016_j_eswa_2022_117206
crossref_primary_10_31083_j_rcm2203090
crossref_primary_10_3389_fcvm_2024_1432876
crossref_primary_10_1016_j_compbiomed_2022_105270
Cites_doi 10.1016/j.cmpb.2005.06.012
10.1016/j.jelectrocard.2018.08.008
10.1016/j.ijcard.2012.12.093
10.1016/0167-2789(93)90009-P
10.1016/j.eswa.2018.08.011
10.1098/rspa.2006.1761
10.3389/fphys.2018.01206
10.1136/heart.89.8.939
10.1016/j.compbiomed.2017.12.007
10.1155/2018/2102918
10.1007/s100440200011
10.3390/e17096179
10.1142/S1793536909000047
10.1016/j.compbiomed.2019.103386
10.1093/europace/euw295
10.22489/CinC.2017.069-336
10.1016/j.jelectrocard.2016.07.033
10.1109/TBME.1985.325532
10.3390/s20030765
10.1016/0167-2789(88)90081-4
10.1016/j.bspc.2019.101662
10.1109/CISTEM.2014.7349356
10.1088/1361-6579/aad386
10.1007/s10527-016-9610-6
10.22489/CinC.2017.065-469
10.1016/j.cmpb.2016.04.009
10.1016/j.jelectrocard.2009.06.006
10.1214/aoms/1177730491
10.1109/TBME.2005.859782
10.1016/j.compeleceng.2013.11.024
10.1098/rspa.1998.0193
10.1161/CIRCULATIONAHA.113.005119
10.1007/s10439-009-9740-z
10.1007/s10654-009-9404-1
10.1109/MCAS.2006.1688199
10.1371/journal.pone.0136544
10.22489/CinC.2017.173-154
10.1016/0010-4825(88)90041-8
10.1088/0967-3334/36/9/1873
10.1016/j.compbiomed.2015.03.005
10.1103/PhysRevA.45.3403
10.1007/s40846-016-0168-2
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV May 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV May 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.114452
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_114452
S0957417420311064
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-63b7def3380100fb2c77ce14874f04498c70ff39abe97785489fbaac1510bd813
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 06:10:07 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Tue Jul 01 04:05:50 EDT 2025
Fri Feb 23 02:49:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Empirical mode decomposition
Atrial activity
Heart rate variability
Atrial fibrillation
Ensemble classifier
Automatic detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-63b7def3380100fb2c77ce14874f04498c70ff39abe97785489fbaac1510bd813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7564-2612
PQID 2501859809
PQPubID 2045477
ParticipantIDs proquest_journals_2501859809
crossref_citationtrail_10_1016_j_eswa_2020_114452
crossref_primary_10_1016_j_eswa_2020_114452
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Skurichina, Duin (b0235) 2002; 5
Xia, Wulan, Wang, Zhang (b0275) 2018; 93
Mann, Whitney (b0175) 1947; 18
227–230. http://ecg.mit.edu/george/publications/afib-cinc-1983.pdf.
Czabanski, Horoba, Wrobel, Matonia, Martinek, Kupka, Jezewski, Kahankova, Jezewski, Leski (b0050) 2020; 20
Lal, Chapelle, Weston, Elisseeff (b0160) 2006
Takens (b0245) 1981
(pp. 1–4). IEEE.
Frei, Osorio (b0075) 2007; 463
Couceiro, R., Carvalho, P., Henriques, J., Antunes, M., Harris, M., & Habetha, J. (2008). Detection of Atrial Fibrillation using model-based ECG analysis. In
Hu, Gao, Tung (b0105) 2009; 19
Dietterich (b0070) 2000
Kalidas, Tamil (b0120) 2019; 113
Kirchhof, Benussi, Kotecha, Ahlsson, Atar, Casadei, Castella, Diener, Heidbuchel, Hendriks, Hindricks, Manolis, Oldgren, Popescu, Schotten, Van Putte, Vardas, Agewall, Camm, Baron Esquivias, Budts, Carerj, Casselman, Coca, De Caterina, Deftereos, Dobrev, Ferro, Filippatos, Fitzsimons, Gorenek, Guenoun, Hohnloser, Kolh, Lip, Manolis, McMurray, Ponikowski, Rosenhek, Ruschitzka, Savelieva, Sharma, Suwalski, Tamargo, Taylor, Van Gelder, Voors, Windecker, Zamorano, Zeppenfeld (b0145) 2016; 18
Ródenas, J., García, M., Alcaraz, R., & Rieta, J. J. (2015). Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms.
Zhou, X., Ding, H., Wu, W., & Zhang, Y. (2015). A Real-Time Atrial Fibrillation Detection Algorithm Based on the Instantaneous State of Heart Rate.
Teijeiro, García, Castro, Félix (b0250) 2017
Niu, Gokana, Goh, Lissorgues, Phua (b0195) 2014; 2
Chandrashekar, Sahin (b0030) 2014; 40
Wang, Wang, Wang (b0260) 2020; 55
Pal, Maji, Mitra (b0200) 2016; 36
e215 LP – e220. http://circ.ahajournals.org/content/101/23/e215.abstract.
1–16. doi: 10.1371/journal.pone.0136544.
Lake (b0150) 2006; 53
.
Babaeizadeh, Gregg, Helfenbein, Lindauer, Zhou (b0015) 2009; 42
Rosenstein, Collins, Luca (b0225) 1993; 65
H2039–H2049.
Smith, Platonov, Hedblad, Engström, Melander (b0240) 2010; 25
6179–6199. doi: 10.3390/e17096179.
Kennedy, Finlay, Guldenring, Bond, Moran, McLaughlin (b0135) 2016; 49
Xu, X., Wei, S., Ma, C., Luo, K., Zhang, L., & Liu, C. (2018). Atrial fibrillation beat identification using the combination of modified frequency slice wavelet transform and convolutional neural networks.
Polikar (b0210) 2006; 6
García, Ródenas, Alcaraz, Rieta (b0080) 2016; 131
Izenman (b0110) 2013
(pp. 411–443). Springer. (First edit ed.).
Kannathal, Choo, Acharya, Sadasivan (b0125) 2005; 80
Warrick, Homsi (b0265) 2018; 39
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0100) 1998; 454
Chugh, Havmoeller, Narayanan, Singh, Rienstra, Benjamin, Gillum, Kim, McAnulty, Zheng, Forouzanfar, Naghavi, Mensah, Ezzati, Murray (b0035) 2014; 129
Pan, Tompkins (b0205) 1985; BME-32
Andersen, Peimankar, Puthusserypady (b0005) 2019; 115
Dash, Chon, Lu, Raeder (b0055) 2009; 37
Desai, Nayak, Seshikala (b0065) 2016
Asgari, Mehrnia, Moussavi (b0010) 2015; 60
Datta, S., Puri, C., Mukherjee, A., Banerjee, R., Choudhury, A. D., Singh, R., Ukil, A., Bandyopadhyay, S., Pal, A., & Khandelwal, S. (2017). Identifying normal, af and other abnormal ecg rhythms using a cascaded binary classifier. In
Rubin, Parvaneh, Rahman, Conroy, Babaeizadeh (b0230) 2018; 51
Carrara, M., Carozzi, L., Moss, T.J., Pasquale, M.D., Cerutti, S., & Ferrario, M. (2015). Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy. Institute of Physics and Engineering in Medicine, (pp. 1873–1888). doi: 10.1088/0967-3334/36/9/1873. DOI: 10.1088/0967-3334/36/9/1873.
Katz (b0130) 1988; 18
(pp. 1–5). IEEE. http://ieeexplore.ieee.org/document/4761755/. 10.1109/ICPR.2008.4761755.
Motorina, Kalinichenko (b0190) 2016; 50
Ball, Carrington, McMurray, Stewart (b0020) 2013; 167
Wu, Huang (b0270) 2009; 01
He, Wang, Zhao, Liu, Yuan, Li, Zhang (b0090) 2018; 9
(pp. 1–6). IEEE. http://ieeexplore.ieee.org/document/7349356/. DOI: 10.1109/CISTEM.2014.7349356.
Higuchi (b0095) 1988; 31
Richman, J. S., & R., M. J. (2000). Physiological time-series analysis using approximate entropy and sample entropy.
January, Wann, Alpert, Calkins, Cigarroa, Cleveland, Conti, Ellinor, Ezekowitz, Field, Murray, Sacco, Stevenson, Tchou, Tracy, Yancy (b0115) 2014; 130
Moody, G. B., & Mark, R. G. (1983). A new method for detecting atrial fibrilation using r-r intervals.
Lake, Moorman (b0155) 2010; 300
Zabihi, M., Rad, A. B., Katsaggelos, A. K., Kiranyaz, S., Narkilahti, S., & Gabbouj, M. (2017). Detection of atrial fibrillation in ecg hand-held devices using a random forest classifier. In
Mabrouki, R., Khaddoumi, B., & Sayadi, M. (2014). Nonlinear statistical methods for atrial fibrillation detection on electrocardiogram. In
Torres, Colominas, Schlotthauer, Flandrin (b0255) 2011
Lü, F., & Li, X.-H. (2009). Catheter Ablation. In P. A. Iaizzo (Ed.)
Kennel, Brown, Abarbanel (b0140) 1992; 45
Clifford, G. D., Liu, C., Moody, B., Li-wei, H.L., Silva, I., Li, Q., Johnson, A., & Mark, R. G. (2017). Af classification from a short single lead ecg recording: the physionet/computing in cardiology challenge 2017. In
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet.
Markides (b0180) 2003; 89
Babaeizadeh (10.1016/j.eswa.2020.114452_b0015) 2009; 42
Czabanski (10.1016/j.eswa.2020.114452_b0050) 2020; 20
Frei (10.1016/j.eswa.2020.114452_b0075) 2007; 463
Lake (10.1016/j.eswa.2020.114452_b0150) 2006; 53
Motorina (10.1016/j.eswa.2020.114452_b0190) 2016; 50
Asgari (10.1016/j.eswa.2020.114452_b0010) 2015; 60
10.1016/j.eswa.2020.114452_b0215
Teijeiro (10.1016/j.eswa.2020.114452_b0250) 2017
10.1016/j.eswa.2020.114452_b0025
Mann (10.1016/j.eswa.2020.114452_b0175) 1947; 18
Markides (10.1016/j.eswa.2020.114452_b0180) 2003; 89
10.1016/j.eswa.2020.114452_b0220
10.1016/j.eswa.2020.114452_b0185
García (10.1016/j.eswa.2020.114452_b0080) 2016; 131
10.1016/j.eswa.2020.114452_b0060
January (10.1016/j.eswa.2020.114452_b0115) 2014; 130
Pal (10.1016/j.eswa.2020.114452_b0200) 2016; 36
Kennel (10.1016/j.eswa.2020.114452_b0140) 1992; 45
Takens (10.1016/j.eswa.2020.114452_b0245) 1981
Wang (10.1016/j.eswa.2020.114452_b0260) 2020; 55
Rubin (10.1016/j.eswa.2020.114452_b0230) 2018; 51
Katz (10.1016/j.eswa.2020.114452_b0130) 1988; 18
Skurichina (10.1016/j.eswa.2020.114452_b0235) 2002; 5
10.1016/j.eswa.2020.114452_b0170
Rosenstein (10.1016/j.eswa.2020.114452_b0225) 1993; 65
10.1016/j.eswa.2020.114452_b0290
Xia (10.1016/j.eswa.2020.114452_b0275) 2018; 93
Kirchhof (10.1016/j.eswa.2020.114452_b0145) 2016; 18
Lal (10.1016/j.eswa.2020.114452_b0160) 2006
He (10.1016/j.eswa.2020.114452_b0090) 2018; 9
Smith (10.1016/j.eswa.2020.114452_b0240) 2010; 25
Kannathal (10.1016/j.eswa.2020.114452_b0125) 2005; 80
Andersen (10.1016/j.eswa.2020.114452_b0005) 2019; 115
Lake (10.1016/j.eswa.2020.114452_b0155) 2010; 300
Polikar (10.1016/j.eswa.2020.114452_b0210) 2006; 6
10.1016/j.eswa.2020.114452_b0045
10.1016/j.eswa.2020.114452_b0165
10.1016/j.eswa.2020.114452_b0285
10.1016/j.eswa.2020.114452_b0085
Torres (10.1016/j.eswa.2020.114452_b0255) 2011
10.1016/j.eswa.2020.114452_b0040
Kalidas (10.1016/j.eswa.2020.114452_b0120) 2019; 113
Warrick (10.1016/j.eswa.2020.114452_b0265) 2018; 39
10.1016/j.eswa.2020.114452_b0280
Chugh (10.1016/j.eswa.2020.114452_b0035) 2014; 129
Ball (10.1016/j.eswa.2020.114452_b0020) 2013; 167
Higuchi (10.1016/j.eswa.2020.114452_b0095) 1988; 31
Pan (10.1016/j.eswa.2020.114452_b0205) 1985; BME-32
Huang (10.1016/j.eswa.2020.114452_b0100) 1998; 454
Wu (10.1016/j.eswa.2020.114452_b0270) 2009; 01
Dash (10.1016/j.eswa.2020.114452_b0055) 2009; 37
Kennedy (10.1016/j.eswa.2020.114452_b0135) 2016; 49
Desai (10.1016/j.eswa.2020.114452_b0065) 2016
Chandrashekar (10.1016/j.eswa.2020.114452_b0030) 2014; 40
Izenman (10.1016/j.eswa.2020.114452_b0110) 2013
Niu (10.1016/j.eswa.2020.114452_b0195) 2014; 2
Dietterich (10.1016/j.eswa.2020.114452_b0070) 2000
Hu (10.1016/j.eswa.2020.114452_b0105) 2009; 19
References_xml – volume: 300
  start-page: H319
  year: 2010
  end-page: H325
  ident: b0155
  article-title: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices
  publication-title: AJP: Heart and Circulatory Physiology
– volume: 89
  start-page: 939
  year: 2003
  end-page: 943
  ident: b0180
  article-title: Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment
  publication-title: Heart
– volume: 60
  start-page: 132
  year: 2015
  end-page: 142
  ident: b0010
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Computers in Biology and Medicine
– volume: 37
  start-page: 1701
  year: 2009
  end-page: 1709
  ident: b0055
  article-title: Automatic real time detection of atrial fibrillation
  publication-title: Annals of Biomedical Engineering
– volume: 49
  start-page: 871
  year: 2016
  end-page: 876
  ident: b0135
  article-title: Automated detection of atrial fibrillation using r-r intervals and multivariate-based classification
  publication-title: Journal of Electrocardiology
– volume: 9
  start-page: 1206
  year: 2018
  ident: b0090
  article-title: Automatic detection of atrial fibrillation based on continuous wavelet transform and 2d convolutional neural networks
  publication-title: Frontiers in Physiology
– volume: 18
  start-page: 50
  year: 1947
  end-page: 60
  ident: b0175
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Annals of Mathematical Statistics
– reference: Couceiro, R., Carvalho, P., Henriques, J., Antunes, M., Harris, M., & Habetha, J. (2008). Detection of Atrial Fibrillation using model-based ECG analysis. In
– reference: Clifford, G. D., Liu, C., Moody, B., Li-wei, H.L., Silva, I., Li, Q., Johnson, A., & Mark, R. G. (2017). Af classification from a short single lead ecg recording: the physionet/computing in cardiology challenge 2017. In
– volume: 42
  start-page: 522
  year: 2009
  end-page: 526
  ident: b0015
  article-title: Improvements in atrial fibrillation detection for real-time monitoring
  publication-title: Journal of Electrocardiology
– reference: Carrara, M., Carozzi, L., Moss, T.J., Pasquale, M.D., Cerutti, S., & Ferrario, M. (2015). Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy. Institute of Physics and Engineering in Medicine, (pp. 1873–1888). doi: 10.1088/0967-3334/36/9/1873. DOI: 10.1088/0967-3334/36/9/1873.
– volume: 45
  start-page: 3403
  year: 1992
  end-page: 3411
  ident: b0140
  article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction
  publication-title: Physical Review A. General Physics; (United States)
– volume: 93
  start-page: 84
  year: 2018
  end-page: 92
  ident: b0275
  article-title: Detecting atrial fibrillation by deep convolutional neural networks
  publication-title: Computers in Biology and Medicine
– reference: Richman, J. S., & R., M. J. (2000). Physiological time-series analysis using approximate entropy and sample entropy.
– reference: Lü, F., & Li, X.-H. (2009). Catheter Ablation. In P. A. Iaizzo (Ed.),
– reference: Mabrouki, R., Khaddoumi, B., & Sayadi, M. (2014). Nonlinear statistical methods for atrial fibrillation detection on electrocardiogram. In
– reference: Moody, G. B., & Mark, R. G. (1983). A new method for detecting atrial fibrilation using r-r intervals.
– volume: 131
  start-page: 157
  year: 2016
  end-page: 168
  ident: b0080
  article-title: Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 20
  start-page: 765
  year: 2020
  ident: b0050
  article-title: Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine
  publication-title: Sensors
– start-page: 237
  year: 2013
  end-page: 280
  ident: b0110
  article-title: Linear discriminant analysis
  publication-title: Modern multivariate statistical techniques
– reference: Zabihi, M., Rad, A. B., Katsaggelos, A. K., Kiranyaz, S., Narkilahti, S., & Gabbouj, M. (2017). Detection of atrial fibrillation in ecg hand-held devices using a random forest classifier. In
– reference: (pp. 1–4). IEEE.
– volume: 31
  start-page: 277
  year: 1988
  end-page: 283
  ident: b0095
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Physica D: Nonlinear Phenomena
– reference: , 1–16. doi: 10.1371/journal.pone.0136544.
– volume: 463
  start-page: 321
  year: 2007
  end-page: 342
  ident: b0075
  article-title: Intrinsic time-scale decomposition: Time–frequency–energy analysis and real-time filtering of non-stationary signals
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 80
  start-page: 187
  year: 2005
  end-page: 194
  ident: b0125
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Computer Methods and Programs in Biomedicine
– reference: Xu, X., Wei, S., Ma, C., Luo, K., Zhang, L., & Liu, C. (2018). Atrial fibrillation beat identification using the combination of modified frequency slice wavelet transform and convolutional neural networks.
– reference: , 6179–6199. doi: 10.3390/e17096179.
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: b0225
  article-title: A practical method for calculating largest lyapunov exponents from small data sets
  publication-title: Physica D: Nonlinear Phenomena
– volume: 18
  start-page: 1609
  year: 2016
  end-page: 1678
  ident: b0145
  article-title: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS
  publication-title: Europace
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: b0030
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0100
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
– volume: 39
  year: 2018
  ident: b0265
  article-title: Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection
  publication-title: Physiological Measurement
– reference: . (pp. 411–443). Springer. (First edit ed.).
– reference: (pp. 1–5). IEEE. http://ieeexplore.ieee.org/document/4761755/. 10.1109/ICPR.2008.4761755.
– volume: 25
  start-page: 95
  year: 2010
  end-page: 102
  ident: b0240
  article-title: Atrial fibrillation in the Malm?? diet and cancer study: A study of occurrence, risk factors and diagnostic validity
  publication-title: European Journal of Epidemiology
– volume: 50
  start-page: 161
  year: 2016
  end-page: 165
  ident: b0190
  article-title: Real-time algorithm for detection of atrial fibrillation
  publication-title: Biomedical Engineering
– volume: 113
  year: 2019
  ident: b0120
  article-title: Detection of atrial fibrillation using discrete-state markov models and random forests
  publication-title: Computers in Biology and Medicine
– volume: 6
  start-page: 21
  year: 2006
  end-page: 45
  ident: b0210
  article-title: Polikar, r.: Ensemble based systems in decision making
  publication-title: Circuits and Systems Magazine, IEEE
– reference: , e215 LP – e220. http://circ.ahajournals.org/content/101/23/e215.abstract.
– reference: Zhou, X., Ding, H., Wu, W., & Zhang, Y. (2015). A Real-Time Atrial Fibrillation Detection Algorithm Based on the Instantaneous State of Heart Rate.
– reference: Datta, S., Puri, C., Mukherjee, A., Banerjee, R., Choudhury, A. D., Singh, R., Ukil, A., Bandyopadhyay, S., Pal, A., & Khandelwal, S. (2017). Identifying normal, af and other abnormal ecg rhythms using a cascaded binary classifier. In
– start-page: 1420
  year: 2016
  end-page: 1424
  ident: b0065
  article-title: An application of EMD technique in detection of tachycardia beats
  publication-title: 2016 International conference on communication and signal processing (ICCSP)
– start-page: 366
  year: 1981
  end-page: 381
  ident: b0245
  article-title: Detecting strange attractors in turbulence
  publication-title: Dynamical systems and turbulence, Warwick 1980
– volume: BME-32
  start-page: 230
  year: 1985
  end-page: 236
  ident: b0205
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 4144
  year: 2011
  end-page: 4147
  ident: b0255
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
  publication-title: IEEE international conference on acoustics, speech and signal processing (ICASSP)
– volume: 2
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0195
  article-title: A novel approach to detect Atrial Fibrillation efficiently and accurately from 48 hours of ECG data
  publication-title: Quest Journals
– volume: 19
  year: 2009
  ident: b0105
  article-title: Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos: An Interdisciplinary
  publication-title: Journal of Nonlinear Science
– volume: 5
  start-page: 121
  year: 2002
  end-page: 135
  ident: b0235
  article-title: Bagging, boosting and the random subspace method for linear classifiers
  publication-title: Pattern Analysis & Applications
– volume: 18
  start-page: 145
  year: 1988
  end-page: 156
  ident: b0130
  article-title: Fractals and the analysis of waveforms
  publication-title: Computers in Biology and Medicine
– reference: Ródenas, J., García, M., Alcaraz, R., & Rieta, J. J. (2015). Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms.
– start-page: 1
  year: 2000
  end-page: 15
  ident: b0070
  article-title: Ensemble methods in machine learning
  publication-title: International workshop on multiple classifier systems
– volume: 51
  start-page: S18
  year: 2018
  end-page: S21
  ident: b0230
  article-title: Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ecg recordings
  publication-title: Journal of Electrocardiology
– volume: 130
  start-page: e199
  year: 2014
  end-page: e267
  ident: b0115
  article-title: 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the american college of cardiology/american heart association task force on practice guidelines and the heart rhythm society
  publication-title: Circulation
– reference: (pp. 1–6). IEEE. http://ieeexplore.ieee.org/document/7349356/. DOI: 10.1109/CISTEM.2014.7349356.
– volume: 55
  year: 2020
  ident: b0260
  article-title: Automated detection of atrial fibrillation in ecg signals based on wavelet packet transform and correlation function of random process
  publication-title: Biomedical Signal Processing and Control
– start-page: 137
  year: 2006
  end-page: 165
  ident: b0160
  article-title: Embedded methods
  publication-title: Feature extraction: Foundations and applications
– reference: , 227–230. http://ecg.mit.edu/george/publications/afib-cinc-1983.pdf.
– volume: 115
  start-page: 465
  year: 2019
  end-page: 473
  ident: b0005
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Systems with Applications
– reference: , H2039–H2049.
– reference: .
– reference: Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet.
– volume: 36
  start-page: 693
  year: 2016
  end-page: 703
  ident: b0200
  article-title: Characterizing atrial fibrillation in empirical mode decomposition domain
  publication-title: Journal of Medical and Biological Engineering
– volume: 53
  start-page: 21
  year: 2006
  end-page: 27
  ident: b0150
  article-title: Renyi entropy measures of heart rate gaussianity
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 167
  start-page: 1807
  year: 2013
  end-page: 1824
  ident: b0020
  article-title: Atrial fibrillation: Profile and burden of an evolving epidemic in the 21st century
  publication-title: International Journal of Cardiology
– volume: 129
  start-page: 837
  year: 2014
  end-page: 847
  ident: b0035
  article-title: Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study
  publication-title: Circulation
– start-page: 1
  year: 2017
  end-page: 4
  ident: b0250
  article-title: Arrhythmia classification from the abductive interpretation of short single-lead ecg records
  publication-title: 2017 Computing in cardiology (CinC)
– volume: 01
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0270
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Advances in Adaptive Data Analysis
– volume: 80
  start-page: 187
  year: 2005
  ident: 10.1016/j.eswa.2020.114452_b0125
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2005.06.012
– volume: 51
  start-page: S18
  year: 2018
  ident: 10.1016/j.eswa.2020.114452_b0230
  article-title: Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ecg recordings
  publication-title: Journal of Electrocardiology
  doi: 10.1016/j.jelectrocard.2018.08.008
– volume: 167
  start-page: 1807
  year: 2013
  ident: 10.1016/j.eswa.2020.114452_b0020
  article-title: Atrial fibrillation: Profile and burden of an evolving epidemic in the 21st century
  publication-title: International Journal of Cardiology
  doi: 10.1016/j.ijcard.2012.12.093
– ident: 10.1016/j.eswa.2020.114452_b0185
– ident: 10.1016/j.eswa.2020.114452_b0085
– start-page: 1
  year: 2000
  ident: 10.1016/j.eswa.2020.114452_b0070
  article-title: Ensemble methods in machine learning
– volume: 65
  start-page: 117
  year: 1993
  ident: 10.1016/j.eswa.2020.114452_b0225
  article-title: A practical method for calculating largest lyapunov exponents from small data sets
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(93)90009-P
– volume: 115
  start-page: 465
  year: 2019
  ident: 10.1016/j.eswa.2020.114452_b0005
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.011
– volume: 463
  start-page: 321
  year: 2007
  ident: 10.1016/j.eswa.2020.114452_b0075
  article-title: Intrinsic time-scale decomposition: Time–frequency–energy analysis and real-time filtering of non-stationary signals
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2006.1761
– start-page: 137
  year: 2006
  ident: 10.1016/j.eswa.2020.114452_b0160
  article-title: Embedded methods
– volume: 9
  start-page: 1206
  year: 2018
  ident: 10.1016/j.eswa.2020.114452_b0090
  article-title: Automatic detection of atrial fibrillation based on continuous wavelet transform and 2d convolutional neural networks
  publication-title: Frontiers in Physiology
  doi: 10.3389/fphys.2018.01206
– volume: 89
  start-page: 939
  year: 2003
  ident: 10.1016/j.eswa.2020.114452_b0180
  article-title: Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment
  publication-title: Heart
  doi: 10.1136/heart.89.8.939
– volume: 93
  start-page: 84
  year: 2018
  ident: 10.1016/j.eswa.2020.114452_b0275
  article-title: Detecting atrial fibrillation by deep convolutional neural networks
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2017.12.007
– ident: 10.1016/j.eswa.2020.114452_b0280
  doi: 10.1155/2018/2102918
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2020.114452_b0250
  article-title: Arrhythmia classification from the abductive interpretation of short single-lead ecg records
– start-page: 1420
  year: 2016
  ident: 10.1016/j.eswa.2020.114452_b0065
  article-title: An application of EMD technique in detection of tachycardia beats
– volume: 2
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2020.114452_b0195
  article-title: A novel approach to detect Atrial Fibrillation efficiently and accurately from 48 hours of ECG data
  publication-title: Quest Journals
– ident: 10.1016/j.eswa.2020.114452_b0165
– volume: 5
  start-page: 121
  year: 2002
  ident: 10.1016/j.eswa.2020.114452_b0235
  article-title: Bagging, boosting and the random subspace method for linear classifiers
  publication-title: Pattern Analysis & Applications
  doi: 10.1007/s100440200011
– ident: 10.1016/j.eswa.2020.114452_b0220
  doi: 10.3390/e17096179
– volume: 01
  start-page: 1
  year: 2009
  ident: 10.1016/j.eswa.2020.114452_b0270
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Advances in Adaptive Data Analysis
  doi: 10.1142/S1793536909000047
– volume: 113
  year: 2019
  ident: 10.1016/j.eswa.2020.114452_b0120
  article-title: Detection of atrial fibrillation using discrete-state markov models and random forests
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.103386
– volume: 18
  start-page: 1609
  year: 2016
  ident: 10.1016/j.eswa.2020.114452_b0145
  article-title: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS
  publication-title: Europace
  doi: 10.1093/europace/euw295
– ident: 10.1016/j.eswa.2020.114452_b0285
  doi: 10.22489/CinC.2017.069-336
– volume: 49
  start-page: 871
  year: 2016
  ident: 10.1016/j.eswa.2020.114452_b0135
  article-title: Automated detection of atrial fibrillation using r-r intervals and multivariate-based classification
  publication-title: Journal of Electrocardiology
  doi: 10.1016/j.jelectrocard.2016.07.033
– ident: 10.1016/j.eswa.2020.114452_b0215
– volume: BME-32
  start-page: 230
  year: 1985
  ident: 10.1016/j.eswa.2020.114452_b0205
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.1985.325532
– volume: 20
  start-page: 765
  year: 2020
  ident: 10.1016/j.eswa.2020.114452_b0050
  article-title: Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine
  publication-title: Sensors
  doi: 10.3390/s20030765
– volume: 31
  start-page: 277
  year: 1988
  ident: 10.1016/j.eswa.2020.114452_b0095
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(88)90081-4
– volume: 55
  year: 2020
  ident: 10.1016/j.eswa.2020.114452_b0260
  article-title: Automated detection of atrial fibrillation in ecg signals based on wavelet packet transform and correlation function of random process
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2019.101662
– volume: 130
  start-page: e199
  year: 2014
  ident: 10.1016/j.eswa.2020.114452_b0115
  article-title: 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the american college of cardiology/american heart association task force on practice guidelines and the heart rhythm society
  publication-title: Circulation
– ident: 10.1016/j.eswa.2020.114452_b0170
  doi: 10.1109/CISTEM.2014.7349356
– volume: 39
  year: 2018
  ident: 10.1016/j.eswa.2020.114452_b0265
  article-title: Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection
  publication-title: Physiological Measurement
  doi: 10.1088/1361-6579/aad386
– volume: 50
  start-page: 161
  year: 2016
  ident: 10.1016/j.eswa.2020.114452_b0190
  article-title: Real-time algorithm for detection of atrial fibrillation
  publication-title: Biomedical Engineering
  doi: 10.1007/s10527-016-9610-6
– ident: 10.1016/j.eswa.2020.114452_b0040
  doi: 10.22489/CinC.2017.065-469
– volume: 131
  start-page: 157
  year: 2016
  ident: 10.1016/j.eswa.2020.114452_b0080
  article-title: Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2016.04.009
– volume: 42
  start-page: 522
  year: 2009
  ident: 10.1016/j.eswa.2020.114452_b0015
  article-title: Improvements in atrial fibrillation detection for real-time monitoring
  publication-title: Journal of Electrocardiology
  doi: 10.1016/j.jelectrocard.2009.06.006
– start-page: 4144
  year: 2011
  ident: 10.1016/j.eswa.2020.114452_b0255
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
– ident: 10.1016/j.eswa.2020.114452_b0045
– volume: 19
  year: 2009
  ident: 10.1016/j.eswa.2020.114452_b0105
  article-title: Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos: An Interdisciplinary
  publication-title: Journal of Nonlinear Science
– volume: 18
  start-page: 50
  year: 1947
  ident: 10.1016/j.eswa.2020.114452_b0175
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177730491
– volume: 53
  start-page: 21
  year: 2006
  ident: 10.1016/j.eswa.2020.114452_b0150
  article-title: Renyi entropy measures of heart rate gaussianity
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2005.859782
– volume: 40
  start-page: 16
  year: 2014
  ident: 10.1016/j.eswa.2020.114452_b0030
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.eswa.2020.114452_b0100
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– start-page: 237
  year: 2013
  ident: 10.1016/j.eswa.2020.114452_b0110
  article-title: Linear discriminant analysis
– volume: 129
  start-page: 837
  year: 2014
  ident: 10.1016/j.eswa.2020.114452_b0035
  article-title: Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.005119
– volume: 37
  start-page: 1701
  year: 2009
  ident: 10.1016/j.eswa.2020.114452_b0055
  article-title: Automatic real time detection of atrial fibrillation
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-009-9740-z
– volume: 25
  start-page: 95
  year: 2010
  ident: 10.1016/j.eswa.2020.114452_b0240
  article-title: Atrial fibrillation in the Malm?? diet and cancer study: A study of occurrence, risk factors and diagnostic validity
  publication-title: European Journal of Epidemiology
  doi: 10.1007/s10654-009-9404-1
– volume: 300
  start-page: H319
  year: 2010
  ident: 10.1016/j.eswa.2020.114452_b0155
  article-title: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices
  publication-title: AJP: Heart and Circulatory Physiology
– volume: 6
  start-page: 21
  year: 2006
  ident: 10.1016/j.eswa.2020.114452_b0210
  article-title: Polikar, r.: Ensemble based systems in decision making
  publication-title: Circuits and Systems Magazine, IEEE
  doi: 10.1109/MCAS.2006.1688199
– ident: 10.1016/j.eswa.2020.114452_b0290
  doi: 10.1371/journal.pone.0136544
– ident: 10.1016/j.eswa.2020.114452_b0060
  doi: 10.22489/CinC.2017.173-154
– start-page: 366
  year: 1981
  ident: 10.1016/j.eswa.2020.114452_b0245
  article-title: Detecting strange attractors in turbulence
– volume: 18
  start-page: 145
  year: 1988
  ident: 10.1016/j.eswa.2020.114452_b0130
  article-title: Fractals and the analysis of waveforms
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/0010-4825(88)90041-8
– ident: 10.1016/j.eswa.2020.114452_b0025
  doi: 10.1088/0967-3334/36/9/1873
– volume: 60
  start-page: 132
  year: 2015
  ident: 10.1016/j.eswa.2020.114452_b0010
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2015.03.005
– volume: 45
  start-page: 3403
  year: 1992
  ident: 10.1016/j.eswa.2020.114452_b0140
  article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction
  publication-title: Physical Review A. General Physics; (United States)
  doi: 10.1103/PhysRevA.45.3403
– volume: 36
  start-page: 693
  year: 2016
  ident: 10.1016/j.eswa.2020.114452_b0200
  article-title: Characterizing atrial fibrillation in empirical mode decomposition domain
  publication-title: Journal of Medical and Biological Engineering
  doi: 10.1007/s40846-016-0168-2
SSID ssj0017007
Score 2.4921975
Snippet •A hybrid model for low resolution, real-time detection of atrial fibrillation.•Subject wise cross validation reveals over optimism of conventional...
Goal: Develop a real-time hybrid scheme for the automatic detection of atrial fibrillation (AF), based on the RR interval (RRI) time series and the atrial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114452
SubjectTerms Algorithms
Atrial activity
Atrial fibrillation
Automatic detection
Cardiac arrhythmia
Classifiers
Discriminant analysis
Electrocardiography
Empirical mode decomposition
Ensemble classifier
Feature extraction
Fibrillation
Heart rate
Heart rate variability
Performance evaluation
Subspace methods
Time series
Title Atrial fibrillation detection using heart rate variability and atrial activity: A hybrid approach
URI https://dx.doi.org/10.1016/j.eswa.2020.114452
https://www.proquest.com/docview/2501859809
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYM3qWubtGm9leGYirvoYLfQH4lORh2uKrv4t_tekwoK7uC1JKW8JC_fR7_3PULOPD_UeayYo5RgDldcOGkICxJxrplW2vMK_KN7Nw5HE34zDaYtMmhqYVBWaXO_yel1trZP-jaa_cVs1r8HcADXIVA72JdAbNATlHOB_vkXn98yD7SfE8ZvTzg42hbOGI2XWn6g95BfW-bywP_rcvqVpuu7Z7hDtixopIn5rl3SUuUe2W4aMlB7PvdJmtRNOKhGHf_cqNxooapablVS1Lg_UmxhXVF0iKDvQJSNT_eKpmVBUzMdax2wpcQlTejTCku6aGM9fkAmw6uHwcixPRScnPlR5YQsE4XSQESBeLk683MhcgUcSHDtch5HuXC1ZnGaKUCCEfCXWGdpmgMQcLMi8tghaZcvpToiVBUKuKPmEdMQZ8Fi5WYAvlgRxIDR_KBDvCZ4MrcG49jnYi4bJdmzxIBLDLg0Ae-Q8-85C2OvsXZ00KyJ_LFJJOT_tfO6zQJKe0SX0kcrwyCO3Pj4n689IZs-Klxq-WOXtKvXN3UKEKXKevUe7JGN5Pp2NP4Cg3Pk1g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HvTiW3ysmoM3KdsmadN4K4uyvvaigrfQR6IrUkWrsv_emSYVFPTgtSSlTCYz89FvviHkIGKJLZXhgTGSB8IIGeQJHEgqhOXW2Ciq8I_u5TgZ3Yiz2_h2hgy7XhikVfrY72J6G639k4G35uB5MhlcQXEA6RCgHfglABsxS-ZQnQqcfS47PR-Nv34myNB1TcP6ADf43hlH8zKvHyg_xFrVXBGz3_LTj0jdpp-TZbLo60aauU9bITOmXiVL3UwG6q_oGsmzdg4HtUjlf3REN1qZpmVc1RRp7ncUp1g3FEUi6DtgZSfVPaV5XdHcbcd2B5wqcUQzej_Fri7aqY-vk5uT4-vhKPBjFIKSs7QJEl7IyljAooC9QluwUsrSAAySwoZCqLSUobVc5YWBYjAFCKNskecl1AJhUaUR3yC9-qk2m4SaygB8tCLlVggpuTJhAfUXr2IFZRqLt0jUGU-XXmMcR1086o5M9qDR4BoNrp3Bt8jh155np7Dx5-q4OxP9zU80pIA_9_W7A9T-lr5qhmqGsUpDtf3P1-6T-dH15YW-OB2f75AFhoSXlg3ZJ73m5c3sQsXSFHveIz8BZP7nhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atrial+fibrillation+detection+using+heart+rate+variability+and+atrial+activity%3A+A+hybrid+approach&rft.jtitle=Expert+systems+with+applications&rft.au=Hirsch%2C+Gerald&rft.au=Jensen%2C+S%C3%B8ren+H.&rft.au=Poulsen%2C+Erik+S.&rft.au=Puthusserypady%2C+Sadasivan&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=169&rft_id=info:doi/10.1016%2Fj.eswa.2020.114452&rft.externalDocID=S0957417420311064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon