BPP-enhanced core–shell structured multilayer hyperbolic metamaterial composite as SERS substrate for ultrasensitive molecular detection

A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al 2 O 3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon pol...

Full description

Saved in:
Bibliographic Details
Published inMikrochimica acta (1966) Vol. 192; no. 7; p. 400
Main Authors Wei, Zhuofan, Shan, Xiaomu, Shi, Jian, Xu, Yuanze, Wang, Sen, Jiang, Shouzhen
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al 2 O 3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core–shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10 −12  M for rhodamine 6G (R6G) and 1.5 × 10 −9  M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection. Graphical Abstract
AbstractList A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al2O3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core-shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10-12 M for rhodamine 6G (R6G) and 1.5 × 10-9 M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection.A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al2O3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core-shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10-12 M for rhodamine 6G (R6G) and 1.5 × 10-9 M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection.
A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al 2 O 3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core–shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10 −12  M for rhodamine 6G (R6G) and 1.5 × 10 −9  M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection. Graphical Abstract
A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al O thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core-shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10  M for rhodamine 6G (R6G) and 1.5 × 10  M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection.
A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al2O3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core–shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10−12 M for rhodamine 6G (R6G) and 1.5 × 10−9 M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection.
ArticleNumber 400
Author Shan, Xiaomu
Wei, Zhuofan
Xu, Yuanze
Jiang, Shouzhen
Wang, Sen
Shi, Jian
Author_xml – sequence: 1
  givenname: Zhuofan
  surname: Wei
  fullname: Wei, Zhuofan
  organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University
– sequence: 2
  givenname: Xiaomu
  surname: Shan
  fullname: Shan, Xiaomu
  organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University
– sequence: 3
  givenname: Jian
  surname: Shi
  fullname: Shi, Jian
  organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University
– sequence: 4
  givenname: Yuanze
  surname: Xu
  fullname: Xu, Yuanze
  organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University
– sequence: 5
  givenname: Sen
  surname: Wang
  fullname: Wang, Sen
  email: 1990501855@qq.com
  organization: Shandong Normal University
– sequence: 6
  givenname: Shouzhen
  surname: Jiang
  fullname: Jiang, Shouzhen
  email: jiang_sz@126.com
  organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University, Shandong Key Laboratory of Medical Physics, Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40461809$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEUhoNU7G31D7iQgBs3sfmaZGappX5AwWJ1HTKZM94pmck1H5a7c-3Wf-gvaepUBReFQODked-Tc94jdLCEBRB6yuhLRqk-SZQqKgnlDaGaq5ZcP0AbJoUiDdXiAG0o5YoIpfkhOkrpilKmFZeP0KGkUrGWdhv04_XFBYFlaxcHA3Yhwq_vP9MWvMcpx-JyibU-F58nb_cQ8Xa_g9gHPzk8Q7azzRAn66t03oU0ZcA24cuzj5c4lb5a1Hc8hoirQ7QJlopM3wDPwYMr3kY8QAaXp7A8Rg9H6xM8ubuP0ec3Z59O35HzD2_fn746J07wNhPFG8t67cZBdt3QcCFbxwQTWvdq6GUHnZP19HpsQbBmFIqxrmkHPqpa5kocoxer7y6GrwVSNvOUXJ3YLhBKMoKzptGCa13R5_-hV6HEpf5upWSrO16pZ3dU6WcYzC5Os41782fLFeAr4GJIKcL4F2HU3EZp1ihNjdL8jtJcV5FYRanCyxeI_3rfo7oBllykMg
Cites_doi 10.1021/jp0687908
10.1364/OE.389886
10.13103/JFHS.2020.35.2.109
10.1364/OE.23.024811
10.1021/nl402660s
10.1063/5.0042808
10.1088/1367-2630/15/7/075025
10.1016/j.atmosenv.2014.08.048
10.1021/acssensors.7b00671
10.1364/OL.40.003177
10.1007/s11433-012-4860-0
10.1007/s00216-020-02588-7
10.1364/OE.17.008669
10.1021/acsnano.4c00208
10.1016/j.apsusc.2021.149729
10.4103/2229-5186.79345
10.1016/j.snb.2021.130934
10.1088/1361-6528/abd7b2
10.1002/adom.201300504
10.1021/acsnano.4c01474
10.1016/j.foodchem.2025.144165
10.1039/C6EE02265K
10.1016/j.saa.2018.11.004
10.1021/acs.chemrev.9b00592
10.1016/0042-207x(83)90613-9
10.1186/s40580-014-0014-6
10.1364/OE.454893
10.1021/acs.analchem.0c01333
10.1002/adma.202303001
10.1039/C7TC04748G
10.1007/s00340-014-5907-x
10.1186/s11671-025-04189-8
10.1515/nanoph-2021-0301
10.1039/FT9918703881
10.1021/acs.analchem.0c05432
10.1021/acsnano.8b03217
10.2116/analsci.19P437
10.1016/j.saa.2022.121212
10.1016/j.jclepro.2019.06.164
10.1016/j.cej.2019.122710
10.1016/j.molstruc.2023.136407
10.1016/j.aca.2024.342911
10.1021/acs.accounts.1c00682
10.1038/s41598-017-05939-0
10.1016/j.talanta.2018.06.013
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1007/s00604-025-07268-w
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1436-5073
ExternalDocumentID 40461809
10_1007_s00604_025_07268_w
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12074226
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2024MA084
  funderid: https://doi.org/10.13039/501100007129
– fundername: National Natural Science Foundation of China
  grantid: 12074226
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2024MA084
GroupedDBID -~X
.86
.VR
06C
06D
0R~
0VY
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WJK
WK8
YLTOR
Z45
Z8Z
ZMTXR
~02
~EX
~KM
-Y2
1SB
2.D
28-
2P1
2VQ
53G
5QI
7X7
88E
8FE
8FG
8FI
8FJ
A8Z
AAIKT
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFGCZ
AFKRA
AGGDS
AGJBK
AGQPQ
AJBLW
BBWZM
BDATZ
BENPR
BGLVJ
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
D1I
EJD
EPL
FINBP
FSGXE
FYUFA
H13
HCIFZ
HMCUK
I-F
ITC
KB.
KOW
M1P
ML-
N2Q
NDZJH
O9-
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
R4E
RNI
RZK
S26
S28
SCLPG
T16
TUS
UKHRP
UZXMN
VFIZW
W4F
Y6R
~8M
NPM
K9.
7X8
ID FETCH-LOGICAL-c328t-625a1b7cfd499d52348c131377b6db49e9c49c4b7f8e315f3611958d2f69c4263
IEDL.DBID U2A
ISSN 0026-3672
1436-5073
IngestDate Wed Jul 02 02:47:17 EDT 2025
Sat Aug 23 12:39:55 EDT 2025
Sun Jul 20 01:30:43 EDT 2025
Mon Aug 25 08:20:24 EDT 2025
Sun Jul 20 01:10:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords LSPR
Ultrasensitive molecular detection
BPP
Au@ZIF-8
SERS
Language English
License 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-625a1b7cfd499d52348c131377b6db49e9c49c4b7f8e315f3611958d2f69c4263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 40461809
PQID 3215548792
PQPubID 2043622
ParticipantIDs proquest_miscellaneous_3215573277
proquest_journals_3215548792
pubmed_primary_40461809
crossref_primary_10_1007_s00604_025_07268_w
springer_journals_10_1007_s00604_025_07268_w
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Austria
– name: Heidelberg
PublicationSubtitle Analytical Sciences and Technologies on the Micro- and Nanoscale
PublicationTitle Mikrochimica acta (1966)
PublicationTitleAbbrev Microchim Acta
PublicationTitleAlternate Mikrochim Acta
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References R Liu (7268_CR38) 2021; 6
CH Lai (7268_CR30) 2017; 7
F Hubenthal (7268_CR15) 2014; 117
Y Ma (7268_CR10) 2020; 381
W Yue (7268_CR26) 2022; 30
JB Lassiter (7268_CR23) 2013; 13
X Liu (7268_CR32) 2017; 10
W Kong (7268_CR25) 2018; 6
RM Davis (7268_CR7) 2018; 12
X Li (7268_CR3) 2020; 36
A Shrivastava (7268_CR39) 2011; 2
Y Liu (7268_CR34) 2024; 18
J Xie (7268_CR8) 2024; 1317
M Shafi (7268_CR35) 2021; 555
7268_CR11
C Zhang (7268_CR5) 2015; 23
7268_CR12
H Hu (7268_CR18) 2024; 36
DJ Cao (7268_CR42) 2019; 210
ZM Jin (7268_CR22) 2014; 2
JA Creighton (7268_CR13) 1991; 87
7268_CR16
EC Le Ru (7268_CR40) 2007; 111
Z Li (7268_CR31) 2020; 28
Z Zheng (7268_CR4) 2018; 188
Y Wy (7268_CR17) 2022; 55
JM Montgomery (7268_CR21) 2009; 17
Y Dumanoglu (7268_CR33) 2014; 98
SM Yakout (7268_CR41) 2019; 234
Z Dai (7268_CR28) 2020; 120
EC Le Ru (7268_CR14) 2024; 18
J Dong (7268_CR24) 2021; 32
P Shekhar (7268_CR29) 2014; 1
H Li (7268_CR2) 2020; 412
R Liu (7268_CR27) 2021; 10
Q Liu (7268_CR1) 2024; 351
JF Torrado (7268_CR19) 2013; 15
7268_CR43
7268_CR44
7268_CR45
L Zhang (7268_CR6) 2020; 92
M Bilal (7268_CR36) 2025; 20
QQ Chen (7268_CR37) 2021; 93
J Zhu (7268_CR20) 2015; 55
X Qiu (7268_CR9) 2022; 276
References_xml – volume: 111
  start-page: 13794
  issue: 37
  year: 2007
  ident: 7268_CR40
  publication-title: JPC C
  doi: 10.1021/jp0687908
– volume: 28
  start-page: 9174
  issue: 7
  year: 2020
  ident: 7268_CR31
  publication-title: Opt express
  doi: 10.1364/OE.389886
– ident: 7268_CR45
  doi: 10.13103/JFHS.2020.35.2.109
– volume: 23
  start-page: 24811
  issue: 19
  year: 2015
  ident: 7268_CR5
  publication-title: Opt Express
  doi: 10.1364/OE.23.024811
– volume: 13
  start-page: 5866
  issue: 12
  year: 2013
  ident: 7268_CR23
  publication-title: Nano Lett
  doi: 10.1021/nl402660s
– volume: 6
  start-page: 3
  year: 2021
  ident: 7268_CR38
  publication-title: Apl Photonics
  doi: 10.1063/5.0042808
– volume: 15
  issue: 7
  year: 2013
  ident: 7268_CR19
  publication-title: New J Phys
  doi: 10.1088/1367-2630/15/7/075025
– volume: 98
  start-page: 168
  year: 2014
  ident: 7268_CR33
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2014.08.048
– ident: 7268_CR44
  doi: 10.1021/acssensors.7b00671
– ident: 7268_CR16
  doi: 10.1364/OL.40.003177
– volume: 55
  start-page: 1776
  year: 2015
  ident: 7268_CR20
  publication-title: Sci China Phys Mech
  doi: 10.1007/s11433-012-4860-0
– volume: 412
  start-page: 3063
  year: 2020
  ident: 7268_CR2
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-020-02588-7
– volume: 17
  start-page: 8669
  issue: 10
  year: 2009
  ident: 7268_CR21
  publication-title: Opt Express
  doi: 10.1364/OE.17.008669
– volume: 18
  start-page: 11234
  issue: 17
  year: 2024
  ident: 7268_CR34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c00208
– volume: 555
  start-page: 149729
  year: 2021
  ident: 7268_CR35
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.149729
– volume: 2
  start-page: 21
  issue: 1
  year: 2011
  ident: 7268_CR39
  publication-title: Chron Young Sci
  doi: 10.4103/2229-5186.79345
– volume: 351
  year: 2024
  ident: 7268_CR1
  publication-title: Sensor Actuat B-Chem
  doi: 10.1016/j.snb.2021.130934
– volume: 32
  issue: 15
  year: 2021
  ident: 7268_CR24
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/abd7b2
– volume: 2
  start-page: 588
  issue: 6
  year: 2014
  ident: 7268_CR22
  publication-title: Adv Opt Mater
  doi: 10.1002/adom.201300504
– volume: 18
  start-page: 9773
  issue: 14
  year: 2024
  ident: 7268_CR14
  publication-title: ACS nano
  doi: 10.1021/acsnano.4c01474
– ident: 7268_CR11
  doi: 10.1016/j.foodchem.2025.144165
– volume: 10
  start-page: 402
  issue: 2
  year: 2017
  ident: 7268_CR32
  publication-title: Energ Environ Sci
  doi: 10.1039/C6EE02265K
– volume: 210
  start-page: 9
  year: 2019
  ident: 7268_CR42
  publication-title: Spectrochim Acta A
  doi: 10.1016/j.saa.2018.11.004
– volume: 120
  start-page: 6197
  issue: 13
  year: 2020
  ident: 7268_CR28
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.9b00592
– ident: 7268_CR12
  doi: 10.1016/0042-207x(83)90613-9
– volume: 1
  start-page: 1
  year: 2014
  ident: 7268_CR29
  publication-title: Nano Converg
  doi: 10.1186/s40580-014-0014-6
– volume: 30
  start-page: 13226
  issue: 8
  year: 2022
  ident: 7268_CR26
  publication-title: Opt Express
  doi: 10.1364/OE.454893
– volume: 92
  start-page: 9838
  issue: 14
  year: 2020
  ident: 7268_CR6
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c01333
– volume: 36
  start-page: 2303001
  issue: 22
  year: 2024
  ident: 7268_CR18
  publication-title: Adv Mater
  doi: 10.1002/adma.202303001
– volume: 6
  start-page: 1797
  issue: 7
  year: 2018
  ident: 7268_CR25
  publication-title: J Mater Chem C
  doi: 10.1039/C7TC04748G
– volume: 117
  start-page: 1
  year: 2014
  ident: 7268_CR15
  publication-title: Appl Phys B-lasers O
  doi: 10.1007/s00340-014-5907-x
– volume: 20
  start-page: 1
  issue: 1
  year: 2025
  ident: 7268_CR36
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-025-04189-8
– volume: 10
  start-page: 2949
  issue: 11
  year: 2021
  ident: 7268_CR27
  publication-title: Nanophotonics-berlin
  doi: 10.1515/nanoph-2021-0301
– volume: 87
  start-page: 3881
  issue: 24
  year: 1991
  ident: 7268_CR13
  publication-title: J Chem Soc Faraday Trans
  doi: 10.1039/FT9918703881
– volume: 93
  start-page: 7188
  issue: 19
  year: 2021
  ident: 7268_CR37
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c05432
– volume: 12
  start-page: 9669
  issue: 10
  year: 2018
  ident: 7268_CR7
  publication-title: Acs Nano
  doi: 10.1021/acsnano.8b03217
– volume: 36
  start-page: 1025
  issue: 9
  year: 2020
  ident: 7268_CR3
  publication-title: Anal Sci
  doi: 10.2116/analsci.19P437
– volume: 276
  year: 2022
  ident: 7268_CR9
  publication-title: Spectrochim Acta A
  doi: 10.1016/j.saa.2022.121212
– volume: 234
  start-page: 124
  year: 2019
  ident: 7268_CR41
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.06.164
– volume: 381
  year: 2020
  ident: 7268_CR10
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.122710
– ident: 7268_CR43
  doi: 10.1016/j.molstruc.2023.136407
– volume: 1317
  start-page: 342911
  year: 2024
  ident: 7268_CR8
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2024.342911
– volume: 55
  start-page: 831
  issue: 6
  year: 2022
  ident: 7268_CR17
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.1c00682
– volume: 7
  start-page: 5446
  issue: 1
  year: 2017
  ident: 7268_CR30
  publication-title: Sci Rep-uk
  doi: 10.1038/s41598-017-05939-0
– volume: 188
  start-page: 507
  year: 2018
  ident: 7268_CR4
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.06.013
SSID ssj0017624
Score 2.4167156
Snippet A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al 2 O 3 thin films...
A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al O thin films...
A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al2O3 thin films...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 400
SubjectTerms Aluminum oxide
Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Core-shell structure
Electric fields
Electromagnetic fields
Electromagnetism
Gold
Metal-organic frameworks
Metamaterials
Microengineering
Multilayers
Nanochemistry
Nanoparticles
Nanotechnology
Polaritons
Raman spectra
Rhodamine 6G
Substrates
Surface plasmon resonance
Thin films
Zeolites
Title BPP-enhanced core–shell structured multilayer hyperbolic metamaterial composite as SERS substrate for ultrasensitive molecular detection
URI https://link.springer.com/article/10.1007/s00604-025-07268-w
https://www.ncbi.nlm.nih.gov/pubmed/40461809
https://www.proquest.com/docview/3215548792
https://www.proquest.com/docview/3215573277
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HPQivq0vInjTwDZNk_a4yqooiqgLeipNk7IHrbLdZa-evfoP_SVO0oeIehB6SkNaMpPMN8zMNwD7cYZGzM81HiTDKEeAQZWvFY1ThMNC51xltnb48kqc9fn5fXhfF4WVTbZ7E5J0N3Vb7GapQzi17Vc7komITqZhNrS-O2pxn3Xb2AEe75p7WdBASFaXyvy-xndz9ANj_oiPOrNzsggLNV4k3UrASzBlimWYO27atK3A29H1NTXFwEXyiSWl_Hh9L216J6m4YcdDHHd5g48p4msyQM9zqCwdMHkyoxQRq1NCYpPLbQaXIWlJbns3t6TES8WR1xJEtgRXGKLJK0qXbUSemr66RJuRy-cqVqF_0rs7PqN1gwWaBSwaUfR9Ul_JLNfo92h0SXmU-YHlIFRCKx6bOOP4KJlHJvDDPBCWIC7SLBc4zESwBjPFc2E2gBjECWj8U5nhBiulY94xmod5HmqV-Up4cNDsc_JS8WgkLWOyk0qCUkmcVJKJB9uNKJL6TJVJwCz2iWTMPNhrX-Nu2xBHWpjncT1HBkxKD9YrEbaf45ZbPurEHhw2Mv1a_O9_2fzf9C2YZ5V-0Y6_DTMoabODuGWkdmG2e_pw0dt16voJAR3pzg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HPQivq3PCN40sE2zSXtUUdYn4rrgrTRNyh7crmxXvHr26j_0lzhJHyKrB6GnNKQlk2S-Yb75AnAQpejE_EzjRjKMcgQYVPla0ShBOCx0xlVqa4dvbkWnxy8f249VUVhRs93rlKQ7qZtiNysdwqm9frUlmQjp6zTMIhgILZGrx46b3AFu70p7WdBASFaVyvw-xk93NIExJ_Kjzu2cL8JChRfJcWngJZgy-TLMndbXtK3A-8ndHTV532XyiRWl_Hz7KCy9k5TasC8jbHe8wacE8TXpY-Q5UlYOmAzMOEHE6hYhseRyy-AyJClI9-y-Swo8VJx4LUFkS3CEEbq8vHBsIzKo79Ul2owdnytfhd752cNph1YXLNA0YOGYYuyT-Eqmmca4R2NIysPUD6wGoRJa8chEKcdHySw0gd_OAmEF4kLNMoHNTARrMJMPc7MBxCBOQOefyBQnWCkd8ZbRvJ1lba1SXwkPDut5jp9LHY24UUx2VonRKrGzSvzqwXZtirjaU0UcMIt9QhkxD_ab1zjbNsWR5Gb4UvWRAZPSg_XShM3nuNWWD1uRB0e1Tb8H__tfNv_XfQ_mOg831_H1xe3VFsyzcq3Rlr8NM2h1s4MYZqx23ZL9AtT16y0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkNpeKqAUUl5G4gYWG8drJ0deK95aFVbiFsWxLQ4Q0CaIa89c-Yf8EsbOgyLoASknx3KimbHnG83MZ4D1JEcnFlqNG8kwyhFgUBVqRZMM4bDQlqvc9Q6fnomDET-67F_-08Xvq93blGTd0-BYmopq607bra7xzdGIcOquYu1JJmL68AWm8DgOnV2P2HaXR8Ct3vAwCxoJyZq2mY_XeOua3uHNd7lS74IG0_CjwY5ku1b2DEyYYha-7bZXtv2Ex53hkJriymf1iSOofP77VLpST1LzxN6PcdzXEF5niLXJFUahY-WogcmNqTJEr94giSs0d9VchmQlOd__c05KPGA8kS1BlEtwhTG6v6L0lUfkpr1jl2hT-dquYg5Gg_2L3QPaXLZA84jFFcU4KAuVzK3GGEhjeMrjHAUaSamEVjwxSc7xUdLGJgr7NhKOLC7WzAocZiL6BZPFbWEWgBjEDAgEMpmjgJXSCe8ZzfvW9rXKQyUC2GjlnN7VnBppx57stZKiVlKvlfQhgKVWFWmzv8o0Yg4HxTJhAax1r1HaLt2RFeb2vpkjIyZlAPO1CrvPccczH_eSADZbnb4u_v9_-f256avwdbg3SE8Oz44X4TurTY32wiWYRKWbZYQzlVrxFvsCLyLvaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BPP-enhanced+core-shell+structured+multilayer+hyperbolic+metamaterial+composite+as+SERS+substrate+for+ultrasensitive+molecular+detection&rft.jtitle=Mikrochimica+acta+%281966%29&rft.au=Wei%2C+Zhuofan&rft.au=Shan%2C+Xiaomu&rft.au=Shi%2C+Jian&rft.au=Xu%2C+Yuanze&rft.date=2025-07-01&rft.eissn=1436-5073&rft.volume=192&rft.issue=7&rft.spage=400&rft_id=info:doi/10.1007%2Fs00604-025-07268-w&rft_id=info%3Apmid%2F40461809&rft.externalDocID=40461809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-3672&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-3672&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-3672&client=summon