BPP-enhanced core–shell structured multilayer hyperbolic metamaterial composite as SERS substrate for ultrasensitive molecular detection
A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al 2 O 3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon pol...
Saved in:
Published in | Mikrochimica acta (1966) Vol. 192; no. 7; p. 400 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al
2
O
3
thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core–shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10
−12
M for rhodamine 6G (R6G) and 1.5 × 10
−9
M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection.
Graphical Abstract |
---|---|
AbstractList | A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al2O3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core-shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10-12 M for rhodamine 6G (R6G) and 1.5 × 10-9 M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection.A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al2O3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core-shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10-12 M for rhodamine 6G (R6G) and 1.5 × 10-9 M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection. A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al 2 O 3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core–shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10 −12 M for rhodamine 6G (R6G) and 1.5 × 10 −9 M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection. Graphical Abstract A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al O thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core-shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10 M for rhodamine 6G (R6G) and 1.5 × 10 M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection. A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al2O3 thin films (MLFs) was designed to achieve electromagnetic field enhancement by coupling localized surface plasmon resonance (LSPR) with bulk plasmon polariton (BPP). Surface plasmon polaritons (SPPs) in MLFs can couple to form BPP, which significantly enhance the localized electric field intensity within the Au@ZIF-8 (zeolitic imidazolate framework-8) nanogaps. Moreover, the electric field amplification increases progressively with the number of film layers. Within the Au@ZIF-8 core–shell structure, the ZIF-8 serves as a shell to control particle spacing (thereby preventing agglomeration) and concentrate probe molecules within electromagnetic field hotspots. The experimental results demonstrate detection limits of 8.6 × 10−12 M for rhodamine 6G (R6G) and 1.5 × 10−9 M for Crystal Violet (CV), representing a significant improvement compared with conventional SERS substrates. This study provides new insights into the synergistic mechanisms of SPP with LSPR, and demonstrates the potential applications of composite Raman substrates in ultrasensitive molecular detection. |
ArticleNumber | 400 |
Author | Shan, Xiaomu Wei, Zhuofan Xu, Yuanze Jiang, Shouzhen Wang, Sen Shi, Jian |
Author_xml | – sequence: 1 givenname: Zhuofan surname: Wei fullname: Wei, Zhuofan organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University – sequence: 2 givenname: Xiaomu surname: Shan fullname: Shan, Xiaomu organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University – sequence: 3 givenname: Jian surname: Shi fullname: Shi, Jian organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University – sequence: 4 givenname: Yuanze surname: Xu fullname: Xu, Yuanze organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University – sequence: 5 givenname: Sen surname: Wang fullname: Wang, Sen email: 1990501855@qq.com organization: Shandong Normal University – sequence: 6 givenname: Shouzhen surname: Jiang fullname: Jiang, Shouzhen email: jiang_sz@126.com organization: Collaborative Innovation Center of Light Manipulations and Applicationsin, School of Physics and Electronics , Universities of Shandong, Shandong Normal University, Shandong Key Laboratory of Medical Physics, Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40461809$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEUhoNU7G31D7iQgBs3sfmaZGappX5AwWJ1HTKZM94pmck1H5a7c-3Wf-gvaepUBReFQODked-Tc94jdLCEBRB6yuhLRqk-SZQqKgnlDaGaq5ZcP0AbJoUiDdXiAG0o5YoIpfkhOkrpilKmFZeP0KGkUrGWdhv04_XFBYFlaxcHA3Yhwq_vP9MWvMcpx-JyibU-F58nb_cQ8Xa_g9gHPzk8Q7azzRAn66t03oU0ZcA24cuzj5c4lb5a1Hc8hoirQ7QJlopM3wDPwYMr3kY8QAaXp7A8Rg9H6xM8ubuP0ec3Z59O35HzD2_fn746J07wNhPFG8t67cZBdt3QcCFbxwQTWvdq6GUHnZP19HpsQbBmFIqxrmkHPqpa5kocoxer7y6GrwVSNvOUXJ3YLhBKMoKzptGCa13R5_-hV6HEpf5upWSrO16pZ3dU6WcYzC5Os41782fLFeAr4GJIKcL4F2HU3EZp1ihNjdL8jtJcV5FYRanCyxeI_3rfo7oBllykMg |
Cites_doi | 10.1021/jp0687908 10.1364/OE.389886 10.13103/JFHS.2020.35.2.109 10.1364/OE.23.024811 10.1021/nl402660s 10.1063/5.0042808 10.1088/1367-2630/15/7/075025 10.1016/j.atmosenv.2014.08.048 10.1021/acssensors.7b00671 10.1364/OL.40.003177 10.1007/s11433-012-4860-0 10.1007/s00216-020-02588-7 10.1364/OE.17.008669 10.1021/acsnano.4c00208 10.1016/j.apsusc.2021.149729 10.4103/2229-5186.79345 10.1016/j.snb.2021.130934 10.1088/1361-6528/abd7b2 10.1002/adom.201300504 10.1021/acsnano.4c01474 10.1016/j.foodchem.2025.144165 10.1039/C6EE02265K 10.1016/j.saa.2018.11.004 10.1021/acs.chemrev.9b00592 10.1016/0042-207x(83)90613-9 10.1186/s40580-014-0014-6 10.1364/OE.454893 10.1021/acs.analchem.0c01333 10.1002/adma.202303001 10.1039/C7TC04748G 10.1007/s00340-014-5907-x 10.1186/s11671-025-04189-8 10.1515/nanoph-2021-0301 10.1039/FT9918703881 10.1021/acs.analchem.0c05432 10.1021/acsnano.8b03217 10.2116/analsci.19P437 10.1016/j.saa.2022.121212 10.1016/j.jclepro.2019.06.164 10.1016/j.cej.2019.122710 10.1016/j.molstruc.2023.136407 10.1016/j.aca.2024.342911 10.1021/acs.accounts.1c00682 10.1038/s41598-017-05939-0 10.1016/j.talanta.2018.06.013 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1007/s00604-025-07268-w |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1436-5073 |
ExternalDocumentID | 40461809 10_1007_s00604_025_07268_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12074226 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2024MA084 funderid: https://doi.org/10.13039/501100007129 – fundername: National Natural Science Foundation of China grantid: 12074226 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2024MA084 |
GroupedDBID | -~X .86 .VR 06C 06D 0R~ 0VY 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 YLTOR Z45 Z8Z ZMTXR ~02 ~EX ~KM -Y2 1SB 2.D 28- 2P1 2VQ 53G 5QI 7X7 88E 8FE 8FG 8FI 8FJ A8Z AAIKT AARHV AAYTO AAYXX ABJCF ABQSL ABULA ABUWG ACBXY ADHKG AEBTG AEFIE AEKMD AFEXP AFGCZ AFKRA AGGDS AGJBK AGQPQ AJBLW BBWZM BDATZ BENPR BGLVJ BPHCQ BVXVI CAG CCPQU CITATION COF D1I EJD EPL FINBP FSGXE FYUFA H13 HCIFZ HMCUK I-F ITC KB. KOW M1P ML- N2Q NDZJH O9- PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO R4E RNI RZK S26 S28 SCLPG T16 TUS UKHRP UZXMN VFIZW W4F Y6R ~8M NPM K9. 7X8 |
ID | FETCH-LOGICAL-c328t-625a1b7cfd499d52348c131377b6db49e9c49c4b7f8e315f3611958d2f69c4263 |
IEDL.DBID | U2A |
ISSN | 0026-3672 1436-5073 |
IngestDate | Wed Jul 02 02:47:17 EDT 2025 Sat Aug 23 12:39:55 EDT 2025 Sun Jul 20 01:30:43 EDT 2025 Mon Aug 25 08:20:24 EDT 2025 Sun Jul 20 01:10:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | LSPR Ultrasensitive molecular detection BPP Au@ZIF-8 SERS |
Language | English |
License | 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-625a1b7cfd499d52348c131377b6db49e9c49c4b7f8e315f3611958d2f69c4263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 40461809 |
PQID | 3215548792 |
PQPubID | 2043622 |
ParticipantIDs | proquest_miscellaneous_3215573277 proquest_journals_3215548792 pubmed_primary_40461809 crossref_primary_10_1007_s00604_025_07268_w springer_journals_10_1007_s00604_025_07268_w |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Austria – name: Heidelberg |
PublicationSubtitle | Analytical Sciences and Technologies on the Micro- and Nanoscale |
PublicationTitle | Mikrochimica acta (1966) |
PublicationTitleAbbrev | Microchim Acta |
PublicationTitleAlternate | Mikrochim Acta |
PublicationYear | 2025 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | R Liu (7268_CR38) 2021; 6 CH Lai (7268_CR30) 2017; 7 F Hubenthal (7268_CR15) 2014; 117 Y Ma (7268_CR10) 2020; 381 W Yue (7268_CR26) 2022; 30 JB Lassiter (7268_CR23) 2013; 13 X Liu (7268_CR32) 2017; 10 W Kong (7268_CR25) 2018; 6 RM Davis (7268_CR7) 2018; 12 X Li (7268_CR3) 2020; 36 A Shrivastava (7268_CR39) 2011; 2 Y Liu (7268_CR34) 2024; 18 J Xie (7268_CR8) 2024; 1317 M Shafi (7268_CR35) 2021; 555 7268_CR11 C Zhang (7268_CR5) 2015; 23 7268_CR12 H Hu (7268_CR18) 2024; 36 DJ Cao (7268_CR42) 2019; 210 ZM Jin (7268_CR22) 2014; 2 JA Creighton (7268_CR13) 1991; 87 7268_CR16 EC Le Ru (7268_CR40) 2007; 111 Z Li (7268_CR31) 2020; 28 Z Zheng (7268_CR4) 2018; 188 Y Wy (7268_CR17) 2022; 55 JM Montgomery (7268_CR21) 2009; 17 Y Dumanoglu (7268_CR33) 2014; 98 SM Yakout (7268_CR41) 2019; 234 Z Dai (7268_CR28) 2020; 120 EC Le Ru (7268_CR14) 2024; 18 J Dong (7268_CR24) 2021; 32 P Shekhar (7268_CR29) 2014; 1 H Li (7268_CR2) 2020; 412 R Liu (7268_CR27) 2021; 10 Q Liu (7268_CR1) 2024; 351 JF Torrado (7268_CR19) 2013; 15 7268_CR43 7268_CR44 7268_CR45 L Zhang (7268_CR6) 2020; 92 M Bilal (7268_CR36) 2025; 20 QQ Chen (7268_CR37) 2021; 93 J Zhu (7268_CR20) 2015; 55 X Qiu (7268_CR9) 2022; 276 |
References_xml | – volume: 111 start-page: 13794 issue: 37 year: 2007 ident: 7268_CR40 publication-title: JPC C doi: 10.1021/jp0687908 – volume: 28 start-page: 9174 issue: 7 year: 2020 ident: 7268_CR31 publication-title: Opt express doi: 10.1364/OE.389886 – ident: 7268_CR45 doi: 10.13103/JFHS.2020.35.2.109 – volume: 23 start-page: 24811 issue: 19 year: 2015 ident: 7268_CR5 publication-title: Opt Express doi: 10.1364/OE.23.024811 – volume: 13 start-page: 5866 issue: 12 year: 2013 ident: 7268_CR23 publication-title: Nano Lett doi: 10.1021/nl402660s – volume: 6 start-page: 3 year: 2021 ident: 7268_CR38 publication-title: Apl Photonics doi: 10.1063/5.0042808 – volume: 15 issue: 7 year: 2013 ident: 7268_CR19 publication-title: New J Phys doi: 10.1088/1367-2630/15/7/075025 – volume: 98 start-page: 168 year: 2014 ident: 7268_CR33 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2014.08.048 – ident: 7268_CR44 doi: 10.1021/acssensors.7b00671 – ident: 7268_CR16 doi: 10.1364/OL.40.003177 – volume: 55 start-page: 1776 year: 2015 ident: 7268_CR20 publication-title: Sci China Phys Mech doi: 10.1007/s11433-012-4860-0 – volume: 412 start-page: 3063 year: 2020 ident: 7268_CR2 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-020-02588-7 – volume: 17 start-page: 8669 issue: 10 year: 2009 ident: 7268_CR21 publication-title: Opt Express doi: 10.1364/OE.17.008669 – volume: 18 start-page: 11234 issue: 17 year: 2024 ident: 7268_CR34 publication-title: ACS Nano doi: 10.1021/acsnano.4c00208 – volume: 555 start-page: 149729 year: 2021 ident: 7268_CR35 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.149729 – volume: 2 start-page: 21 issue: 1 year: 2011 ident: 7268_CR39 publication-title: Chron Young Sci doi: 10.4103/2229-5186.79345 – volume: 351 year: 2024 ident: 7268_CR1 publication-title: Sensor Actuat B-Chem doi: 10.1016/j.snb.2021.130934 – volume: 32 issue: 15 year: 2021 ident: 7268_CR24 publication-title: Nanotechnology doi: 10.1088/1361-6528/abd7b2 – volume: 2 start-page: 588 issue: 6 year: 2014 ident: 7268_CR22 publication-title: Adv Opt Mater doi: 10.1002/adom.201300504 – volume: 18 start-page: 9773 issue: 14 year: 2024 ident: 7268_CR14 publication-title: ACS nano doi: 10.1021/acsnano.4c01474 – ident: 7268_CR11 doi: 10.1016/j.foodchem.2025.144165 – volume: 10 start-page: 402 issue: 2 year: 2017 ident: 7268_CR32 publication-title: Energ Environ Sci doi: 10.1039/C6EE02265K – volume: 210 start-page: 9 year: 2019 ident: 7268_CR42 publication-title: Spectrochim Acta A doi: 10.1016/j.saa.2018.11.004 – volume: 120 start-page: 6197 issue: 13 year: 2020 ident: 7268_CR28 publication-title: Chem Rev doi: 10.1021/acs.chemrev.9b00592 – ident: 7268_CR12 doi: 10.1016/0042-207x(83)90613-9 – volume: 1 start-page: 1 year: 2014 ident: 7268_CR29 publication-title: Nano Converg doi: 10.1186/s40580-014-0014-6 – volume: 30 start-page: 13226 issue: 8 year: 2022 ident: 7268_CR26 publication-title: Opt Express doi: 10.1364/OE.454893 – volume: 92 start-page: 9838 issue: 14 year: 2020 ident: 7268_CR6 publication-title: Anal Chem doi: 10.1021/acs.analchem.0c01333 – volume: 36 start-page: 2303001 issue: 22 year: 2024 ident: 7268_CR18 publication-title: Adv Mater doi: 10.1002/adma.202303001 – volume: 6 start-page: 1797 issue: 7 year: 2018 ident: 7268_CR25 publication-title: J Mater Chem C doi: 10.1039/C7TC04748G – volume: 117 start-page: 1 year: 2014 ident: 7268_CR15 publication-title: Appl Phys B-lasers O doi: 10.1007/s00340-014-5907-x – volume: 20 start-page: 1 issue: 1 year: 2025 ident: 7268_CR36 publication-title: Nanoscale Res Lett doi: 10.1186/s11671-025-04189-8 – volume: 10 start-page: 2949 issue: 11 year: 2021 ident: 7268_CR27 publication-title: Nanophotonics-berlin doi: 10.1515/nanoph-2021-0301 – volume: 87 start-page: 3881 issue: 24 year: 1991 ident: 7268_CR13 publication-title: J Chem Soc Faraday Trans doi: 10.1039/FT9918703881 – volume: 93 start-page: 7188 issue: 19 year: 2021 ident: 7268_CR37 publication-title: Anal Chem doi: 10.1021/acs.analchem.0c05432 – volume: 12 start-page: 9669 issue: 10 year: 2018 ident: 7268_CR7 publication-title: Acs Nano doi: 10.1021/acsnano.8b03217 – volume: 36 start-page: 1025 issue: 9 year: 2020 ident: 7268_CR3 publication-title: Anal Sci doi: 10.2116/analsci.19P437 – volume: 276 year: 2022 ident: 7268_CR9 publication-title: Spectrochim Acta A doi: 10.1016/j.saa.2022.121212 – volume: 234 start-page: 124 year: 2019 ident: 7268_CR41 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.06.164 – volume: 381 year: 2020 ident: 7268_CR10 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.122710 – ident: 7268_CR43 doi: 10.1016/j.molstruc.2023.136407 – volume: 1317 start-page: 342911 year: 2024 ident: 7268_CR8 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2024.342911 – volume: 55 start-page: 831 issue: 6 year: 2022 ident: 7268_CR17 publication-title: Acc Chem Res doi: 10.1021/acs.accounts.1c00682 – volume: 7 start-page: 5446 issue: 1 year: 2017 ident: 7268_CR30 publication-title: Sci Rep-uk doi: 10.1038/s41598-017-05939-0 – volume: 188 start-page: 507 year: 2018 ident: 7268_CR4 publication-title: Talanta doi: 10.1016/j.talanta.2018.06.013 |
SSID | ssj0017624 |
Score | 2.4167156 |
Snippet | A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al
2
O
3
thin films... A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al O thin films... A surface-enhanced Raman scattering (SERS) composite substrate based on the synergy between Au@ZIF-8 nanoparticles (NPs) and multilayer Au/Al2O3 thin films... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 400 |
SubjectTerms | Aluminum oxide Analytical Chemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Core-shell structure Electric fields Electromagnetic fields Electromagnetism Gold Metal-organic frameworks Metamaterials Microengineering Multilayers Nanochemistry Nanoparticles Nanotechnology Polaritons Raman spectra Rhodamine 6G Substrates Surface plasmon resonance Thin films Zeolites |
Title | BPP-enhanced core–shell structured multilayer hyperbolic metamaterial composite as SERS substrate for ultrasensitive molecular detection |
URI | https://link.springer.com/article/10.1007/s00604-025-07268-w https://www.ncbi.nlm.nih.gov/pubmed/40461809 https://www.proquest.com/docview/3215548792 https://www.proquest.com/docview/3215573277 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HPQivq0vInjTwDZNk_a4yqooiqgLeipNk7IHrbLdZa-evfoP_SVO0oeIehB6SkNaMpPMN8zMNwD7cYZGzM81HiTDKEeAQZWvFY1ThMNC51xltnb48kqc9fn5fXhfF4WVTbZ7E5J0N3Vb7GapQzi17Vc7komITqZhNrS-O2pxn3Xb2AEe75p7WdBASFaXyvy-xndz9ANj_oiPOrNzsggLNV4k3UrASzBlimWYO27atK3A29H1NTXFwEXyiSWl_Hh9L216J6m4YcdDHHd5g48p4msyQM9zqCwdMHkyoxQRq1NCYpPLbQaXIWlJbns3t6TES8WR1xJEtgRXGKLJK0qXbUSemr66RJuRy-cqVqF_0rs7PqN1gwWaBSwaUfR9Ul_JLNfo92h0SXmU-YHlIFRCKx6bOOP4KJlHJvDDPBCWIC7SLBc4zESwBjPFc2E2gBjECWj8U5nhBiulY94xmod5HmqV-Up4cNDsc_JS8WgkLWOyk0qCUkmcVJKJB9uNKJL6TJVJwCz2iWTMPNhrX-Nu2xBHWpjncT1HBkxKD9YrEbaf45ZbPurEHhw2Mv1a_O9_2fzf9C2YZ5V-0Y6_DTMoabODuGWkdmG2e_pw0dt16voJAR3pzg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HPQivq3PCN40sE2zSXtUUdYn4rrgrTRNyh7crmxXvHr26j_0lzhJHyKrB6GnNKQlk2S-Yb75AnAQpejE_EzjRjKMcgQYVPla0ShBOCx0xlVqa4dvbkWnxy8f249VUVhRs93rlKQ7qZtiNysdwqm9frUlmQjp6zTMIhgILZGrx46b3AFu70p7WdBASFaVyvw-xk93NIExJ_Kjzu2cL8JChRfJcWngJZgy-TLMndbXtK3A-8ndHTV532XyiRWl_Hz7KCy9k5TasC8jbHe8wacE8TXpY-Q5UlYOmAzMOEHE6hYhseRyy-AyJClI9-y-Swo8VJx4LUFkS3CEEbq8vHBsIzKo79Ul2owdnytfhd752cNph1YXLNA0YOGYYuyT-Eqmmca4R2NIysPUD6wGoRJa8chEKcdHySw0gd_OAmEF4kLNMoHNTARrMJMPc7MBxCBOQOefyBQnWCkd8ZbRvJ1lba1SXwkPDut5jp9LHY24UUx2VonRKrGzSvzqwXZtirjaU0UcMIt9QhkxD_ab1zjbNsWR5Gb4UvWRAZPSg_XShM3nuNWWD1uRB0e1Tb8H__tfNv_XfQ_mOg831_H1xe3VFsyzcq3Rlr8NM2h1s4MYZqx23ZL9AtT16y0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkNpeKqAUUl5G4gYWG8drJ0deK95aFVbiFsWxLQ4Q0CaIa89c-Yf8EsbOgyLoASknx3KimbHnG83MZ4D1JEcnFlqNG8kwyhFgUBVqRZMM4bDQlqvc9Q6fnomDET-67F_-08Xvq93blGTd0-BYmopq607bra7xzdGIcOquYu1JJmL68AWm8DgOnV2P2HaXR8Ct3vAwCxoJyZq2mY_XeOua3uHNd7lS74IG0_CjwY5ku1b2DEyYYha-7bZXtv2Ex53hkJriymf1iSOofP77VLpST1LzxN6PcdzXEF5niLXJFUahY-WogcmNqTJEr94giSs0d9VchmQlOd__c05KPGA8kS1BlEtwhTG6v6L0lUfkpr1jl2hT-dquYg5Gg_2L3QPaXLZA84jFFcU4KAuVzK3GGEhjeMrjHAUaSamEVjwxSc7xUdLGJgr7NhKOLC7WzAocZiL6BZPFbWEWgBjEDAgEMpmjgJXSCe8ZzfvW9rXKQyUC2GjlnN7VnBppx57stZKiVlKvlfQhgKVWFWmzv8o0Yg4HxTJhAax1r1HaLt2RFeb2vpkjIyZlAPO1CrvPccczH_eSADZbnb4u_v9_-f256avwdbg3SE8Oz44X4TurTY32wiWYRKWbZYQzlVrxFvsCLyLvaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BPP-enhanced+core-shell+structured+multilayer+hyperbolic+metamaterial+composite+as+SERS+substrate+for+ultrasensitive+molecular+detection&rft.jtitle=Mikrochimica+acta+%281966%29&rft.au=Wei%2C+Zhuofan&rft.au=Shan%2C+Xiaomu&rft.au=Shi%2C+Jian&rft.au=Xu%2C+Yuanze&rft.date=2025-07-01&rft.eissn=1436-5073&rft.volume=192&rft.issue=7&rft.spage=400&rft_id=info:doi/10.1007%2Fs00604-025-07268-w&rft_id=info%3Apmid%2F40461809&rft.externalDocID=40461809 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-3672&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-3672&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-3672&client=summon |