Probabilistic approach for characterising the static risk of ships using Bayesian networks
•Static risk modelling of individual ships based on Bayesian networks.•Ship Risk Profile parameters of Port State Control inspection used as risk variables.•Characterization of static risk profile of the maritime traffic.•Static risk profile of individual ships under incomplete information. This pap...
Saved in:
Published in | Reliability engineering & system safety Vol. 203; p. 107073 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Static risk modelling of individual ships based on Bayesian networks.•Ship Risk Profile parameters of Port State Control inspection used as risk variables.•Characterization of static risk profile of the maritime traffic.•Static risk profile of individual ships under incomplete information.
This paper proposes a probabilistic approach for characterising the static risk of individual ships based on Bayesian networks (BNs). The approach uses the Ship Risk Profile parameters of the New Inspection Regime of the Paris Memorandum of Understanding (MoU) on Port State Control (PSC), not as risk factors for ship selection in PSC inspections, but as risk variables for ship risk assessment and maritime traffic monitoring. The objectives of the proposed approach are threefold: the characterisation of the static risk profile of the maritime traffic crossing a given geographic area; the identification of the most likely circumstances under which a specific static risk profile is expected to occur; and the characterisation of the static risk profile of individual ships in the presence of incomplete information, such as that obtained from the Automatic Identification System. A dataset collected from the Paris MoU platform is used for the development of the BN model and its validity is assessed. A quantitative assessment for the predictive validity of the model is also conducted by a sensitivity analysis that shows the consistency of the model with the Ship Risk Profile criteria and with the results of other studies developed also from historical PSC inspection data. |
---|---|
AbstractList | This paper proposes a probabilistic approach for characterising the static risk of individual ships based on Bayesian networks (BNs). The approach uses the Ship Risk Profile parameters of the New Inspection Regime of the Paris Memorandum of Understanding (MoU) on Port State Control (PSC), not as risk factors for ship selection in PSC inspections, but as risk variables for ship risk assessment and maritime traffic monitoring. The objectives of the proposed approach are threefold: the characterisation of the static risk profile of the maritime traffic crossing a given geographic area; the identification of the most likely circumstances under which a specific static risk profile is expected to occur; and the characterisation of the static risk profile of individual ships in the presence of incomplete information, such as that obtained from the Automatic Identification System. A dataset collected from the Paris MoU platform is used for the development of the BN model and its validity is assessed. A quantitative assessment for the predictive validity of the model is also conducted by a sensitivity analysis that shows the consistency of the model with the Ship Risk Profile criteria and with the results of other studies developed also from historical PSC inspection data. •Static risk modelling of individual ships based on Bayesian networks.•Ship Risk Profile parameters of Port State Control inspection used as risk variables.•Characterization of static risk profile of the maritime traffic.•Static risk profile of individual ships under incomplete information. This paper proposes a probabilistic approach for characterising the static risk of individual ships based on Bayesian networks (BNs). The approach uses the Ship Risk Profile parameters of the New Inspection Regime of the Paris Memorandum of Understanding (MoU) on Port State Control (PSC), not as risk factors for ship selection in PSC inspections, but as risk variables for ship risk assessment and maritime traffic monitoring. The objectives of the proposed approach are threefold: the characterisation of the static risk profile of the maritime traffic crossing a given geographic area; the identification of the most likely circumstances under which a specific static risk profile is expected to occur; and the characterisation of the static risk profile of individual ships in the presence of incomplete information, such as that obtained from the Automatic Identification System. A dataset collected from the Paris MoU platform is used for the development of the BN model and its validity is assessed. A quantitative assessment for the predictive validity of the model is also conducted by a sensitivity analysis that shows the consistency of the model with the Ship Risk Profile criteria and with the results of other studies developed also from historical PSC inspection data. |
ArticleNumber | 107073 |
Author | Guedes Soares, C. Dinis, D. Teixeira, A.P. |
Author_xml | – sequence: 1 givenname: D. surname: Dinis fullname: Dinis, D. – sequence: 2 givenname: A.P. surname: Teixeira fullname: Teixeira, A.P. email: teixeira@centec.tecnico.ulisboa.pt – sequence: 3 givenname: C. surname: Guedes Soares fullname: Guedes Soares, C. |
BookMark | eNp9kE1PwyAYgImZidv0D3gi8dzJx9pC4kUXv5IletCLF0KBWroJFZhm_97WevKwE8nL8_DxzMDEeWcAOMdogREuLttFMDEuCCLDoEQlPQJTzEqeIUaLCZginuOMUYJOwCzGFiG05Hk5BW_PwVeyslsbk1VQdl3wUjWw9gGqRgapkgk2WvcOU2NgTHLA-skG-hrGxnYR7n63b-TeRCsddCZ9-7CJp-C4lttozv7WOXi9u31ZPWTrp_vH1fU6U5SwlBWYU6K5klrhmuaEsLJiVVkhJYmWeVGYpUYlR1oyXnFS5BjlS0LLqmasQErTObgYz-2f_rkzMYnW74LrrxQk71ncY7inyEip4GMMphZdsB8y7AVGYmgoWjE0FENDMTbsJfZPUnYo4F0K0m4Pq1ejavqvf1kTRFTWOGW0DUYlob09pP8A3waPjw |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_113563 crossref_primary_10_1002_qre_3697 crossref_primary_10_1002_prs_12326 crossref_primary_10_1016_j_oceaneng_2023_114577 crossref_primary_10_3390_jmse10111696 crossref_primary_10_1016_j_ress_2021_107708 crossref_primary_10_1016_j_ress_2021_107904 crossref_primary_10_1016_j_ress_2023_109609 crossref_primary_10_1016_j_ress_2021_107784 crossref_primary_10_1016_j_ress_2021_107463 crossref_primary_10_1016_j_tre_2023_103331 crossref_primary_10_1016_j_ocecoaman_2022_106323 crossref_primary_10_1016_j_ress_2021_107789 crossref_primary_10_1016_j_ress_2023_109489 crossref_primary_10_1016_j_tre_2023_103371 crossref_primary_10_1016_j_ress_2024_110565 crossref_primary_10_1016_j_ress_2023_109166 crossref_primary_10_1016_j_trb_2021_05_003 crossref_primary_10_12716_1001_18_04_03 crossref_primary_10_1016_j_ress_2021_107438 crossref_primary_10_1016_j_tre_2025_103994 crossref_primary_10_1016_j_psep_2022_05_035 crossref_primary_10_1016_j_ress_2021_107674 crossref_primary_10_1016_j_ress_2021_107993 crossref_primary_10_1016_j_ress_2021_108169 crossref_primary_10_3934_era_2023013 crossref_primary_10_1016_j_oceaneng_2024_119002 crossref_primary_10_1016_j_ssci_2022_105942 crossref_primary_10_1016_j_oceaneng_2022_111006 crossref_primary_10_1016_j_oceaneng_2024_119804 crossref_primary_10_1016_j_rsma_2024_103466 crossref_primary_10_1016_j_ress_2024_110187 crossref_primary_10_1016_j_cie_2024_110012 crossref_primary_10_1016_j_ress_2021_107846 crossref_primary_10_1016_j_joes_2022_06_040 crossref_primary_10_1016_j_marpol_2023_105816 crossref_primary_10_3390_app15020529 crossref_primary_10_1016_j_ress_2021_107766 crossref_primary_10_1016_j_ress_2023_109346 crossref_primary_10_1016_j_ress_2021_107886 crossref_primary_10_1016_j_rsma_2023_103193 crossref_primary_10_1016_j_marpolbul_2023_114791 crossref_primary_10_1016_j_ress_2021_107480 crossref_primary_10_1016_j_ress_2024_110105 crossref_primary_10_1016_j_oceaneng_2024_118527 crossref_primary_10_1016_j_ress_2022_108530 crossref_primary_10_3390_jmse12122181 crossref_primary_10_3390_jmse12122220 crossref_primary_10_1016_j_ocecoaman_2024_107473 crossref_primary_10_1016_j_ress_2024_110591 crossref_primary_10_1016_j_trc_2022_103924 crossref_primary_10_1016_j_ress_2024_110153 crossref_primary_10_1016_j_oceaneng_2023_114004 crossref_primary_10_1016_j_tre_2023_103109 crossref_primary_10_1016_j_ress_2021_107819 crossref_primary_10_1016_j_oceaneng_2025_120628 crossref_primary_10_1016_j_ress_2021_108189 crossref_primary_10_3390_jmse12122113 crossref_primary_10_1016_j_oceaneng_2024_119421 crossref_primary_10_1016_j_ocecoaman_2024_107344 crossref_primary_10_1016_j_ress_2020_107277 crossref_primary_10_1016_j_ress_2021_107777 crossref_primary_10_3390_app14156414 crossref_primary_10_3390_jmse11061166 crossref_primary_10_1016_j_ress_2021_107731 crossref_primary_10_1016_j_martra_2022_100062 crossref_primary_10_1016_j_ress_2023_109277 crossref_primary_10_1016_j_oceaneng_2021_109533 crossref_primary_10_1016_j_oceaneng_2021_110479 crossref_primary_10_1016_j_ress_2021_108061 crossref_primary_10_1016_j_ress_2021_108143 crossref_primary_10_1016_j_psep_2024_08_001 |
Cites_doi | 10.1016/j.eswa.2014.06.029 10.1016/j.eswa.2012.07.026 10.1016/j.ress.2012.02.008 10.1016/j.ress.2010.01.009 10.5194/os-12-285-2016 10.1016/j.ress.2015.01.025 10.1016/j.marpolbul.2013.12.026 10.1016/j.oceaneng.2018.10.023 10.1016/j.ress.2016.08.007 10.1016/j.tranpol.2018.09.016 10.1007/s11633-006-0107-8 10.1016/j.marpol.2015.05.013 10.3845/ree.2004.023 10.1016/j.aap.2019.105262 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.tra.2018.01.033 10.1016/j.ress.2017.09.014 10.1109/TKDE.2000.868901 10.1016/j.tranpol.2020.04.009 10.1109/TITS.2017.2724551 10.1016/j.oceaneng.2017.02.002 10.1016/j.oceaneng.2018.04.024 10.1016/0167-9473(93)E0056-A 10.1023/A:1016398407857 10.1111/risa.12757 10.1016/j.oceaneng.2009.07.003 10.1016/j.ress.2016.11.009 10.1016/j.ssci.2013.09.010 10.1016/j.eswa.2013.08.060 10.1016/j.ress.2007.03.035 10.1016/j.oceaneng.2018.06.054 10.1016/j.oceaneng.2017.06.050 10.1016/j.ssci.2019.04.014 10.1016/j.oceaneng.2018.07.040 10.1111/risa.12519 10.1016/j.tre.2006.11.005 10.1016/j.cie.2018.10.015 10.1016/j.marpol.2019.103520 10.1016/j.ress.2013.04.006 10.1016/j.engappai.2010.06.002 10.1016/j.marpol.2004.05.008 10.1016/j.ress.2013.11.014 10.1016/S0951-8320(01)00104-1 10.1016/j.ssci.2016.03.002 10.1016/j.ssci.2018.05.002 10.1016/j.ress.2005.11.037 10.1016/j.ress.2016.06.010 10.1111/risa.12815 10.1016/j.tre.2018.08.001 10.1016/j.aap.2014.09.017 10.1016/j.ress.2007.07.010 10.1007/s10479-018-2768-4 10.1017/S0373463313000519 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Nov 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Nov 2020 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
DOI | 10.1016/j.ress.2020.107073 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0836 |
ExternalDocumentID | 10_1016_j_ress_2020_107073 S0951832020305743 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 8FD C1K EFKBS FR3 SOI |
ID | FETCH-LOGICAL-c328t-61932d9cadc1f352287b8b7b0ca2da566e4d0790da89b92651054237bf8860cd3 |
IEDL.DBID | .~1 |
ISSN | 0951-8320 |
IngestDate | Wed Aug 13 06:34:30 EDT 2025 Tue Jul 01 00:45:02 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Fri Feb 23 02:46:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Static risk factors Bayesian networks Automatic identification system data Ship risk profile |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-61932d9cadc1f352287b8b7b0ca2da566e4d0790da89b92651054237bf8860cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2505418601 |
PQPubID | 2045406 |
ParticipantIDs | proquest_journals_2505418601 crossref_primary_10_1016_j_ress_2020_107073 crossref_citationtrail_10_1016_j_ress_2020_107073 elsevier_sciencedirect_doi_10_1016_j_ress_2020_107073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Svanberg, Santén, Hörteborn, Holm, Finnsgård (bib0065) 2019 Mazaheri, Montewka, Kujala (bib0064) 2016; 86 Yang, Yang, Teixeira (bib0029) 2020; 92 Zhang, Yan, Yang, Wall, Wang (bib0045) 2013; 118 Antão, Grande, Trucco, Guedes Soares (bib0041) 2009 Cariou, Mejia, Wolff (bib0072) 2008; 44 Weber, Medina-Oliva, Simon, Iung (bib0054) 2012; 25 Baksh, Abbassi, Garaniya, Khan (bib0044) 2018; 159 Dinis, Barbosa-Póvoa, Teixeira (bib0056) 2019; 128 Degré (bib0015) 2004; 3 Jensen, Nielsen (bib0053) 2007 Tak, Glansdorp (bib0017) 2005 Fu, Zhang, Montewka, Yan, Zio (bib0060) 2016; 155 Graziano, Schröder-Hinrichs, Ölcer (bib0023) 2017; 143 Khan, Khan, Veitch, Yang (bib0043) 2018; 169 Langseth, Portinale (bib0055) 2007; 92 Graziano, Teixeira, Guedes Soares (bib0011) 2016 Wu, Yan, Wang, Guedes Soares (bib0010) 2017; 37 Guedes Soares, Teixeira, Antão (bib0001) 2010 Hänninen (bib0035) 2014; 73 Lauritzen (bib0059) 1995; 19 Montewka, Goerlandt, Innes-Jones, Owen, Hifi, Puisa (bib0063) 2017; 159 Tu, Zhang, Rachmawati, Rajabally, Bin (bib0004) 2018; 19 Afenyo, Khan, Veitch, Yang (bib0042) 2017; 133 Yang, Yang, Yin (bib0027) 2018; 110 Chen, Huang, Mou, van Gelder PHAJM (bib0074) 2018; 170 Antão, Guedes Soares (bib0005) 2008; 93 Wu, Zong, Yan, Guedes Soares (bib0013) 2018; 164 Pearl (bib0051) 1988 Druzdzel, Gaag (bib0066) 2000; 12 Antão, Guedes Soares (bib0050) 2019; 133 Yang, Yang, Yin, Qu (bib0028) 2018; 118 Dempster, Laird, Rubin (bib0058) 1977; 39 Druzdzel (bib0057) 1999 Lim GJ, Cho J, Bora S, Biobaku T, Parsaei H. Models and computational algorithms for maritime risk analysis: a review. Ann Oper Res2018:1–22. 10.1007/s10479-018-2768-4. Rong, Teixeira, Guedes Soares (bib0020) 2019 Jensen, Guedes Soares, Papanikolaou (bib0034) 2009 Li, Yin, Bang, Yang, Wang (bib0036) 2014; 10 Cariou, Wolff (bib0071) 2015; 60 Goerlandt, Montewka (bib0061) 2014; 79 Kjaerulff, van der Gaag (bib0068) 2000 Sotiralis, Ventikos, Hamann, Golyshev, Teixeira (bib0049) 2016; 156 Pitchforth, Mengersen (bib0031) 2013; 40 Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli (bib0067) 2008 Sage (bib0030) 2005; 29 Kjærulff, Madsen (bib0052) 2008 Graziano, Mejia, Schröder-Hinrichs (bib0024) 2018; 72 Silveira, Teixeira, Guedes Soares (bib0075) 2016 Trucco, Cagno, Ruggeri, Grande (bib0047) 2008; 93 Chen, Huang, Mou, van Gelder PHAJM (bib0003) 2019; 117 Montewka, Ehlers, Goerlandt, Hinz, Tabri, Kujala (bib0038) 2014; 124 Koldenhof, Tak, Glansdorp (bib0018) 2009 Paris (bib0033) 2018 Paris MoU. Paris Memorandum of Understanding on Port State Control. 2018. Silveira, Teixeira, Guedes Soares (bib0019) 2013; 66 Hänninen, Kujala (bib0026) 2014; 41 Coupé, van der Gaag (bib0069) 2002; 36 Montewka, Hinz, Kujala, Matusiak (bib0073) 2010; 95 Koromila, Nivolianitou, Giannakopoulos (bib0037) 2014 Hänninen, Kujala (bib0048) 2012; 102 Guedes Soares, Teixeira (bib0002) 2001; 74 Wu, Yan, Wang, Zhang, Guedes Soares (bib0012) 2017; 37 Hänninenn, Valdez Banda, Kujala (bib0062) 2014; 41 Antão, Guedes Soares (bib0040) 2006; 3 Thieme, Utne, Haugen (bib0039) 2018; 165 Paris (bib0025) 2012 Korb, Nicholson (bib0070) 2004 Zhang, Teixeira, Guedes Soares, Yan (bib0022) 2018; 110 Balmat, Lafont, Maifret, Pessel (bib0014) 2009; 36 Fernandes, Braunschweig, Lourenço, Neves (bib0021) 2016; 12 Guedes Soares, Teixeira, Antão (bib0009) 2000; I Goerlandt, Kujala (bib0006) 2014; 62 Goerlandt, Montewka (bib0007) 2015; 138 Zhang, Teixeira, Guedes Soares, Yan, Liu (bib0046) 2016; 36 Koldenhof, van Iperen (bib0016) 2014 Lauritzen (10.1016/j.ress.2020.107073_bib0059) 1995; 19 Jensen (10.1016/j.ress.2020.107073_bib0034) 2009 Mazaheri (10.1016/j.ress.2020.107073_bib0064) 2016; 86 Koromila (10.1016/j.ress.2020.107073_bib0037) 2014 Afenyo (10.1016/j.ress.2020.107073_bib0042) 2017; 133 Wu (10.1016/j.ress.2020.107073_bib0012) 2017; 37 Fu (10.1016/j.ress.2020.107073_bib0060) 2016; 155 Paris (10.1016/j.ress.2020.107073_bib0033) 2018 Antão (10.1016/j.ress.2020.107073_bib0040) 2006; 3 Degré (10.1016/j.ress.2020.107073_bib0015) 2004; 3 Kjærulff (10.1016/j.ress.2020.107073_bib0052) 2008 Silveira (10.1016/j.ress.2020.107073_bib0075) 2016 Chen (10.1016/j.ress.2020.107073_bib0003) 2019; 117 Silveira (10.1016/j.ress.2020.107073_bib0019) 2013; 66 Li (10.1016/j.ress.2020.107073_bib0036) 2014; 10 10.1016/j.ress.2020.107073_bib0008 Khan (10.1016/j.ress.2020.107073_bib0043) 2018; 169 Chen (10.1016/j.ress.2020.107073_bib0074) 2018; 170 Montewka (10.1016/j.ress.2020.107073_bib0073) 2010; 95 Graziano (10.1016/j.ress.2020.107073_bib0011) 2016 Zhang (10.1016/j.ress.2020.107073_bib0045) 2013; 118 Guedes Soares (10.1016/j.ress.2020.107073_bib0009) 2000; I Yang (10.1016/j.ress.2020.107073_bib0027) 2018; 110 Hänninen (10.1016/j.ress.2020.107073_bib0035) 2014; 73 Kjaerulff (10.1016/j.ress.2020.107073_bib0068) 2000 Rong (10.1016/j.ress.2020.107073_bib0020) 2019 Goerlandt (10.1016/j.ress.2020.107073_bib0061) 2014; 79 Korb (10.1016/j.ress.2020.107073_bib0070) 2004 Koldenhof (10.1016/j.ress.2020.107073_bib0018) 2009 Thieme (10.1016/j.ress.2020.107073_bib0039) 2018; 165 Svanberg (10.1016/j.ress.2020.107073_bib0065) 2019 Yang (10.1016/j.ress.2020.107073_bib0029) 2020; 92 Langseth (10.1016/j.ress.2020.107073_bib0055) 2007; 92 Guedes Soares (10.1016/j.ress.2020.107073_bib0002) 2001; 74 Antão (10.1016/j.ress.2020.107073_bib0005) 2008; 93 Tak (10.1016/j.ress.2020.107073_bib0017) 2005 Paris (10.1016/j.ress.2020.107073_bib0025) 2012 Tu (10.1016/j.ress.2020.107073_bib0004) 2018; 19 Graziano (10.1016/j.ress.2020.107073_bib0023) 2017; 143 Dinis (10.1016/j.ress.2020.107073_bib0056) 2019; 128 Saltelli (10.1016/j.ress.2020.107073_bib0067) 2008 Wu (10.1016/j.ress.2020.107073_bib0010) 2017; 37 Goerlandt (10.1016/j.ress.2020.107073_bib0006) 2014; 62 Antão (10.1016/j.ress.2020.107073_bib0050) 2019; 133 Druzdzel (10.1016/j.ress.2020.107073_bib0057) 1999 Fernandes (10.1016/j.ress.2020.107073_bib0021) 2016; 12 Zhang (10.1016/j.ress.2020.107073_bib0046) 2016; 36 Hänninen (10.1016/j.ress.2020.107073_bib0048) 2012; 102 Hänninenn (10.1016/j.ress.2020.107073_bib0062) 2014; 41 Sage (10.1016/j.ress.2020.107073_bib0030) 2005; 29 Trucco (10.1016/j.ress.2020.107073_bib0047) 2008; 93 Baksh (10.1016/j.ress.2020.107073_bib0044) 2018; 159 Montewka (10.1016/j.ress.2020.107073_bib0063) 2017; 159 Pearl (10.1016/j.ress.2020.107073_bib0051) 1988 Goerlandt (10.1016/j.ress.2020.107073_bib0007) 2015; 138 Cariou (10.1016/j.ress.2020.107073_bib0071) 2015; 60 Graziano (10.1016/j.ress.2020.107073_bib0024) 2018; 72 Antão (10.1016/j.ress.2020.107073_bib0041) 2009 Pitchforth (10.1016/j.ress.2020.107073_bib0031) 2013; 40 Jensen (10.1016/j.ress.2020.107073_bib0053) 2007 Weber (10.1016/j.ress.2020.107073_bib0054) 2012; 25 Coupé (10.1016/j.ress.2020.107073_bib0069) 2002; 36 Cariou (10.1016/j.ress.2020.107073_bib0072) 2008; 44 Yang (10.1016/j.ress.2020.107073_bib0028) 2018; 118 Montewka (10.1016/j.ress.2020.107073_bib0038) 2014; 124 Hänninen (10.1016/j.ress.2020.107073_bib0026) 2014; 41 Druzdzel (10.1016/j.ress.2020.107073_bib0066) 2000; 12 Balmat (10.1016/j.ress.2020.107073_bib0014) 2009; 36 Guedes Soares (10.1016/j.ress.2020.107073_bib0001) 2010 Zhang (10.1016/j.ress.2020.107073_bib0022) 2018; 110 Dempster (10.1016/j.ress.2020.107073_bib0058) 1977; 39 Koldenhof (10.1016/j.ress.2020.107073_bib0016) 2014 Wu (10.1016/j.ress.2020.107073_bib0013) 2018; 164 10.1016/j.ress.2020.107073_bib0032 Sotiralis (10.1016/j.ress.2020.107073_bib0049) 2016; 156 |
References_xml | – volume: 72 start-page: 97 year: 2018 end-page: 108 ident: bib0024 article-title: Achievements and challenges on the implementation of the European Directive on Port State Control publication-title: Transp Policy – volume: 19 start-page: 191 year: 1995 end-page: 201 ident: bib0059 article-title: The EM algorithm for graphical association models with missing data publication-title: Comput Stat Data Anal – start-page: 3265 year: 2009 end-page: 3274 ident: bib0041 article-title: Analysis of Maritime Accident Data with BBN Models publication-title: Safety, Reliability and Risk Analysis: Theory, Methods and Applications – start-page: 112 year: 2009 end-page: 119 ident: bib0018 article-title: Risk awareness; a model to calculate the risk of a ship dynamically publication-title: Proceedings of the 13th Traffic Engineering Conferences MTE 2009 – volume: 36 start-page: 323 year: 2002 end-page: 356 ident: bib0069 article-title: Properties of Sensitivity Analysis of Bayesian Belief Networks publication-title: Ann Math Artif Intell – year: 2004 ident: bib0070 article-title: Bayesian Artificial Intelligence – volume: 79 start-page: 130 year: 2014 end-page: 144 ident: bib0061 article-title: A probabilistic model for accidental cargo oil outflow from product tankers in a ship-ship collision publication-title: Mar Pollut Bull – year: 2005 ident: bib0017 article-title: Vessel Traffic Management in European Waters publication-title: Eur. Study Baseline Adv. Reg. Coast. Traffic Manag. Final Work Packag. 7 Rep. – volume: 74 start-page: 299 year: 2001 end-page: 309 ident: bib0002 article-title: Risk assessment in maritime transportation publication-title: Reliab Eng Syst Saf – volume: 110 start-page: 363 year: 2018 end-page: 371 ident: bib0022 article-title: Quantitative assessment of collision risk influence factors in the Tianjin port publication-title: Saf Sci – volume: 41 start-page: 7837 year: 2014 end-page: 7846 ident: bib0062 article-title: Bayesian network model of maritime safety management publication-title: Expert Syst Appl – volume: 3 start-page: 107 year: 2006 end-page: 116 ident: bib0040 article-title: Fault-Tree Models of Accident Scenarios of RoPax Vessels publication-title: Int J Autom Comput – volume: 60 start-page: 27 year: 2015 end-page: 39 ident: bib0071 article-title: Identifying substandard vessels through port state control inspections: a new methodology for concentrated inspection campaigns publication-title: Mar Policy – year: 2014 ident: bib0037 article-title: Bayesian Network to Predict Environmental Risk of a Possible Ship Accident publication-title: Proceedings of the 7th International Conference PErvasive Technology Relat to Assist Environ – volume: I start-page: 521 year: 2000 end-page: 528 ident: bib0009 article-title: Accounting for Human Factors in the Analysis of Maritime accidents publication-title: Foresight Precaut. – volume: 41 start-page: 1632 year: 2014 end-page: 1646 ident: bib0026 article-title: Bayesian network modeling of Port State Control inspection findings and ship accident involvement publication-title: Expert Syst Appl – reference: Lim GJ, Cho J, Bora S, Biobaku T, Parsaei H. Models and computational algorithms for maritime risk analysis: a review. Ann Oper Res2018:1–22. 10.1007/s10479-018-2768-4. – volume: 92 start-page: 92 year: 2007 end-page: 108 ident: bib0055 article-title: Bayesian networks in reliability publication-title: Reliab Eng Syst Saf – volume: 25 start-page: 671 year: 2012 end-page: 682 ident: bib0054 article-title: Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas publication-title: Eng Appl Artif Intell – year: 2008 ident: bib0052 article-title: Bayesian Networks and Influence Diagrams – start-page: 342 year: 1999 end-page: 343 ident: bib0057 article-title: SMILE : structural modeling, inference, and learning engine and genie: a development environment for graphical decision-theoretic models publication-title: Proc. Sixt. Natl. Conf. Artif. Intell. – volume: 110 start-page: 38 year: 2018 end-page: 56 ident: bib0027 article-title: Realising advanced risk-based port state control inspection using data-driven Bayesian networks publication-title: Transp Res Part A Policy Pract – volume: 37 start-page: 1936 year: 2017 end-page: 1957 ident: bib0010 article-title: An Evidential Reasoning-Based CREAM to human reliability analysis in maritime accident process publication-title: Risk Anal – volume: 159 start-page: 283 year: 2017 end-page: 300 ident: bib0063 article-title: Enhancing human performance in ship operations by modifying global design factors at the design stage publication-title: Reliab Eng Syst Saf – volume: 165 start-page: 140 year: 2018 end-page: 154 ident: bib0039 article-title: Assessing ship risk model applicability to Marine Autonomous Surface Ships publication-title: Ocean Eng – volume: 73 start-page: 305 year: 2014 end-page: 312 ident: bib0035 article-title: Bayesian networks for maritime traffic accident prevention: Benefits and challenges publication-title: Accid Anal Prev – volume: 3 start-page: 23 year: 2004 end-page: 29 ident: bib0015 article-title: IRIS: un Indicateur de Risque Individuel de navire pour la Securite en mer fonde sur les concepts des modeles d'evaluation des risques publication-title: Rev l’ Electr l’ Electron – volume: 44 start-page: 491 year: 2008 end-page: 503 ident: bib0072 article-title: On the effectiveness of port state control inspections publication-title: Transp Res Part E Logist Transp Rev – start-page: 213 year: 2009 end-page: 231 ident: bib0034 article-title: 5.3 Collisions and Groundings publication-title: Risk-Based Sh. Des. Methods, Tools Appl. – volume: 159 start-page: 422 year: 2018 end-page: 436 ident: bib0044 article-title: Marine transportation risk assessment using Bayesian Network: Application to Arctic waters publication-title: Ocean Eng – volume: 128 start-page: 920 year: 2019 end-page: 936 ident: bib0056 article-title: Valuing data in aircraft maintenance through big data analytics: A probabilistic approach for capacity planning using Bayesian networks publication-title: Comput Ind Eng – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bib0058 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B – reference: Paris MoU. Paris Memorandum of Understanding on Port State Control. 2018. – volume: 93 start-page: 823 year: 2008 end-page: 834 ident: bib0047 article-title: A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation publication-title: Reliab Eng Syst Saf – start-page: 3660 year: 2019 end-page: 3666 ident: bib0020 article-title: Risk of ship near collision scenarios off the coast of Portugal publication-title: Proceedings of the 29th European Safety and Reliability Conference – volume: 133 start-page: 224 year: 2017 end-page: 230 ident: bib0042 article-title: Arctic shipping accident scenario analysis using Bayesian Network approach publication-title: Ocean Eng – year: 1988 ident: bib0051 article-title: Probabilistic Reasoning in Intelligent Systems – volume: 29 start-page: 349 year: 2005 end-page: 355 ident: bib0030 article-title: Identification of “High Risk Vessels” in coastal waters publication-title: Mar Policy – volume: 86 start-page: 195 year: 2016 end-page: 210 ident: bib0064 article-title: Towards an evidence-based probabilistic risk model for ship-grounding accidents publication-title: Saf Sci – volume: 133 year: 2019 ident: bib0050 article-title: Analysis of the influence of human errors on the occurrence of coastal ship accidents in different wave conditions using Bayesian Belief Networks publication-title: Accid Anal Prev – volume: 143 start-page: 217 year: 2017 end-page: 226 ident: bib0023 article-title: After 40 years of regional and coordinated ship safety inspections: Destination reached or new point of departure? publication-title: Ocean Eng – volume: 118 start-page: 477 year: 2018 end-page: 495 ident: bib0028 article-title: A risk-based game model for rational inspections in port state control publication-title: Transp Res Part E – volume: 124 start-page: 142 year: 2014 end-page: 157 ident: bib0038 article-title: A framework for risk assessment for maritime transportation systems - A case study for open sea collisions involving RoPax vessels publication-title: Reliab Eng Syst Saf – volume: 36 start-page: 1278 year: 2009 end-page: 1286 ident: bib0014 article-title: MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor publication-title: Ocean Eng – volume: 118 start-page: 93 year: 2013 end-page: 105 ident: bib0045 article-title: Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River publication-title: Reliab Eng Syst Saf – volume: 138 start-page: 115 year: 2015 end-page: 134 ident: bib0007 article-title: Maritime transportation risk analysis: Review and analysis in light of some foundational issues publication-title: Reliab Eng Syst Saf – volume: 36 start-page: 1171 year: 2016 end-page: 1187 ident: bib0046 article-title: Maritime transportation risk assessment of Tianjin port with Bayesian belief networks publication-title: Risk Anal – start-page: 887 year: 2016 end-page: 893 ident: bib0075 article-title: Probabilistic modelling of evasive manoeuvring actions to avoid collisions publication-title: Maritime Technology and Engineering 3 – year: 2007 ident: bib0053 article-title: Bayesian networks and decision graphs – volume: 156 start-page: 210 year: 2016 end-page: 227 ident: bib0049 article-title: Incorporation of human factors into ship collision risk models focusing on human centred design aspects publication-title: Reliab Eng Syst Saf – volume: 12 start-page: 481 year: 2000 end-page: 486 ident: bib0066 article-title: Building probabilistic networks: “Where do the numbers come from?” Guest Editors’ Introduction publication-title: IEEE Trans Knowl Data Eng – volume: 102 start-page: 27 year: 2012 end-page: 40 ident: bib0048 article-title: Influences of variables on ship collision probability in a Bayesian belief network model publication-title: Reliab Eng Syst Saf – year: 2014 ident: bib0016 article-title: Real-time Dynamic Risk levels (Assessment of nautical safety levels using AIS) publication-title: International Work Next Generation Nautilus Traffic Model – volume: 92 start-page: 65 year: 2020 end-page: 80 ident: bib0029 article-title: Comparative analysis of the impact of new inspection regime on port state control inspection publication-title: Transp Policy – volume: 155 start-page: 124 year: 2016 end-page: 136 ident: bib0060 article-title: Towards a probabilistic model for predicting ship besetting in ice in Arctic waters publication-title: Reliab Eng Syst Saf – volume: 12 start-page: 285 year: 2016 end-page: 317 ident: bib0021 article-title: Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions publication-title: Ocean Sci – volume: 37 start-page: 2455 year: 2017 end-page: 2474 ident: bib0012 article-title: Three-stage decision-making model under restricted conditions for emergency response to ships not under control publication-title: Risk Anal – volume: 93 start-page: 1292 year: 2008 end-page: 1304 ident: bib0005 article-title: Causal factors in accidents of high-speed craft and conventional ocean-going vessels publication-title: Reliab Eng Syst Saf – start-page: 86 year: 2016 ident: bib0011 article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy publication-title: Saf Sci – volume: 66 start-page: 879 year: 2013 end-page: 898 ident: bib0019 article-title: Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal publication-title: J Navig – volume: 10 start-page: 89 year: 2014 end-page: 118 ident: bib0036 article-title: Bayesian network with quantitative input for maritime risk analysis publication-title: Transp A Transp Sci – year: 2018 ident: bib0033 article-title: Port State Control: Safeguarding Responsible and Sustainable Shipping publication-title: Proceedings of the Annual Report – volume: 19 start-page: 1559 year: 2018 end-page: 1582 ident: bib0004 article-title: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology publication-title: IEEE Trans Intell Transp Syst – year: 2008 ident: bib0067 article-title: Global Sensitivity Analysis. The Primer – year: 2012 ident: bib0025 article-title: Port State Control: On course for safer shipping publication-title: Proceedings of the Annual Report – volume: 164 start-page: 590 year: 2018 end-page: 603 ident: bib0013 article-title: Incorporating evidential reasoning and TOPSIS into group decision-making under uncertainty for handling ship without command publication-title: Ocean Eng – volume: 40 start-page: 162 year: 2013 end-page: 167 ident: bib0031 article-title: A proposed validation framework for expert elicited Bayesian Networks publication-title: Expert Syst Appl – volume: 117 start-page: 108 year: 2019 end-page: 122 ident: bib0003 article-title: Probabilistic risk analysis for ship-ship collision: State-of-the-art publication-title: Saf Sci – volume: 62 start-page: 348 year: 2014 end-page: 365 ident: bib0006 article-title: On the reliability and validity of ship-ship collision risk analysis in light of different perspectives on risk publication-title: Saf Sci – volume: 170 start-page: 186 year: 2018 end-page: 198 ident: bib0074 article-title: Ship collision candidate detection method: A velocity obstacle approach publication-title: Ocean Eng – start-page: 433 year: 2010 end-page: 442 ident: bib0001 article-title: Risk-based approaches to maritime safety publication-title: Safety and Reliability of Industrial Products, Systems and Structures – volume: 95 start-page: 573 year: 2010 end-page: 589 ident: bib0073 article-title: Probability modelling of vessel collisions publication-title: Reliab Eng Syst Saf – start-page: 317 year: 2000 end-page: 325 ident: bib0068 article-title: Making Sensitivity Analysis Computationally Efficient publication-title: Proceedings of the 16th Uncertainty in Artificial Intelligence – volume: 169 start-page: 485 year: 2018 end-page: 502 ident: bib0043 article-title: An operational risk analysis tool to analyze marine transportation in Arctic waters publication-title: Reliab Eng Syst Saf – year: 2019 ident: bib0065 article-title: AIS in maritime research publication-title: Mar Policy – start-page: 86 year: 2016 ident: 10.1016/j.ress.2020.107073_bib0011 article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy publication-title: Saf Sci – volume: 41 start-page: 7837 year: 2014 ident: 10.1016/j.ress.2020.107073_bib0062 article-title: Bayesian network model of maritime safety management publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.06.029 – volume: 40 start-page: 162 year: 2013 ident: 10.1016/j.ress.2020.107073_bib0031 article-title: A proposed validation framework for expert elicited Bayesian Networks publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.026 – volume: 102 start-page: 27 year: 2012 ident: 10.1016/j.ress.2020.107073_bib0048 article-title: Influences of variables on ship collision probability in a Bayesian belief network model publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2012.02.008 – start-page: 433 year: 2010 ident: 10.1016/j.ress.2020.107073_bib0001 article-title: Risk-based approaches to maritime safety – ident: 10.1016/j.ress.2020.107073_bib0032 – start-page: 213 year: 2009 ident: 10.1016/j.ress.2020.107073_bib0034 article-title: 5.3 Collisions and Groundings – volume: 95 start-page: 573 year: 2010 ident: 10.1016/j.ress.2020.107073_bib0073 article-title: Probability modelling of vessel collisions publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2010.01.009 – volume: 12 start-page: 285 year: 2016 ident: 10.1016/j.ress.2020.107073_bib0021 article-title: Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions publication-title: Ocean Sci doi: 10.5194/os-12-285-2016 – volume: 138 start-page: 115 year: 2015 ident: 10.1016/j.ress.2020.107073_bib0007 article-title: Maritime transportation risk analysis: Review and analysis in light of some foundational issues publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.01.025 – year: 2005 ident: 10.1016/j.ress.2020.107073_bib0017 article-title: Vessel Traffic Management in European Waters publication-title: Eur. Study Baseline Adv. Reg. Coast. Traffic Manag. Final Work Packag. 7 Rep. – start-page: 112 year: 2009 ident: 10.1016/j.ress.2020.107073_bib0018 article-title: Risk awareness; a model to calculate the risk of a ship dynamically – volume: 79 start-page: 130 year: 2014 ident: 10.1016/j.ress.2020.107073_bib0061 article-title: A probabilistic model for accidental cargo oil outflow from product tankers in a ship-ship collision publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2013.12.026 – volume: 170 start-page: 186 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0074 article-title: Ship collision candidate detection method: A velocity obstacle approach publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.10.023 – volume: 156 start-page: 210 year: 2016 ident: 10.1016/j.ress.2020.107073_bib0049 article-title: Incorporation of human factors into ship collision risk models focusing on human centred design aspects publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.08.007 – volume: 72 start-page: 97 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0024 article-title: Achievements and challenges on the implementation of the European Directive on Port State Control publication-title: Transp Policy doi: 10.1016/j.tranpol.2018.09.016 – volume: 3 start-page: 107 year: 2006 ident: 10.1016/j.ress.2020.107073_bib0040 article-title: Fault-Tree Models of Accident Scenarios of RoPax Vessels publication-title: Int J Autom Comput doi: 10.1007/s11633-006-0107-8 – volume: 60 start-page: 27 year: 2015 ident: 10.1016/j.ress.2020.107073_bib0071 article-title: Identifying substandard vessels through port state control inspections: a new methodology for concentrated inspection campaigns publication-title: Mar Policy doi: 10.1016/j.marpol.2015.05.013 – volume: 3 start-page: 23 year: 2004 ident: 10.1016/j.ress.2020.107073_bib0015 article-title: IRIS: un Indicateur de Risque Individuel de navire pour la Securite en mer fonde sur les concepts des modeles d'evaluation des risques publication-title: Rev l’ Electr l’ Electron doi: 10.3845/ree.2004.023 – volume: 133 year: 2019 ident: 10.1016/j.ress.2020.107073_bib0050 article-title: Analysis of the influence of human errors on the occurrence of coastal ship accidents in different wave conditions using Bayesian Belief Networks publication-title: Accid Anal Prev doi: 10.1016/j.aap.2019.105262 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.ress.2020.107073_bib0058 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 110 start-page: 38 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0027 article-title: Realising advanced risk-based port state control inspection using data-driven Bayesian networks publication-title: Transp Res Part A Policy Pract doi: 10.1016/j.tra.2018.01.033 – year: 2012 ident: 10.1016/j.ress.2020.107073_bib0025 article-title: Port State Control: On course for safer shipping – year: 1988 ident: 10.1016/j.ress.2020.107073_bib0051 – year: 2008 ident: 10.1016/j.ress.2020.107073_bib0067 – volume: 169 start-page: 485 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0043 article-title: An operational risk analysis tool to analyze marine transportation in Arctic waters publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.09.014 – volume: 12 start-page: 481 year: 2000 ident: 10.1016/j.ress.2020.107073_bib0066 article-title: Building probabilistic networks: “Where do the numbers come from?” Guest Editors’ Introduction publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2000.868901 – volume: 92 start-page: 65 year: 2020 ident: 10.1016/j.ress.2020.107073_bib0029 article-title: Comparative analysis of the impact of new inspection regime on port state control inspection publication-title: Transp Policy doi: 10.1016/j.tranpol.2020.04.009 – volume: 19 start-page: 1559 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0004 article-title: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2017.2724551 – year: 2007 ident: 10.1016/j.ress.2020.107073_bib0053 – year: 2018 ident: 10.1016/j.ress.2020.107073_bib0033 article-title: Port State Control: Safeguarding Responsible and Sustainable Shipping – start-page: 3660 year: 2019 ident: 10.1016/j.ress.2020.107073_bib0020 article-title: Risk of ship near collision scenarios off the coast of Portugal – volume: 10 start-page: 89 year: 2014 ident: 10.1016/j.ress.2020.107073_bib0036 article-title: Bayesian network with quantitative input for maritime risk analysis publication-title: Transp A Transp Sci – volume: 133 start-page: 224 year: 2017 ident: 10.1016/j.ress.2020.107073_bib0042 article-title: Arctic shipping accident scenario analysis using Bayesian Network approach publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2017.02.002 – volume: 159 start-page: 422 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0044 article-title: Marine transportation risk assessment using Bayesian Network: Application to Arctic waters publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.04.024 – volume: 19 start-page: 191 year: 1995 ident: 10.1016/j.ress.2020.107073_bib0059 article-title: The EM algorithm for graphical association models with missing data publication-title: Comput Stat Data Anal doi: 10.1016/0167-9473(93)E0056-A – volume: 36 start-page: 323 year: 2002 ident: 10.1016/j.ress.2020.107073_bib0069 article-title: Properties of Sensitivity Analysis of Bayesian Belief Networks publication-title: Ann Math Artif Intell doi: 10.1023/A:1016398407857 – volume: 37 start-page: 1936 year: 2017 ident: 10.1016/j.ress.2020.107073_bib0010 article-title: An Evidential Reasoning-Based CREAM to human reliability analysis in maritime accident process publication-title: Risk Anal doi: 10.1111/risa.12757 – volume: 36 start-page: 1278 year: 2009 ident: 10.1016/j.ress.2020.107073_bib0014 article-title: MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2009.07.003 – volume: 159 start-page: 283 year: 2017 ident: 10.1016/j.ress.2020.107073_bib0063 article-title: Enhancing human performance in ship operations by modifying global design factors at the design stage publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.11.009 – volume: 62 start-page: 348 year: 2014 ident: 10.1016/j.ress.2020.107073_bib0006 article-title: On the reliability and validity of ship-ship collision risk analysis in light of different perspectives on risk publication-title: Saf Sci doi: 10.1016/j.ssci.2013.09.010 – volume: 41 start-page: 1632 year: 2014 ident: 10.1016/j.ress.2020.107073_bib0026 article-title: Bayesian network modeling of Port State Control inspection findings and ship accident involvement publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.08.060 – volume: 93 start-page: 823 year: 2008 ident: 10.1016/j.ress.2020.107073_bib0047 article-title: A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2007.03.035 – start-page: 887 year: 2016 ident: 10.1016/j.ress.2020.107073_bib0075 article-title: Probabilistic modelling of evasive manoeuvring actions to avoid collisions – volume: 164 start-page: 590 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0013 article-title: Incorporating evidential reasoning and TOPSIS into group decision-making under uncertainty for handling ship without command publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.06.054 – volume: 143 start-page: 217 year: 2017 ident: 10.1016/j.ress.2020.107073_bib0023 article-title: After 40 years of regional and coordinated ship safety inspections: Destination reached or new point of departure? publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2017.06.050 – volume: 117 start-page: 108 year: 2019 ident: 10.1016/j.ress.2020.107073_bib0003 article-title: Probabilistic risk analysis for ship-ship collision: State-of-the-art publication-title: Saf Sci doi: 10.1016/j.ssci.2019.04.014 – year: 2014 ident: 10.1016/j.ress.2020.107073_bib0016 article-title: Real-time Dynamic Risk levels (Assessment of nautical safety levels using AIS) – start-page: 3265 year: 2009 ident: 10.1016/j.ress.2020.107073_bib0041 article-title: Analysis of Maritime Accident Data with BBN Models – start-page: 317 year: 2000 ident: 10.1016/j.ress.2020.107073_bib0068 article-title: Making Sensitivity Analysis Computationally Efficient – volume: 165 start-page: 140 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0039 article-title: Assessing ship risk model applicability to Marine Autonomous Surface Ships publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.07.040 – start-page: 342 year: 1999 ident: 10.1016/j.ress.2020.107073_bib0057 article-title: SMILE : structural modeling, inference, and learning engine and genie: a development environment for graphical decision-theoretic models publication-title: Proc. Sixt. Natl. Conf. Artif. Intell. – volume: 36 start-page: 1171 year: 2016 ident: 10.1016/j.ress.2020.107073_bib0046 article-title: Maritime transportation risk assessment of Tianjin port with Bayesian belief networks publication-title: Risk Anal doi: 10.1111/risa.12519 – volume: 44 start-page: 491 year: 2008 ident: 10.1016/j.ress.2020.107073_bib0072 article-title: On the effectiveness of port state control inspections publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2006.11.005 – volume: 128 start-page: 920 year: 2019 ident: 10.1016/j.ress.2020.107073_bib0056 article-title: Valuing data in aircraft maintenance through big data analytics: A probabilistic approach for capacity planning using Bayesian networks publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.10.015 – year: 2019 ident: 10.1016/j.ress.2020.107073_bib0065 article-title: AIS in maritime research publication-title: Mar Policy doi: 10.1016/j.marpol.2019.103520 – volume: 118 start-page: 93 year: 2013 ident: 10.1016/j.ress.2020.107073_bib0045 article-title: Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2013.04.006 – volume: 25 start-page: 671 year: 2012 ident: 10.1016/j.ress.2020.107073_bib0054 article-title: Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.06.002 – volume: 29 start-page: 349 year: 2005 ident: 10.1016/j.ress.2020.107073_bib0030 article-title: Identification of “High Risk Vessels” in coastal waters publication-title: Mar Policy doi: 10.1016/j.marpol.2004.05.008 – year: 2014 ident: 10.1016/j.ress.2020.107073_bib0037 article-title: Bayesian Network to Predict Environmental Risk of a Possible Ship Accident – volume: I start-page: 521 year: 2000 ident: 10.1016/j.ress.2020.107073_bib0009 article-title: Accounting for Human Factors in the Analysis of Maritime accidents – volume: 124 start-page: 142 year: 2014 ident: 10.1016/j.ress.2020.107073_bib0038 article-title: A framework for risk assessment for maritime transportation systems - A case study for open sea collisions involving RoPax vessels publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2013.11.014 – volume: 74 start-page: 299 year: 2001 ident: 10.1016/j.ress.2020.107073_bib0002 article-title: Risk assessment in maritime transportation publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(01)00104-1 – volume: 86 start-page: 195 year: 2016 ident: 10.1016/j.ress.2020.107073_bib0064 article-title: Towards an evidence-based probabilistic risk model for ship-grounding accidents publication-title: Saf Sci doi: 10.1016/j.ssci.2016.03.002 – volume: 110 start-page: 363 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0022 article-title: Quantitative assessment of collision risk influence factors in the Tianjin port publication-title: Saf Sci doi: 10.1016/j.ssci.2018.05.002 – volume: 92 start-page: 92 year: 2007 ident: 10.1016/j.ress.2020.107073_bib0055 article-title: Bayesian networks in reliability publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.11.037 – volume: 155 start-page: 124 year: 2016 ident: 10.1016/j.ress.2020.107073_bib0060 article-title: Towards a probabilistic model for predicting ship besetting in ice in Arctic waters publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.06.010 – volume: 37 start-page: 2455 year: 2017 ident: 10.1016/j.ress.2020.107073_bib0012 article-title: Three-stage decision-making model under restricted conditions for emergency response to ships not under control publication-title: Risk Anal doi: 10.1111/risa.12815 – volume: 118 start-page: 477 year: 2018 ident: 10.1016/j.ress.2020.107073_bib0028 article-title: A risk-based game model for rational inspections in port state control publication-title: Transp Res Part E doi: 10.1016/j.tre.2018.08.001 – volume: 73 start-page: 305 year: 2014 ident: 10.1016/j.ress.2020.107073_bib0035 article-title: Bayesian networks for maritime traffic accident prevention: Benefits and challenges publication-title: Accid Anal Prev doi: 10.1016/j.aap.2014.09.017 – volume: 93 start-page: 1292 year: 2008 ident: 10.1016/j.ress.2020.107073_bib0005 article-title: Causal factors in accidents of high-speed craft and conventional ocean-going vessels publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2007.07.010 – year: 2008 ident: 10.1016/j.ress.2020.107073_bib0052 – year: 2004 ident: 10.1016/j.ress.2020.107073_bib0070 – ident: 10.1016/j.ress.2020.107073_bib0008 doi: 10.1007/s10479-018-2768-4 – volume: 66 start-page: 879 year: 2013 ident: 10.1016/j.ress.2020.107073_bib0019 article-title: Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal publication-title: J Navig doi: 10.1017/S0373463313000519 |
SSID | ssj0004957 |
Score | 2.5645523 |
Snippet | •Static risk modelling of individual ships based on Bayesian networks.•Ship Risk Profile parameters of Port State Control inspection used as risk... This paper proposes a probabilistic approach for characterising the static risk of individual ships based on Bayesian networks (BNs). The approach uses the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107073 |
SubjectTerms | Automatic identification system data Bayesian analysis Bayesian networks Inspection Reliability engineering Risk analysis Risk assessment Risk factors Risk management Sensitivity analysis Ship risk profile Ships Static risk factors |
Title | Probabilistic approach for characterising the static risk of ships using Bayesian networks |
URI | https://dx.doi.org/10.1016/j.ress.2020.107073 https://www.proquest.com/docview/2505418601 |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaJQdvsm12N9tkj7VYqmIRtFC8hGyyCxXZlj4OXvztzuxmrQr24HGTSVhmJpMv8M0MIZc61hHLgsjTvh96HMQ8HYXc08YH_GyMYQazkR-GncGI342jcY30qlwYpFW62F_G9CJau5G202Z7Npm0nxAcSGz_jT4LFyFmsHOBXt76WNM84AEgqnbyKO0SZ0qOF75oW7gDDAgmwr8up19hurh7-ntk14FG2i3_a5_U0vyA7HwrJXhIXh7ncDKR6YqFl2lVKpwCJqVmXZQZZClAPop5RCCGxHI6zShSthZ0VUxf6_cUMytpXjLEF0dk1L957g081zfBM2Egl_AaBFBmY6Ot8TMEWFIkMhEJMzqwGvBbyi0TMbNaxkkcdBBjITsmyaTsMGPDY1LPp3l6QqjWsU2xZBxLOOdWgLSJQV-ZkWDNIG0Qv1KYMq6oOPa2eFMVe-xVoZIVKlmVSm6Qq681s7KkxkbpqLKD-uEYCmL-xnXNymjKHUuYB7zHwQmZf_rPbc_INn6V2YhNUl_OV-k5wJJlclH43QXZ6t7eD4af2wzh2Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SkKBTywobRO4jTOCBVVgbZCopUqFsuxE6kItVU_BhZ-O3eJQwGJDqzx2YrO5_Oz9O4dIVcqUgFLvcBRrus7HMwcFfjcUdoF_Ky1Zhqrkbu9RnvAH4bBsESaRS0M0ipt7s9zepat7Ze69WZ9OhrVnxEcCGz_jTELF-EG2eRwfLGNQe1jxfOAF0BY9JNHc1s5k5O88ElbwyXgQ8hC_6_b6Veezi6f1h7ZtaiR3uQ_tk9KyfiA7HzTEjwkL08zOJpIdUXlZVpohVMApVSvVJnBlgLmo1hIBGbILKeTlCJna06X2fCtek-wtJKOc4r4_IgMWnf9ZtuxjRMc7XtiAc9BQGUm0spoN0WEJcJYxGHMtPKMAgCXcMPCiBklojjyGgiykB4Tp0I0mDb-MSmPJ-PkhFClIpOgZhyLOecmBGsdgb9SLWA7vaRC3MJhUltVcWxu8SYL-tirRCdLdLLMnVwh119zprmmxlrroNgH-SMyJCT9tfOqxaZJey5hHAAfhyhk7uk_l70kW-1-tyM7973HM7KNI3lpYpWUF7Nlcg4YZRFfZDH4CRwT42c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+approach+for+characterising+the+static+risk+of+ships+using+Bayesian+networks&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Dinis%2C+D&rft.au=Teixeira%2C+A+P&rft.au=Soares%2C+C+Guedes&rft.date=2020-11-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=203&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2020.107073&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |