Probabilistic approach for characterising the static risk of ships using Bayesian networks

•Static risk modelling of individual ships based on Bayesian networks.•Ship Risk Profile parameters of Port State Control inspection used as risk variables.•Characterization of static risk profile of the maritime traffic.•Static risk profile of individual ships under incomplete information. This pap...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 203; p. 107073
Main Authors Dinis, D., Teixeira, A.P., Guedes Soares, C.
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.11.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Static risk modelling of individual ships based on Bayesian networks.•Ship Risk Profile parameters of Port State Control inspection used as risk variables.•Characterization of static risk profile of the maritime traffic.•Static risk profile of individual ships under incomplete information. This paper proposes a probabilistic approach for characterising the static risk of individual ships based on Bayesian networks (BNs). The approach uses the Ship Risk Profile parameters of the New Inspection Regime of the Paris Memorandum of Understanding (MoU) on Port State Control (PSC), not as risk factors for ship selection in PSC inspections, but as risk variables for ship risk assessment and maritime traffic monitoring. The objectives of the proposed approach are threefold: the characterisation of the static risk profile of the maritime traffic crossing a given geographic area; the identification of the most likely circumstances under which a specific static risk profile is expected to occur; and the characterisation of the static risk profile of individual ships in the presence of incomplete information, such as that obtained from the Automatic Identification System. A dataset collected from the Paris MoU platform is used for the development of the BN model and its validity is assessed. A quantitative assessment for the predictive validity of the model is also conducted by a sensitivity analysis that shows the consistency of the model with the Ship Risk Profile criteria and with the results of other studies developed also from historical PSC inspection data.
AbstractList This paper proposes a probabilistic approach for characterising the static risk of individual ships based on Bayesian networks (BNs). The approach uses the Ship Risk Profile parameters of the New Inspection Regime of the Paris Memorandum of Understanding (MoU) on Port State Control (PSC), not as risk factors for ship selection in PSC inspections, but as risk variables for ship risk assessment and maritime traffic monitoring. The objectives of the proposed approach are threefold: the characterisation of the static risk profile of the maritime traffic crossing a given geographic area; the identification of the most likely circumstances under which a specific static risk profile is expected to occur; and the characterisation of the static risk profile of individual ships in the presence of incomplete information, such as that obtained from the Automatic Identification System. A dataset collected from the Paris MoU platform is used for the development of the BN model and its validity is assessed. A quantitative assessment for the predictive validity of the model is also conducted by a sensitivity analysis that shows the consistency of the model with the Ship Risk Profile criteria and with the results of other studies developed also from historical PSC inspection data.
•Static risk modelling of individual ships based on Bayesian networks.•Ship Risk Profile parameters of Port State Control inspection used as risk variables.•Characterization of static risk profile of the maritime traffic.•Static risk profile of individual ships under incomplete information. This paper proposes a probabilistic approach for characterising the static risk of individual ships based on Bayesian networks (BNs). The approach uses the Ship Risk Profile parameters of the New Inspection Regime of the Paris Memorandum of Understanding (MoU) on Port State Control (PSC), not as risk factors for ship selection in PSC inspections, but as risk variables for ship risk assessment and maritime traffic monitoring. The objectives of the proposed approach are threefold: the characterisation of the static risk profile of the maritime traffic crossing a given geographic area; the identification of the most likely circumstances under which a specific static risk profile is expected to occur; and the characterisation of the static risk profile of individual ships in the presence of incomplete information, such as that obtained from the Automatic Identification System. A dataset collected from the Paris MoU platform is used for the development of the BN model and its validity is assessed. A quantitative assessment for the predictive validity of the model is also conducted by a sensitivity analysis that shows the consistency of the model with the Ship Risk Profile criteria and with the results of other studies developed also from historical PSC inspection data.
ArticleNumber 107073
Author Guedes Soares, C.
Dinis, D.
Teixeira, A.P.
Author_xml – sequence: 1
  givenname: D.
  surname: Dinis
  fullname: Dinis, D.
– sequence: 2
  givenname: A.P.
  surname: Teixeira
  fullname: Teixeira, A.P.
  email: teixeira@centec.tecnico.ulisboa.pt
– sequence: 3
  givenname: C.
  surname: Guedes Soares
  fullname: Guedes Soares, C.
BookMark eNp9kE1PwyAYgImZidv0D3gi8dzJx9pC4kUXv5IletCLF0KBWroJFZhm_97WevKwE8nL8_DxzMDEeWcAOMdogREuLttFMDEuCCLDoEQlPQJTzEqeIUaLCZginuOMUYJOwCzGFiG05Hk5BW_PwVeyslsbk1VQdl3wUjWw9gGqRgapkgk2WvcOU2NgTHLA-skG-hrGxnYR7n63b-TeRCsddCZ9-7CJp-C4lttozv7WOXi9u31ZPWTrp_vH1fU6U5SwlBWYU6K5klrhmuaEsLJiVVkhJYmWeVGYpUYlR1oyXnFS5BjlS0LLqmasQErTObgYz-2f_rkzMYnW74LrrxQk71ncY7inyEip4GMMphZdsB8y7AVGYmgoWjE0FENDMTbsJfZPUnYo4F0K0m4Pq1ejavqvf1kTRFTWOGW0DUYlob09pP8A3waPjw
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_113563
crossref_primary_10_1002_qre_3697
crossref_primary_10_1002_prs_12326
crossref_primary_10_1016_j_oceaneng_2023_114577
crossref_primary_10_3390_jmse10111696
crossref_primary_10_1016_j_ress_2021_107708
crossref_primary_10_1016_j_ress_2021_107904
crossref_primary_10_1016_j_ress_2023_109609
crossref_primary_10_1016_j_ress_2021_107784
crossref_primary_10_1016_j_ress_2021_107463
crossref_primary_10_1016_j_tre_2023_103331
crossref_primary_10_1016_j_ocecoaman_2022_106323
crossref_primary_10_1016_j_ress_2021_107789
crossref_primary_10_1016_j_ress_2023_109489
crossref_primary_10_1016_j_tre_2023_103371
crossref_primary_10_1016_j_ress_2024_110565
crossref_primary_10_1016_j_ress_2023_109166
crossref_primary_10_1016_j_trb_2021_05_003
crossref_primary_10_12716_1001_18_04_03
crossref_primary_10_1016_j_ress_2021_107438
crossref_primary_10_1016_j_tre_2025_103994
crossref_primary_10_1016_j_psep_2022_05_035
crossref_primary_10_1016_j_ress_2021_107674
crossref_primary_10_1016_j_ress_2021_107993
crossref_primary_10_1016_j_ress_2021_108169
crossref_primary_10_3934_era_2023013
crossref_primary_10_1016_j_oceaneng_2024_119002
crossref_primary_10_1016_j_ssci_2022_105942
crossref_primary_10_1016_j_oceaneng_2022_111006
crossref_primary_10_1016_j_oceaneng_2024_119804
crossref_primary_10_1016_j_rsma_2024_103466
crossref_primary_10_1016_j_ress_2024_110187
crossref_primary_10_1016_j_cie_2024_110012
crossref_primary_10_1016_j_ress_2021_107846
crossref_primary_10_1016_j_joes_2022_06_040
crossref_primary_10_1016_j_marpol_2023_105816
crossref_primary_10_3390_app15020529
crossref_primary_10_1016_j_ress_2021_107766
crossref_primary_10_1016_j_ress_2023_109346
crossref_primary_10_1016_j_ress_2021_107886
crossref_primary_10_1016_j_rsma_2023_103193
crossref_primary_10_1016_j_marpolbul_2023_114791
crossref_primary_10_1016_j_ress_2021_107480
crossref_primary_10_1016_j_ress_2024_110105
crossref_primary_10_1016_j_oceaneng_2024_118527
crossref_primary_10_1016_j_ress_2022_108530
crossref_primary_10_3390_jmse12122181
crossref_primary_10_3390_jmse12122220
crossref_primary_10_1016_j_ocecoaman_2024_107473
crossref_primary_10_1016_j_ress_2024_110591
crossref_primary_10_1016_j_trc_2022_103924
crossref_primary_10_1016_j_ress_2024_110153
crossref_primary_10_1016_j_oceaneng_2023_114004
crossref_primary_10_1016_j_tre_2023_103109
crossref_primary_10_1016_j_ress_2021_107819
crossref_primary_10_1016_j_oceaneng_2025_120628
crossref_primary_10_1016_j_ress_2021_108189
crossref_primary_10_3390_jmse12122113
crossref_primary_10_1016_j_oceaneng_2024_119421
crossref_primary_10_1016_j_ocecoaman_2024_107344
crossref_primary_10_1016_j_ress_2020_107277
crossref_primary_10_1016_j_ress_2021_107777
crossref_primary_10_3390_app14156414
crossref_primary_10_3390_jmse11061166
crossref_primary_10_1016_j_ress_2021_107731
crossref_primary_10_1016_j_martra_2022_100062
crossref_primary_10_1016_j_ress_2023_109277
crossref_primary_10_1016_j_oceaneng_2021_109533
crossref_primary_10_1016_j_oceaneng_2021_110479
crossref_primary_10_1016_j_ress_2021_108061
crossref_primary_10_1016_j_ress_2021_108143
crossref_primary_10_1016_j_psep_2024_08_001
Cites_doi 10.1016/j.eswa.2014.06.029
10.1016/j.eswa.2012.07.026
10.1016/j.ress.2012.02.008
10.1016/j.ress.2010.01.009
10.5194/os-12-285-2016
10.1016/j.ress.2015.01.025
10.1016/j.marpolbul.2013.12.026
10.1016/j.oceaneng.2018.10.023
10.1016/j.ress.2016.08.007
10.1016/j.tranpol.2018.09.016
10.1007/s11633-006-0107-8
10.1016/j.marpol.2015.05.013
10.3845/ree.2004.023
10.1016/j.aap.2019.105262
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.tra.2018.01.033
10.1016/j.ress.2017.09.014
10.1109/TKDE.2000.868901
10.1016/j.tranpol.2020.04.009
10.1109/TITS.2017.2724551
10.1016/j.oceaneng.2017.02.002
10.1016/j.oceaneng.2018.04.024
10.1016/0167-9473(93)E0056-A
10.1023/A:1016398407857
10.1111/risa.12757
10.1016/j.oceaneng.2009.07.003
10.1016/j.ress.2016.11.009
10.1016/j.ssci.2013.09.010
10.1016/j.eswa.2013.08.060
10.1016/j.ress.2007.03.035
10.1016/j.oceaneng.2018.06.054
10.1016/j.oceaneng.2017.06.050
10.1016/j.ssci.2019.04.014
10.1016/j.oceaneng.2018.07.040
10.1111/risa.12519
10.1016/j.tre.2006.11.005
10.1016/j.cie.2018.10.015
10.1016/j.marpol.2019.103520
10.1016/j.ress.2013.04.006
10.1016/j.engappai.2010.06.002
10.1016/j.marpol.2004.05.008
10.1016/j.ress.2013.11.014
10.1016/S0951-8320(01)00104-1
10.1016/j.ssci.2016.03.002
10.1016/j.ssci.2018.05.002
10.1016/j.ress.2005.11.037
10.1016/j.ress.2016.06.010
10.1111/risa.12815
10.1016/j.tre.2018.08.001
10.1016/j.aap.2014.09.017
10.1016/j.ress.2007.07.010
10.1007/s10479-018-2768-4
10.1017/S0373463313000519
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Nov 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 2020
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2020.107073
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2020_107073
S0951832020305743
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TB
8FD
C1K
EFKBS
FR3
SOI
ID FETCH-LOGICAL-c328t-61932d9cadc1f352287b8b7b0ca2da566e4d0790da89b92651054237bf8860cd3
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Wed Aug 13 06:34:30 EDT 2025
Tue Jul 01 00:45:02 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Fri Feb 23 02:46:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Static risk factors
Bayesian networks
Automatic identification system data
Ship risk profile
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-61932d9cadc1f352287b8b7b0ca2da566e4d0790da89b92651054237bf8860cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2505418601
PQPubID 2045406
ParticipantIDs proquest_journals_2505418601
crossref_primary_10_1016_j_ress_2020_107073
crossref_citationtrail_10_1016_j_ress_2020_107073
elsevier_sciencedirect_doi_10_1016_j_ress_2020_107073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Svanberg, Santén, Hörteborn, Holm, Finnsgård (bib0065) 2019
Mazaheri, Montewka, Kujala (bib0064) 2016; 86
Yang, Yang, Teixeira (bib0029) 2020; 92
Zhang, Yan, Yang, Wall, Wang (bib0045) 2013; 118
Antão, Grande, Trucco, Guedes Soares (bib0041) 2009
Cariou, Mejia, Wolff (bib0072) 2008; 44
Weber, Medina-Oliva, Simon, Iung (bib0054) 2012; 25
Baksh, Abbassi, Garaniya, Khan (bib0044) 2018; 159
Dinis, Barbosa-Póvoa, Teixeira (bib0056) 2019; 128
Degré (bib0015) 2004; 3
Jensen, Nielsen (bib0053) 2007
Tak, Glansdorp (bib0017) 2005
Fu, Zhang, Montewka, Yan, Zio (bib0060) 2016; 155
Graziano, Schröder-Hinrichs, Ölcer (bib0023) 2017; 143
Khan, Khan, Veitch, Yang (bib0043) 2018; 169
Langseth, Portinale (bib0055) 2007; 92
Graziano, Teixeira, Guedes Soares (bib0011) 2016
Wu, Yan, Wang, Guedes Soares (bib0010) 2017; 37
Guedes Soares, Teixeira, Antão (bib0001) 2010
Hänninen (bib0035) 2014; 73
Lauritzen (bib0059) 1995; 19
Montewka, Goerlandt, Innes-Jones, Owen, Hifi, Puisa (bib0063) 2017; 159
Tu, Zhang, Rachmawati, Rajabally, Bin (bib0004) 2018; 19
Afenyo, Khan, Veitch, Yang (bib0042) 2017; 133
Yang, Yang, Yin (bib0027) 2018; 110
Chen, Huang, Mou, van Gelder PHAJM (bib0074) 2018; 170
Antão, Guedes Soares (bib0005) 2008; 93
Wu, Zong, Yan, Guedes Soares (bib0013) 2018; 164
Pearl (bib0051) 1988
Druzdzel, Gaag (bib0066) 2000; 12
Antão, Guedes Soares (bib0050) 2019; 133
Yang, Yang, Yin, Qu (bib0028) 2018; 118
Dempster, Laird, Rubin (bib0058) 1977; 39
Druzdzel (bib0057) 1999
Lim GJ, Cho J, Bora S, Biobaku T, Parsaei H. Models and computational algorithms for maritime risk analysis: a review. Ann Oper Res2018:1–22. 10.1007/s10479-018-2768-4.
Rong, Teixeira, Guedes Soares (bib0020) 2019
Jensen, Guedes Soares, Papanikolaou (bib0034) 2009
Li, Yin, Bang, Yang, Wang (bib0036) 2014; 10
Cariou, Wolff (bib0071) 2015; 60
Goerlandt, Montewka (bib0061) 2014; 79
Kjaerulff, van der Gaag (bib0068) 2000
Sotiralis, Ventikos, Hamann, Golyshev, Teixeira (bib0049) 2016; 156
Pitchforth, Mengersen (bib0031) 2013; 40
Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli (bib0067) 2008
Sage (bib0030) 2005; 29
Kjærulff, Madsen (bib0052) 2008
Graziano, Mejia, Schröder-Hinrichs (bib0024) 2018; 72
Silveira, Teixeira, Guedes Soares (bib0075) 2016
Trucco, Cagno, Ruggeri, Grande (bib0047) 2008; 93
Chen, Huang, Mou, van Gelder PHAJM (bib0003) 2019; 117
Montewka, Ehlers, Goerlandt, Hinz, Tabri, Kujala (bib0038) 2014; 124
Koldenhof, Tak, Glansdorp (bib0018) 2009
Paris (bib0033) 2018
Paris MoU. Paris Memorandum of Understanding on Port State Control. 2018.
Silveira, Teixeira, Guedes Soares (bib0019) 2013; 66
Hänninen, Kujala (bib0026) 2014; 41
Coupé, van der Gaag (bib0069) 2002; 36
Montewka, Hinz, Kujala, Matusiak (bib0073) 2010; 95
Koromila, Nivolianitou, Giannakopoulos (bib0037) 2014
Hänninen, Kujala (bib0048) 2012; 102
Guedes Soares, Teixeira (bib0002) 2001; 74
Wu, Yan, Wang, Zhang, Guedes Soares (bib0012) 2017; 37
Hänninenn, Valdez Banda, Kujala (bib0062) 2014; 41
Antão, Guedes Soares (bib0040) 2006; 3
Thieme, Utne, Haugen (bib0039) 2018; 165
Paris (bib0025) 2012
Korb, Nicholson (bib0070) 2004
Zhang, Teixeira, Guedes Soares, Yan (bib0022) 2018; 110
Balmat, Lafont, Maifret, Pessel (bib0014) 2009; 36
Fernandes, Braunschweig, Lourenço, Neves (bib0021) 2016; 12
Guedes Soares, Teixeira, Antão (bib0009) 2000; I
Goerlandt, Kujala (bib0006) 2014; 62
Goerlandt, Montewka (bib0007) 2015; 138
Zhang, Teixeira, Guedes Soares, Yan, Liu (bib0046) 2016; 36
Koldenhof, van Iperen (bib0016) 2014
Lauritzen (10.1016/j.ress.2020.107073_bib0059) 1995; 19
Jensen (10.1016/j.ress.2020.107073_bib0034) 2009
Mazaheri (10.1016/j.ress.2020.107073_bib0064) 2016; 86
Koromila (10.1016/j.ress.2020.107073_bib0037) 2014
Afenyo (10.1016/j.ress.2020.107073_bib0042) 2017; 133
Wu (10.1016/j.ress.2020.107073_bib0012) 2017; 37
Fu (10.1016/j.ress.2020.107073_bib0060) 2016; 155
Paris (10.1016/j.ress.2020.107073_bib0033) 2018
Antão (10.1016/j.ress.2020.107073_bib0040) 2006; 3
Degré (10.1016/j.ress.2020.107073_bib0015) 2004; 3
Kjærulff (10.1016/j.ress.2020.107073_bib0052) 2008
Silveira (10.1016/j.ress.2020.107073_bib0075) 2016
Chen (10.1016/j.ress.2020.107073_bib0003) 2019; 117
Silveira (10.1016/j.ress.2020.107073_bib0019) 2013; 66
Li (10.1016/j.ress.2020.107073_bib0036) 2014; 10
10.1016/j.ress.2020.107073_bib0008
Khan (10.1016/j.ress.2020.107073_bib0043) 2018; 169
Chen (10.1016/j.ress.2020.107073_bib0074) 2018; 170
Montewka (10.1016/j.ress.2020.107073_bib0073) 2010; 95
Graziano (10.1016/j.ress.2020.107073_bib0011) 2016
Zhang (10.1016/j.ress.2020.107073_bib0045) 2013; 118
Guedes Soares (10.1016/j.ress.2020.107073_bib0009) 2000; I
Yang (10.1016/j.ress.2020.107073_bib0027) 2018; 110
Hänninen (10.1016/j.ress.2020.107073_bib0035) 2014; 73
Kjaerulff (10.1016/j.ress.2020.107073_bib0068) 2000
Rong (10.1016/j.ress.2020.107073_bib0020) 2019
Goerlandt (10.1016/j.ress.2020.107073_bib0061) 2014; 79
Korb (10.1016/j.ress.2020.107073_bib0070) 2004
Koldenhof (10.1016/j.ress.2020.107073_bib0018) 2009
Thieme (10.1016/j.ress.2020.107073_bib0039) 2018; 165
Svanberg (10.1016/j.ress.2020.107073_bib0065) 2019
Yang (10.1016/j.ress.2020.107073_bib0029) 2020; 92
Langseth (10.1016/j.ress.2020.107073_bib0055) 2007; 92
Guedes Soares (10.1016/j.ress.2020.107073_bib0002) 2001; 74
Antão (10.1016/j.ress.2020.107073_bib0005) 2008; 93
Tak (10.1016/j.ress.2020.107073_bib0017) 2005
Paris (10.1016/j.ress.2020.107073_bib0025) 2012
Tu (10.1016/j.ress.2020.107073_bib0004) 2018; 19
Graziano (10.1016/j.ress.2020.107073_bib0023) 2017; 143
Dinis (10.1016/j.ress.2020.107073_bib0056) 2019; 128
Saltelli (10.1016/j.ress.2020.107073_bib0067) 2008
Wu (10.1016/j.ress.2020.107073_bib0010) 2017; 37
Goerlandt (10.1016/j.ress.2020.107073_bib0006) 2014; 62
Antão (10.1016/j.ress.2020.107073_bib0050) 2019; 133
Druzdzel (10.1016/j.ress.2020.107073_bib0057) 1999
Fernandes (10.1016/j.ress.2020.107073_bib0021) 2016; 12
Zhang (10.1016/j.ress.2020.107073_bib0046) 2016; 36
Hänninen (10.1016/j.ress.2020.107073_bib0048) 2012; 102
Hänninenn (10.1016/j.ress.2020.107073_bib0062) 2014; 41
Sage (10.1016/j.ress.2020.107073_bib0030) 2005; 29
Trucco (10.1016/j.ress.2020.107073_bib0047) 2008; 93
Baksh (10.1016/j.ress.2020.107073_bib0044) 2018; 159
Montewka (10.1016/j.ress.2020.107073_bib0063) 2017; 159
Pearl (10.1016/j.ress.2020.107073_bib0051) 1988
Goerlandt (10.1016/j.ress.2020.107073_bib0007) 2015; 138
Cariou (10.1016/j.ress.2020.107073_bib0071) 2015; 60
Graziano (10.1016/j.ress.2020.107073_bib0024) 2018; 72
Antão (10.1016/j.ress.2020.107073_bib0041) 2009
Pitchforth (10.1016/j.ress.2020.107073_bib0031) 2013; 40
Jensen (10.1016/j.ress.2020.107073_bib0053) 2007
Weber (10.1016/j.ress.2020.107073_bib0054) 2012; 25
Coupé (10.1016/j.ress.2020.107073_bib0069) 2002; 36
Cariou (10.1016/j.ress.2020.107073_bib0072) 2008; 44
Yang (10.1016/j.ress.2020.107073_bib0028) 2018; 118
Montewka (10.1016/j.ress.2020.107073_bib0038) 2014; 124
Hänninen (10.1016/j.ress.2020.107073_bib0026) 2014; 41
Druzdzel (10.1016/j.ress.2020.107073_bib0066) 2000; 12
Balmat (10.1016/j.ress.2020.107073_bib0014) 2009; 36
Guedes Soares (10.1016/j.ress.2020.107073_bib0001) 2010
Zhang (10.1016/j.ress.2020.107073_bib0022) 2018; 110
Dempster (10.1016/j.ress.2020.107073_bib0058) 1977; 39
Koldenhof (10.1016/j.ress.2020.107073_bib0016) 2014
Wu (10.1016/j.ress.2020.107073_bib0013) 2018; 164
10.1016/j.ress.2020.107073_bib0032
Sotiralis (10.1016/j.ress.2020.107073_bib0049) 2016; 156
References_xml – volume: 72
  start-page: 97
  year: 2018
  end-page: 108
  ident: bib0024
  article-title: Achievements and challenges on the implementation of the European Directive on Port State Control
  publication-title: Transp Policy
– volume: 19
  start-page: 191
  year: 1995
  end-page: 201
  ident: bib0059
  article-title: The EM algorithm for graphical association models with missing data
  publication-title: Comput Stat Data Anal
– start-page: 3265
  year: 2009
  end-page: 3274
  ident: bib0041
  article-title: Analysis of Maritime Accident Data with BBN Models
  publication-title: Safety, Reliability and Risk Analysis: Theory, Methods and Applications
– start-page: 112
  year: 2009
  end-page: 119
  ident: bib0018
  article-title: Risk awareness; a model to calculate the risk of a ship dynamically
  publication-title: Proceedings of the 13th Traffic Engineering Conferences MTE 2009
– volume: 36
  start-page: 323
  year: 2002
  end-page: 356
  ident: bib0069
  article-title: Properties of Sensitivity Analysis of Bayesian Belief Networks
  publication-title: Ann Math Artif Intell
– year: 2004
  ident: bib0070
  article-title: Bayesian Artificial Intelligence
– volume: 79
  start-page: 130
  year: 2014
  end-page: 144
  ident: bib0061
  article-title: A probabilistic model for accidental cargo oil outflow from product tankers in a ship-ship collision
  publication-title: Mar Pollut Bull
– year: 2005
  ident: bib0017
  article-title: Vessel Traffic Management in European Waters
  publication-title: Eur. Study Baseline Adv. Reg. Coast. Traffic Manag. Final Work Packag. 7 Rep.
– volume: 74
  start-page: 299
  year: 2001
  end-page: 309
  ident: bib0002
  article-title: Risk assessment in maritime transportation
  publication-title: Reliab Eng Syst Saf
– volume: 110
  start-page: 363
  year: 2018
  end-page: 371
  ident: bib0022
  article-title: Quantitative assessment of collision risk influence factors in the Tianjin port
  publication-title: Saf Sci
– volume: 41
  start-page: 7837
  year: 2014
  end-page: 7846
  ident: bib0062
  article-title: Bayesian network model of maritime safety management
  publication-title: Expert Syst Appl
– volume: 3
  start-page: 107
  year: 2006
  end-page: 116
  ident: bib0040
  article-title: Fault-Tree Models of Accident Scenarios of RoPax Vessels
  publication-title: Int J Autom Comput
– volume: 60
  start-page: 27
  year: 2015
  end-page: 39
  ident: bib0071
  article-title: Identifying substandard vessels through port state control inspections: a new methodology for concentrated inspection campaigns
  publication-title: Mar Policy
– year: 2014
  ident: bib0037
  article-title: Bayesian Network to Predict Environmental Risk of a Possible Ship Accident
  publication-title: Proceedings of the 7th International Conference PErvasive Technology Relat to Assist Environ
– volume: I
  start-page: 521
  year: 2000
  end-page: 528
  ident: bib0009
  article-title: Accounting for Human Factors in the Analysis of Maritime accidents
  publication-title: Foresight Precaut.
– volume: 41
  start-page: 1632
  year: 2014
  end-page: 1646
  ident: bib0026
  article-title: Bayesian network modeling of Port State Control inspection findings and ship accident involvement
  publication-title: Expert Syst Appl
– reference: Lim GJ, Cho J, Bora S, Biobaku T, Parsaei H. Models and computational algorithms for maritime risk analysis: a review. Ann Oper Res2018:1–22. 10.1007/s10479-018-2768-4.
– volume: 92
  start-page: 92
  year: 2007
  end-page: 108
  ident: bib0055
  article-title: Bayesian networks in reliability
  publication-title: Reliab Eng Syst Saf
– volume: 25
  start-page: 671
  year: 2012
  end-page: 682
  ident: bib0054
  article-title: Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas
  publication-title: Eng Appl Artif Intell
– year: 2008
  ident: bib0052
  article-title: Bayesian Networks and Influence Diagrams
– start-page: 342
  year: 1999
  end-page: 343
  ident: bib0057
  article-title: SMILE : structural modeling, inference, and learning engine and genie: a development environment for graphical decision-theoretic models
  publication-title: Proc. Sixt. Natl. Conf. Artif. Intell.
– volume: 110
  start-page: 38
  year: 2018
  end-page: 56
  ident: bib0027
  article-title: Realising advanced risk-based port state control inspection using data-driven Bayesian networks
  publication-title: Transp Res Part A Policy Pract
– volume: 37
  start-page: 1936
  year: 2017
  end-page: 1957
  ident: bib0010
  article-title: An Evidential Reasoning-Based CREAM to human reliability analysis in maritime accident process
  publication-title: Risk Anal
– volume: 159
  start-page: 283
  year: 2017
  end-page: 300
  ident: bib0063
  article-title: Enhancing human performance in ship operations by modifying global design factors at the design stage
  publication-title: Reliab Eng Syst Saf
– volume: 165
  start-page: 140
  year: 2018
  end-page: 154
  ident: bib0039
  article-title: Assessing ship risk model applicability to Marine Autonomous Surface Ships
  publication-title: Ocean Eng
– volume: 73
  start-page: 305
  year: 2014
  end-page: 312
  ident: bib0035
  article-title: Bayesian networks for maritime traffic accident prevention: Benefits and challenges
  publication-title: Accid Anal Prev
– volume: 3
  start-page: 23
  year: 2004
  end-page: 29
  ident: bib0015
  article-title: IRIS: un Indicateur de Risque Individuel de navire pour la Securite en mer fonde sur les concepts des modeles d'evaluation des risques
  publication-title: Rev l’ Electr l’ Electron
– volume: 44
  start-page: 491
  year: 2008
  end-page: 503
  ident: bib0072
  article-title: On the effectiveness of port state control inspections
  publication-title: Transp Res Part E Logist Transp Rev
– start-page: 213
  year: 2009
  end-page: 231
  ident: bib0034
  article-title: 5.3 Collisions and Groundings
  publication-title: Risk-Based Sh. Des. Methods, Tools Appl.
– volume: 159
  start-page: 422
  year: 2018
  end-page: 436
  ident: bib0044
  article-title: Marine transportation risk assessment using Bayesian Network: Application to Arctic waters
  publication-title: Ocean Eng
– volume: 128
  start-page: 920
  year: 2019
  end-page: 936
  ident: bib0056
  article-title: Valuing data in aircraft maintenance through big data analytics: A probabilistic approach for capacity planning using Bayesian networks
  publication-title: Comput Ind Eng
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib0058
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B
– reference: Paris MoU. Paris Memorandum of Understanding on Port State Control. 2018.
– volume: 93
  start-page: 823
  year: 2008
  end-page: 834
  ident: bib0047
  article-title: A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation
  publication-title: Reliab Eng Syst Saf
– start-page: 3660
  year: 2019
  end-page: 3666
  ident: bib0020
  article-title: Risk of ship near collision scenarios off the coast of Portugal
  publication-title: Proceedings of the 29th European Safety and Reliability Conference
– volume: 133
  start-page: 224
  year: 2017
  end-page: 230
  ident: bib0042
  article-title: Arctic shipping accident scenario analysis using Bayesian Network approach
  publication-title: Ocean Eng
– year: 1988
  ident: bib0051
  article-title: Probabilistic Reasoning in Intelligent Systems
– volume: 29
  start-page: 349
  year: 2005
  end-page: 355
  ident: bib0030
  article-title: Identification of “High Risk Vessels” in coastal waters
  publication-title: Mar Policy
– volume: 86
  start-page: 195
  year: 2016
  end-page: 210
  ident: bib0064
  article-title: Towards an evidence-based probabilistic risk model for ship-grounding accidents
  publication-title: Saf Sci
– volume: 133
  year: 2019
  ident: bib0050
  article-title: Analysis of the influence of human errors on the occurrence of coastal ship accidents in different wave conditions using Bayesian Belief Networks
  publication-title: Accid Anal Prev
– volume: 143
  start-page: 217
  year: 2017
  end-page: 226
  ident: bib0023
  article-title: After 40 years of regional and coordinated ship safety inspections: Destination reached or new point of departure?
  publication-title: Ocean Eng
– volume: 118
  start-page: 477
  year: 2018
  end-page: 495
  ident: bib0028
  article-title: A risk-based game model for rational inspections in port state control
  publication-title: Transp Res Part E
– volume: 124
  start-page: 142
  year: 2014
  end-page: 157
  ident: bib0038
  article-title: A framework for risk assessment for maritime transportation systems - A case study for open sea collisions involving RoPax vessels
  publication-title: Reliab Eng Syst Saf
– volume: 36
  start-page: 1278
  year: 2009
  end-page: 1286
  ident: bib0014
  article-title: MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor
  publication-title: Ocean Eng
– volume: 118
  start-page: 93
  year: 2013
  end-page: 105
  ident: bib0045
  article-title: Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River
  publication-title: Reliab Eng Syst Saf
– volume: 138
  start-page: 115
  year: 2015
  end-page: 134
  ident: bib0007
  article-title: Maritime transportation risk analysis: Review and analysis in light of some foundational issues
  publication-title: Reliab Eng Syst Saf
– volume: 36
  start-page: 1171
  year: 2016
  end-page: 1187
  ident: bib0046
  article-title: Maritime transportation risk assessment of Tianjin port with Bayesian belief networks
  publication-title: Risk Anal
– start-page: 887
  year: 2016
  end-page: 893
  ident: bib0075
  article-title: Probabilistic modelling of evasive manoeuvring actions to avoid collisions
  publication-title: Maritime Technology and Engineering 3
– year: 2007
  ident: bib0053
  article-title: Bayesian networks and decision graphs
– volume: 156
  start-page: 210
  year: 2016
  end-page: 227
  ident: bib0049
  article-title: Incorporation of human factors into ship collision risk models focusing on human centred design aspects
  publication-title: Reliab Eng Syst Saf
– volume: 12
  start-page: 481
  year: 2000
  end-page: 486
  ident: bib0066
  article-title: Building probabilistic networks: “Where do the numbers come from?” Guest Editors’ Introduction
  publication-title: IEEE Trans Knowl Data Eng
– volume: 102
  start-page: 27
  year: 2012
  end-page: 40
  ident: bib0048
  article-title: Influences of variables on ship collision probability in a Bayesian belief network model
  publication-title: Reliab Eng Syst Saf
– year: 2014
  ident: bib0016
  article-title: Real-time Dynamic Risk levels (Assessment of nautical safety levels using AIS)
  publication-title: International Work Next Generation Nautilus Traffic Model
– volume: 92
  start-page: 65
  year: 2020
  end-page: 80
  ident: bib0029
  article-title: Comparative analysis of the impact of new inspection regime on port state control inspection
  publication-title: Transp Policy
– volume: 155
  start-page: 124
  year: 2016
  end-page: 136
  ident: bib0060
  article-title: Towards a probabilistic model for predicting ship besetting in ice in Arctic waters
  publication-title: Reliab Eng Syst Saf
– volume: 12
  start-page: 285
  year: 2016
  end-page: 317
  ident: bib0021
  article-title: Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions
  publication-title: Ocean Sci
– volume: 37
  start-page: 2455
  year: 2017
  end-page: 2474
  ident: bib0012
  article-title: Three-stage decision-making model under restricted conditions for emergency response to ships not under control
  publication-title: Risk Anal
– volume: 93
  start-page: 1292
  year: 2008
  end-page: 1304
  ident: bib0005
  article-title: Causal factors in accidents of high-speed craft and conventional ocean-going vessels
  publication-title: Reliab Eng Syst Saf
– start-page: 86
  year: 2016
  ident: bib0011
  article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy
  publication-title: Saf Sci
– volume: 66
  start-page: 879
  year: 2013
  end-page: 898
  ident: bib0019
  article-title: Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal
  publication-title: J Navig
– volume: 10
  start-page: 89
  year: 2014
  end-page: 118
  ident: bib0036
  article-title: Bayesian network with quantitative input for maritime risk analysis
  publication-title: Transp A Transp Sci
– year: 2018
  ident: bib0033
  article-title: Port State Control: Safeguarding Responsible and Sustainable Shipping
  publication-title: Proceedings of the Annual Report
– volume: 19
  start-page: 1559
  year: 2018
  end-page: 1582
  ident: bib0004
  article-title: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology
  publication-title: IEEE Trans Intell Transp Syst
– year: 2008
  ident: bib0067
  article-title: Global Sensitivity Analysis. The Primer
– year: 2012
  ident: bib0025
  article-title: Port State Control: On course for safer shipping
  publication-title: Proceedings of the Annual Report
– volume: 164
  start-page: 590
  year: 2018
  end-page: 603
  ident: bib0013
  article-title: Incorporating evidential reasoning and TOPSIS into group decision-making under uncertainty for handling ship without command
  publication-title: Ocean Eng
– volume: 40
  start-page: 162
  year: 2013
  end-page: 167
  ident: bib0031
  article-title: A proposed validation framework for expert elicited Bayesian Networks
  publication-title: Expert Syst Appl
– volume: 117
  start-page: 108
  year: 2019
  end-page: 122
  ident: bib0003
  article-title: Probabilistic risk analysis for ship-ship collision: State-of-the-art
  publication-title: Saf Sci
– volume: 62
  start-page: 348
  year: 2014
  end-page: 365
  ident: bib0006
  article-title: On the reliability and validity of ship-ship collision risk analysis in light of different perspectives on risk
  publication-title: Saf Sci
– volume: 170
  start-page: 186
  year: 2018
  end-page: 198
  ident: bib0074
  article-title: Ship collision candidate detection method: A velocity obstacle approach
  publication-title: Ocean Eng
– start-page: 433
  year: 2010
  end-page: 442
  ident: bib0001
  article-title: Risk-based approaches to maritime safety
  publication-title: Safety and Reliability of Industrial Products, Systems and Structures
– volume: 95
  start-page: 573
  year: 2010
  end-page: 589
  ident: bib0073
  article-title: Probability modelling of vessel collisions
  publication-title: Reliab Eng Syst Saf
– start-page: 317
  year: 2000
  end-page: 325
  ident: bib0068
  article-title: Making Sensitivity Analysis Computationally Efficient
  publication-title: Proceedings of the 16th Uncertainty in Artificial Intelligence
– volume: 169
  start-page: 485
  year: 2018
  end-page: 502
  ident: bib0043
  article-title: An operational risk analysis tool to analyze marine transportation in Arctic waters
  publication-title: Reliab Eng Syst Saf
– year: 2019
  ident: bib0065
  article-title: AIS in maritime research
  publication-title: Mar Policy
– start-page: 86
  year: 2016
  ident: 10.1016/j.ress.2020.107073_bib0011
  article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy
  publication-title: Saf Sci
– volume: 41
  start-page: 7837
  year: 2014
  ident: 10.1016/j.ress.2020.107073_bib0062
  article-title: Bayesian network model of maritime safety management
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.06.029
– volume: 40
  start-page: 162
  year: 2013
  ident: 10.1016/j.ress.2020.107073_bib0031
  article-title: A proposed validation framework for expert elicited Bayesian Networks
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.026
– volume: 102
  start-page: 27
  year: 2012
  ident: 10.1016/j.ress.2020.107073_bib0048
  article-title: Influences of variables on ship collision probability in a Bayesian belief network model
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2012.02.008
– start-page: 433
  year: 2010
  ident: 10.1016/j.ress.2020.107073_bib0001
  article-title: Risk-based approaches to maritime safety
– ident: 10.1016/j.ress.2020.107073_bib0032
– start-page: 213
  year: 2009
  ident: 10.1016/j.ress.2020.107073_bib0034
  article-title: 5.3 Collisions and Groundings
– volume: 95
  start-page: 573
  year: 2010
  ident: 10.1016/j.ress.2020.107073_bib0073
  article-title: Probability modelling of vessel collisions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2010.01.009
– volume: 12
  start-page: 285
  year: 2016
  ident: 10.1016/j.ress.2020.107073_bib0021
  article-title: Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions
  publication-title: Ocean Sci
  doi: 10.5194/os-12-285-2016
– volume: 138
  start-page: 115
  year: 2015
  ident: 10.1016/j.ress.2020.107073_bib0007
  article-title: Maritime transportation risk analysis: Review and analysis in light of some foundational issues
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.01.025
– year: 2005
  ident: 10.1016/j.ress.2020.107073_bib0017
  article-title: Vessel Traffic Management in European Waters
  publication-title: Eur. Study Baseline Adv. Reg. Coast. Traffic Manag. Final Work Packag. 7 Rep.
– start-page: 112
  year: 2009
  ident: 10.1016/j.ress.2020.107073_bib0018
  article-title: Risk awareness; a model to calculate the risk of a ship dynamically
– volume: 79
  start-page: 130
  year: 2014
  ident: 10.1016/j.ress.2020.107073_bib0061
  article-title: A probabilistic model for accidental cargo oil outflow from product tankers in a ship-ship collision
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2013.12.026
– volume: 170
  start-page: 186
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0074
  article-title: Ship collision candidate detection method: A velocity obstacle approach
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.10.023
– volume: 156
  start-page: 210
  year: 2016
  ident: 10.1016/j.ress.2020.107073_bib0049
  article-title: Incorporation of human factors into ship collision risk models focusing on human centred design aspects
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.08.007
– volume: 72
  start-page: 97
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0024
  article-title: Achievements and challenges on the implementation of the European Directive on Port State Control
  publication-title: Transp Policy
  doi: 10.1016/j.tranpol.2018.09.016
– volume: 3
  start-page: 107
  year: 2006
  ident: 10.1016/j.ress.2020.107073_bib0040
  article-title: Fault-Tree Models of Accident Scenarios of RoPax Vessels
  publication-title: Int J Autom Comput
  doi: 10.1007/s11633-006-0107-8
– volume: 60
  start-page: 27
  year: 2015
  ident: 10.1016/j.ress.2020.107073_bib0071
  article-title: Identifying substandard vessels through port state control inspections: a new methodology for concentrated inspection campaigns
  publication-title: Mar Policy
  doi: 10.1016/j.marpol.2015.05.013
– volume: 3
  start-page: 23
  year: 2004
  ident: 10.1016/j.ress.2020.107073_bib0015
  article-title: IRIS: un Indicateur de Risque Individuel de navire pour la Securite en mer fonde sur les concepts des modeles d'evaluation des risques
  publication-title: Rev l’ Electr l’ Electron
  doi: 10.3845/ree.2004.023
– volume: 133
  year: 2019
  ident: 10.1016/j.ress.2020.107073_bib0050
  article-title: Analysis of the influence of human errors on the occurrence of coastal ship accidents in different wave conditions using Bayesian Belief Networks
  publication-title: Accid Anal Prev
  doi: 10.1016/j.aap.2019.105262
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.ress.2020.107073_bib0058
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 110
  start-page: 38
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0027
  article-title: Realising advanced risk-based port state control inspection using data-driven Bayesian networks
  publication-title: Transp Res Part A Policy Pract
  doi: 10.1016/j.tra.2018.01.033
– year: 2012
  ident: 10.1016/j.ress.2020.107073_bib0025
  article-title: Port State Control: On course for safer shipping
– year: 1988
  ident: 10.1016/j.ress.2020.107073_bib0051
– year: 2008
  ident: 10.1016/j.ress.2020.107073_bib0067
– volume: 169
  start-page: 485
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0043
  article-title: An operational risk analysis tool to analyze marine transportation in Arctic waters
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.09.014
– volume: 12
  start-page: 481
  year: 2000
  ident: 10.1016/j.ress.2020.107073_bib0066
  article-title: Building probabilistic networks: “Where do the numbers come from?” Guest Editors’ Introduction
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2000.868901
– volume: 92
  start-page: 65
  year: 2020
  ident: 10.1016/j.ress.2020.107073_bib0029
  article-title: Comparative analysis of the impact of new inspection regime on port state control inspection
  publication-title: Transp Policy
  doi: 10.1016/j.tranpol.2020.04.009
– volume: 19
  start-page: 1559
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0004
  article-title: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2017.2724551
– year: 2007
  ident: 10.1016/j.ress.2020.107073_bib0053
– year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0033
  article-title: Port State Control: Safeguarding Responsible and Sustainable Shipping
– start-page: 3660
  year: 2019
  ident: 10.1016/j.ress.2020.107073_bib0020
  article-title: Risk of ship near collision scenarios off the coast of Portugal
– volume: 10
  start-page: 89
  year: 2014
  ident: 10.1016/j.ress.2020.107073_bib0036
  article-title: Bayesian network with quantitative input for maritime risk analysis
  publication-title: Transp A Transp Sci
– volume: 133
  start-page: 224
  year: 2017
  ident: 10.1016/j.ress.2020.107073_bib0042
  article-title: Arctic shipping accident scenario analysis using Bayesian Network approach
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2017.02.002
– volume: 159
  start-page: 422
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0044
  article-title: Marine transportation risk assessment using Bayesian Network: Application to Arctic waters
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.04.024
– volume: 19
  start-page: 191
  year: 1995
  ident: 10.1016/j.ress.2020.107073_bib0059
  article-title: The EM algorithm for graphical association models with missing data
  publication-title: Comput Stat Data Anal
  doi: 10.1016/0167-9473(93)E0056-A
– volume: 36
  start-page: 323
  year: 2002
  ident: 10.1016/j.ress.2020.107073_bib0069
  article-title: Properties of Sensitivity Analysis of Bayesian Belief Networks
  publication-title: Ann Math Artif Intell
  doi: 10.1023/A:1016398407857
– volume: 37
  start-page: 1936
  year: 2017
  ident: 10.1016/j.ress.2020.107073_bib0010
  article-title: An Evidential Reasoning-Based CREAM to human reliability analysis in maritime accident process
  publication-title: Risk Anal
  doi: 10.1111/risa.12757
– volume: 36
  start-page: 1278
  year: 2009
  ident: 10.1016/j.ress.2020.107073_bib0014
  article-title: MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2009.07.003
– volume: 159
  start-page: 283
  year: 2017
  ident: 10.1016/j.ress.2020.107073_bib0063
  article-title: Enhancing human performance in ship operations by modifying global design factors at the design stage
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.11.009
– volume: 62
  start-page: 348
  year: 2014
  ident: 10.1016/j.ress.2020.107073_bib0006
  article-title: On the reliability and validity of ship-ship collision risk analysis in light of different perspectives on risk
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2013.09.010
– volume: 41
  start-page: 1632
  year: 2014
  ident: 10.1016/j.ress.2020.107073_bib0026
  article-title: Bayesian network modeling of Port State Control inspection findings and ship accident involvement
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.08.060
– volume: 93
  start-page: 823
  year: 2008
  ident: 10.1016/j.ress.2020.107073_bib0047
  article-title: A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2007.03.035
– start-page: 887
  year: 2016
  ident: 10.1016/j.ress.2020.107073_bib0075
  article-title: Probabilistic modelling of evasive manoeuvring actions to avoid collisions
– volume: 164
  start-page: 590
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0013
  article-title: Incorporating evidential reasoning and TOPSIS into group decision-making under uncertainty for handling ship without command
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.06.054
– volume: 143
  start-page: 217
  year: 2017
  ident: 10.1016/j.ress.2020.107073_bib0023
  article-title: After 40 years of regional and coordinated ship safety inspections: Destination reached or new point of departure?
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2017.06.050
– volume: 117
  start-page: 108
  year: 2019
  ident: 10.1016/j.ress.2020.107073_bib0003
  article-title: Probabilistic risk analysis for ship-ship collision: State-of-the-art
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.04.014
– year: 2014
  ident: 10.1016/j.ress.2020.107073_bib0016
  article-title: Real-time Dynamic Risk levels (Assessment of nautical safety levels using AIS)
– start-page: 3265
  year: 2009
  ident: 10.1016/j.ress.2020.107073_bib0041
  article-title: Analysis of Maritime Accident Data with BBN Models
– start-page: 317
  year: 2000
  ident: 10.1016/j.ress.2020.107073_bib0068
  article-title: Making Sensitivity Analysis Computationally Efficient
– volume: 165
  start-page: 140
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0039
  article-title: Assessing ship risk model applicability to Marine Autonomous Surface Ships
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.07.040
– start-page: 342
  year: 1999
  ident: 10.1016/j.ress.2020.107073_bib0057
  article-title: SMILE : structural modeling, inference, and learning engine and genie: a development environment for graphical decision-theoretic models
  publication-title: Proc. Sixt. Natl. Conf. Artif. Intell.
– volume: 36
  start-page: 1171
  year: 2016
  ident: 10.1016/j.ress.2020.107073_bib0046
  article-title: Maritime transportation risk assessment of Tianjin port with Bayesian belief networks
  publication-title: Risk Anal
  doi: 10.1111/risa.12519
– volume: 44
  start-page: 491
  year: 2008
  ident: 10.1016/j.ress.2020.107073_bib0072
  article-title: On the effectiveness of port state control inspections
  publication-title: Transp Res Part E Logist Transp Rev
  doi: 10.1016/j.tre.2006.11.005
– volume: 128
  start-page: 920
  year: 2019
  ident: 10.1016/j.ress.2020.107073_bib0056
  article-title: Valuing data in aircraft maintenance through big data analytics: A probabilistic approach for capacity planning using Bayesian networks
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.10.015
– year: 2019
  ident: 10.1016/j.ress.2020.107073_bib0065
  article-title: AIS in maritime research
  publication-title: Mar Policy
  doi: 10.1016/j.marpol.2019.103520
– volume: 118
  start-page: 93
  year: 2013
  ident: 10.1016/j.ress.2020.107073_bib0045
  article-title: Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2013.04.006
– volume: 25
  start-page: 671
  year: 2012
  ident: 10.1016/j.ress.2020.107073_bib0054
  article-title: Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.06.002
– volume: 29
  start-page: 349
  year: 2005
  ident: 10.1016/j.ress.2020.107073_bib0030
  article-title: Identification of “High Risk Vessels” in coastal waters
  publication-title: Mar Policy
  doi: 10.1016/j.marpol.2004.05.008
– year: 2014
  ident: 10.1016/j.ress.2020.107073_bib0037
  article-title: Bayesian Network to Predict Environmental Risk of a Possible Ship Accident
– volume: I
  start-page: 521
  year: 2000
  ident: 10.1016/j.ress.2020.107073_bib0009
  article-title: Accounting for Human Factors in the Analysis of Maritime accidents
– volume: 124
  start-page: 142
  year: 2014
  ident: 10.1016/j.ress.2020.107073_bib0038
  article-title: A framework for risk assessment for maritime transportation systems - A case study for open sea collisions involving RoPax vessels
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2013.11.014
– volume: 74
  start-page: 299
  year: 2001
  ident: 10.1016/j.ress.2020.107073_bib0002
  article-title: Risk assessment in maritime transportation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(01)00104-1
– volume: 86
  start-page: 195
  year: 2016
  ident: 10.1016/j.ress.2020.107073_bib0064
  article-title: Towards an evidence-based probabilistic risk model for ship-grounding accidents
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2016.03.002
– volume: 110
  start-page: 363
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0022
  article-title: Quantitative assessment of collision risk influence factors in the Tianjin port
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2018.05.002
– volume: 92
  start-page: 92
  year: 2007
  ident: 10.1016/j.ress.2020.107073_bib0055
  article-title: Bayesian networks in reliability
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.11.037
– volume: 155
  start-page: 124
  year: 2016
  ident: 10.1016/j.ress.2020.107073_bib0060
  article-title: Towards a probabilistic model for predicting ship besetting in ice in Arctic waters
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.06.010
– volume: 37
  start-page: 2455
  year: 2017
  ident: 10.1016/j.ress.2020.107073_bib0012
  article-title: Three-stage decision-making model under restricted conditions for emergency response to ships not under control
  publication-title: Risk Anal
  doi: 10.1111/risa.12815
– volume: 118
  start-page: 477
  year: 2018
  ident: 10.1016/j.ress.2020.107073_bib0028
  article-title: A risk-based game model for rational inspections in port state control
  publication-title: Transp Res Part E
  doi: 10.1016/j.tre.2018.08.001
– volume: 73
  start-page: 305
  year: 2014
  ident: 10.1016/j.ress.2020.107073_bib0035
  article-title: Bayesian networks for maritime traffic accident prevention: Benefits and challenges
  publication-title: Accid Anal Prev
  doi: 10.1016/j.aap.2014.09.017
– volume: 93
  start-page: 1292
  year: 2008
  ident: 10.1016/j.ress.2020.107073_bib0005
  article-title: Causal factors in accidents of high-speed craft and conventional ocean-going vessels
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2007.07.010
– year: 2008
  ident: 10.1016/j.ress.2020.107073_bib0052
– year: 2004
  ident: 10.1016/j.ress.2020.107073_bib0070
– ident: 10.1016/j.ress.2020.107073_bib0008
  doi: 10.1007/s10479-018-2768-4
– volume: 66
  start-page: 879
  year: 2013
  ident: 10.1016/j.ress.2020.107073_bib0019
  article-title: Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal
  publication-title: J Navig
  doi: 10.1017/S0373463313000519
SSID ssj0004957
Score 2.5645523
Snippet •Static risk modelling of individual ships based on Bayesian networks.•Ship Risk Profile parameters of Port State Control inspection used as risk...
This paper proposes a probabilistic approach for characterising the static risk of individual ships based on Bayesian networks (BNs). The approach uses the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107073
SubjectTerms Automatic identification system data
Bayesian analysis
Bayesian networks
Inspection
Reliability engineering
Risk analysis
Risk assessment
Risk factors
Risk management
Sensitivity analysis
Ship risk profile
Ships
Static risk factors
Title Probabilistic approach for characterising the static risk of ships using Bayesian networks
URI https://dx.doi.org/10.1016/j.ress.2020.107073
https://www.proquest.com/docview/2505418601
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaJQdvsm12N9tkj7VYqmIRtFC8hGyyCxXZlj4OXvztzuxmrQr24HGTSVhmJpMv8M0MIZc61hHLgsjTvh96HMQ8HYXc08YH_GyMYQazkR-GncGI342jcY30qlwYpFW62F_G9CJau5G202Z7Npm0nxAcSGz_jT4LFyFmsHOBXt76WNM84AEgqnbyKO0SZ0qOF75oW7gDDAgmwr8up19hurh7-ntk14FG2i3_a5_U0vyA7HwrJXhIXh7ncDKR6YqFl2lVKpwCJqVmXZQZZClAPop5RCCGxHI6zShSthZ0VUxf6_cUMytpXjLEF0dk1L957g081zfBM2Egl_AaBFBmY6Ot8TMEWFIkMhEJMzqwGvBbyi0TMbNaxkkcdBBjITsmyaTsMGPDY1LPp3l6QqjWsU2xZBxLOOdWgLSJQV-ZkWDNIG0Qv1KYMq6oOPa2eFMVe-xVoZIVKlmVSm6Qq681s7KkxkbpqLKD-uEYCmL-xnXNymjKHUuYB7zHwQmZf_rPbc_INn6V2YhNUl_OV-k5wJJlclH43QXZ6t7eD4af2wzh2Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SkKBTywobRO4jTOCBVVgbZCopUqFsuxE6kItVU_BhZ-O3eJQwGJDqzx2YrO5_Oz9O4dIVcqUgFLvcBRrus7HMwcFfjcUdoF_Ky1Zhqrkbu9RnvAH4bBsESaRS0M0ipt7s9zepat7Ze69WZ9OhrVnxEcCGz_jTELF-EG2eRwfLGNQe1jxfOAF0BY9JNHc1s5k5O88ElbwyXgQ8hC_6_b6Veezi6f1h7ZtaiR3uQ_tk9KyfiA7HzTEjwkL08zOJpIdUXlZVpohVMApVSvVJnBlgLmo1hIBGbILKeTlCJna06X2fCtek-wtJKOc4r4_IgMWnf9ZtuxjRMc7XtiAc9BQGUm0spoN0WEJcJYxGHMtPKMAgCXcMPCiBklojjyGgiykB4Tp0I0mDb-MSmPJ-PkhFClIpOgZhyLOecmBGsdgb9SLWA7vaRC3MJhUltVcWxu8SYL-tirRCdLdLLMnVwh119zprmmxlrroNgH-SMyJCT9tfOqxaZJey5hHAAfhyhk7uk_l70kW-1-tyM7973HM7KNI3lpYpWUF7Nlcg4YZRFfZDH4CRwT42c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+approach+for+characterising+the+static+risk+of+ships+using+Bayesian+networks&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Dinis%2C+D&rft.au=Teixeira%2C+A+P&rft.au=Soares%2C+C+Guedes&rft.date=2020-11-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=203&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2020.107073&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon