HSTF-Model: An HTTP-based Trojan detection model via the Hierarchical Spatio-temporal Features of Traffics
HTTP-based Trojan is extremely threatening, and it is difficult to be effectively detected because of its concealment and confusion. Previous detection methods usually are with poor generalization ability due to outdated datasets and reliance on manual feature extraction, which makes these methods a...
Saved in:
Published in | Computers & security Vol. 96; p. 101923 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.09.2020
Elsevier Sequoia S.A |
Subjects | |
Online Access | Get full text |
ISSN | 0167-4048 1872-6208 |
DOI | 10.1016/j.cose.2020.101923 |
Cover
Loading…
Abstract | HTTP-based Trojan is extremely threatening, and it is difficult to be effectively detected because of its concealment and confusion. Previous detection methods usually are with poor generalization ability due to outdated datasets and reliance on manual feature extraction, which makes these methods always perform well under their private dataset, but poorly or even fail to work in real network environment. In this paper, we propose an HTTP-based Trojan detection model via the Hierarchical Spatio-Temporal Features of traffics (HSTF-Model) based on the formalized description of traffic spatio-temporal behavior from both packet level and flow level. In this model, we employ Convolutional Neural Network (CNN) to extract spatial information and Long Short-Term Memory (LSTM) to extract temporal information. In addition, we present a dataset consisting of Benign and Trojan HTTP Traffic (BTHT-2018). Experimental results show that our model can guarantee high accuracy (the F1 of 98.62% ~ 99.81% and the FPR of 0.34% ~ 0.02% in BTHT-2018). More importantly, our model has a huge advantage over other related methods in generalization ability. HSTF-Model trained with BTHT-2018 can reach the F1 of 93.51% on the public dataset ISCX-2012, which is 20+% better than the best of related machine learning methods. |
---|---|
AbstractList | HTTP-based Trojan is extremely threatening, and it is difficult to be effectively detected because of its concealment and confusion. Previous detection methods usually are with poor generalization ability due to outdated datasets and reliance on manual feature extraction, which makes these methods always perform well under their private dataset, but poorly or even fail to work in real network environment. In this paper, we propose an HTTP-based Trojan detection model via the Hierarchical Spatio-Temporal Features of traffics (HSTF-Model) based on the formalized description of traffic spatio-temporal behavior from both packet level and flow level. In this model, we employ Convolutional Neural Network (CNN) to extract spatial information and Long Short-Term Memory (LSTM) to extract temporal information. In addition, we present a dataset consisting of Benign and Trojan HTTP Traffic (BTHT-2018). Experimental results show that our model can guarantee high accuracy (the F1 of 98.62% ~ 99.81% and the FPR of 0.34% ~ 0.02% in BTHT-2018). More importantly, our model has a huge advantage over other related methods in generalization ability. HSTF-Model trained with BTHT-2018 can reach the F1 of 93.51% on the public dataset ISCX-2012, which is 20+% better than the best of related machine learning methods. HTTP-based Trojan is extremely threatening, and it is difficult to be effectively detected because of its concealment and confusion. Previous detection methods usually are with poor generalization ability due to outdated datasets and reliance on manual feature extraction, which makes these methods always perform well under their private dataset, but poorly or even fail to work in real network environment. In this paper, we propose an HTTP-based Trojan detection model via the Hierarchical Spatio-Temporal Features of traffics (HSTF-Model) based on the formalized description of traffic spatio-temporal behavior from both packet level and flow level. In this model, we employ Convolutional Neural Network (CNN) to extract spatial information and Long Short-Term Memory (LSTM) to extract temporal information. In addition, we present a dataset consisting of Benign and Trojan HTTP Traffic (BTHT-2018). Experimental results show that our model can guarantee high accuracy (the F1 of 98.62% ~ 99.81% and the FPR of 0.34% ~ 0.02% in BTHT-2018). More importantly, our model has a huge advantage over other related methods in generalization ability. HSTF-Model trained with BTHT-2018 can reach the F1 of 93.51% on the public dataset ISCX-2012, which is 20+% better than the best of related machine learning methods. |
ArticleNumber | 101923 |
Author | Chang, Peng Xie, Jiang Li, Shuhao Zhang, Yongzheng Yun, Xiaochun |
Author_xml | – sequence: 1 givenname: Jiang orcidid: 0000-0003-3219-3102 surname: Xie fullname: Xie, Jiang email: xiejiang@iie.ac.cn organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Shuhao surname: Li fullname: Li, Shuhao email: lishuhao@iie.ac.cn organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Xiaochun surname: Yun fullname: Yun, Xiaochun email: yunxiaochun@cert.org.cn organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Yongzheng surname: Zhang fullname: Zhang, Yongzheng email: zhangyongzheng@iie.ac.cn organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Peng surname: Chang fullname: Chang, Peng email: changpeng@iie.ac.cn organization: Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China |
BookMark | eNp9kEFLwzAYQINMcJv-AU8Bz51JuraZeBnDOWGisHoOafKFpWzNTLKB_97UefLgKSS894XvjdCgcx0gdEvJhBJa3rcT5QJMGGE_DzOWX6Ah5RXLSkb4AA0TVGVTMuVXaBRCSwitSs6HqF1t6mX26jTsHvC8w6u6fs8aGUDj2rtWdlhDBBWt6_C-p_DJShy3gFcWvPRqa5Xc4c1BJiSLsD84n-5LkPHoIWBn0hxpjFXhGl0auQtw83uO0cfyqV6ssvXb88tivs5UznjMCt3MmqlmjWENoU1FNJCSF1TnZcEUm3JpclCsobOGlVIrqlVhjCo5AzKjJs_H6O489-Dd5xFCFK07-i59KVhBiooVFekpdqaUdyF4MOLg7V76L0GJ6JuKVvRNRd9UnJsmif-RlI395l300u7-Vx_PKqTVT6mdCMpCp0Bbn_oK7ex_-jes-ZPz |
CitedBy_id | crossref_primary_10_1007_s10489_022_04076_0 crossref_primary_10_1016_j_compeleceng_2022_107883 crossref_primary_10_3390_electronics9111894 crossref_primary_10_1016_j_cose_2023_103628 crossref_primary_10_1016_j_jpdc_2022_06_004 crossref_primary_10_1186_s40537_025_01087_9 crossref_primary_10_1016_j_cose_2022_102663 crossref_primary_10_1016_j_cose_2022_102861 crossref_primary_10_3390_s24206507 crossref_primary_10_3934_era_2023259 crossref_primary_10_1016_j_cose_2023_103257 crossref_primary_10_3390_electronics12102313 |
Cites_doi | 10.1016/j.comcom.2014.04.012 10.1016/j.eswa.2016.09.041 10.1109/COMST.2018.2847722 10.1109/TETCI.2017.2772792 10.1016/j.eswa.2005.05.002 10.1007/s13198-015-0376-0 10.1109/COMST.2015.2494502 10.1016/j.cose.2019.03.013 10.1016/j.jnca.2012.09.004 10.1007/s12652-018-0803-6 10.1037/h0042519 10.17487/rfc1998 10.1016/j.cose.2019.06.005 10.1109/SURV.2013.052213.00046 10.1109/ACCESS.2017.2762418 10.1016/j.ins.2019.09.024 10.1145/846183.846204 10.1007/BF00994018 10.1016/j.cose.2011.12.012 10.1016/j.patcog.2016.03.028 10.1145/997150.997156 10.1016/j.cose.2018.04.010 10.1016/j.jocs.2017.03.006 10.1109/MC.2002.1012428 10.1016/j.cose.2019.01.006 10.1016/j.ins.2017.04.044 10.1016/j.cose.2019.05.022 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier Sequoia S.A. Sep 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Sequoia S.A. Sep 2020 |
DBID | AAYXX CITATION 7SC 8FD JQ2 K7. L7M L~C L~D |
DOI | 10.1016/j.cose.2020.101923 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Criminal Justice (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef ProQuest Criminal Justice (Alumni) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | ProQuest Criminal Justice (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-6208 |
ExternalDocumentID | 10_1016_j_cose_2020_101923 S016740482030198X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLX HLZ HVGLF HZ~ IHE J1W KOM LG8 LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SBM SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TAE TN5 TWZ WH7 WUQ XJE XPP XSW YK3 ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 K7. L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-5db9b4d2bf2b01b70de06851d3652c248af3ec2b19b26adc1dc5ffc682e091f33 |
IEDL.DBID | AIKHN |
ISSN | 0167-4048 |
IngestDate | Fri Jul 25 08:11:28 EDT 2025 Tue Jul 01 03:48:18 EDT 2025 Thu Apr 24 22:58:51 EDT 2025 Fri Feb 23 02:48:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Spatio-temporal features HTTP-based Trojan detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-5db9b4d2bf2b01b70de06851d3652c248af3ec2b19b26adc1dc5ffc682e091f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3219-3102 |
PQID | 2505725703 |
PQPubID | 46289 |
ParticipantIDs | proquest_journals_2505725703 crossref_primary_10_1016_j_cose_2020_101923 crossref_citationtrail_10_1016_j_cose_2020_101923 elsevier_sciencedirect_doi_10_1016_j_cose_2020_101923 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers & security |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Sequoia S.A |
References | Gezer, Warner, Wilson, Shrestha (bib0015) 2019; 84 Erfani, Rajasegarar, Karunasekera, Leckie (bib0014) 2016; 58 Shone, Ngoc, Phai, Shi (bib0035) 2018; 2 Yang, Kong, Zhi, Chen, Wang (bib0042) 2018; 6 Zhang, Wang (bib0044) 2013 Kemmerer, Vigna (bib0020) 2002; 35 Panda, Patra (bib0029) 2007; 7 Senavirathne, Torra (bib0033) 2019; 83 Zhou, Paffenroth (bib0045) 2017 CNCERT/CC (bib0010) 2019 Bhuyan, Bhattacharyya, Kalita (bib0003) 2013; 16 Li, Qin, Huang, Yang, Ye (bib0023) 2017 Al-Yaseen, Othman, Nazri (bib0001) 2017; 67 Mishra, Varadharajan, Tupakula, Pilli (bib0027) 2018; 21 Buczak, Guven (bib0005) 2015; 18 Rosenblatt (bib0031) 1958; 65 Vijayanand, Devaraj, Kannapiran (bib0039) 2018; 77 Moore, Zuev, Crogan (bib0028) 2013 Rosset, Inger (bib0032) 2000; 1 Wang, Zhao, Wang (bib0041) 2019; 10 Wang, Shang, He, Li, Liu (bib0040) 2020; 511 Bost, Popa, Tu, Goldwasser (bib0004) 2015; 4324 Ring, Wunderlich, Scheuring, Landes, Hotho (bib0030) 2019 Chen, Yan, Han, Wang, Peng, Wang, Yang (bib0009) 2018; 433 Can, Sahingoz (bib0006) 2015 Kim, Shin, Jo, Kim (bib0021) 2017 Liao, Lin, Lin, Tung (bib0024) 2013; 36 Sundermeyer, Schlüter, Ney (bib0036) 2012 Mira, Sandoval (bib0025) 1995; 930 Shiravi, Shiravi, Tavallaee, Ghorbani (bib0034) 2012; 31 Tavallaee, Bagheri, Lu, Ghorbani (bib0037) 2009 Javaid, Niyaz, Sun, Alam (bib0019) 2016 Yin, Zhu, Fei, He (bib0043) 2017; 5 Tian, Yao, Ryder, Tan, Peng (bib0038) 2017 Chen, Guan, Huang, Ou (bib0007) 2016; 12 Cortes, Vapnik (bib0011) 1995; 20 Hubballi, Suryanarayanan (bib0018) 2014; 49 Mirkovic, Reiher (bib0026) 2004; 34 Depren, Topallar, Anarim, Ciliz (bib0012) 2005; 29 Gu, Wang, Wang, Wang (bib0016) 2019; 86 Aljawarneh, Aldwairi, Yassein (bib0002) 2018; 25 Kwon, Kim, Kim, Suh, Kim, Kim (bib0022) 2017 Dong, Wang (bib0013) 2016 Gupta, Gupta (bib0017) 2017; 8 Chen, E., Bates, T., 1996. Rfc1998: An application of the bgp community attribute in multi-home routing. Chen (10.1016/j.cose.2020.101923_bib0009) 2018; 433 Hubballi (10.1016/j.cose.2020.101923_bib0018) 2014; 49 Senavirathne (10.1016/j.cose.2020.101923_bib0033) 2019; 83 Tian (10.1016/j.cose.2020.101923_bib0038) 2017 Cortes (10.1016/j.cose.2020.101923_bib0011) 1995; 20 Kwon (10.1016/j.cose.2020.101923_bib0022) 2017 Sundermeyer (10.1016/j.cose.2020.101923_bib0036) 2012 Bhuyan (10.1016/j.cose.2020.101923_bib0003) 2013; 16 Buczak (10.1016/j.cose.2020.101923_bib0005) 2015; 18 Chen (10.1016/j.cose.2020.101923_bib0007) 2016; 12 Aljawarneh (10.1016/j.cose.2020.101923_bib0002) 2018; 25 Wang (10.1016/j.cose.2020.101923_bib0041) 2019; 10 Al-Yaseen (10.1016/j.cose.2020.101923_bib0001) 2017; 67 Mishra (10.1016/j.cose.2020.101923_bib0027) 2018; 21 Rosenblatt (10.1016/j.cose.2020.101923_bib0031) 1958; 65 Wang (10.1016/j.cose.2020.101923_bib0040) 2020; 511 Gupta (10.1016/j.cose.2020.101923_bib0017) 2017; 8 Tavallaee (10.1016/j.cose.2020.101923_bib0037) 2009 Can (10.1016/j.cose.2020.101923_bib0006) 2015 Vijayanand (10.1016/j.cose.2020.101923_bib0039) 2018; 77 Li (10.1016/j.cose.2020.101923_bib0023) 2017 Shone (10.1016/j.cose.2020.101923_bib0035) 2018; 2 Depren (10.1016/j.cose.2020.101923_bib0012) 2005; 29 Shiravi (10.1016/j.cose.2020.101923_bib0034) 2012; 31 Kim (10.1016/j.cose.2020.101923_bib0021) 2017 Kemmerer (10.1016/j.cose.2020.101923_bib0020) 2002; 35 Zhang (10.1016/j.cose.2020.101923_bib0044) 2013 Mirkovic (10.1016/j.cose.2020.101923_bib0026) 2004; 34 10.1016/j.cose.2020.101923_bib0008 Mira (10.1016/j.cose.2020.101923_bib0025) 1995; 930 Panda (10.1016/j.cose.2020.101923_bib0029) 2007; 7 Gu (10.1016/j.cose.2020.101923_bib0016) 2019; 86 Javaid (10.1016/j.cose.2020.101923_bib0019) 2016 CNCERT/CC (10.1016/j.cose.2020.101923_bib0010) 2019 Ring (10.1016/j.cose.2020.101923_bib0030) 2019 Yang (10.1016/j.cose.2020.101923_bib0042) 2018; 6 Yin (10.1016/j.cose.2020.101923_bib0043) 2017; 5 Gezer (10.1016/j.cose.2020.101923_bib0015) 2019; 84 Bost (10.1016/j.cose.2020.101923_bib0004) 2015; 4324 Dong (10.1016/j.cose.2020.101923_bib0013) 2016 Erfani (10.1016/j.cose.2020.101923_bib0014) 2016; 58 Rosset (10.1016/j.cose.2020.101923_bib0032) 2000; 1 Zhou (10.1016/j.cose.2020.101923_bib0045) 2017 Moore (10.1016/j.cose.2020.101923_bib0028) 2013 Liao (10.1016/j.cose.2020.101923_bib0024) 2013; 36 |
References_xml | – start-page: 1 year: 2015 end-page: 6 ident: bib0006 article-title: A survey of intrusion detection systems in wireless sensor networks publication-title: 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO) – volume: 84 start-page: 179 year: 2019 end-page: 192 ident: bib0015 article-title: A flow-based approach for trickbot banking trojan detection publication-title: Computers & Security – volume: 2 start-page: 41 year: 2018 end-page: 50 ident: bib0035 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 433 start-page: 346 year: 2018 end-page: 364 ident: bib0009 article-title: Machine learning based mobile malware detection using highly imbalanced network traffic publication-title: Information Sciences – start-page: 21 year: 2016 end-page: 26 ident: bib0019 article-title: A deep learning approach for network intrusion detection system publication-title: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) – volume: 83 start-page: 167 year: 2019 end-page: 181 ident: bib0033 article-title: Integrally private model selection for decision trees publication-title: Computers & Security – year: 2017 ident: bib0038 article-title: Detection of repackaged android malware with code-heterogeneity features publication-title: IEEE Transactions on Dependable and Secure Computing – volume: 1 start-page: 85 year: 2000 end-page: 90 ident: bib0032 article-title: Kdd-cup 99: knowledge discovery in a charitable organization’s donor database publication-title: SIGKDD Explorations – start-page: 307 year: 2013 end-page: 311 ident: bib0044 article-title: An effective feature selection approach for network intrusion detection publication-title: 2013 IEEE Eighth International Conference on Networking, Architecture and Storage – year: 2012 ident: bib0036 article-title: Lstm neural networks for language modeling publication-title: Thirteenth annual conference of the international speech communication association – volume: 25 start-page: 152 year: 2018 end-page: 160 ident: bib0002 article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model publication-title: J. Comput. Sci. – volume: 21 start-page: 686 year: 2018 end-page: 728 ident: bib0027 article-title: A detailed investigation and analysis of using machine learning techniques for intrusion detection publication-title: IEEE Communications Surveys & Tutorials – start-page: 858 year: 2017 end-page: 866 ident: bib0023 article-title: Intrusion detection using convolutional neural networks for representation learning publication-title: International Conference on Neural Information Processing – start-page: 581 year: 2016 end-page: 585 ident: bib0013 article-title: Comparison deep learning method to traditional methods using for network intrusion detection publication-title: 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN) – volume: 7 start-page: 258 year: 2007 end-page: 263 ident: bib0029 article-title: Network intrusion detection using naive bayes publication-title: International journal of computer science and network security – volume: 31 start-page: 357 year: 2012 end-page: 374 ident: bib0034 article-title: Toward developing a systematic approach to generate benchmark datasets for intrusion detection publication-title: computers & security – volume: 6 start-page: 35365 year: 2018 end-page: 35381 ident: bib0042 article-title: Machine learning and deep learning methods for cybersecurity publication-title: IEEE Access – volume: 34 start-page: 39 year: 2004 end-page: 53 ident: bib0026 article-title: A taxonomy of ddos attack and ddos defense mechanisms publication-title: ACM SIGCOMM Computer Communication Review – volume: 29 start-page: 713 year: 2005 end-page: 722 ident: bib0012 article-title: An intelligent intrusion detection system (ids) for anomaly and misuse detection in computer networks publication-title: Expert systems with Applications – volume: 86 start-page: 53 year: 2019 end-page: 62 ident: bib0016 article-title: A novel approach to intrusion detection using svm ensemble with feature augmentation publication-title: Computers & Security – volume: 511 start-page: 284 year: 2020 end-page: 296 ident: bib0040 article-title: Botmark: Automated botnet detection with hybrid analysis of flow-based and graph-based traffic behaviors publication-title: Information Sciences – volume: 65 start-page: 386 year: 1958 ident: bib0031 article-title: The perceptron: a probabilistic model for information storage and organization in the brain. publication-title: Psychological review – volume: 49 start-page: 1 year: 2014 end-page: 17 ident: bib0018 article-title: False alarm minimization techniques in signature-based intrusion detection systems: A survey publication-title: Computer Communications – volume: 16 start-page: 303 year: 2013 end-page: 336 ident: bib0003 article-title: Network anomaly detection: methods, systems and tools publication-title: Ieee communications surveys & tutorials – volume: 12 start-page: 569 year: 2016 end-page: 580 ident: bib0007 article-title: Anomaly network intrusion detection using hidden markov model publication-title: Int. J. Innov. Comput. Inform. Control – start-page: 313 year: 2017 end-page: 316 ident: bib0021 article-title: Method of intrusion detection using deep neural network publication-title: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp) – reference: Chen, E., Bates, T., 1996. Rfc1998: An application of the bgp community attribute in multi-home routing. – volume: 8 start-page: 512 year: 2017 end-page: 530 ident: bib0017 article-title: Cross-site scripting (xss) attacks and defense mechanisms: classification and state-of-the-art publication-title: International Journal of System Assurance Engineering and Management – start-page: 1 year: 2009 end-page: 6 ident: bib0037 article-title: A detailed analysis of the kdd cup 99 data set publication-title: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications – volume: 77 start-page: 304 year: 2018 end-page: 314 ident: bib0039 article-title: Intrusion detection system for wireless mesh network using multiple support vector machine classifiers with genetic-algorithm-based feature selection publication-title: Computers & Security – year: 2019 ident: bib0030 article-title: A survey of network-based intrusion detection data sets publication-title: Computers & Security – volume: 18 start-page: 1153 year: 2015 end-page: 1176 ident: bib0005 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Communications Surveys & Tutorials – volume: 930 year: 1995 ident: bib0025 article-title: From Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks, Malaga-Torremolinos, Spain, June 7-9, 1995: Proceedings – year: 2019 ident: bib0010 article-title: 2018 China Internet Cyber Security Report – volume: 10 start-page: 3035 year: 2019 end-page: 3043 ident: bib0041 article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network publication-title: Journal of Ambient Intelligence and Humanized Computing – start-page: 1 year: 2017 end-page: 13 ident: bib0022 article-title: A survey of deep learning-based network anomaly detection publication-title: Cluster Comput. – start-page: 665 year: 2017 end-page: 674 ident: bib0045 article-title: Anomaly detection with robust deep autoencoders publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 58 start-page: 121 year: 2016 end-page: 134 ident: bib0014 article-title: High-dimensional and large-scale anomaly detection using a linear one-class svm with deep learning publication-title: Pattern Recognition – volume: 36 start-page: 16 year: 2013 end-page: 24 ident: bib0024 article-title: Intrusion detection system: A comprehensive review publication-title: Journal of Network and Computer Applications – volume: 5 start-page: 21954 year: 2017 end-page: 21961 ident: bib0043 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: Ieee Access – volume: 4324 start-page: 4325 year: 2015 ident: bib0004 article-title: Machine learning classification over encrypted data. publication-title: NDSS – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0011 article-title: Support-vector networks publication-title: Machine learning – year: 2013 ident: bib0028 article-title: Discriminators for use in flow-based classification publication-title: Technical Report – volume: 67 start-page: 296 year: 2017 end-page: 303 ident: bib0001 article-title: Multi-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection system publication-title: Expert Syst. Appl. – volume: 35 start-page: supl27 year: 2002 end-page: supl30 ident: bib0020 article-title: Intrusion detection: a brief history and overview publication-title: Computer – volume: 49 start-page: 1 year: 2014 ident: 10.1016/j.cose.2020.101923_bib0018 article-title: False alarm minimization techniques in signature-based intrusion detection systems: A survey publication-title: Computer Communications doi: 10.1016/j.comcom.2014.04.012 – volume: 67 start-page: 296 year: 2017 ident: 10.1016/j.cose.2020.101923_bib0001 article-title: Multi-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.041 – volume: 7 start-page: 258 issue: 12 year: 2007 ident: 10.1016/j.cose.2020.101923_bib0029 article-title: Network intrusion detection using naive bayes publication-title: International journal of computer science and network security – volume: 21 start-page: 686 issue: 1 year: 2018 ident: 10.1016/j.cose.2020.101923_bib0027 article-title: A detailed investigation and analysis of using machine learning techniques for intrusion detection publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/COMST.2018.2847722 – year: 2013 ident: 10.1016/j.cose.2020.101923_bib0028 article-title: Discriminators for use in flow-based classification – volume: 2 start-page: 41 issue: 1 year: 2018 ident: 10.1016/j.cose.2020.101923_bib0035 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2017.2772792 – volume: 29 start-page: 713 issue: 4 year: 2005 ident: 10.1016/j.cose.2020.101923_bib0012 article-title: An intelligent intrusion detection system (ids) for anomaly and misuse detection in computer networks publication-title: Expert systems with Applications doi: 10.1016/j.eswa.2005.05.002 – volume: 8 start-page: 512 issue: 1 year: 2017 ident: 10.1016/j.cose.2020.101923_bib0017 article-title: Cross-site scripting (xss) attacks and defense mechanisms: classification and state-of-the-art publication-title: International Journal of System Assurance Engineering and Management doi: 10.1007/s13198-015-0376-0 – volume: 18 start-page: 1153 issue: 2 year: 2015 ident: 10.1016/j.cose.2020.101923_bib0005 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/COMST.2015.2494502 – volume: 84 start-page: 179 year: 2019 ident: 10.1016/j.cose.2020.101923_bib0015 article-title: A flow-based approach for trickbot banking trojan detection publication-title: Computers & Security doi: 10.1016/j.cose.2019.03.013 – start-page: 1 year: 2009 ident: 10.1016/j.cose.2020.101923_bib0037 article-title: A detailed analysis of the kdd cup 99 data set – volume: 36 start-page: 16 issue: 1 year: 2013 ident: 10.1016/j.cose.2020.101923_bib0024 article-title: Intrusion detection system: A comprehensive review publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2012.09.004 – volume: 10 start-page: 3035 issue: 8 year: 2019 ident: 10.1016/j.cose.2020.101923_bib0041 article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-018-0803-6 – start-page: 313 year: 2017 ident: 10.1016/j.cose.2020.101923_bib0021 article-title: Method of intrusion detection using deep neural network – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.cose.2020.101923_bib0031 article-title: The perceptron: a probabilistic model for information storage and organization in the brain. publication-title: Psychological review doi: 10.1037/h0042519 – start-page: 307 year: 2013 ident: 10.1016/j.cose.2020.101923_bib0044 article-title: An effective feature selection approach for network intrusion detection – ident: 10.1016/j.cose.2020.101923_bib0008 doi: 10.17487/rfc1998 – year: 2019 ident: 10.1016/j.cose.2020.101923_bib0010 – year: 2019 ident: 10.1016/j.cose.2020.101923_bib0030 article-title: A survey of network-based intrusion detection data sets publication-title: Computers & Security doi: 10.1016/j.cose.2019.06.005 – year: 2012 ident: 10.1016/j.cose.2020.101923_bib0036 article-title: Lstm neural networks for language modeling – volume: 4324 start-page: 4325 year: 2015 ident: 10.1016/j.cose.2020.101923_bib0004 article-title: Machine learning classification over encrypted data. – volume: 930 year: 1995 ident: 10.1016/j.cose.2020.101923_bib0025 – volume: 16 start-page: 303 issue: 1 year: 2013 ident: 10.1016/j.cose.2020.101923_bib0003 article-title: Network anomaly detection: methods, systems and tools publication-title: Ieee communications surveys & tutorials doi: 10.1109/SURV.2013.052213.00046 – volume: 5 start-page: 21954 year: 2017 ident: 10.1016/j.cose.2020.101923_bib0043 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: Ieee Access doi: 10.1109/ACCESS.2017.2762418 – volume: 511 start-page: 284 year: 2020 ident: 10.1016/j.cose.2020.101923_bib0040 article-title: Botmark: Automated botnet detection with hybrid analysis of flow-based and graph-based traffic behaviors publication-title: Information Sciences doi: 10.1016/j.ins.2019.09.024 – volume: 1 start-page: 85 issue: 2 year: 2000 ident: 10.1016/j.cose.2020.101923_bib0032 article-title: Kdd-cup 99: knowledge discovery in a charitable organization’s donor database publication-title: SIGKDD Explorations doi: 10.1145/846183.846204 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.cose.2020.101923_bib0011 article-title: Support-vector networks publication-title: Machine learning doi: 10.1007/BF00994018 – start-page: 1 year: 2017 ident: 10.1016/j.cose.2020.101923_bib0022 article-title: A survey of deep learning-based network anomaly detection publication-title: Cluster Comput. – volume: 31 start-page: 357 issue: 3 year: 2012 ident: 10.1016/j.cose.2020.101923_bib0034 article-title: Toward developing a systematic approach to generate benchmark datasets for intrusion detection publication-title: computers & security doi: 10.1016/j.cose.2011.12.012 – volume: 58 start-page: 121 year: 2016 ident: 10.1016/j.cose.2020.101923_bib0014 article-title: High-dimensional and large-scale anomaly detection using a linear one-class svm with deep learning publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.03.028 – volume: 34 start-page: 39 issue: 2 year: 2004 ident: 10.1016/j.cose.2020.101923_bib0026 article-title: A taxonomy of ddos attack and ddos defense mechanisms publication-title: ACM SIGCOMM Computer Communication Review doi: 10.1145/997150.997156 – volume: 77 start-page: 304 year: 2018 ident: 10.1016/j.cose.2020.101923_bib0039 article-title: Intrusion detection system for wireless mesh network using multiple support vector machine classifiers with genetic-algorithm-based feature selection publication-title: Computers & Security doi: 10.1016/j.cose.2018.04.010 – volume: 25 start-page: 152 year: 2018 ident: 10.1016/j.cose.2020.101923_bib0002 article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.03.006 – start-page: 1 year: 2015 ident: 10.1016/j.cose.2020.101923_bib0006 article-title: A survey of intrusion detection systems in wireless sensor networks – volume: 35 start-page: supl27 issue: 4 year: 2002 ident: 10.1016/j.cose.2020.101923_bib0020 article-title: Intrusion detection: a brief history and overview publication-title: Computer doi: 10.1109/MC.2002.1012428 – volume: 6 start-page: 35365 issue: 99 year: 2018 ident: 10.1016/j.cose.2020.101923_bib0042 article-title: Machine learning and deep learning methods for cybersecurity publication-title: IEEE Access – start-page: 21 year: 2016 ident: 10.1016/j.cose.2020.101923_bib0019 article-title: A deep learning approach for network intrusion detection system – start-page: 665 year: 2017 ident: 10.1016/j.cose.2020.101923_bib0045 article-title: Anomaly detection with robust deep autoencoders – volume: 83 start-page: 167 year: 2019 ident: 10.1016/j.cose.2020.101923_bib0033 article-title: Integrally private model selection for decision trees publication-title: Computers & Security doi: 10.1016/j.cose.2019.01.006 – volume: 12 start-page: 569 year: 2016 ident: 10.1016/j.cose.2020.101923_bib0007 article-title: Anomaly network intrusion detection using hidden markov model publication-title: Int. J. Innov. Comput. Inform. Control – year: 2017 ident: 10.1016/j.cose.2020.101923_bib0038 article-title: Detection of repackaged android malware with code-heterogeneity features publication-title: IEEE Transactions on Dependable and Secure Computing – volume: 433 start-page: 346 year: 2018 ident: 10.1016/j.cose.2020.101923_bib0009 article-title: Machine learning based mobile malware detection using highly imbalanced network traffic publication-title: Information Sciences doi: 10.1016/j.ins.2017.04.044 – volume: 86 start-page: 53 year: 2019 ident: 10.1016/j.cose.2020.101923_bib0016 article-title: A novel approach to intrusion detection using svm ensemble with feature augmentation publication-title: Computers & Security doi: 10.1016/j.cose.2019.05.022 – start-page: 581 year: 2016 ident: 10.1016/j.cose.2020.101923_bib0013 article-title: Comparison deep learning method to traditional methods using for network intrusion detection – start-page: 858 year: 2017 ident: 10.1016/j.cose.2020.101923_bib0023 article-title: Intrusion detection using convolutional neural networks for representation learning |
SSID | ssj0017688 |
Score | 2.386095 |
Snippet | HTTP-based Trojan is extremely threatening, and it is difficult to be effectively detected because of its concealment and confusion. Previous detection methods... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101923 |
SubjectTerms | Artificial neural networks Datasets Deep learning Feature extraction HTTP-based Trojan detection Machine learning Malware Model accuracy Spatial data Spatio-temporal features |
Title | HSTF-Model: An HTTP-based Trojan detection model via the Hierarchical Spatio-temporal Features of Traffics |
URI | https://dx.doi.org/10.1016/j.cose.2020.101923 https://www.proquest.com/docview/2505725703 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60Xrz4Fp9lD94kNtnNY-OtiBIVRWiF3pZ9ZKGlpKVWj_52d5JNQUEPHrNklzA7O_Ml-WY-gIs8dTnDyDzIOJbk2JAHysgo0JxmGdNUM4XfO56e0-I1fhglozW4aWthkFbpY38T0-to7Ud63pq9-XjcG9QEeueAFFF9zkfrsEFZniYd2OjfPxbPq58JDlHzVYtvN8HXzjQ0L6SFu9dEWg_klP2Wn35E6jr93O3AlseNpN882i6sldUebLeaDMQf0X2YFAPncKhwNr0m_YoUw-FLgKnKkOFiNpEVMeWypl9VpFbBIR9jSRwKJMUYa5FraZQpGdRE68A3rpoSRIrv7s2czKxbR2LfibcDeL27Hd4UgddTCDSjfBkkRuUqNlRZqsJIZaEpw9QhLsPShGoac2lZqamKckVTaXRkdGKtTjktHaqwjB1Cp5pV5REQxZhVaWi5xSKGWHHsgp_HoVQyk6HKjiFqrSi0bzaOmhdT0bLKJgItL9DyorH8MVyu5sybVht_3p20myO-OYxwueDPeWftTgp_XN8E4sAM9fzYyT-XPYVNvGrYZ2fQWS7ey3MHV5aqC-tXn1HXO-UXDQ7n4Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DnrxLb7NwZvUbZM-Um-yuNQnwnZhbyGPBnZZuqKrR3-7mTRdUHAPXtMmlMlk5kv5Zj6ELvLU5gwt8iBjUJJjQhZILaJAMZJlVBFFJfzveHpOi0F8P0yGS6jb1sIArdLH_iamu2jtRzremp3X0ajTdwR664AEUH3OhstoNU5oBry-q685zyOyeJrNG3zb133lTEPyAlK4vSQSN5AT-ld2-hWnXfLpbaENjxrxTfNh22ipqnfQZqvIgP0B3UXjom_dDfTNJtf4psZFWb4EkKg0Lt-mY1FjXc0c-arGTgMHf44EthgQFyOoRHbCKBPcdzTrwLetmmDAiR_2Xo6nxq4joOvE-x4a9G7LbhF4NYVAUcJmQaJlLmNNpCEyjGQW6ipMLd7SNE2IIjEThlaKyCiXJBVaRVolxqiUkcpiCkPpPlqpp3V1gLCk1Mg0NMxACUMsGfTAz-NQSJGJUGaHKGqtyJVvNQ6KFxPecsrGHCzPwfK8sfwhupzPeW0abSx8O2k3h_9wF24zwcJ5J-1Ocn9Y3zmgwAzU_OjRP5c9R2tF-fTIH--eH47ROjxpeGgnaGX29lGdWuAyk2fOMb8B_tforA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSTF-Model%3A+An+HTTP-based+Trojan+detection+model+via+the+Hierarchical+Spatio-temporal+Features+of+Traffics&rft.jtitle=Computers+%26+security&rft.au=Xie%2C+Jiang&rft.au=Li%2C+Shuhao&rft.au=Yun%2C+Xiaochun&rft.au=Zhang%2C+Yongzheng&rft.date=2020-09-01&rft.issn=0167-4048&rft.volume=96&rft.spage=101923&rft_id=info:doi/10.1016%2Fj.cose.2020.101923&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2020_101923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon |