MobileSal: Extremely Efficient RGB-D Salient Object Detection

The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this article introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extrac...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 12; pp. 10261 - 10269
Main Authors Wu, Yu-Huan, Liu, Yun, Xu, Jun, Bian, Jia-Wang, Gu, Yu-Chao, Cheng, Ming-Ming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this article introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extraction. However, mobile networks are less powerful in feature representation than cumbersome networks. To this end, we observe that the depth information of color images can strengthen the feature representation related to SOD if leveraged properly. Therefore, we propose an implicit depth restoration (IDR) technique to strengthen the mobile networks' feature representation capability for RGB-D SOD. IDR is only adopted in the training phase and is omitted during testing, so it is computationally free. Besides, we propose compact pyramid refinement (CPR) for efficient multi-level feature aggregation to derive salient objects with clear boundaries. With IDR and CPR incorporated, MobileSal performs favorably against state-of-the-art methods on six challenging RGB-D SOD datasets with much faster speed (450fps for the input size of <inline-formula><tex-math notation="LaTeX">320\times 320</tex-math> <mml:math><mml:mrow><mml:mn>320</mml:mn><mml:mo>×</mml:mo><mml:mn>320</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq1-3134684.gif"/> </inline-formula>) and fewer parameters (6.5M). The code is released at https://mmcheng.net/mobilesal .
AbstractList The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this article introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extraction. However, mobile networks are less powerful in feature representation than cumbersome networks. To this end, we observe that the depth information of color images can strengthen the feature representation related to SOD if leveraged properly. Therefore, we propose an implicit depth restoration (IDR) technique to strengthen the mobile networks’ feature representation capability for RGB-D SOD. IDR is only adopted in the training phase and is omitted during testing, so it is computationally free. Besides, we propose compact pyramid refinement (CPR) for efficient multi-level feature aggregation to derive salient objects with clear boundaries. With IDR and CPR incorporated, MobileSal performs favorably against state-of-the-art methods on six challenging RGB-D SOD datasets with much faster speed (450fps for the input size of [Formula Omitted]) and fewer parameters (6.5M). The code is released at https://mmcheng.net/mobilesal .
The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this article introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extraction. However, mobile networks are less powerful in feature representation than cumbersome networks. To this end, we observe that the depth information of color images can strengthen the feature representation related to SOD if leveraged properly. Therefore, we propose an implicit depth restoration (IDR) technique to strengthen the mobile networks' feature representation capability for RGB-D SOD. IDR is only adopted in the training phase and is omitted during testing, so it is computationally free. Besides, we propose compact pyramid refinement (CPR) for efficient multi-level feature aggregation to derive salient objects with clear boundaries. With IDR and CPR incorporated, MobileSal performs favorably against state-of-the-art methods on six challenging RGB-D SOD datasets with much faster speed (450fps for the input size of <inline-formula><tex-math notation="LaTeX">320\times 320</tex-math> <mml:math><mml:mrow><mml:mn>320</mml:mn><mml:mo>×</mml:mo><mml:mn>320</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="cheng-ieq1-3134684.gif"/> </inline-formula>) and fewer parameters (6.5M). The code is released at https://mmcheng.net/mobilesal .
Author Gu, Yu-Chao
Wu, Yu-Huan
Cheng, Ming-Ming
Liu, Yun
Xu, Jun
Bian, Jia-Wang
Author_xml – sequence: 1
  givenname: Yu-Huan
  orcidid: 0000-0001-8666-3435
  surname: Wu
  fullname: Wu, Yu-Huan
  email: wuyuhuan@mail.nankai.edu.cn
– sequence: 2
  givenname: Yun
  orcidid: 0000-0001-6143-0264
  surname: Liu
  fullname: Liu, Yun
  email: yun.liu@vision.ee.ethz.ch
– sequence: 3
  givenname: Jun
  surname: Xu
  fullname: Xu, Jun
  email: nankaimathjunxu@gmail.com
– sequence: 4
  givenname: Jia-Wang
  orcidid: 0000-0003-2046-3363
  surname: Bian
  fullname: Bian, Jia-Wang
  email: jiawang.bian@gmail.com
– sequence: 5
  givenname: Yu-Chao
  surname: Gu
  fullname: Gu, Yu-Chao
  email: ycgu@mail.nankai.edu.cn
– sequence: 6
  givenname: Ming-Ming
  orcidid: 0000-0001-5550-8758
  surname: Cheng
  fullname: Cheng, Ming-Ming
  email: cmm@nankai.edu.cn
BookMark eNpdkE1Lw0AQhhep2A_9A3oJePGSOvuR7K7gQW2thZaK1vOy2UwgJU1qNgX7700_8ODpZZjnHYanTzplVSIh1xSGlIK-X74_zadDBowOOeUiVuKM9BiNIdRMsw7pAY1ZqBRTXdL3fgVARQT8gnS5UFoJDj3yOK-SvMBPWzwE45-mxjUWu2CcZbnLsWyCj8lzOAra9WFaJCt0TTDCpo28Ki_JeWYLj1enHJCv1_Hy5S2cLSbTl6dZ6DhTTRilXGYqo5HmNoI04U5a2f6maOJAMAeQJDLjqGIU1KVMtYzW0tooS1WsUz4gd8e7m7r63qJvzDr3DovCllhtvWExBVAiErpFb_-hq2pbl-13hkkuuIokhZZiR8rVlfc1ZmZT52tb7wwFs5drDnLNXq45yW1LN8dSjoh_BR0LqSPBfwGGR3NA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TMM_2022_3187856
crossref_primary_10_1016_j_patcog_2024_110693
crossref_primary_10_1007_s11263_024_02058_y
crossref_primary_10_1080_01431161_2023_2288947
crossref_primary_10_1007_s42835_024_01971_z
crossref_primary_10_1145_3656476
crossref_primary_10_3390_rs14246297
crossref_primary_10_1016_j_jksuci_2023_101702
crossref_primary_10_3390_sym14050887
crossref_primary_10_3934_era_2024031
crossref_primary_10_3390_rs15092393
crossref_primary_10_1016_j_measurement_2023_113180
crossref_primary_10_1016_j_knosys_2024_112126
crossref_primary_10_1109_JSEN_2023_3333322
crossref_primary_10_1049_ipr2_12862
crossref_primary_10_1117_1_JEI_33_2_023036
crossref_primary_10_3390_rs15102680
crossref_primary_10_1109_TCSVT_2023_3295588
crossref_primary_10_1016_j_patcog_2024_110304
crossref_primary_10_1109_TIP_2022_3205747
crossref_primary_10_1016_j_neunet_2023_11_051
crossref_primary_10_1109_LSP_2024_3356416
crossref_primary_10_1007_s11042_022_12799_y
crossref_primary_10_1007_s12559_023_10148_1
crossref_primary_10_1145_3624747
crossref_primary_10_1109_TGRS_2023_3235717
crossref_primary_10_1145_3624984
crossref_primary_10_3390_s24041117
crossref_primary_10_1109_TITS_2024_3387949
crossref_primary_10_1049_ipr2_12796
crossref_primary_10_1016_j_jvcir_2023_103880
crossref_primary_10_1007_s00530_023_01250_3
crossref_primary_10_1109_TCSVT_2022_3180274
crossref_primary_10_1109_TIP_2022_3214092
crossref_primary_10_1145_3674836
crossref_primary_10_1016_j_patcog_2023_110190
crossref_primary_10_1007_s11042_023_14421_1
crossref_primary_10_1016_j_knosys_2023_110322
crossref_primary_10_1109_TCSVT_2022_3184840
crossref_primary_10_1109_TIP_2022_3164550
crossref_primary_10_3390_app122312432
crossref_primary_10_1007_s00371_024_03360_z
crossref_primary_10_1016_j_jvcir_2023_103951
crossref_primary_10_1109_TIP_2023_3315511
crossref_primary_10_1016_j_optlaseng_2023_107842
crossref_primary_10_1016_j_imavis_2024_105048
crossref_primary_10_1109_TII_2023_3336349
crossref_primary_10_1109_TCSVT_2023_3285249
crossref_primary_10_3390_electronics11131968
Cites_doi 10.1109/CVPR.2018.00716
10.1109/TIP.2003.819861
10.1109/CVPR.2019.00766
10.1109/TMM.2021.3069297
10.1109/CVPR.2013.407
10.1109/TIP.2021.3049959
10.1109/3DV.2016.79
10.1109/TIP.2019.2893535
10.1007/s41095-019-0149-9
10.1109/CVPR.2019.00405
10.1109/TPAMI.2021.3051099
10.1109/ICCV.2017.487
10.1109/ICCV.2013.370
10.1109/TPAMI.2021.3073689
10.1109/CVPR.2019.00293
10.1145/2632856.2632866
10.1109/CVPR.2018.00322
10.1007/978-3-030-01264-9_8
10.1109/TIP.2017.2766787
10.1109/TPAMI.2018.2815688
10.1007/s41095-020-0199-z
10.1109/TCYB.2017.2761775
10.1109/ACCESS.2019.2913107
10.1109/TIP.2021.3058783
10.1109/CVPR42600.2020.01377
10.1109/CVPR.2019.00404
10.1109/ICIP.2014.7025222
10.1109/TPAMI.2014.2345401
10.1109/CVPR46437.2021.00935
10.1109/ICCV.2019.00735
10.1109/CVPR.2009.5206596
10.1109/TPAMI.2020.3023152
10.1007/978-3-030-58598-3_31
10.1109/TNNLS.2020.2996406
10.1109/ICCV.2013.193
10.1360/SSI-2020-0370
10.1109/CVPR.2019.00834
10.5244/C.27.98
10.1109/TPAMI.2021.3073564
10.1109/CVPR.2018.00474
10.1007/978-3-030-58536-5_3
10.1109/ICDSP.2014.6900706
10.1007/s11263-016-0977-3
10.1109/TPAMI.2018.2840724
10.1109/TIP.2019.2891104
10.5244/C.27.112
10.1007/978-3-030-58621-8_33
10.1109/CVPR42600.2020.00943
10.1109/CVPR.2019.00941
10.1007/978-3-319-10578-9_7
10.1109/TIP.2021.3049332
10.1007/978-3-642-33715-4_54
10.1609/aaai.v35i2.16191
10.1007/978-3-030-58595-2_15
10.1007/978-3-642-33709-3_8
10.1109/MSP.2017.2749125
10.1109/LSP.2016.2557347
10.1109/CVPR.2016.90
10.1109/CVPR42600.2020.01079
10.1109/ICCV.2017.31
10.1109/TCYB.2020.3035613
10.1109/TPAMI.2021.3053577
10.1007/s11432-020-3097-4
10.1109/TIP.2021.3065239
10.1007/978-3-030-58598-3_14
10.1109/TIP.2021.3065822
10.1109/TMM.2020.3011327
10.1007/978-3-030-58542-6_39
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3134684
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) Online
IEEE
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 10269
ExternalDocumentID 10_1109_TPAMI_2021_3134684
9647954
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; NSFC
  grantid: 61922046
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0100400
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c328t-5d37f8f1593a50db3c7a716281bc042c00bb7f3e86e41cd280db997aa5fd869d3
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Wed Dec 04 04:41:14 EST 2024
Thu Oct 10 16:29:53 EDT 2024
Fri Dec 06 03:06:19 EST 2024
Mon Nov 04 11:49:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-5d37f8f1593a50db3c7a716281bc042c00bb7f3e86e41cd280db997aa5fd869d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6143-0264
0000-0003-2046-3363
0000-0001-8666-3435
0000-0001-5550-8758
PMID 34898430
PQID 2734385710
PQPubID 85458
PageCount 9
ParticipantIDs proquest_miscellaneous_2610084549
crossref_primary_10_1109_TPAMI_2021_3134684
ieee_primary_9647954
proquest_journals_2734385710
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ioffe (ref61) 2015
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref19
ref18
nair (ref62) 2010
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
niu (ref72) 2012
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref79
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
zhao (ref47) 2021
ref76
ref32
ref2
ref39
ref38
hong (ref1) 2015
ref70
ref68
simonyan (ref20) 2015
ref24
ref67
ref23
ref26
ref25
ref64
ref63
ref66
ref22
ref65
ref21
ref27
ref29
zhu (ref73) 2017
howard (ref16) 2017
kingma (ref71) 2015
ref60
wu (ref28) 2021
paszke (ref69) 2019
References_xml – year: 2017
  ident: ref16
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  contributor:
    fullname: howard
– ident: ref18
  doi: 10.1109/CVPR.2018.00716
– ident: ref64
  doi: 10.1109/TIP.2003.819861
– ident: ref24
  doi: 10.1109/CVPR.2019.00766
– ident: ref55
  doi: 10.1109/TMM.2021.3069297
– ident: ref29
  doi: 10.1109/CVPR.2013.407
– ident: ref68
  doi: 10.1109/TIP.2021.3049959
– ident: ref65
  doi: 10.1109/3DV.2016.79
– ident: ref26
  doi: 10.1109/TIP.2019.2893535
– ident: ref38
  doi: 10.1007/s41095-019-0149-9
– ident: ref8
  doi: 10.1109/CVPR.2019.00405
– start-page: 3008
  year: 2017
  ident: ref73
  article-title: A three-pathway psychobiological framework of salient object detection using stereoscopic technology
  publication-title: Proc Int Conf Comput Vis Workshop
  contributor:
    fullname: zhu
– ident: ref39
  doi: 10.1109/TPAMI.2021.3051099
– ident: ref75
  doi: 10.1109/ICCV.2017.487
– ident: ref33
  doi: 10.1109/ICCV.2013.370
– ident: ref14
  doi: 10.1109/TPAMI.2021.3073689
– ident: ref56
  doi: 10.1109/CVPR.2019.00293
– ident: ref45
  doi: 10.1145/2632856.2632866
– ident: ref67
  doi: 10.1109/CVPR.2018.00322
– ident: ref19
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref34
  doi: 10.1109/TIP.2017.2766787
– ident: ref23
  doi: 10.1109/TPAMI.2018.2815688
– start-page: 454
  year: 2012
  ident: ref72
  article-title: Leveraging stereopsis for saliency analysis
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
  contributor:
    fullname: niu
– ident: ref52
  doi: 10.1007/s41095-020-0199-z
– ident: ref53
  doi: 10.1109/TCYB.2017.2761775
– ident: ref54
  doi: 10.1109/ACCESS.2019.2913107
– ident: ref63
  doi: 10.1109/TIP.2021.3058783
– ident: ref22
  doi: 10.1109/CVPR42600.2020.01377
– ident: ref25
  doi: 10.1109/CVPR.2019.00404
– ident: ref15
  doi: 10.1109/ICIP.2014.7025222
– ident: ref31
  doi: 10.1109/TPAMI.2014.2345401
– start-page: 448
  year: 2015
  ident: ref61
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: ioffe
– ident: ref51
  doi: 10.1109/CVPR46437.2021.00935
– ident: ref9
  doi: 10.1109/ICCV.2019.00735
– ident: ref74
  doi: 10.1109/CVPR.2009.5206596
– ident: ref3
  doi: 10.1109/TPAMI.2020.3023152
– year: 2021
  ident: ref28
  article-title: EDN: Salient object detection via extremely-downsampled network
  contributor:
    fullname: wu
– ident: ref48
  doi: 10.1007/978-3-030-58598-3_31
– ident: ref10
  doi: 10.1109/TNNLS.2020.2996406
– ident: ref30
  doi: 10.1109/ICCV.2013.193
– ident: ref76
  doi: 10.1360/SSI-2020-0370
– year: 2015
  ident: ref20
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Representations
  contributor:
    fullname: simonyan
– ident: ref35
  doi: 10.1109/CVPR.2019.00834
– ident: ref42
  doi: 10.5244/C.27.98
– start-page: 807
  year: 2010
  ident: ref62
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: nair
– ident: ref11
  doi: 10.1109/TPAMI.2021.3073564
– ident: ref17
  doi: 10.1109/CVPR.2018.00474
– ident: ref6
  doi: 10.1007/978-3-030-58536-5_3
– ident: ref43
  doi: 10.1109/ICDSP.2014.6900706
– ident: ref32
  doi: 10.1007/s11263-016-0977-3
– ident: ref2
  doi: 10.1109/TPAMI.2018.2840724
– ident: ref7
  doi: 10.1109/TIP.2019.2891104
– ident: ref41
  doi: 10.5244/C.27.112
– year: 2015
  ident: ref71
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
  contributor:
    fullname: kingma
– ident: ref78
  doi: 10.1007/978-3-030-58621-8_33
– year: 2021
  ident: ref47
  article-title: Self-supervised representation learning for RGB-D salient object detection
  contributor:
    fullname: zhao
– ident: ref5
  doi: 10.1109/CVPR42600.2020.00943
– ident: ref57
  doi: 10.1109/CVPR.2019.00941
– ident: ref44
  doi: 10.1007/978-3-319-10578-9_7
– ident: ref77
  doi: 10.1109/TIP.2021.3049332
– ident: ref79
  doi: 10.1007/978-3-642-33715-4_54
– ident: ref50
  doi: 10.1609/aaai.v35i2.16191
– ident: ref46
  doi: 10.1007/978-3-030-58595-2_15
– ident: ref40
  doi: 10.1007/978-3-642-33709-3_8
– ident: ref37
  doi: 10.1109/MSP.2017.2749125
– ident: ref66
  doi: 10.1109/LSP.2016.2557347
– ident: ref21
  doi: 10.1109/CVPR.2016.90
– ident: ref58
  doi: 10.1109/CVPR42600.2020.01079
– start-page: 8026
  year: 2019
  ident: ref69
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Proc Annu Conf Neural Inf Process Syst
  contributor:
    fullname: paszke
– start-page: 597
  year: 2015
  ident: ref1
  article-title: Online tracking by learning discriminative saliency map with convolutional neural network
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: hong
– ident: ref4
  doi: 10.1109/ICCV.2017.31
– ident: ref59
  doi: 10.1109/TCYB.2020.3035613
– ident: ref36
  doi: 10.1109/TPAMI.2021.3053577
– ident: ref70
  doi: 10.1007/s11432-020-3097-4
– ident: ref60
  doi: 10.1109/TIP.2021.3065239
– ident: ref13
  doi: 10.1007/978-3-030-58598-3_14
– ident: ref27
  doi: 10.1109/TIP.2021.3065822
– ident: ref49
  doi: 10.1109/TMM.2020.3011327
– ident: ref12
  doi: 10.1007/978-3-030-58542-6_39
SSID ssj0014503
Score 2.6607528
Snippet The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 10261
SubjectTerms Color imagery
Convolution
efficiency
Feature extraction
Fuses
Image restoration
implicit depth restoration
Neural networks
Object detection
Object recognition
Representations
RGB-D salient object detection
Salience
Semantics
Streaming media
Title MobileSal: Extremely Efficient RGB-D Salient Object Detection
URI https://ieeexplore.ieee.org/document/9647954
https://www.proquest.com/docview/2734385710
https://search.proquest.com/docview/2610084549
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3rwLa4vKnjTrmmTtKngYdX1BaviA7yVpE0vLl3RLqi_3plsu4h68JaS0DaZTPJNMvMNwK5QBQusKnyUrvIFxeVohqXc6EAViiupnbfFdXTxKK6e5NMU7E9iYay1zvnMdqjo7vLzYTaio7IDippMpJiG6TiJx7FakxsDIV0WZEQwqOFoRjQBMiw5eLjt9i_RFAwDtFC5iBQl4-FCJUqQ8_O3_cglWPm1Krut5mwe-s1Pjj1MnjujynSyzx_8jf_txQLM1ZjT644nySJM2XIJ5pt8Dl6t3ksw-42ccBmO-kODS8a9Hhx6vfeKzhEHH17PUU7gB7y782P_1MNq93Rj6EDHO7WV8-0qV-DxrPdwcuHXyRb8jIeq8mXO40IViG64liw3PIs1sUshrM1QsTPGjIkLblVkRZDlocI2SRJrLYtcRUnOV6FVDku7Bl4eyVgj7jEh0R0yqSJmsM8yICrnWJs27DVDnr6MOTVSZ4uwJHWySklWaS2rNizTGE5a1sPXhs1GSmmtdm8pcfXg9ELU1IadSTUqDN2C6NIOR9gmIj4jgXbx-t9v3oCZkGIcnM_KJrSq15HdQuRRmW035b4AhAPQaQ
link.rule.ids 315,781,785,797,27929,27930,54763
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED518LDxMKAdohuDTNrbSHFiO3Em7YHRQtnagqCV-hbZifMCStGWStt-_e7cpEJsD7w5spXEPp_9nX33HcBHoQoWWFX4KF3lC4rL0QxLudGBKhRXUjtvi0k0nIlvczlvwfE6FsZa65zPbI-K7i4_X2RLOio7oajJRIoXsCkF6sUqWmt9ZyCky4OMGAZ1HA2JJkSGJSfT69PxJRqDYYA2KheRonQ8XKhECXJ_frQjuRQr_6zLbrM534Zx85srH5O73rIyvezPEwbH5_ZjB17XqNM7XU2TXWjZsg3bTUYHr1bwNmw9oifswJfxwuCicavvP3uDXxWdJN7_9gaOdAI_4N1cfPX7Hla7pytDRzpe31bOu6t8A7PzwfRs6NfpFvyMh6ryZc7jQhWIb7iWLDc8izXxSyGwzVC1M8aMiQtuVWRFkOWhwjZJEmsti1xFSc73YKNclHYfvDySsUbkY0IiPGRSRcxgn2VAZM6xNl341Ax5-rBi1UidNcKS1MkqJVmltay60KExXLesh68LB42U0lrxfqbE1oMTDHFTFz6sq1Fl6B5El3axxDYRMRoJtIzf_v_NR_ByOB2P0tHl5Ps7eBVSxIPzYDmAjerH0r5HHFKZQzf9_gKfedO3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MobileSal%3A+Extremely+Efficient+RGB-D+Salient+Object+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Yu-Huan%2C+Wu&rft.au=Liu%2C+Yun&rft.au=Xu%2C+Jun&rft.au=Jia-Wang%2C+Bian&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=44&rft.issue=12&rft.spage=10261&rft_id=info:doi/10.1109%2FTPAMI.2021.3134684&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon