Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN

•Novel RLNDip technique for automatic identification of schizophrenia using EEG signals is proposed.•A fusion approach of DWT with RLNDiP technique is introduced in this work.•Analysis of EEG signals in different brain rhythms is evaluated.•Obtained results conclude that alpha rhythm achieved a bett...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 192; p. 116230
Main Authors Sairamya, N.J., Subathra, M.S.P., Thomas George, S.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.04.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Novel RLNDip technique for automatic identification of schizophrenia using EEG signals is proposed.•A fusion approach of DWT with RLNDiP technique is introduced in this work.•Analysis of EEG signals in different brain rhythms is evaluated.•Obtained results conclude that alpha rhythm achieved a better classification performance using ANN. Schizophrenia (ScZ) is a detrimental condition of the brain often associated with depression, anxiety, and socio-psychological problems. In the traditional diagnosis approach, the results are subjective, prone to error, and biased, as they solely depend on the subject’s response and the psychiatrist's experience. Hence, in this work, to overcome the aforesaid problems a computer-aided diagnosis of ScZ from the electroencephalogram (EEG) signals using the novel relaxed local neighbour difference pattern (RLNDiP) technique is proposed. To seize the entire characteristics of disrupted connectivity in ScZ, the combination of RLNDiP features from both time domain (TD) and time–frequency domain (TFD) is proposed. In the TD, the proposed technique is employed to transform the EEG signals into the RLNDiP domain, by computing the RLNDiP code for each sample in the EEG signals. Secondly, the histogram features are computed from the RLNDiP domain. In the TFD, the discrete wavelet transform is used to decompose the signals into five brain rhythms, namely delta, theta, alpha, beta, and gamma. In the next step, each brain rhythm is converted into the RLNDiP domain, and the histogram features are computed. The features extracted from different brain rhythms and the TD features are integrated using various fusion approaches for accurate discrimination of ScZ from normal subjects. The prominent features describing the effective connectivity is selected using the Kruskal-Wallis test (p < 0.05) and the selected features are fed into the artificial neural network (ANN), for automatic diagnosis of ScZ. The proposed approach attained a maximum accuracy of 100%, with the fusion of alpha brain rhythm and the TD features. Compared to the state-of-the-art methods, the proposed approach attained a maximum classification performance.
AbstractList Schizophrenia (ScZ) is a detrimental condition of the brain often associated with depression, anxiety, and socio-psychological problems. In the traditional diagnosis approach, the results are subjective, prone to error, and biased, as they solely depend on the subject's response and the psychiatrist's experience. Hence, in this work, to overcome the aforesaid problems a computer-aided diagnosis of ScZ from the electroencephalogram (EEG) signals using the novel relaxed local neighbour difference pattern (RLNDiP) technique is proposed. To seize the entire characteristics of disrupted connectivity in ScZ, the combination of RLNDiP features from both time domain (TD) and time–frequency domain (TFD) is proposed. In the TD, the proposed technique is employed to transform the EEG signals into the RLNDiP domain, by computing the RLNDiP code for each sample in the EEG signals. Secondly, the histogram features are computed from the RLNDiP domain. In the TFD, the discrete wavelet transform is used to decompose the signals into five brain rhythms, namely delta, theta, alpha, beta, and gamma. In the next step, each brain rhythm is converted into the RLNDiP domain, and the histogram features are computed. The features extracted from different brain rhythms and the TD features are integrated using various fusion approaches for accurate discrimination of ScZ from normal subjects. The prominent features describing the effective connectivity is selected using the Kruskal-Wallis test (p < 0.05) and the selected features are fed into the artificial neural network (ANN), for automatic diagnosis of ScZ. The proposed approach attained a maximum accuracy of 100%, with the fusion of alpha brain rhythm and the TD features. Compared to the state-of-the-art methods, the proposed approach attained a maximum classification performance.
•Novel RLNDip technique for automatic identification of schizophrenia using EEG signals is proposed.•A fusion approach of DWT with RLNDiP technique is introduced in this work.•Analysis of EEG signals in different brain rhythms is evaluated.•Obtained results conclude that alpha rhythm achieved a better classification performance using ANN. Schizophrenia (ScZ) is a detrimental condition of the brain often associated with depression, anxiety, and socio-psychological problems. In the traditional diagnosis approach, the results are subjective, prone to error, and biased, as they solely depend on the subject’s response and the psychiatrist's experience. Hence, in this work, to overcome the aforesaid problems a computer-aided diagnosis of ScZ from the electroencephalogram (EEG) signals using the novel relaxed local neighbour difference pattern (RLNDiP) technique is proposed. To seize the entire characteristics of disrupted connectivity in ScZ, the combination of RLNDiP features from both time domain (TD) and time–frequency domain (TFD) is proposed. In the TD, the proposed technique is employed to transform the EEG signals into the RLNDiP domain, by computing the RLNDiP code for each sample in the EEG signals. Secondly, the histogram features are computed from the RLNDiP domain. In the TFD, the discrete wavelet transform is used to decompose the signals into five brain rhythms, namely delta, theta, alpha, beta, and gamma. In the next step, each brain rhythm is converted into the RLNDiP domain, and the histogram features are computed. The features extracted from different brain rhythms and the TD features are integrated using various fusion approaches for accurate discrimination of ScZ from normal subjects. The prominent features describing the effective connectivity is selected using the Kruskal-Wallis test (p < 0.05) and the selected features are fed into the artificial neural network (ANN), for automatic diagnosis of ScZ. The proposed approach attained a maximum accuracy of 100%, with the fusion of alpha brain rhythm and the TD features. Compared to the state-of-the-art methods, the proposed approach attained a maximum classification performance.
ArticleNumber 116230
Author Thomas George, S.
Subathra, M.S.P.
Sairamya, N.J.
Author_xml – sequence: 1
  givenname: N.J.
  surname: Sairamya
  fullname: Sairamya, N.J.
  email: sairamyanj@karunya.edu.in
  organization: Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, India
– sequence: 2
  givenname: M.S.P.
  surname: Subathra
  fullname: Subathra, M.S.P.
  email: subathra@karunya.edu
  organization: Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, India
– sequence: 3
  givenname: S.
  surname: Thomas George
  fullname: Thomas George, S.
  email: thomasgeorge@karunya.edu
  organization: Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, India
BookMark eNp9kE1rGzEQhkVxobbbP9CTIOd1Je2HvJCLSRwnYNxS2rPQSrP2GFtyJNkmhfz3yHVPPeQ0DLzPDO8zIgPnHRDylbMJZ7z5tp1APOuJYIJPOG9EyT6QIZ_KsmhkWw7IkLW1LCouq09kFOOWMS4Zk0PyOjsmv9cJDUULLmGPJm_eUd_TaDb4xx82ARxqeozo1nQ-X9CIa6d3kXY6gqU5azGaAAnoWZ9gB4mmoF3sfdhT7Sz9uVzd4w-awGwcPh9zDNOGzlarz-Rjnw_Bl39zTH4_zH_dPRbL74unu9myMKWYpqLutOxBdJVoeWd601ayg0pbLVrdT1vecAPWyMZWmpeiExa4aHRlWlZKYMKUY3JzvXsIPv-PSW39MVw6KNFUnNVlXTc5Ja4pE3yMAXp1CLjX4UVxpi6a1VZdNKuLZnXVnKHpf5DB9NdgdoC799HbKwq5-gkhqGgQXO6CAUxS1uN7-BtWA5yD
CitedBy_id crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_3390_s24206508
crossref_primary_10_1016_j_bspc_2022_104553
crossref_primary_10_1016_j_bspc_2023_105815
crossref_primary_10_3390_app14020599
crossref_primary_10_3390_app14125048
crossref_primary_10_1016_j_bspc_2023_104811
crossref_primary_10_1007_s11055_024_01691_x
crossref_primary_10_1007_s10916_024_02048_0
crossref_primary_10_1007_s13246_024_01512_y
crossref_primary_10_1186_s12938_024_01250_y
crossref_primary_10_1007_s11571_024_10120_1
crossref_primary_10_1007_s11571_024_10121_0
crossref_primary_10_1016_j_compbiomed_2023_107022
crossref_primary_10_1016_j_eswa_2025_127076
crossref_primary_10_1016_j_ins_2022_12_088
crossref_primary_10_1109_JSEN_2023_3305504
crossref_primary_10_3390_biomimetics9010032
crossref_primary_10_1007_s11831_023_10047_6
crossref_primary_10_1049_sil2_12230
crossref_primary_10_1109_TNSRE_2024_3509776
Cites_doi 10.1016/j.neulet.2014.12.064
10.1016/j.eswa.2011.04.149
10.1186/s40810-016-0017-0
10.1186/s40810-016-0020-5
10.1016/j.eswa.2007.12.065
10.1109/ACCESS.2016.2585661
10.1109/TBME.2016.2558824
10.1016/j.bspc.2014.08.014
10.1016/j.artmed.2019.07.006
10.1109/JBHI.2016.2589971
10.1016/j.biopsych.2011.06.029
10.1504/IJBET.2018.094426
10.5057/ijae.IJAE-D-15-00036
10.1016/j.schres.2014.12.018
10.1007/s10747-005-0042-z
10.1007/s10527-013-9357-2
10.1177/1550059417744890
10.1049/el.2016.3664
10.1109/JBHI.2012.2237409
10.1109/TNSRE.2016.2604393
10.1007/s40846-017-0286-5
10.1109/JBHI.2019.2941222
10.3389/fnhum.2014.00635
10.3389/fnhum.2015.00234
10.3389/fphys.2018.01213
10.1007/s11517-015-1443-z
10.1016/j.psychres.2020.112938
10.3390/app9142870
10.1016/j.imu.2020.100289
10.1016/j.schres.2016.05.007
10.1016/j.dsp.2016.12.004
10.1016/j.eswa.2016.03.018
10.1371/journal.pone.0123033
10.3389/fnhum.2017.00450
10.1016/S0925-4927(00)00052-4
10.1016/j.bspc.2017.01.005
10.1016/j.cmpb.2017.09.001
10.1016/j.eswa.2017.07.020
10.1016/S1388-2457(01)00544-2
10.1016/j.bbe.2015.10.006
10.1016/S0006-3223(97)00428-9
10.1016/j.jpsychires.2013.09.009
10.1504/IJBET.2016.077178
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Apr 15, 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Apr 15, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.116230
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_116230
S0957417421015438
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-5ba7fe2b4291bcfc947be4ada29af89161cedc76d4a132b2de126a4c9037e02c3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sun Jul 13 05:16:04 EDT 2025
Tue Jul 01 04:05:56 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Fri Feb 23 02:43:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Discrete wavelet transform (DWT)
Schizophrenia (ScZ)
Artificial neural network (ANN)
Electroencephalogram (EEG)
Relaxed local neighbour difference pattern (RLNDiP)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-5ba7fe2b4291bcfc947be4ada29af89161cedc76d4a132b2de126a4c9037e02c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2641053556
PQPubID 2045477
ParticipantIDs proquest_journals_2641053556
crossref_primary_10_1016_j_eswa_2021_116230
crossref_citationtrail_10_1016_j_eswa_2021_116230
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_116230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Jeong, Wendimagegn, Chang, Chun, Park, Kim, Kim (b0095) 2017; 11
Phang, Noman, Hussain, Ting, Ombao (b0190) 2020; 24
Ren, Jiang, Yuan (b0200) 2013
Baradits, Bitter, Czobor (b0015) 2020; 288
Orhan, Hekim, Ozer (b0175) 2011; 38
Oh, Vicnesh, Ciaccio, Yuvaraj, Acharya (b0170) 2019; 9
Kim, Lee, Han, Min, Lee, Lee (b0120) 2015; 589
Kumar, Kanhangad, Pachori (b0130) 2015; 15
Sharmila, Geethanjali (b0220) 2016; 4
Andreou, Leicht, Nolte, Polomac, Moritz, Karow, Mulert (b0010) 2015; 161
Piryatinska, Darkhovsky, Kaplan (b0195) 2017; 152
Shanir, Khan, Khan, Farooq, Adeli (b0215) 2018; 49
Tiwari, Pachori, Kanhangad, Panigrahi (b0250) 2017; 21
Sunil Kumar, Kanhangad (b0230) 2017; 53
Alam, Bhuiyan (b0005) 2013; 17
Santos-Mayo, San-Jose-Revuelta, Arribas (b0210) 2017; 64
Lee, Zhu, Xu, Shen, Zhang, Thakor (b0140) 2001; 112
Djemili, Bourouba, Amara Korba (b0040) 2016; 36
Kocadagli, Langari (b0125) 2017; 88
(1), 6. https://doi.org/10.1186/s40810-016-0020-5.
Zhao, Hu, Li, Peng, Li, Liu, Feng (b0255) 2013
,
Panischev, Demin, Kaplan, Varaksina (b0180) 2013; 47
.
Jahmunah, Lih Oh, Rajinikanth, Ciaccio, Hao Cheong, Arunkumar, Acharya (b0080) 2019; 100
Ocak (b0165) 2009; 36
Dvey-Aharon, Fogelson, Peled, Intrator, Motes (b0045) 2015; 10
Di Lorenzo, Daverio, Ferrentino, Santarnecchi, Ciabattini, Monaco, Siracusano (b0035) 2015; 9
Thilakavathi, Shenbaga Devi, Bhanu (b0240) 2018; 28
Ertuğrul, Kaya, Tekin (b0050) 2016; 54
Jaiswal, Banka (b0090) 2018; 38
Lehmann, Faber, Pascual-Marqui, Milz, Herrmann, Koukkou, Kochi (b0145) 2014; 8
Sabeti, Behroozi, Moradi (b0205) 2016; 21
Ertuǧrul, Kaya, Tekin, Almali (b0055) 2016; 56
Shim, Hwang, Kim, Lee, Im (b0225) 2016; 176
Gorbachevskaya, N. N., & Borisov, S. (n.d.).
Tauscher, Fischer, Neumeister, Rappelsberger, Kasper (b0235) 1998; 44
Kam, Bolbecker, O’Donnell, Hetrick, Brenner (b0105) 2013; 47
Jaiswal, Banka (b0085) 2017; 34
Moeini, Khaleghi, Amiri, Niknam (b0160) 2014; 9
Hinkley, Vinogradov, Guggisberg, Fisher, Findlay, Nagarajan (b0070) 2011; 70
Johannesen, Bi, Jiang, Kenney, Chen (b0100) 2016; 2
Kutepov, Dobriyan, Zhigalov, Stepanov, Krysko, Yakovleva, Krysko (b0135) 2020; 18
Bhati, Sharma, Pachori, Gadre (b0020) 2017; 62
Ibáñez-Molina, Lozano, Soriano, Aznarte, Gómez-Ariza, Bajo (b0075) 2018; 9
Kaya, Uyar, Tekin, Yildirim (b0110) 2014; 243
Maran, M., Grent-‘t-Jong, T., & Uhlhaas, P. J. (2016). Electrophysiological insights into connectivity anomalies in schizophrenia: a systematic review.
Borisov, Kaplan, Gorbachevskaya, Kozlova (b0025) 2005; 31
George, Subathra, Sairamya, Susmitha, Joel Premkumar (b0060) 2020; 40
Parvinnia, Sabeti, Zolghadri Jahromi, Boostani (b0185) 2014; 26
Kim, Jeong, Chae, Park, Yong Kim, Jin Go, Choi (b0115) 2000; 98
Li, Fan (b0150) 2005
Chen, Wan, Bao (b0030) 2017; 25
Tivatansakul, Ohkura (b0245) 2015; 15
Jaiswal (10.1016/j.eswa.2021.116230_b0090) 2018; 38
Ren (10.1016/j.eswa.2021.116230_b0200) 2013
Ocak (10.1016/j.eswa.2021.116230_b0165) 2009; 36
Baradits (10.1016/j.eswa.2021.116230_b0015) 2020; 288
Alam (10.1016/j.eswa.2021.116230_b0005) 2013; 17
Ertuğrul (10.1016/j.eswa.2021.116230_b0050) 2016; 54
Kam (10.1016/j.eswa.2021.116230_b0105) 2013; 47
Johannesen (10.1016/j.eswa.2021.116230_b0100) 2016; 2
Jeong (10.1016/j.eswa.2021.116230_b0095) 2017; 11
Dvey-Aharon (10.1016/j.eswa.2021.116230_b0045) 2015; 10
Sabeti (10.1016/j.eswa.2021.116230_b0205) 2016; 21
Oh (10.1016/j.eswa.2021.116230_b0170) 2019; 9
Santos-Mayo (10.1016/j.eswa.2021.116230_b0210) 2017; 64
Tiwari (10.1016/j.eswa.2021.116230_b0250) 2017; 21
Jaiswal (10.1016/j.eswa.2021.116230_b0085) 2017; 34
Ertuǧrul (10.1016/j.eswa.2021.116230_b0055) 2016; 56
Di Lorenzo (10.1016/j.eswa.2021.116230_b0035) 2015; 9
Thilakavathi (10.1016/j.eswa.2021.116230_b0240) 2018; 28
Kim (10.1016/j.eswa.2021.116230_b0120) 2015; 589
Panischev (10.1016/j.eswa.2021.116230_b0180) 2013; 47
Kutepov (10.1016/j.eswa.2021.116230_b0135) 2020; 18
Sharmila (10.1016/j.eswa.2021.116230_b0220) 2016; 4
Tauscher (10.1016/j.eswa.2021.116230_b0235) 1998; 44
Tivatansakul (10.1016/j.eswa.2021.116230_b0245) 2015; 15
Hinkley (10.1016/j.eswa.2021.116230_b0070) 2011; 70
Andreou (10.1016/j.eswa.2021.116230_b0010) 2015; 161
George (10.1016/j.eswa.2021.116230_b0060) 2020; 40
Djemili (10.1016/j.eswa.2021.116230_b0040) 2016; 36
Bhati (10.1016/j.eswa.2021.116230_b0020) 2017; 62
Shim (10.1016/j.eswa.2021.116230_b0225) 2016; 176
Borisov (10.1016/j.eswa.2021.116230_b0025) 2005; 31
Li (10.1016/j.eswa.2021.116230_b0150) 2005
Moeini (10.1016/j.eswa.2021.116230_b0160) 2014; 9
Kocadagli (10.1016/j.eswa.2021.116230_b0125) 2017; 88
10.1016/j.eswa.2021.116230_b0065
Chen (10.1016/j.eswa.2021.116230_b0030) 2017; 25
Lehmann (10.1016/j.eswa.2021.116230_b0145) 2014; 8
Sunil Kumar (10.1016/j.eswa.2021.116230_b0230) 2017; 53
Jahmunah (10.1016/j.eswa.2021.116230_b0080) 2019; 100
Phang (10.1016/j.eswa.2021.116230_b0190) 2020; 24
Lee (10.1016/j.eswa.2021.116230_b0140) 2001; 112
Orhan (10.1016/j.eswa.2021.116230_b0175) 2011; 38
Shanir (10.1016/j.eswa.2021.116230_b0215) 2018; 49
Ibáñez-Molina (10.1016/j.eswa.2021.116230_b0075) 2018; 9
10.1016/j.eswa.2021.116230_b0155
Kaya (10.1016/j.eswa.2021.116230_b0110) 2014; 243
Piryatinska (10.1016/j.eswa.2021.116230_b0195) 2017; 152
Kumar (10.1016/j.eswa.2021.116230_b0130) 2015; 15
Zhao (10.1016/j.eswa.2021.116230_b0255) 2013
Kim (10.1016/j.eswa.2021.116230_b0115) 2000; 98
Parvinnia (10.1016/j.eswa.2021.116230_b0185) 2014; 26
References_xml – volume: 152
  start-page: 131
  year: 2017
  end-page: 139
  ident: b0195
  article-title: Binary classification of multichannel-EEG records based on the ∊-complexity of continuous vector functions
  publication-title: Comput. Methods Programs Biomed.
– volume: 38
  start-page: 222
  year: 2018
  end-page: 235
  ident: b0090
  article-title: Local Transformed Features for Epileptic Seizure Detection in EEG Signal
  publication-title: J. Med. Biol. Eng.
– start-page: 3680
  year: 2013
  end-page: 3684
  ident: b0200
  publication-title: Relaxed local ternary pattern for face recognition
– volume: 15
  start-page: 33
  year: 2015
  end-page: 40
  ident: b0130
  article-title: Classification of seizure and seizure-free EEG signals using local binary patterns
  publication-title: Biomed. Signal Process. Control
– reference: Maran, M., Grent-‘t-Jong, T., & Uhlhaas, P. J. (2016). Electrophysiological insights into connectivity anomalies in schizophrenia: a systematic review.
– volume: 11
  start-page: 450
  year: 2017
  ident: b0095
  article-title: Classifying schizotypy using an audiovisual emotion perception test and scalp electroencephalography
  publication-title: Front. Hum. Neurosci.
– volume: 98
  start-page: 177
  year: 2000
  end-page: 189
  ident: b0115
  article-title: An estimation of the first positive Lyapunov exponent of the EEG in patients with schizophrenia
  publication-title: Psych. Res. Neuroimag.
– volume: 288
  start-page: 112938
  year: 2020
  ident: b0015
  article-title: Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls
  publication-title: Psychiatry Res.
– volume: 25
  start-page: 413
  year: 2017
  end-page: 425
  ident: b0030
  article-title: Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: (1), 6. https://doi.org/10.1186/s40810-016-0020-5.
– volume: 4
  start-page: 7716
  year: 2016
  end-page: 7727
  ident: b0220
  article-title: DWT based detection of epileptic seizure from EEG signals using naive Bayes and k-NN classifiers
  publication-title: IEEE Access
– volume: 44
  start-page: 438
  year: 1998
  end-page: 447
  ident: b0235
  article-title: Low frontal electroencephalographic coherence in neuroleptic-free schizophrenic patients
  publication-title: Biol. Psychiatry
– volume: 15
  start-page: 51
  year: 2015
  end-page: 61
  ident: b0245
  article-title: Emotion recognition using ECG signals with local pattern description methods
  publication-title: Int. J. Affect. Eng.
– volume: 26
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0185
  article-title: Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm
  publication-title: J. King Saud Univ. Comput. Inform. Sci.
– volume: 70
  start-page: 1134
  year: 2011
  end-page: 1142
  ident: b0070
  article-title: Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: Implications for novel approaches to treatment
  publication-title: Biol. Psychiatry
– volume: 56
  start-page: 156
  year: 2016
  end-page: 163
  ident: b0055
  article-title: Detection of Parkinson’s disease by Shifted One Dimensional Local Binary Patterns from gait
  publication-title: Expert Syst. Appl.
– reference: Gorbachevskaya, N. N., & Borisov, S. (n.d.).
– volume: 88
  start-page: 419
  year: 2017
  end-page: 434
  ident: b0125
  article-title: Classification of EEG signals for epileptic seizures using hybrid artificial neural networks based wavelet transforms and fuzzy relations
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 18
  year: 2018
  end-page: 37
  ident: b0240
  article-title: Peak frequency analysis for schizophrenia using electroencephalogram power spectrum during mental activity
  publication-title: Int. J. Biomed. Eng. Technol.
– volume: 161
  start-page: 299
  year: 2015
  end-page: 307
  ident: b0010
  article-title: Resting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state
  publication-title: Schizophr. Res.
– volume: 8
  year: 2014
  ident: b0145
  article-title: Functionally aberrant electrophysiological cortical connectivities in first episode medication-naive schizophrenics from three psychiatry centers
  publication-title: Front. Hum. Neurosci.
– volume: 9
  start-page: 216
  year: 2014
  end-page: 221
  ident: b0160
  article-title: Quantitative electroencephalogram (QEEG) spectrum analysis of patients with schizoaffective disorder compared to normal subjects
  publication-title: Iranian J. Psych.
– volume: 2
  start-page: 3
  year: 2016
  ident: b0100
  article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
  publication-title: Neuropsych. Electrophysiol.
– volume: 47
  start-page: 1893
  year: 2013
  end-page: 1901
  ident: b0105
  article-title: Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia
  publication-title: J. Psychiatr. Res.
– volume: 17
  start-page: 312
  year: 2013
  end-page: 318
  ident: b0005
  article-title: Detection of Seizure and Epilepsy Using Higher Order Statistics in the EMD Domain
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 36
  start-page: 2027
  year: 2009
  end-page: 2036
  ident: b0165
  article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 1213
  year: 2018
  ident: b0075
  article-title: EEG multiscale complexity in schizophrenia during picture naming
  publication-title: Front. Physiol.
– volume: 589
  start-page: 126
  year: 2015
  end-page: 131
  ident: b0120
  article-title: Diagnostic utility of quantitative EEG in un-medicated schizophrenia
  publication-title: Neurosci. Lett.
– start-page: 484
  year: 2013
  end-page: 488
  ident: b0255
  article-title: An Alpha resting EEG study on nonlinear dynamic analysis for schizophrenia
  publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)
– volume: 34
  start-page: 81
  year: 2017
  end-page: 92
  ident: b0085
  article-title: Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals
  publication-title: Biomed. Signal Process. Control
– volume: 53
  start-page: 212
  year: 2017
  end-page: 214
  ident: b0230
  article-title: Automated obstructive sleep apnoea detection using symmetrically weighted local binary patterns
  publication-title: Electron. Lett.
– reference: ,
– volume: 64
  start-page: 395
  year: 2017
  end-page: 407
  ident: b0210
  article-title: A computer-aided diagnosis system with EEG based on the p3b wave during an auditory odd-ball task in schizophrenia
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 18
  start-page: 100289
  year: 2020
  ident: b0135
  article-title: EEG analysis in patients with schizophrenia based on Lyapunov exponents
  publication-title: Inf. Med. Unlocked
– volume: 62
  start-page: 259
  year: 2017
  end-page: 273
  ident: b0020
  article-title: Time–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification
  publication-title: Digital Signal Process.
– start-page: 2679
  year: 2005
  end-page: 2682
  ident: b0150
  article-title: Classification of schizophrenia and depression by EEG with ANNs
  publication-title: In
– volume: 112
  start-page: 1288
  year: 2001
  end-page: 1294
  ident: b0140
  article-title: Detection of non-linearity in the EEG of schizophrenic patients
  publication-title: Clin. Neurophysiol.
– volume: 38
  start-page: 13475
  year: 2011
  end-page: 13481
  ident: b0175
  article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 2870
  year: 2019
  ident: b0170
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Applied Sciences
– volume: 21
  start-page: 109
  year: 2016
  end-page: 127
  ident: b0205
  article-title: Analysing complexity, variability and spectral measures of schizophrenic EEG signal
  publication-title: Int. J. Biomed. Eng. Technol.
– volume: 9
  year: 2015
  ident: b0035
  article-title: Altered resting-state EEG source functional connectivity in schizophrenia: The effect of illness duration
  publication-title: Front. Hum. Neurosci.
– volume: 40
  start-page: 709
  year: 2020
  end-page: 728
  ident: b0060
  article-title: Classification of epileptic EEG signals using PSO based artificial neural network and tunable-Q wavelet transform.
  publication-title: Engineering
– volume: 31
  start-page: 255
  year: 2005
  end-page: 261
  ident: b0025
  article-title: Analysis of EEG structural synchrony in adolescents with schizophrenic disorders
  publication-title: Human Physiol.
– volume: 10
  start-page: e0123033
  year: 2015
  ident: b0045
  article-title: Schizophrenia detection and classification by advanced analysis of EEG recordings using a single electrode approach
  publication-title: PLoS ONE
– volume: 24
  start-page: 1333
  year: 2020
  end-page: 1343
  ident: b0190
  article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 176
  start-page: 314
  year: 2016
  end-page: 319
  ident: b0225
  article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features
  publication-title: Schizophr. Res.
– volume: 243
  start-page: 209
  year: 2014
  end-page: 219
  ident: b0110
  article-title: 1D-local binary pattern based feature extraction for classification of epileptic EEG signals
  publication-title: Appl. Math. Comput.
– reference: .
– volume: 21
  start-page: 888
  year: 2017
  end-page: 896
  ident: b0250
  article-title: Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 54
  start-page: 1137
  year: 2016
  end-page: 1146
  ident: b0050
  article-title: A novel approach for SEMG signal classification with adaptive local binary patterns
  publication-title: Med. Biol. Eng. Compu.
– volume: 36
  start-page: 285
  year: 2016
  end-page: 291
  ident: b0040
  article-title: Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals
  publication-title: Biocybernetics Biomed. Eng.
– volume: 100
  start-page: 101698
  year: 2019
  ident: b0080
  article-title: Automated detection of schizophrenia using nonlinear signal processing methods
  publication-title: Artif. Intell. Med.
– volume: 47
  start-page: 153
  year: 2013
  end-page: 156
  ident: b0180
  article-title: Use of cross-correlation analysis of EEG signals for detecting risk level for development of schizophrenia
  publication-title: Biomed. Eng.
– volume: 49
  start-page: 351
  year: 2018
  end-page: 362
  ident: b0215
  article-title: Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG
  publication-title: Clinical EEG and Neuroscience
– volume: 589
  start-page: 126
  year: 2015
  ident: 10.1016/j.eswa.2021.116230_b0120
  article-title: Diagnostic utility of quantitative EEG in un-medicated schizophrenia
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2014.12.064
– volume: 38
  start-page: 13475
  issue: 10
  year: 2011
  ident: 10.1016/j.eswa.2021.116230_b0175
  article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.149
– volume: 2
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.116230_b0100
  article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
  publication-title: Neuropsych. Electrophysiol.
  doi: 10.1186/s40810-016-0017-0
– ident: 10.1016/j.eswa.2021.116230_b0155
  doi: 10.1186/s40810-016-0020-5
– volume: 36
  start-page: 2027
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2021.116230_b0165
  article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.065
– volume: 4
  start-page: 7716
  year: 2016
  ident: 10.1016/j.eswa.2021.116230_b0220
  article-title: DWT based detection of epileptic seizure from EEG signals using naive Bayes and k-NN classifiers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2585661
– volume: 64
  start-page: 395
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2021.116230_b0210
  article-title: A computer-aided diagnosis system with EEG based on the p3b wave during an auditory odd-ball task in schizophrenia
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2558824
– volume: 15
  start-page: 33
  year: 2015
  ident: 10.1016/j.eswa.2021.116230_b0130
  article-title: Classification of seizure and seizure-free EEG signals using local binary patterns
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.08.014
– volume: 100
  start-page: 101698
  year: 2019
  ident: 10.1016/j.eswa.2021.116230_b0080
  article-title: Automated detection of schizophrenia using nonlinear signal processing methods
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.07.006
– volume: 21
  start-page: 888
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2021.116230_b0250
  article-title: Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2016.2589971
– volume: 70
  start-page: 1134
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2021.116230_b0070
  article-title: Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: Implications for novel approaches to treatment
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.06.029
– volume: 28
  start-page: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.116230_b0240
  article-title: Peak frequency analysis for schizophrenia using electroencephalogram power spectrum during mental activity
  publication-title: Int. J. Biomed. Eng. Technol.
  doi: 10.1504/IJBET.2018.094426
– volume: 15
  start-page: 51
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2021.116230_b0245
  article-title: Emotion recognition using ECG signals with local pattern description methods
  publication-title: Int. J. Affect. Eng.
  doi: 10.5057/ijae.IJAE-D-15-00036
– volume: 161
  start-page: 299
  issue: 2-3
  year: 2015
  ident: 10.1016/j.eswa.2021.116230_b0010
  article-title: Resting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2014.12.018
– volume: 31
  start-page: 255
  issue: 3
  year: 2005
  ident: 10.1016/j.eswa.2021.116230_b0025
  article-title: Analysis of EEG structural synchrony in adolescents with schizophrenic disorders
  publication-title: Human Physiol.
  doi: 10.1007/s10747-005-0042-z
– volume: 47
  start-page: 153
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2021.116230_b0180
  article-title: Use of cross-correlation analysis of EEG signals for detecting risk level for development of schizophrenia
  publication-title: Biomed. Eng.
  doi: 10.1007/s10527-013-9357-2
– volume: 49
  start-page: 351
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2021.116230_b0215
  article-title: Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG
  publication-title: Clinical EEG and Neuroscience
  doi: 10.1177/1550059417744890
– volume: 53
  start-page: 212
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2021.116230_b0230
  article-title: Automated obstructive sleep apnoea detection using symmetrically weighted local binary patterns
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.3664
– volume: 243
  start-page: 209
  year: 2014
  ident: 10.1016/j.eswa.2021.116230_b0110
  article-title: 1D-local binary pattern based feature extraction for classification of epileptic EEG signals
  publication-title: Appl. Math. Comput.
– volume: 17
  start-page: 312
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2021.116230_b0005
  article-title: Detection of Seizure and Epilepsy Using Higher Order Statistics in the EMD Domain
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2012.2237409
– volume: 25
  start-page: 413
  issue: 5
  year: 2017
  ident: 10.1016/j.eswa.2021.116230_b0030
  article-title: Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2604393
– start-page: 2679
  year: 2005
  ident: 10.1016/j.eswa.2021.116230_b0150
  article-title: Classification of schizophrenia and depression by EEG with ANNs
– volume: 38
  start-page: 222
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2021.116230_b0090
  article-title: Local Transformed Features for Epileptic Seizure Detection in EEG Signal
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-017-0286-5
– volume: 24
  start-page: 1333
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2021.116230_b0190
  article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2019.2941222
– volume: 8
  year: 2014
  ident: 10.1016/j.eswa.2021.116230_b0145
  article-title: Functionally aberrant electrophysiological cortical connectivities in first episode medication-naive schizophrenics from three psychiatry centers
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00635
– volume: 9
  year: 2015
  ident: 10.1016/j.eswa.2021.116230_b0035
  article-title: Altered resting-state EEG source functional connectivity in schizophrenia: The effect of illness duration
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00234
– volume: 9
  start-page: 1213
  year: 2018
  ident: 10.1016/j.eswa.2021.116230_b0075
  article-title: EEG multiscale complexity in schizophrenia during picture naming
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01213
– volume: 9
  start-page: 216
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2021.116230_b0160
  article-title: Quantitative electroencephalogram (QEEG) spectrum analysis of patients with schizoaffective disorder compared to normal subjects
  publication-title: Iranian J. Psych.
– volume: 54
  start-page: 1137
  issue: 7
  year: 2016
  ident: 10.1016/j.eswa.2021.116230_b0050
  article-title: A novel approach for SEMG signal classification with adaptive local binary patterns
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-015-1443-z
– volume: 288
  start-page: 112938
  year: 2020
  ident: 10.1016/j.eswa.2021.116230_b0015
  article-title: Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls
  publication-title: Psychiatry Res.
  doi: 10.1016/j.psychres.2020.112938
– volume: 9
  start-page: 2870
  issue: 14
  year: 2019
  ident: 10.1016/j.eswa.2021.116230_b0170
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Applied Sciences
  doi: 10.3390/app9142870
– volume: 18
  start-page: 100289
  year: 2020
  ident: 10.1016/j.eswa.2021.116230_b0135
  article-title: EEG analysis in patients with schizophrenia based on Lyapunov exponents
  publication-title: Inf. Med. Unlocked
  doi: 10.1016/j.imu.2020.100289
– volume: 176
  start-page: 314
  issue: 2–3
  year: 2016
  ident: 10.1016/j.eswa.2021.116230_b0225
  article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2016.05.007
– ident: 10.1016/j.eswa.2021.116230_b0065
– volume: 62
  start-page: 259
  year: 2017
  ident: 10.1016/j.eswa.2021.116230_b0020
  article-title: Time–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2016.12.004
– volume: 56
  start-page: 156
  year: 2016
  ident: 10.1016/j.eswa.2021.116230_b0055
  article-title: Detection of Parkinson’s disease by Shifted One Dimensional Local Binary Patterns from gait
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.03.018
– volume: 10
  start-page: e0123033
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2021.116230_b0045
  article-title: Schizophrenia detection and classification by advanced analysis of EEG recordings using a single electrode approach
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0123033
– volume: 11
  start-page: 450
  year: 2017
  ident: 10.1016/j.eswa.2021.116230_b0095
  article-title: Classifying schizotypy using an audiovisual emotion perception test and scalp electroencephalography
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00450
– volume: 98
  start-page: 177
  issue: 3
  year: 2000
  ident: 10.1016/j.eswa.2021.116230_b0115
  article-title: An estimation of the first positive Lyapunov exponent of the EEG in patients with schizophrenia
  publication-title: Psych. Res. Neuroimag.
  doi: 10.1016/S0925-4927(00)00052-4
– volume: 40
  start-page: 709
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2021.116230_b0060
  article-title: Classification of epileptic EEG signals using PSO based artificial neural network and tunable-Q wavelet transform. Biocybernetics and Biomedical
  publication-title: Engineering
– volume: 34
  start-page: 81
  year: 2017
  ident: 10.1016/j.eswa.2021.116230_b0085
  article-title: Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.01.005
– volume: 152
  start-page: 131
  year: 2017
  ident: 10.1016/j.eswa.2021.116230_b0195
  article-title: Binary classification of multichannel-EEG records based on the ∊-complexity of continuous vector functions
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.001
– start-page: 3680
  year: 2013
  ident: 10.1016/j.eswa.2021.116230_b0200
– volume: 88
  start-page: 419
  year: 2017
  ident: 10.1016/j.eswa.2021.116230_b0125
  article-title: Classification of EEG signals for epileptic seizures using hybrid artificial neural networks based wavelet transforms and fuzzy relations
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.020
– volume: 112
  start-page: 1288
  issue: 7
  year: 2001
  ident: 10.1016/j.eswa.2021.116230_b0140
  article-title: Detection of non-linearity in the EEG of schizophrenic patients
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(01)00544-2
– volume: 36
  start-page: 285
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.116230_b0040
  article-title: Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals
  publication-title: Biocybernetics Biomed. Eng.
  doi: 10.1016/j.bbe.2015.10.006
– volume: 44
  start-page: 438
  issue: 6
  year: 1998
  ident: 10.1016/j.eswa.2021.116230_b0235
  article-title: Low frontal electroencephalographic coherence in neuroleptic-free schizophrenic patients
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(97)00428-9
– start-page: 484
  year: 2013
  ident: 10.1016/j.eswa.2021.116230_b0255
  article-title: An Alpha resting EEG study on nonlinear dynamic analysis for schizophrenia
– volume: 26
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2021.116230_b0185
  article-title: Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm
  publication-title: J. King Saud Univ. Comput. Inform. Sci.
– volume: 47
  start-page: 1893
  issue: 12
  year: 2013
  ident: 10.1016/j.eswa.2021.116230_b0105
  article-title: Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2013.09.009
– volume: 21
  start-page: 109
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2021.116230_b0205
  article-title: Analysing complexity, variability and spectral measures of schizophrenic EEG signal
  publication-title: Int. J. Biomed. Eng. Technol.
  doi: 10.1504/IJBET.2016.077178
SSID ssj0017007
Score 2.4752274
Snippet •Novel RLNDip technique for automatic identification of schizophrenia using EEG signals is proposed.•A fusion approach of DWT with RLNDiP technique is...
Schizophrenia (ScZ) is a detrimental condition of the brain often associated with depression, anxiety, and socio-psychological problems. In the traditional...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116230
SubjectTerms Artificial neural network (ANN)
Artificial neural networks
Brain
Computation
Diagnosis
Discrete Wavelet Transform
Discrete wavelet transform (DWT)
Electroencephalogram (EEG)
Electroencephalography
Feature extraction
Histograms
Relaxed local neighbour difference pattern (RLNDiP)
Rhythm
Schizophrenia
Schizophrenia (ScZ)
Wavelet transforms
Title Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN
URI https://dx.doi.org/10.1016/j.eswa.2021.116230
https://www.proquest.com/docview/2641053556
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQXLjw0YJKWdAceqvSXTt2Po4rWNgWiKoCEjfLsZ1qUbWL2KA9wW9nJnFWBQkOXKNxFHnGM8_RmzeMfRtUrqn8Ue4qFUmbJpGR3EdGeW9Sp4yoqMH5okjG1_LXjbpZYUddLwzRKkPub3N6k63Dk37Yzf7dZNK_RHCA5RCvdpxwQEwNv1KmFOU_npY0D5KfS1u9vTQi69A403K8_HxB2kOCY-ZAHDB4qzi9StNN7TnZYhsBNMKw_a5ttuKnn9hmN5ABwvn8zB6HD_Ws0WCFiQs0oGbnYVbB_H96HRDf_S-MRqdADA6MQaB65gBtqVH3HrE0LAxNpaih7sAtmKmDP-fF8eQ3LMVfgX7lwrAodtj1yejqaByF-QqRjUVWR6o0aeVFiSWJl7ayuUxLL40zIjdVhriRoxPQe04avLOWwnkuEiNtPohTPxA23mWr09nUf2FgheGZFWigrFTcZFlic2tVrGSFmIfvMd5trLZBfJxmYPzTHcvsVpMzNDlDt87YY9-Xa-5a6Y13rVXnL_0igDTWhnfX9Trn6nB85xpRIifhG5V8_eBr99m6oEYJUoVUPbZa3z_4A4QvdXnYxOchWxv-PBsXz9Qa8EA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgvUPpQeZU5cKuijR07j-MKli6wRFULEjfLsR20FdpFbBAn_jszibMqlcqh12hsRR575nPyzTeMHca1azN_VLhaRdJmaWQk95FR3pvMKSNqKnC-KNPJlTy7Vtdr7KivhSFaZYj9XUxvo3V4MgyrObybzYa_EBxgOsSrHScckORv2DqpU6kBWx-dnk_K1c-ELO6qptE-ogGhdqajefnlI8kPCY7BA6FA_K_89FekbtPPyXu2EXAjjLpX22Jrfv6BbfY9GSAc0Y_safTQLFoZVpi5wARqFx8WNSz_ZNgBUd5vYDz-DkTiwG0IlNIcoC3V6t4jnIZHQ40pGmh6fAtm7uDntDye_YCV_ivQ11wYleUndnUyvjyaRKHFQmQTkTeRqkxWe1FhVuKVrW0hs8pL44woTJ0jdOToB3SgkwavrZVwnovUSFvESeZjYZPPbDBfzP0XBlYYnluBBspKxU2ep7awViVK1gh7-Dbj_cJqG_THqQ3Gre6JZr81OUOTM3TnjG32bTXmrlPfeNVa9f7SL_aQxvTw6ri93rk6nOClRqDISftGpTv_Oe0Bezu5vJjq6Wl5vsveCaqbIJFItccGzf2D30c001Rfw259BhDv8vE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+schizophrenia+using+EEG+signals+based+on+discrete+wavelet+transform+and+RLNDiP+technique+with+ANN&rft.jtitle=Expert+systems+with+applications&rft.au=Sairamya%2C+N+J&rft.au=Subathra%2C+M+S+P&rft.au=George%2C+S+Thomas&rft.date=2022-04-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=192&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.116230&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon