Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN
•Novel RLNDip technique for automatic identification of schizophrenia using EEG signals is proposed.•A fusion approach of DWT with RLNDiP technique is introduced in this work.•Analysis of EEG signals in different brain rhythms is evaluated.•Obtained results conclude that alpha rhythm achieved a bett...
Saved in:
Published in | Expert systems with applications Vol. 192; p. 116230 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.04.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Novel RLNDip technique for automatic identification of schizophrenia using EEG signals is proposed.•A fusion approach of DWT with RLNDiP technique is introduced in this work.•Analysis of EEG signals in different brain rhythms is evaluated.•Obtained results conclude that alpha rhythm achieved a better classification performance using ANN.
Schizophrenia (ScZ) is a detrimental condition of the brain often associated with depression, anxiety, and socio-psychological problems. In the traditional diagnosis approach, the results are subjective, prone to error, and biased, as they solely depend on the subject’s response and the psychiatrist's experience. Hence, in this work, to overcome the aforesaid problems a computer-aided diagnosis of ScZ from the electroencephalogram (EEG) signals using the novel relaxed local neighbour difference pattern (RLNDiP) technique is proposed. To seize the entire characteristics of disrupted connectivity in ScZ, the combination of RLNDiP features from both time domain (TD) and time–frequency domain (TFD) is proposed. In the TD, the proposed technique is employed to transform the EEG signals into the RLNDiP domain, by computing the RLNDiP code for each sample in the EEG signals. Secondly, the histogram features are computed from the RLNDiP domain. In the TFD, the discrete wavelet transform is used to decompose the signals into five brain rhythms, namely delta, theta, alpha, beta, and gamma. In the next step, each brain rhythm is converted into the RLNDiP domain, and the histogram features are computed. The features extracted from different brain rhythms and the TD features are integrated using various fusion approaches for accurate discrimination of ScZ from normal subjects. The prominent features describing the effective connectivity is selected using the Kruskal-Wallis test (p < 0.05) and the selected features are fed into the artificial neural network (ANN), for automatic diagnosis of ScZ. The proposed approach attained a maximum accuracy of 100%, with the fusion of alpha brain rhythm and the TD features. Compared to the state-of-the-art methods, the proposed approach attained a maximum classification performance. |
---|---|
AbstractList | Schizophrenia (ScZ) is a detrimental condition of the brain often associated with depression, anxiety, and socio-psychological problems. In the traditional diagnosis approach, the results are subjective, prone to error, and biased, as they solely depend on the subject's response and the psychiatrist's experience. Hence, in this work, to overcome the aforesaid problems a computer-aided diagnosis of ScZ from the electroencephalogram (EEG) signals using the novel relaxed local neighbour difference pattern (RLNDiP) technique is proposed. To seize the entire characteristics of disrupted connectivity in ScZ, the combination of RLNDiP features from both time domain (TD) and time–frequency domain (TFD) is proposed. In the TD, the proposed technique is employed to transform the EEG signals into the RLNDiP domain, by computing the RLNDiP code for each sample in the EEG signals. Secondly, the histogram features are computed from the RLNDiP domain. In the TFD, the discrete wavelet transform is used to decompose the signals into five brain rhythms, namely delta, theta, alpha, beta, and gamma. In the next step, each brain rhythm is converted into the RLNDiP domain, and the histogram features are computed. The features extracted from different brain rhythms and the TD features are integrated using various fusion approaches for accurate discrimination of ScZ from normal subjects. The prominent features describing the effective connectivity is selected using the Kruskal-Wallis test (p < 0.05) and the selected features are fed into the artificial neural network (ANN), for automatic diagnosis of ScZ. The proposed approach attained a maximum accuracy of 100%, with the fusion of alpha brain rhythm and the TD features. Compared to the state-of-the-art methods, the proposed approach attained a maximum classification performance. •Novel RLNDip technique for automatic identification of schizophrenia using EEG signals is proposed.•A fusion approach of DWT with RLNDiP technique is introduced in this work.•Analysis of EEG signals in different brain rhythms is evaluated.•Obtained results conclude that alpha rhythm achieved a better classification performance using ANN. Schizophrenia (ScZ) is a detrimental condition of the brain often associated with depression, anxiety, and socio-psychological problems. In the traditional diagnosis approach, the results are subjective, prone to error, and biased, as they solely depend on the subject’s response and the psychiatrist's experience. Hence, in this work, to overcome the aforesaid problems a computer-aided diagnosis of ScZ from the electroencephalogram (EEG) signals using the novel relaxed local neighbour difference pattern (RLNDiP) technique is proposed. To seize the entire characteristics of disrupted connectivity in ScZ, the combination of RLNDiP features from both time domain (TD) and time–frequency domain (TFD) is proposed. In the TD, the proposed technique is employed to transform the EEG signals into the RLNDiP domain, by computing the RLNDiP code for each sample in the EEG signals. Secondly, the histogram features are computed from the RLNDiP domain. In the TFD, the discrete wavelet transform is used to decompose the signals into five brain rhythms, namely delta, theta, alpha, beta, and gamma. In the next step, each brain rhythm is converted into the RLNDiP domain, and the histogram features are computed. The features extracted from different brain rhythms and the TD features are integrated using various fusion approaches for accurate discrimination of ScZ from normal subjects. The prominent features describing the effective connectivity is selected using the Kruskal-Wallis test (p < 0.05) and the selected features are fed into the artificial neural network (ANN), for automatic diagnosis of ScZ. The proposed approach attained a maximum accuracy of 100%, with the fusion of alpha brain rhythm and the TD features. Compared to the state-of-the-art methods, the proposed approach attained a maximum classification performance. |
ArticleNumber | 116230 |
Author | Thomas George, S. Subathra, M.S.P. Sairamya, N.J. |
Author_xml | – sequence: 1 givenname: N.J. surname: Sairamya fullname: Sairamya, N.J. email: sairamyanj@karunya.edu.in organization: Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, India – sequence: 2 givenname: M.S.P. surname: Subathra fullname: Subathra, M.S.P. email: subathra@karunya.edu organization: Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, India – sequence: 3 givenname: S. surname: Thomas George fullname: Thomas George, S. email: thomasgeorge@karunya.edu organization: Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, India |
BookMark | eNp9kE1rGzEQhkVxobbbP9CTIOd1Je2HvJCLSRwnYNxS2rPQSrP2GFtyJNkmhfz3yHVPPeQ0DLzPDO8zIgPnHRDylbMJZ7z5tp1APOuJYIJPOG9EyT6QIZ_KsmhkWw7IkLW1LCouq09kFOOWMS4Zk0PyOjsmv9cJDUULLmGPJm_eUd_TaDb4xx82ARxqeozo1nQ-X9CIa6d3kXY6gqU5azGaAAnoWZ9gB4mmoF3sfdhT7Sz9uVzd4w-awGwcPh9zDNOGzlarz-Rjnw_Bl39zTH4_zH_dPRbL74unu9myMKWYpqLutOxBdJVoeWd601ayg0pbLVrdT1vecAPWyMZWmpeiExa4aHRlWlZKYMKUY3JzvXsIPv-PSW39MVw6KNFUnNVlXTc5Ja4pE3yMAXp1CLjX4UVxpi6a1VZdNKuLZnXVnKHpf5DB9NdgdoC799HbKwq5-gkhqGgQXO6CAUxS1uN7-BtWA5yD |
CitedBy_id | crossref_primary_10_1007_s10489_023_05155_6 crossref_primary_10_3390_s24206508 crossref_primary_10_1016_j_bspc_2022_104553 crossref_primary_10_1016_j_bspc_2023_105815 crossref_primary_10_3390_app14020599 crossref_primary_10_3390_app14125048 crossref_primary_10_1016_j_bspc_2023_104811 crossref_primary_10_1007_s11055_024_01691_x crossref_primary_10_1007_s10916_024_02048_0 crossref_primary_10_1007_s13246_024_01512_y crossref_primary_10_1186_s12938_024_01250_y crossref_primary_10_1007_s11571_024_10120_1 crossref_primary_10_1007_s11571_024_10121_0 crossref_primary_10_1016_j_compbiomed_2023_107022 crossref_primary_10_1016_j_eswa_2025_127076 crossref_primary_10_1016_j_ins_2022_12_088 crossref_primary_10_1109_JSEN_2023_3305504 crossref_primary_10_3390_biomimetics9010032 crossref_primary_10_1007_s11831_023_10047_6 crossref_primary_10_1049_sil2_12230 crossref_primary_10_1109_TNSRE_2024_3509776 |
Cites_doi | 10.1016/j.neulet.2014.12.064 10.1016/j.eswa.2011.04.149 10.1186/s40810-016-0017-0 10.1186/s40810-016-0020-5 10.1016/j.eswa.2007.12.065 10.1109/ACCESS.2016.2585661 10.1109/TBME.2016.2558824 10.1016/j.bspc.2014.08.014 10.1016/j.artmed.2019.07.006 10.1109/JBHI.2016.2589971 10.1016/j.biopsych.2011.06.029 10.1504/IJBET.2018.094426 10.5057/ijae.IJAE-D-15-00036 10.1016/j.schres.2014.12.018 10.1007/s10747-005-0042-z 10.1007/s10527-013-9357-2 10.1177/1550059417744890 10.1049/el.2016.3664 10.1109/JBHI.2012.2237409 10.1109/TNSRE.2016.2604393 10.1007/s40846-017-0286-5 10.1109/JBHI.2019.2941222 10.3389/fnhum.2014.00635 10.3389/fnhum.2015.00234 10.3389/fphys.2018.01213 10.1007/s11517-015-1443-z 10.1016/j.psychres.2020.112938 10.3390/app9142870 10.1016/j.imu.2020.100289 10.1016/j.schres.2016.05.007 10.1016/j.dsp.2016.12.004 10.1016/j.eswa.2016.03.018 10.1371/journal.pone.0123033 10.3389/fnhum.2017.00450 10.1016/S0925-4927(00)00052-4 10.1016/j.bspc.2017.01.005 10.1016/j.cmpb.2017.09.001 10.1016/j.eswa.2017.07.020 10.1016/S1388-2457(01)00544-2 10.1016/j.bbe.2015.10.006 10.1016/S0006-3223(97)00428-9 10.1016/j.jpsychires.2013.09.009 10.1504/IJBET.2016.077178 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Apr 15, 2022 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Apr 15, 2022 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.116230 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_116230 S0957417421015438 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-5ba7fe2b4291bcfc947be4ada29af89161cedc76d4a132b2de126a4c9037e02c3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Sun Jul 13 05:16:04 EDT 2025 Tue Jul 01 04:05:56 EDT 2025 Thu Apr 24 23:06:27 EDT 2025 Fri Feb 23 02:43:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Discrete wavelet transform (DWT) Schizophrenia (ScZ) Artificial neural network (ANN) Electroencephalogram (EEG) Relaxed local neighbour difference pattern (RLNDiP) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-5ba7fe2b4291bcfc947be4ada29af89161cedc76d4a132b2de126a4c9037e02c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2641053556 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2641053556 crossref_primary_10_1016_j_eswa_2021_116230 crossref_citationtrail_10_1016_j_eswa_2021_116230 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_116230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Jeong, Wendimagegn, Chang, Chun, Park, Kim, Kim (b0095) 2017; 11 Phang, Noman, Hussain, Ting, Ombao (b0190) 2020; 24 Ren, Jiang, Yuan (b0200) 2013 Baradits, Bitter, Czobor (b0015) 2020; 288 Orhan, Hekim, Ozer (b0175) 2011; 38 Oh, Vicnesh, Ciaccio, Yuvaraj, Acharya (b0170) 2019; 9 Kim, Lee, Han, Min, Lee, Lee (b0120) 2015; 589 Kumar, Kanhangad, Pachori (b0130) 2015; 15 Sharmila, Geethanjali (b0220) 2016; 4 Andreou, Leicht, Nolte, Polomac, Moritz, Karow, Mulert (b0010) 2015; 161 Piryatinska, Darkhovsky, Kaplan (b0195) 2017; 152 Shanir, Khan, Khan, Farooq, Adeli (b0215) 2018; 49 Tiwari, Pachori, Kanhangad, Panigrahi (b0250) 2017; 21 Sunil Kumar, Kanhangad (b0230) 2017; 53 Alam, Bhuiyan (b0005) 2013; 17 Santos-Mayo, San-Jose-Revuelta, Arribas (b0210) 2017; 64 Lee, Zhu, Xu, Shen, Zhang, Thakor (b0140) 2001; 112 Djemili, Bourouba, Amara Korba (b0040) 2016; 36 Kocadagli, Langari (b0125) 2017; 88 (1), 6. https://doi.org/10.1186/s40810-016-0020-5. Zhao, Hu, Li, Peng, Li, Liu, Feng (b0255) 2013 , Panischev, Demin, Kaplan, Varaksina (b0180) 2013; 47 . Jahmunah, Lih Oh, Rajinikanth, Ciaccio, Hao Cheong, Arunkumar, Acharya (b0080) 2019; 100 Ocak (b0165) 2009; 36 Dvey-Aharon, Fogelson, Peled, Intrator, Motes (b0045) 2015; 10 Di Lorenzo, Daverio, Ferrentino, Santarnecchi, Ciabattini, Monaco, Siracusano (b0035) 2015; 9 Thilakavathi, Shenbaga Devi, Bhanu (b0240) 2018; 28 Ertuğrul, Kaya, Tekin (b0050) 2016; 54 Jaiswal, Banka (b0090) 2018; 38 Lehmann, Faber, Pascual-Marqui, Milz, Herrmann, Koukkou, Kochi (b0145) 2014; 8 Sabeti, Behroozi, Moradi (b0205) 2016; 21 Ertuǧrul, Kaya, Tekin, Almali (b0055) 2016; 56 Shim, Hwang, Kim, Lee, Im (b0225) 2016; 176 Gorbachevskaya, N. N., & Borisov, S. (n.d.). Tauscher, Fischer, Neumeister, Rappelsberger, Kasper (b0235) 1998; 44 Kam, Bolbecker, O’Donnell, Hetrick, Brenner (b0105) 2013; 47 Jaiswal, Banka (b0085) 2017; 34 Moeini, Khaleghi, Amiri, Niknam (b0160) 2014; 9 Hinkley, Vinogradov, Guggisberg, Fisher, Findlay, Nagarajan (b0070) 2011; 70 Johannesen, Bi, Jiang, Kenney, Chen (b0100) 2016; 2 Kutepov, Dobriyan, Zhigalov, Stepanov, Krysko, Yakovleva, Krysko (b0135) 2020; 18 Bhati, Sharma, Pachori, Gadre (b0020) 2017; 62 Ibáñez-Molina, Lozano, Soriano, Aznarte, Gómez-Ariza, Bajo (b0075) 2018; 9 Kaya, Uyar, Tekin, Yildirim (b0110) 2014; 243 Maran, M., Grent-‘t-Jong, T., & Uhlhaas, P. J. (2016). Electrophysiological insights into connectivity anomalies in schizophrenia: a systematic review. Borisov, Kaplan, Gorbachevskaya, Kozlova (b0025) 2005; 31 George, Subathra, Sairamya, Susmitha, Joel Premkumar (b0060) 2020; 40 Parvinnia, Sabeti, Zolghadri Jahromi, Boostani (b0185) 2014; 26 Kim, Jeong, Chae, Park, Yong Kim, Jin Go, Choi (b0115) 2000; 98 Li, Fan (b0150) 2005 Chen, Wan, Bao (b0030) 2017; 25 Tivatansakul, Ohkura (b0245) 2015; 15 Jaiswal (10.1016/j.eswa.2021.116230_b0090) 2018; 38 Ren (10.1016/j.eswa.2021.116230_b0200) 2013 Ocak (10.1016/j.eswa.2021.116230_b0165) 2009; 36 Baradits (10.1016/j.eswa.2021.116230_b0015) 2020; 288 Alam (10.1016/j.eswa.2021.116230_b0005) 2013; 17 Ertuğrul (10.1016/j.eswa.2021.116230_b0050) 2016; 54 Kam (10.1016/j.eswa.2021.116230_b0105) 2013; 47 Johannesen (10.1016/j.eswa.2021.116230_b0100) 2016; 2 Jeong (10.1016/j.eswa.2021.116230_b0095) 2017; 11 Dvey-Aharon (10.1016/j.eswa.2021.116230_b0045) 2015; 10 Sabeti (10.1016/j.eswa.2021.116230_b0205) 2016; 21 Oh (10.1016/j.eswa.2021.116230_b0170) 2019; 9 Santos-Mayo (10.1016/j.eswa.2021.116230_b0210) 2017; 64 Tiwari (10.1016/j.eswa.2021.116230_b0250) 2017; 21 Jaiswal (10.1016/j.eswa.2021.116230_b0085) 2017; 34 Ertuǧrul (10.1016/j.eswa.2021.116230_b0055) 2016; 56 Di Lorenzo (10.1016/j.eswa.2021.116230_b0035) 2015; 9 Thilakavathi (10.1016/j.eswa.2021.116230_b0240) 2018; 28 Kim (10.1016/j.eswa.2021.116230_b0120) 2015; 589 Panischev (10.1016/j.eswa.2021.116230_b0180) 2013; 47 Kutepov (10.1016/j.eswa.2021.116230_b0135) 2020; 18 Sharmila (10.1016/j.eswa.2021.116230_b0220) 2016; 4 Tauscher (10.1016/j.eswa.2021.116230_b0235) 1998; 44 Tivatansakul (10.1016/j.eswa.2021.116230_b0245) 2015; 15 Hinkley (10.1016/j.eswa.2021.116230_b0070) 2011; 70 Andreou (10.1016/j.eswa.2021.116230_b0010) 2015; 161 George (10.1016/j.eswa.2021.116230_b0060) 2020; 40 Djemili (10.1016/j.eswa.2021.116230_b0040) 2016; 36 Bhati (10.1016/j.eswa.2021.116230_b0020) 2017; 62 Shim (10.1016/j.eswa.2021.116230_b0225) 2016; 176 Borisov (10.1016/j.eswa.2021.116230_b0025) 2005; 31 Li (10.1016/j.eswa.2021.116230_b0150) 2005 Moeini (10.1016/j.eswa.2021.116230_b0160) 2014; 9 Kocadagli (10.1016/j.eswa.2021.116230_b0125) 2017; 88 10.1016/j.eswa.2021.116230_b0065 Chen (10.1016/j.eswa.2021.116230_b0030) 2017; 25 Lehmann (10.1016/j.eswa.2021.116230_b0145) 2014; 8 Sunil Kumar (10.1016/j.eswa.2021.116230_b0230) 2017; 53 Jahmunah (10.1016/j.eswa.2021.116230_b0080) 2019; 100 Phang (10.1016/j.eswa.2021.116230_b0190) 2020; 24 Lee (10.1016/j.eswa.2021.116230_b0140) 2001; 112 Orhan (10.1016/j.eswa.2021.116230_b0175) 2011; 38 Shanir (10.1016/j.eswa.2021.116230_b0215) 2018; 49 Ibáñez-Molina (10.1016/j.eswa.2021.116230_b0075) 2018; 9 10.1016/j.eswa.2021.116230_b0155 Kaya (10.1016/j.eswa.2021.116230_b0110) 2014; 243 Piryatinska (10.1016/j.eswa.2021.116230_b0195) 2017; 152 Kumar (10.1016/j.eswa.2021.116230_b0130) 2015; 15 Zhao (10.1016/j.eswa.2021.116230_b0255) 2013 Kim (10.1016/j.eswa.2021.116230_b0115) 2000; 98 Parvinnia (10.1016/j.eswa.2021.116230_b0185) 2014; 26 |
References_xml | – volume: 152 start-page: 131 year: 2017 end-page: 139 ident: b0195 article-title: Binary classification of multichannel-EEG records based on the ∊-complexity of continuous vector functions publication-title: Comput. Methods Programs Biomed. – volume: 38 start-page: 222 year: 2018 end-page: 235 ident: b0090 article-title: Local Transformed Features for Epileptic Seizure Detection in EEG Signal publication-title: J. Med. Biol. Eng. – start-page: 3680 year: 2013 end-page: 3684 ident: b0200 publication-title: Relaxed local ternary pattern for face recognition – volume: 15 start-page: 33 year: 2015 end-page: 40 ident: b0130 article-title: Classification of seizure and seizure-free EEG signals using local binary patterns publication-title: Biomed. Signal Process. Control – reference: Maran, M., Grent-‘t-Jong, T., & Uhlhaas, P. J. (2016). Electrophysiological insights into connectivity anomalies in schizophrenia: a systematic review. – volume: 11 start-page: 450 year: 2017 ident: b0095 article-title: Classifying schizotypy using an audiovisual emotion perception test and scalp electroencephalography publication-title: Front. Hum. Neurosci. – volume: 98 start-page: 177 year: 2000 end-page: 189 ident: b0115 article-title: An estimation of the first positive Lyapunov exponent of the EEG in patients with schizophrenia publication-title: Psych. Res. Neuroimag. – volume: 288 start-page: 112938 year: 2020 ident: b0015 article-title: Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls publication-title: Psychiatry Res. – volume: 25 start-page: 413 year: 2017 end-page: 425 ident: b0030 article-title: Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: (1), 6. https://doi.org/10.1186/s40810-016-0020-5. – volume: 4 start-page: 7716 year: 2016 end-page: 7727 ident: b0220 article-title: DWT based detection of epileptic seizure from EEG signals using naive Bayes and k-NN classifiers publication-title: IEEE Access – volume: 44 start-page: 438 year: 1998 end-page: 447 ident: b0235 article-title: Low frontal electroencephalographic coherence in neuroleptic-free schizophrenic patients publication-title: Biol. Psychiatry – volume: 15 start-page: 51 year: 2015 end-page: 61 ident: b0245 article-title: Emotion recognition using ECG signals with local pattern description methods publication-title: Int. J. Affect. Eng. – volume: 26 start-page: 1 year: 2014 end-page: 6 ident: b0185 article-title: Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm publication-title: J. King Saud Univ. Comput. Inform. Sci. – volume: 70 start-page: 1134 year: 2011 end-page: 1142 ident: b0070 article-title: Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: Implications for novel approaches to treatment publication-title: Biol. Psychiatry – volume: 56 start-page: 156 year: 2016 end-page: 163 ident: b0055 article-title: Detection of Parkinson’s disease by Shifted One Dimensional Local Binary Patterns from gait publication-title: Expert Syst. Appl. – reference: Gorbachevskaya, N. N., & Borisov, S. (n.d.). – volume: 88 start-page: 419 year: 2017 end-page: 434 ident: b0125 article-title: Classification of EEG signals for epileptic seizures using hybrid artificial neural networks based wavelet transforms and fuzzy relations publication-title: Expert Syst. Appl. – volume: 28 start-page: 18 year: 2018 end-page: 37 ident: b0240 article-title: Peak frequency analysis for schizophrenia using electroencephalogram power spectrum during mental activity publication-title: Int. J. Biomed. Eng. Technol. – volume: 161 start-page: 299 year: 2015 end-page: 307 ident: b0010 article-title: Resting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state publication-title: Schizophr. Res. – volume: 8 year: 2014 ident: b0145 article-title: Functionally aberrant electrophysiological cortical connectivities in first episode medication-naive schizophrenics from three psychiatry centers publication-title: Front. Hum. Neurosci. – volume: 9 start-page: 216 year: 2014 end-page: 221 ident: b0160 article-title: Quantitative electroencephalogram (QEEG) spectrum analysis of patients with schizoaffective disorder compared to normal subjects publication-title: Iranian J. Psych. – volume: 2 start-page: 3 year: 2016 ident: b0100 article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults publication-title: Neuropsych. Electrophysiol. – volume: 47 start-page: 1893 year: 2013 end-page: 1901 ident: b0105 article-title: Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia publication-title: J. Psychiatr. Res. – volume: 17 start-page: 312 year: 2013 end-page: 318 ident: b0005 article-title: Detection of Seizure and Epilepsy Using Higher Order Statistics in the EMD Domain publication-title: IEEE J. Biomed. Health. Inf. – volume: 36 start-page: 2027 year: 2009 end-page: 2036 ident: b0165 article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy publication-title: Expert Syst. Appl. – volume: 9 start-page: 1213 year: 2018 ident: b0075 article-title: EEG multiscale complexity in schizophrenia during picture naming publication-title: Front. Physiol. – volume: 589 start-page: 126 year: 2015 end-page: 131 ident: b0120 article-title: Diagnostic utility of quantitative EEG in un-medicated schizophrenia publication-title: Neurosci. Lett. – start-page: 484 year: 2013 end-page: 488 ident: b0255 article-title: An Alpha resting EEG study on nonlinear dynamic analysis for schizophrenia publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) – volume: 34 start-page: 81 year: 2017 end-page: 92 ident: b0085 article-title: Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals publication-title: Biomed. Signal Process. Control – volume: 53 start-page: 212 year: 2017 end-page: 214 ident: b0230 article-title: Automated obstructive sleep apnoea detection using symmetrically weighted local binary patterns publication-title: Electron. Lett. – reference: , – volume: 64 start-page: 395 year: 2017 end-page: 407 ident: b0210 article-title: A computer-aided diagnosis system with EEG based on the p3b wave during an auditory odd-ball task in schizophrenia publication-title: IEEE Trans. Biomed. Eng. – volume: 18 start-page: 100289 year: 2020 ident: b0135 article-title: EEG analysis in patients with schizophrenia based on Lyapunov exponents publication-title: Inf. Med. Unlocked – volume: 62 start-page: 259 year: 2017 end-page: 273 ident: b0020 article-title: Time–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification publication-title: Digital Signal Process. – start-page: 2679 year: 2005 end-page: 2682 ident: b0150 article-title: Classification of schizophrenia and depression by EEG with ANNs publication-title: In – volume: 112 start-page: 1288 year: 2001 end-page: 1294 ident: b0140 article-title: Detection of non-linearity in the EEG of schizophrenic patients publication-title: Clin. Neurophysiol. – volume: 38 start-page: 13475 year: 2011 end-page: 13481 ident: b0175 article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model publication-title: Expert Syst. Appl. – volume: 9 start-page: 2870 year: 2019 ident: b0170 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Applied Sciences – volume: 21 start-page: 109 year: 2016 end-page: 127 ident: b0205 article-title: Analysing complexity, variability and spectral measures of schizophrenic EEG signal publication-title: Int. J. Biomed. Eng. Technol. – volume: 9 year: 2015 ident: b0035 article-title: Altered resting-state EEG source functional connectivity in schizophrenia: The effect of illness duration publication-title: Front. Hum. Neurosci. – volume: 40 start-page: 709 year: 2020 end-page: 728 ident: b0060 article-title: Classification of epileptic EEG signals using PSO based artificial neural network and tunable-Q wavelet transform. publication-title: Engineering – volume: 31 start-page: 255 year: 2005 end-page: 261 ident: b0025 article-title: Analysis of EEG structural synchrony in adolescents with schizophrenic disorders publication-title: Human Physiol. – volume: 10 start-page: e0123033 year: 2015 ident: b0045 article-title: Schizophrenia detection and classification by advanced analysis of EEG recordings using a single electrode approach publication-title: PLoS ONE – volume: 24 start-page: 1333 year: 2020 end-page: 1343 ident: b0190 article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns publication-title: IEEE J. Biomed. Health. Inf. – volume: 176 start-page: 314 year: 2016 end-page: 319 ident: b0225 article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features publication-title: Schizophr. Res. – volume: 243 start-page: 209 year: 2014 end-page: 219 ident: b0110 article-title: 1D-local binary pattern based feature extraction for classification of epileptic EEG signals publication-title: Appl. Math. Comput. – reference: . – volume: 21 start-page: 888 year: 2017 end-page: 896 ident: b0250 article-title: Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals publication-title: IEEE J. Biomed. Health. Inf. – volume: 54 start-page: 1137 year: 2016 end-page: 1146 ident: b0050 article-title: A novel approach for SEMG signal classification with adaptive local binary patterns publication-title: Med. Biol. Eng. Compu. – volume: 36 start-page: 285 year: 2016 end-page: 291 ident: b0040 article-title: Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals publication-title: Biocybernetics Biomed. Eng. – volume: 100 start-page: 101698 year: 2019 ident: b0080 article-title: Automated detection of schizophrenia using nonlinear signal processing methods publication-title: Artif. Intell. Med. – volume: 47 start-page: 153 year: 2013 end-page: 156 ident: b0180 article-title: Use of cross-correlation analysis of EEG signals for detecting risk level for development of schizophrenia publication-title: Biomed. Eng. – volume: 49 start-page: 351 year: 2018 end-page: 362 ident: b0215 article-title: Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG publication-title: Clinical EEG and Neuroscience – volume: 589 start-page: 126 year: 2015 ident: 10.1016/j.eswa.2021.116230_b0120 article-title: Diagnostic utility of quantitative EEG in un-medicated schizophrenia publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2014.12.064 – volume: 38 start-page: 13475 issue: 10 year: 2011 ident: 10.1016/j.eswa.2021.116230_b0175 article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.149 – volume: 2 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.eswa.2021.116230_b0100 article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults publication-title: Neuropsych. Electrophysiol. doi: 10.1186/s40810-016-0017-0 – ident: 10.1016/j.eswa.2021.116230_b0155 doi: 10.1186/s40810-016-0020-5 – volume: 36 start-page: 2027 issue: 2 year: 2009 ident: 10.1016/j.eswa.2021.116230_b0165 article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.065 – volume: 4 start-page: 7716 year: 2016 ident: 10.1016/j.eswa.2021.116230_b0220 article-title: DWT based detection of epileptic seizure from EEG signals using naive Bayes and k-NN classifiers publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2585661 – volume: 64 start-page: 395 issue: 2 year: 2017 ident: 10.1016/j.eswa.2021.116230_b0210 article-title: A computer-aided diagnosis system with EEG based on the p3b wave during an auditory odd-ball task in schizophrenia publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2558824 – volume: 15 start-page: 33 year: 2015 ident: 10.1016/j.eswa.2021.116230_b0130 article-title: Classification of seizure and seizure-free EEG signals using local binary patterns publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.08.014 – volume: 100 start-page: 101698 year: 2019 ident: 10.1016/j.eswa.2021.116230_b0080 article-title: Automated detection of schizophrenia using nonlinear signal processing methods publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.07.006 – volume: 21 start-page: 888 issue: 4 year: 2017 ident: 10.1016/j.eswa.2021.116230_b0250 article-title: Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2016.2589971 – volume: 70 start-page: 1134 issue: 12 year: 2011 ident: 10.1016/j.eswa.2021.116230_b0070 article-title: Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: Implications for novel approaches to treatment publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.06.029 – volume: 28 start-page: 18 issue: 1 year: 2018 ident: 10.1016/j.eswa.2021.116230_b0240 article-title: Peak frequency analysis for schizophrenia using electroencephalogram power spectrum during mental activity publication-title: Int. J. Biomed. Eng. Technol. doi: 10.1504/IJBET.2018.094426 – volume: 15 start-page: 51 issue: 2 year: 2015 ident: 10.1016/j.eswa.2021.116230_b0245 article-title: Emotion recognition using ECG signals with local pattern description methods publication-title: Int. J. Affect. Eng. doi: 10.5057/ijae.IJAE-D-15-00036 – volume: 161 start-page: 299 issue: 2-3 year: 2015 ident: 10.1016/j.eswa.2021.116230_b0010 article-title: Resting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state publication-title: Schizophr. Res. doi: 10.1016/j.schres.2014.12.018 – volume: 31 start-page: 255 issue: 3 year: 2005 ident: 10.1016/j.eswa.2021.116230_b0025 article-title: Analysis of EEG structural synchrony in adolescents with schizophrenic disorders publication-title: Human Physiol. doi: 10.1007/s10747-005-0042-z – volume: 47 start-page: 153 issue: 3 year: 2013 ident: 10.1016/j.eswa.2021.116230_b0180 article-title: Use of cross-correlation analysis of EEG signals for detecting risk level for development of schizophrenia publication-title: Biomed. Eng. doi: 10.1007/s10527-013-9357-2 – volume: 49 start-page: 351 issue: 5 year: 2018 ident: 10.1016/j.eswa.2021.116230_b0215 article-title: Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG publication-title: Clinical EEG and Neuroscience doi: 10.1177/1550059417744890 – volume: 53 start-page: 212 issue: 4 year: 2017 ident: 10.1016/j.eswa.2021.116230_b0230 article-title: Automated obstructive sleep apnoea detection using symmetrically weighted local binary patterns publication-title: Electron. Lett. doi: 10.1049/el.2016.3664 – volume: 243 start-page: 209 year: 2014 ident: 10.1016/j.eswa.2021.116230_b0110 article-title: 1D-local binary pattern based feature extraction for classification of epileptic EEG signals publication-title: Appl. Math. Comput. – volume: 17 start-page: 312 issue: 2 year: 2013 ident: 10.1016/j.eswa.2021.116230_b0005 article-title: Detection of Seizure and Epilepsy Using Higher Order Statistics in the EMD Domain publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2012.2237409 – volume: 25 start-page: 413 issue: 5 year: 2017 ident: 10.1016/j.eswa.2021.116230_b0030 article-title: Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2604393 – start-page: 2679 year: 2005 ident: 10.1016/j.eswa.2021.116230_b0150 article-title: Classification of schizophrenia and depression by EEG with ANNs – volume: 38 start-page: 222 issue: 2 year: 2018 ident: 10.1016/j.eswa.2021.116230_b0090 article-title: Local Transformed Features for Epileptic Seizure Detection in EEG Signal publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-017-0286-5 – volume: 24 start-page: 1333 issue: 5 year: 2020 ident: 10.1016/j.eswa.2021.116230_b0190 article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2019.2941222 – volume: 8 year: 2014 ident: 10.1016/j.eswa.2021.116230_b0145 article-title: Functionally aberrant electrophysiological cortical connectivities in first episode medication-naive schizophrenics from three psychiatry centers publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00635 – volume: 9 year: 2015 ident: 10.1016/j.eswa.2021.116230_b0035 article-title: Altered resting-state EEG source functional connectivity in schizophrenia: The effect of illness duration publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00234 – volume: 9 start-page: 1213 year: 2018 ident: 10.1016/j.eswa.2021.116230_b0075 article-title: EEG multiscale complexity in schizophrenia during picture naming publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01213 – volume: 9 start-page: 216 issue: 4 year: 2014 ident: 10.1016/j.eswa.2021.116230_b0160 article-title: Quantitative electroencephalogram (QEEG) spectrum analysis of patients with schizoaffective disorder compared to normal subjects publication-title: Iranian J. Psych. – volume: 54 start-page: 1137 issue: 7 year: 2016 ident: 10.1016/j.eswa.2021.116230_b0050 article-title: A novel approach for SEMG signal classification with adaptive local binary patterns publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-015-1443-z – volume: 288 start-page: 112938 year: 2020 ident: 10.1016/j.eswa.2021.116230_b0015 article-title: Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls publication-title: Psychiatry Res. doi: 10.1016/j.psychres.2020.112938 – volume: 9 start-page: 2870 issue: 14 year: 2019 ident: 10.1016/j.eswa.2021.116230_b0170 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Applied Sciences doi: 10.3390/app9142870 – volume: 18 start-page: 100289 year: 2020 ident: 10.1016/j.eswa.2021.116230_b0135 article-title: EEG analysis in patients with schizophrenia based on Lyapunov exponents publication-title: Inf. Med. Unlocked doi: 10.1016/j.imu.2020.100289 – volume: 176 start-page: 314 issue: 2–3 year: 2016 ident: 10.1016/j.eswa.2021.116230_b0225 article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features publication-title: Schizophr. Res. doi: 10.1016/j.schres.2016.05.007 – ident: 10.1016/j.eswa.2021.116230_b0065 – volume: 62 start-page: 259 year: 2017 ident: 10.1016/j.eswa.2021.116230_b0020 article-title: Time–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2016.12.004 – volume: 56 start-page: 156 year: 2016 ident: 10.1016/j.eswa.2021.116230_b0055 article-title: Detection of Parkinson’s disease by Shifted One Dimensional Local Binary Patterns from gait publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.03.018 – volume: 10 start-page: e0123033 issue: 4 year: 2015 ident: 10.1016/j.eswa.2021.116230_b0045 article-title: Schizophrenia detection and classification by advanced analysis of EEG recordings using a single electrode approach publication-title: PLoS ONE doi: 10.1371/journal.pone.0123033 – volume: 11 start-page: 450 year: 2017 ident: 10.1016/j.eswa.2021.116230_b0095 article-title: Classifying schizotypy using an audiovisual emotion perception test and scalp electroencephalography publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00450 – volume: 98 start-page: 177 issue: 3 year: 2000 ident: 10.1016/j.eswa.2021.116230_b0115 article-title: An estimation of the first positive Lyapunov exponent of the EEG in patients with schizophrenia publication-title: Psych. Res. Neuroimag. doi: 10.1016/S0925-4927(00)00052-4 – volume: 40 start-page: 709 issue: 2 year: 2020 ident: 10.1016/j.eswa.2021.116230_b0060 article-title: Classification of epileptic EEG signals using PSO based artificial neural network and tunable-Q wavelet transform. Biocybernetics and Biomedical publication-title: Engineering – volume: 34 start-page: 81 year: 2017 ident: 10.1016/j.eswa.2021.116230_b0085 article-title: Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.01.005 – volume: 152 start-page: 131 year: 2017 ident: 10.1016/j.eswa.2021.116230_b0195 article-title: Binary classification of multichannel-EEG records based on the ∊-complexity of continuous vector functions publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.001 – start-page: 3680 year: 2013 ident: 10.1016/j.eswa.2021.116230_b0200 – volume: 88 start-page: 419 year: 2017 ident: 10.1016/j.eswa.2021.116230_b0125 article-title: Classification of EEG signals for epileptic seizures using hybrid artificial neural networks based wavelet transforms and fuzzy relations publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.07.020 – volume: 112 start-page: 1288 issue: 7 year: 2001 ident: 10.1016/j.eswa.2021.116230_b0140 article-title: Detection of non-linearity in the EEG of schizophrenic patients publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(01)00544-2 – volume: 36 start-page: 285 issue: 1 year: 2016 ident: 10.1016/j.eswa.2021.116230_b0040 article-title: Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals publication-title: Biocybernetics Biomed. Eng. doi: 10.1016/j.bbe.2015.10.006 – volume: 44 start-page: 438 issue: 6 year: 1998 ident: 10.1016/j.eswa.2021.116230_b0235 article-title: Low frontal electroencephalographic coherence in neuroleptic-free schizophrenic patients publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(97)00428-9 – start-page: 484 year: 2013 ident: 10.1016/j.eswa.2021.116230_b0255 article-title: An Alpha resting EEG study on nonlinear dynamic analysis for schizophrenia – volume: 26 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.eswa.2021.116230_b0185 article-title: Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm publication-title: J. King Saud Univ. Comput. Inform. Sci. – volume: 47 start-page: 1893 issue: 12 year: 2013 ident: 10.1016/j.eswa.2021.116230_b0105 article-title: Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2013.09.009 – volume: 21 start-page: 109 issue: 2 year: 2016 ident: 10.1016/j.eswa.2021.116230_b0205 article-title: Analysing complexity, variability and spectral measures of schizophrenic EEG signal publication-title: Int. J. Biomed. Eng. Technol. doi: 10.1504/IJBET.2016.077178 |
SSID | ssj0017007 |
Score | 2.4752274 |
Snippet | •Novel RLNDip technique for automatic identification of schizophrenia using EEG signals is proposed.•A fusion approach of DWT with RLNDiP technique is... Schizophrenia (ScZ) is a detrimental condition of the brain often associated with depression, anxiety, and socio-psychological problems. In the traditional... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116230 |
SubjectTerms | Artificial neural network (ANN) Artificial neural networks Brain Computation Diagnosis Discrete Wavelet Transform Discrete wavelet transform (DWT) Electroencephalogram (EEG) Electroencephalography Feature extraction Histograms Relaxed local neighbour difference pattern (RLNDiP) Rhythm Schizophrenia Schizophrenia (ScZ) Wavelet transforms |
Title | Automatic identification of schizophrenia using EEG signals based on discrete wavelet transform and RLNDiP technique with ANN |
URI | https://dx.doi.org/10.1016/j.eswa.2021.116230 https://www.proquest.com/docview/2641053556 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQXLjw0YJKWdAceqvSXTt2Po4rWNgWiKoCEjfLsZ1qUbWL2KA9wW9nJnFWBQkOXKNxFHnGM8_RmzeMfRtUrqn8Ue4qFUmbJpGR3EdGeW9Sp4yoqMH5okjG1_LXjbpZYUddLwzRKkPub3N6k63Dk37Yzf7dZNK_RHCA5RCvdpxwQEwNv1KmFOU_npY0D5KfS1u9vTQi69A403K8_HxB2kOCY-ZAHDB4qzi9StNN7TnZYhsBNMKw_a5ttuKnn9hmN5ABwvn8zB6HD_Ws0WCFiQs0oGbnYVbB_H96HRDf_S-MRqdADA6MQaB65gBtqVH3HrE0LAxNpaih7sAtmKmDP-fF8eQ3LMVfgX7lwrAodtj1yejqaByF-QqRjUVWR6o0aeVFiSWJl7ayuUxLL40zIjdVhriRoxPQe04avLOWwnkuEiNtPohTPxA23mWr09nUf2FgheGZFWigrFTcZFlic2tVrGSFmIfvMd5trLZBfJxmYPzTHcvsVpMzNDlDt87YY9-Xa-5a6Y13rVXnL_0igDTWhnfX9Trn6nB85xpRIifhG5V8_eBr99m6oEYJUoVUPbZa3z_4A4QvdXnYxOchWxv-PBsXz9Qa8EA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgvUPpQeZU5cKuijR07j-MKli6wRFULEjfLsR20FdpFbBAn_jszibMqlcqh12hsRR575nPyzTeMHca1azN_VLhaRdJmaWQk95FR3pvMKSNqKnC-KNPJlTy7Vtdr7KivhSFaZYj9XUxvo3V4MgyrObybzYa_EBxgOsSrHScckORv2DqpU6kBWx-dnk_K1c-ELO6qptE-ogGhdqajefnlI8kPCY7BA6FA_K_89FekbtPPyXu2EXAjjLpX22Jrfv6BbfY9GSAc0Y_safTQLFoZVpi5wARqFx8WNSz_ZNgBUd5vYDz-DkTiwG0IlNIcoC3V6t4jnIZHQ40pGmh6fAtm7uDntDye_YCV_ivQ11wYleUndnUyvjyaRKHFQmQTkTeRqkxWe1FhVuKVrW0hs8pL44woTJ0jdOToB3SgkwavrZVwnovUSFvESeZjYZPPbDBfzP0XBlYYnluBBspKxU2ep7awViVK1gh7-Dbj_cJqG_THqQ3Gre6JZr81OUOTM3TnjG32bTXmrlPfeNVa9f7SL_aQxvTw6ri93rk6nOClRqDISftGpTv_Oe0Bezu5vJjq6Wl5vsveCaqbIJFItccGzf2D30c001Rfw259BhDv8vE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+schizophrenia+using+EEG+signals+based+on+discrete+wavelet+transform+and+RLNDiP+technique+with+ANN&rft.jtitle=Expert+systems+with+applications&rft.au=Sairamya%2C+N+J&rft.au=Subathra%2C+M+S+P&rft.au=George%2C+S+Thomas&rft.date=2022-04-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=192&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.116230&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |