Identification of key genes and development of an identifying machine learning model for sepsis

Objective and design This study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell RNA sequencing (scRNA-seq) and machine learning. Material or subjects Datasets downloaded from the Gene Expression Omnibus (GSE207363, GSE20...

Full description

Saved in:
Bibliographic Details
Published inInflammation research Vol. 74; no. 1; p. 100
Main Authors Li, Zhonghao, Chen, Shengsong, Gao, Nan, Chen, Jie, Qin, Ying, Zhang, Guoqiang
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective and design This study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell RNA sequencing (scRNA-seq) and machine learning. Material or subjects Datasets downloaded from the Gene Expression Omnibus (GSE207363, GSE207651, GSE185263, GSE69063 and GSE134347) were used. Methods ScRNA-seq data extracted from heart (GSE207363) and lung tissues (GSE207651) of septic mice were processed and analyzed using the Seurat package in R. Key genes were identified as present in both heart and lung tissues, resulting from the overlap of three analyses along with differential expression analyses. We then used support vector machine recursive feature elimination to construct a model for sepsis identification based on these key genes. The GSE185263 dataset was used for training, while GSE69063 and GSE134347 were used for testing. The accuracy of the model in identifying of sepsis was validated by analyzing the area under the receiver operating characteristic curve (AUROC) using the test datasets. Results Thirteen genes were initially identified as key genes, and after translation to their human homologs, ten genes remained. The optimal SVM-RFE model incorporated eight of these genes ( CAMP, CD74 , HLA-DQA1 , HLA-DQB1, HLA-DMA , HLA-DRB5 , and LYZ ). In the two test datasets, the AUROC value for the accuracy of the model in identifying of sepsis was 0.904 and 0.924, respectively. Conclusions We have identified several key genes and developed a machine learning model for sepsis identification. Further studies are needed to validate our findings.
AbstractList This study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell RNA sequencing (scRNA-seq) and machine learning. Datasets downloaded from the Gene Expression Omnibus (GSE207363, GSE207651, GSE185263, GSE69063 and GSE134347) were used. ScRNA-seq data extracted from heart (GSE207363) and lung tissues (GSE207651) of septic mice were processed and analyzed using the Seurat package in R. Key genes were identified as present in both heart and lung tissues, resulting from the overlap of three analyses along with differential expression analyses. We then used support vector machine recursive feature elimination to construct a model for sepsis identification based on these key genes. The GSE185263 dataset was used for training, while GSE69063 and GSE134347 were used for testing. The accuracy of the model in identifying of sepsis was validated by analyzing the area under the receiver operating characteristic curve (AUROC) using the test datasets. Thirteen genes were initially identified as key genes, and after translation to their human homologs, ten genes remained. The optimal SVM-RFE model incorporated eight of these genes (CAMP, CD74, HLA-DQA1, HLA-DQB1, HLA-DMA, HLA-DRB5, and LYZ). In the two test datasets, the AUROC value for the accuracy of the model in identifying of sepsis was 0.904 and 0.924, respectively. We have identified several key genes and developed a machine learning model for sepsis identification. Further studies are needed to validate our findings.
This study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell RNA sequencing (scRNA-seq) and machine learning.OBJECTIVE AND DESIGNThis study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell RNA sequencing (scRNA-seq) and machine learning.Datasets downloaded from the Gene Expression Omnibus (GSE207363, GSE207651, GSE185263, GSE69063 and GSE134347) were used.MATERIAL OR SUBJECTSDatasets downloaded from the Gene Expression Omnibus (GSE207363, GSE207651, GSE185263, GSE69063 and GSE134347) were used.ScRNA-seq data extracted from heart (GSE207363) and lung tissues (GSE207651) of septic mice were processed and analyzed using the Seurat package in R. Key genes were identified as present in both heart and lung tissues, resulting from the overlap of three analyses along with differential expression analyses. We then used support vector machine recursive feature elimination to construct a model for sepsis identification based on these key genes. The GSE185263 dataset was used for training, while GSE69063 and GSE134347 were used for testing. The accuracy of the model in identifying of sepsis was validated by analyzing the area under the receiver operating characteristic curve (AUROC) using the test datasets.METHODSScRNA-seq data extracted from heart (GSE207363) and lung tissues (GSE207651) of septic mice were processed and analyzed using the Seurat package in R. Key genes were identified as present in both heart and lung tissues, resulting from the overlap of three analyses along with differential expression analyses. We then used support vector machine recursive feature elimination to construct a model for sepsis identification based on these key genes. The GSE185263 dataset was used for training, while GSE69063 and GSE134347 were used for testing. The accuracy of the model in identifying of sepsis was validated by analyzing the area under the receiver operating characteristic curve (AUROC) using the test datasets.Thirteen genes were initially identified as key genes, and after translation to their human homologs, ten genes remained. The optimal SVM-RFE model incorporated eight of these genes (CAMP, CD74, HLA-DQA1, HLA-DQB1, HLA-DMA, HLA-DRB5, and LYZ). In the two test datasets, the AUROC value for the accuracy of the model in identifying of sepsis was 0.904 and 0.924, respectively.RESULTSThirteen genes were initially identified as key genes, and after translation to their human homologs, ten genes remained. The optimal SVM-RFE model incorporated eight of these genes (CAMP, CD74, HLA-DQA1, HLA-DQB1, HLA-DMA, HLA-DRB5, and LYZ). In the two test datasets, the AUROC value for the accuracy of the model in identifying of sepsis was 0.904 and 0.924, respectively.We have identified several key genes and developed a machine learning model for sepsis identification. Further studies are needed to validate our findings.CONCLUSIONSWe have identified several key genes and developed a machine learning model for sepsis identification. Further studies are needed to validate our findings.
Objective and designThis study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell RNA sequencing (scRNA-seq) and machine learning.Material or subjectsDatasets downloaded from the Gene Expression Omnibus (GSE207363, GSE207651, GSE185263, GSE69063 and GSE134347) were used.MethodsScRNA-seq data extracted from heart (GSE207363) and lung tissues (GSE207651) of septic mice were processed and analyzed using the Seurat package in R. Key genes were identified as present in both heart and lung tissues, resulting from the overlap of three analyses along with differential expression analyses. We then used support vector machine recursive feature elimination to construct a model for sepsis identification based on these key genes. The GSE185263 dataset was used for training, while GSE69063 and GSE134347 were used for testing. The accuracy of the model in identifying of sepsis was validated by analyzing the area under the receiver operating characteristic curve (AUROC) using the test datasets.Results Thirteen genes were initially identified as key genes, and after translation to their human homologs, ten genes remained. The optimal SVM-RFE model incorporated eight of these genes (CAMP,CD74, HLA-DQA1, HLA-DQB1,HLA-DMA, HLA-DRB5, and LYZ). In the two test datasets, the AUROC value for the accuracy of the model in identifying of sepsis was 0.904 and 0.924, respectively.ConclusionsWe have identified several key genes and developed a machine learning model for sepsis identification. Further studies are needed to validate our findings.
Objective and design This study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell RNA sequencing (scRNA-seq) and machine learning. Material or subjects Datasets downloaded from the Gene Expression Omnibus (GSE207363, GSE207651, GSE185263, GSE69063 and GSE134347) were used. Methods ScRNA-seq data extracted from heart (GSE207363) and lung tissues (GSE207651) of septic mice were processed and analyzed using the Seurat package in R. Key genes were identified as present in both heart and lung tissues, resulting from the overlap of three analyses along with differential expression analyses. We then used support vector machine recursive feature elimination to construct a model for sepsis identification based on these key genes. The GSE185263 dataset was used for training, while GSE69063 and GSE134347 were used for testing. The accuracy of the model in identifying of sepsis was validated by analyzing the area under the receiver operating characteristic curve (AUROC) using the test datasets. Results Thirteen genes were initially identified as key genes, and after translation to their human homologs, ten genes remained. The optimal SVM-RFE model incorporated eight of these genes ( CAMP, CD74 , HLA-DQA1 , HLA-DQB1, HLA-DMA , HLA-DRB5 , and LYZ ). In the two test datasets, the AUROC value for the accuracy of the model in identifying of sepsis was 0.904 and 0.924, respectively. Conclusions We have identified several key genes and developed a machine learning model for sepsis identification. Further studies are needed to validate our findings.
ArticleNumber 100
Author Zhang, Guoqiang
Qin, Ying
Li, Zhonghao
Chen, Shengsong
Chen, Jie
Gao, Nan
Author_xml – sequence: 1
  givenname: Zhonghao
  surname: Li
  fullname: Li, Zhonghao
  organization: Department of Neurosurgery, Dongfang Hospital, Beijing University of Chinese Medicine, Emergency Department, China-Japan Friendship Hospital
– sequence: 2
  givenname: Shengsong
  surname: Chen
  fullname: Chen, Shengsong
  organization: Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital
– sequence: 3
  givenname: Nan
  surname: Gao
  fullname: Gao, Nan
  organization: Emergency Department, China-Japan Friendship Hospital, Graduate School, Peking Union Medical College
– sequence: 4
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: Emergency Department, China-Japan Friendship Hospital, Graduate School, Peking Union Medical College
– sequence: 5
  givenname: Ying
  surname: Qin
  fullname: Qin, Ying
  organization: Emergency Department, China-Japan Friendship Hospital
– sequence: 6
  givenname: Guoqiang
  surname: Zhang
  fullname: Zhang, Guoqiang
  email: zhangchong2003@vip.sina.com
  organization: Emergency Department, China-Japan Friendship Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40583108$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PJCEQhonR-P0HPBgSL15aq2B6mj5ujLomJl48eCM0XYy43TDCjMn8-8VpdzfZgwcCKZ4HKvUesd0QAzF2hnCFAM11BgDECkRdFsxV1eywQ5wJqFpQL7vlDEJWUkk4YEc5vxVcCSX22cEMaiUR1CHTDz2FlXfempWPgUfHf9GGLyhQ5ib0vKcPGuJyLNTnpQncT8bGhwUfjX31gfhAJoVtIfY0cBcTz7TMPp-wPWeGTKdf-zF7vrt9vvlZPT7dP9z8eKysFGpV1WqOdS3QdaQcdlZQ62bG1T3VSlg3Bzt3XW-bllB2JNEILF6ZQqugxVYes8vp2WWK72vKKz36bGkYTKC4zloKUasGG8CCXvyHvsV1CqW5LSWUAlSFOv-i1t1IvV4mP5q00X8mVwAxATbFnBO5vwiC_oxHT_HoEo_exqObIslJygUOC0r__v7G-g3ekpEW
Cites_doi 10.1001/jama.2016.0287
10.1038/s41586-020-2797-4
10.3389/fphys.2022.870657
10.1186/s13054-016-1505-0
10.1093/nar/gkac947
10.3389/fphys.2022.941257
10.1038/s41467-021-21246-9
10.18632/aging.204125
10.3389/fimmu.2023.1114103
10.1155/2022/4586648
10.3389/fcimb.2022.934313
10.1038/s41577-022-00707-2
10.1016/j.cell.2021.04.048
10.4049/jimmunol.178.5.3076
10.1097/01.CCM.0000150958.20209.A3
10.1186/s13054-020-2754-5
10.1002/iid3.70033
10.1089/dna.2020.5383
10.1016/j.intimp.2023.110083
10.1186/s13054-020-2830-x
10.1186/s13054-021-03481-0
10.5847/wjem.j.1920-8642.2022.056
10.1186/cc13150
10.1097/MD.0000000000039494
10.1016/j.intimp.2023.109909
10.1186/s12967-021-02888-1
10.1016/j.ebiom.2021.103776
10.1038/s41586-019-0969-x
10.1016/j.intimp.2023.110049
10.1038/nmeth.4463
10.1016/S0140-6736(19)32989-7
10.1007/s10142-023-01016-0
10.1155/2021/8978795
10.1007/s00134-021-06506-y
10.1016/j.molcel.2015.04.005
10.1007/s00134-019-05872-y
10.1038/s41586-020-2922-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
– notice: Copyright Springer Nature B.V. Dec 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
DOI 10.1007/s00011-025-02068-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1420-908X
ExternalDocumentID 40583108
10_1007_s00011_025_02068_7
Genre Journal Article
GroupedDBID ---
-Y2
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3O-
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSTC
ACZOJ
ADBBV
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EN4
EPAXT
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
X7M
Y6R
YLTOR
Z45
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TM
7TO
7U9
8FD
ABRTQ
C1K
FR3
H94
K9.
M7N
P64
7X8
ID FETCH-LOGICAL-c328t-58615521fbe8f1bc2e9f4af5de582cf60c6fbdc79e13be31a213281009809193
IEDL.DBID U2A
ISSN 1023-3830
1420-908X
IngestDate Wed Jul 02 01:45:12 EDT 2025
Fri Jul 25 09:13:53 EDT 2025
Wed Jul 02 01:55:37 EDT 2025
Thu Jul 03 08:43:06 EDT 2025
Mon Jun 30 02:46:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computer biology
Immunology
Bioinformation
Pyemia
Translational medicine
Language English
License 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-58615521fbe8f1bc2e9f4af5de582cf60c6fbdc79e13be31a213281009809193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 40583108
PQID 3225288018
PQPubID 24296
ParticipantIDs proquest_miscellaneous_3225871701
proquest_journals_3225288018
pubmed_primary_40583108
crossref_primary_10_1007_s00011_025_02068_7
springer_journals_10_1007_s00011_025_02068_7
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: New York
PublicationTitle Inflammation research
PublicationTitleAbbrev Inflamm. Res
PublicationTitleAlternate Inflamm Res
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References MJ Shen (2068_CR21) 2022; 13
MA Cazalis (2068_CR29) 2013; 17
Y Chen (2068_CR33) 2013; 17
C Hu (2068_CR10) 2023; 51
N Gao (2068_CR25) 2023; 118
J Cao (2068_CR15) 2019; 566
Z Li (2068_CR7) 2023; 23
N Pishesha (2068_CR28) 2022; 22
Y Hao (2068_CR9) 2021; 184
DQ Chen (2068_CR20) 2021; 2021
L Evans (2068_CR2) 2021; 47
GP Leijte (2068_CR39) 2020; 24
AL Tang (2068_CR27) 2023; 118
Z Chen (2068_CR31) 2022; 13
LM Fleuren (2068_CR8) 2020; 46
A Baghela (2068_CR18) 2022; 75
AL Tang (2068_CR24) 2022; 13
A Pachot (2068_CR38) 2005; 33
KJ Travaglini (2068_CR11) 2020; 587
R Nudel (2068_CR36) 2021; 19
X Liu (2068_CR26) 2023; 14
S Zhang (2068_CR41) 2020; 39
X Qi (2068_CR6) 2021; 25
S Jin (2068_CR13) 2021; 12
Y Wang (2068_CR32) 2024; 103
W Xie (2068_CR4) 2023; 117
T Wu (2068_CR16) 2021; 2
AM Drewry (2068_CR37) 2016; 20
M Singer (2068_CR3) 2016; 315
2068_CR19
MJ Shen (2068_CR22) 2022; 14
P Tao (2068_CR34) 2022; 2022
AA Kolodziejczyk (2068_CR5) 2015; 58
M Litviňuková (2068_CR12) 2020; 588
MM Nooh (2068_CR35) 2007; 178
J Ho (2068_CR40) 2020; 24
AL Tang (2068_CR23) 2022; 13
J Li (2068_CR30) 2024; 12
S Aibar (2068_CR14) 2017; 14
KE Rudd (2068_CR1) 2020; 395
E Malmström (2068_CR17) 2022; 12
References_xml – volume: 315
  start-page: 801
  issue: 8
  year: 2016
  ident: 2068_CR3
  publication-title: JAMA
  doi: 10.1001/jama.2016.0287
– volume: 588
  start-page: 466
  issue: 7838
  year: 2020
  ident: 2068_CR12
  publication-title: Nature
  doi: 10.1038/s41586-020-2797-4
– volume: 13
  year: 2022
  ident: 2068_CR31
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.870657
– volume: 20
  start-page: 334
  issue: 1
  year: 2016
  ident: 2068_CR37
  publication-title: Crit Care
  doi: 10.1186/s13054-016-1505-0
– volume: 51
  start-page: D870
  issue: D1
  year: 2023
  ident: 2068_CR10
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac947
– volume: 13
  year: 2022
  ident: 2068_CR23
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.941257
– volume: 12
  start-page: 1088
  issue: 1
  year: 2021
  ident: 2068_CR13
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21246-9
– volume: 14
  start-page: 5059
  issue: 12
  year: 2022
  ident: 2068_CR22
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.204125
– volume: 14
  start-page: 1114103
  year: 2023
  ident: 2068_CR26
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2023.1114103
– volume: 17
  start-page: 1044
  issue: 8
  year: 2013
  ident: 2068_CR33
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 2022
  start-page: 4586648
  year: 2022
  ident: 2068_CR34
  publication-title: Comput Math Methods Med
  doi: 10.1155/2022/4586648
– volume: 12
  year: 2022
  ident: 2068_CR17
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2022.934313
– volume: 22
  start-page: 751
  issue: 12
  year: 2022
  ident: 2068_CR28
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-022-00707-2
– volume: 184
  start-page: 3573
  issue: 13
  year: 2021
  ident: 2068_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 178
  start-page: 3076
  issue: 5
  year: 2007
  ident: 2068_CR35
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.5.3076
– volume: 33
  start-page: 31
  issue: 1
  year: 2005
  ident: 2068_CR38
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000150958.20209.A3
– volume: 24
  start-page: 47
  issue: 1
  year: 2020
  ident: 2068_CR40
  publication-title: Crit Care
  doi: 10.1186/s13054-020-2754-5
– volume: 12
  issue: 10
  year: 2024
  ident: 2068_CR30
  publication-title: Immun Inflamm Dis
  doi: 10.1002/iid3.70033
– volume: 39
  start-page: 1862
  issue: 10
  year: 2020
  ident: 2068_CR41
  publication-title: DNA Cell Biol
  doi: 10.1089/dna.2020.5383
– volume: 118
  year: 2023
  ident: 2068_CR25
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2023.110083
– volume: 24
  start-page: 110
  issue: 1
  year: 2020
  ident: 2068_CR39
  publication-title: Crit Care
  doi: 10.1186/s13054-020-2830-x
– volume: 25
  start-page: 50
  issue: 1
  year: 2021
  ident: 2068_CR6
  publication-title: Crit Care
  doi: 10.1186/s13054-021-03481-0
– volume: 13
  start-page: 182
  issue: 3
  year: 2022
  ident: 2068_CR21
  publication-title: World J Emerg Med
  doi: 10.5847/wjem.j.1920-8642.2022.056
– volume: 2
  start-page: 100141
  issue: 3
  year: 2021
  ident: 2068_CR16
  publication-title: Innovation (Camb).
– volume: 17
  start-page: R287
  issue: 6
  year: 2013
  ident: 2068_CR29
  publication-title: Crit Care
  doi: 10.1186/cc13150
– ident: 2068_CR19
– volume: 103
  issue: 36
  year: 2024
  ident: 2068_CR32
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000039494
– volume: 117
  year: 2023
  ident: 2068_CR4
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2023.109909
– volume: 19
  start-page: 230
  issue: 1
  year: 2021
  ident: 2068_CR36
  publication-title: J Transl Med
  doi: 10.1186/s12967-021-02888-1
– volume: 75
  year: 2022
  ident: 2068_CR18
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103776
– volume: 566
  start-page: 496
  issue: 7745
  year: 2019
  ident: 2068_CR15
  publication-title: Nature
  doi: 10.1038/s41586-019-0969-x
– volume: 118
  year: 2023
  ident: 2068_CR27
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2023.110049
– volume: 14
  start-page: 1083
  issue: 11
  year: 2017
  ident: 2068_CR14
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4463
– volume: 395
  start-page: 200
  issue: 10219
  year: 2020
  ident: 2068_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)32989-7
– volume: 23
  start-page: 83
  issue: 2
  year: 2023
  ident: 2068_CR7
  publication-title: Funct Integr Genom
  doi: 10.1007/s10142-023-01016-0
– volume: 2021
  start-page: 8978795
  year: 2021
  ident: 2068_CR20
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2021/8978795
– volume: 47
  start-page: 1181
  issue: 11
  year: 2021
  ident: 2068_CR2
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-021-06506-y
– volume: 58
  start-page: 610
  issue: 4
  year: 2015
  ident: 2068_CR5
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.04.005
– volume: 46
  start-page: 383
  issue: 3
  year: 2020
  ident: 2068_CR8
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-019-05872-y
– volume: 587
  start-page: 619
  issue: 7835
  year: 2020
  ident: 2068_CR11
  publication-title: Nature
  doi: 10.1038/s41586-020-2922-4
– volume: 13
  start-page: 343
  issue: 5
  year: 2022
  ident: 2068_CR24
  publication-title: World J Emerg Med
SSID ssj0008282
Score 2.4392097
Snippet Objective and design This study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell...
This study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell RNA sequencing...
Objective and designThis study aims to identify key genes of sepsis and construct a model for sepsis identification through integrated multi-organ single-cell...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 100
SubjectTerms Allergology
Animals
Approximation
Biomedical and Life Sciences
Biomedicine
Databases, Genetic
Datasets
Dermatology
DQA1 protein
Fibroblasts
Gene expression
Gene Expression Profiling
Gene sequencing
Genes
Genomics
Heart
Histocompatibility antigen HLA
Humans
Identification
Immunology
Learning algorithms
Lung - metabolism
Lungs
Machine Learning
Mice
Neurology
Pathology
Pharmacology/Toxicology
Rheumatology
Sepsis
Sepsis - diagnosis
Sepsis - genetics
Sequence Analysis, RNA
Single-Cell Analysis
Support Vector Machine
Support vector machines
Title Identification of key genes and development of an identifying machine learning model for sepsis
URI https://link.springer.com/article/10.1007/s00011-025-02068-7
https://www.ncbi.nlm.nih.gov/pubmed/40583108
https://www.proquest.com/docview/3225288018
https://www.proquest.com/docview/3225871701
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vXgR366uEkG8uIEmbdr0uIqrKIqHFfRUmjQRD3YXux78906atouoB0-F5tEyk0y-ybwATmQgreZCU6FkTCN3hy9VwajCoyOJlVWpcdHId_fx9WN08ySemqCwqvV2b02StaTugt1q-EJd-VWEOLGkyTKsCNTdnSPXIx918hd1CG_j5CFF_StoQmV-n-P7cfQDY_6wj9bHzngd1hq8SEaewRuwZMpNOH3wCac_h2SyiJ-qhuSUPCxSUX9uQebjcG1zMUemluCmJS9OwJG8LEix8BlyjXlJXv0IF_1E3mpPS0Oa0hL4wtXNIYhzSWVm1Wu1DZPx5eTimjYlFagOuZxTIZ0dkjOrjLRMaW5SG-VWFEZIrm0c6NiqQiepYaEyIcs5aquSuayjCCzScAd65bQ0e0ACIU1o81SLXEdGxrlJUoQvaaS1DKNU9eGsJWw284kzsi5Fcs2GDNmQ1WzIkj4MWtpnzSaqMidrOMoXJvtw3DXj8nc2jbw00w_fB3W-JGB92PU86z6HWNSVUcPRw5aJi8n__pf9_3U_gFWG1PEuLgPozd8_zCEClbk6gpXR-Pz83j2vnm8vj-p1-gULjeFd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CMsCCuAmnkVAXailxLmesEKhcVYcisVmxY6MOpIiUof-e55xCwMAaX5Hf8_P3_C6AS-5yo1ioaCh5RAP7hs9l5lGJV0ccSSMTbaORn8bR6Dm4fwlf6qCwovF2b0ySpaRug91K-EJt-VWEOBGn8SqsIRjglpef2bCVv6hDVDZO5lPUv9w6VOb3Ob5fRz8w5g_7aHnt3G7BZo0XybAi8Das6HwH-pMq4fRyQKZd_FQxIH0y6VJRL3dBVHG4pn6YI3ND8NCSVyvgSJpnJOt8hmxjmpNZNcJGP5G30tNSk7q0BH6wdXMI4lxS6PdiVuzB9PZmej2idUkFqnzGFzTk1g7JPCM1N55UTCcmSE2Y6ZAzZSJXRUZmKk6050vteylDbZV7NusoAovE34dePs_1IRA35No3aaLCVAWaR6mOE4QvSaAU94NEOnDVbKx4rxJniDZFckkGgWQQJRlE7MBJs_eiPkSFsLKGoXzxuAMXbTOyv7VppLmef1Z9UOeLXc-Bg4pm7XKIRW0ZNRw9aIjYTf73vxz9r_s5rI-mT4_i8W78cAwbzDJX6e5yAr3Fx6c-RdCykGclj34BsJvhNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSIgLYqesRkK9UIvE2ZxjBVSsVQ9F4mbFjo04kFakHPh7xnGaggoHrvEWeezxs2feDMAZ97hRLFI0kjymoX3D5zL3qcSjI4mlkam2bOTHfnzzFN49R8_fWPyVt_vUJOk4DTZKUzG5GOfmoiG-VVCG2lSsCHdiTpNFWA4tGxhX9BPrNroY7xPO3skCincxr6bN_N7Hz6NpDm_O2UqrI6i3Dms1diRdJ-wNWNDFJrQHLvj0Z4cMZ1yqskPaZDALS_25BcJxck39SEdGhuAGJi9W2ZGsyEk-8x-yhVlBXl0Ly4Qib5XXpSZ1mgn8YHPoEMS8pNTj8rXchmHvenh5Q-v0ClQFjE9oxK1NkvlGam58qZhOTZiZKNcRZ8rEnoqNzFWSaj-QOvAzhhPMfRuBFEFGGuzAUjEq9B4QL-I6MFmqokyFmseZTlKEMmmoFA_CVLbgfDqxYuyCaIgmXHIlBoFiEJUYRNKCw-nci3pDlcLqHYa6xuctOG2KcStY-0ZW6NGHq4P3v8TzW7DrZNYMh7jUplTD1p2pEGed__0v-_-rfgIrg6ueeLjt3x_AKrNrq_J8OYSlyfuHPkL8MpHH1RL9ArXq5Wo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+key+genes+and+development+of+an+identifying+machine+learning+model+for+sepsis&rft.jtitle=Inflammation+research&rft.au=Li%2C+Zhonghao&rft.au=Chen%2C+Shengsong&rft.au=Gao%2C+Nan&rft.au=Chen%2C+Jie&rft.date=2025-12-01&rft.eissn=1420-908X&rft.volume=74&rft.issue=1&rft.spage=100&rft_id=info:doi/10.1007%2Fs00011-025-02068-7&rft_id=info%3Apmid%2F40583108&rft.externalDocID=40583108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-3830&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-3830&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-3830&client=summon