Rpv2 is part of a cluster of NLRs specific to Vitis rotundifolia and confers total resistance to grapevine downy mildew

Key message The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varie...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 138; no. 8; p. 177
Main Authors Marsan, Laurie, Prado, Emilce, Wiedemann-Merdinoglu, Sabine, Schmidlin, Laure, Blanc, Sophie, Delame, Marion, Schnee, Sylvain, Arti, Burak, Barnabé, Guillaume, Velt, Amandine, Dumas, Vincent, Merdinoglu, Didier, Rustenholz, Camille, Mestre, Pere
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 08.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0040-5752
1432-2242
1432-2242
DOI10.1007/s00122-025-04959-z

Cover

Loading…
Abstract Key message The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew . Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2 , a gene for total resistance to downy mildew derived from Vitis rotundifolia , and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2 . Comparative genomics inside the Vitaceae , involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2 -mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance
AbstractList The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew. Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2, a gene for total resistance to downy mildew derived from Vitis rotundifolia, and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2. Comparative genomics inside the Vitaceae, involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2-mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance.KEY MESSAGEThe Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew. Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2, a gene for total resistance to downy mildew derived from Vitis rotundifolia, and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2. Comparative genomics inside the Vitaceae, involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2-mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance.
Key messageThe Rpv2locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia.Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew. Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2, a gene for total resistance to downy mildew derived from Vitis rotundifolia, and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2. Comparative genomics inside the Vitaceae, involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2-mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance
The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew. Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2, a gene for total resistance to downy mildew derived from Vitis rotundifolia, and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2. Comparative genomics inside the Vitaceae, involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2-mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance.
Key message The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew . Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2 , a gene for total resistance to downy mildew derived from Vitis rotundifolia , and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2 . Comparative genomics inside the Vitaceae , involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2 -mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance
ArticleNumber 177
Author Marsan, Laurie
Blanc, Sophie
Arti, Burak
Merdinoglu, Didier
Delame, Marion
Velt, Amandine
Mestre, Pere
Schmidlin, Laure
Schnee, Sylvain
Wiedemann-Merdinoglu, Sabine
Prado, Emilce
Barnabé, Guillaume
Rustenholz, Camille
Dumas, Vincent
Author_xml – sequence: 1
  givenname: Laurie
  surname: Marsan
  fullname: Marsan, Laurie
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 2
  givenname: Emilce
  orcidid: 0000-0002-7598-9322
  surname: Prado
  fullname: Prado, Emilce
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 3
  givenname: Sabine
  surname: Wiedemann-Merdinoglu
  fullname: Wiedemann-Merdinoglu, Sabine
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 4
  givenname: Laure
  surname: Schmidlin
  fullname: Schmidlin, Laure
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 5
  givenname: Sophie
  orcidid: 0000-0003-2501-548X
  surname: Blanc
  fullname: Blanc, Sophie
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 6
  givenname: Marion
  surname: Delame
  fullname: Delame, Marion
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 7
  givenname: Sylvain
  surname: Schnee
  fullname: Schnee, Sylvain
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 8
  givenname: Burak
  surname: Arti
  fullname: Arti, Burak
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 9
  givenname: Guillaume
  surname: Barnabé
  fullname: Barnabé, Guillaume
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 10
  givenname: Amandine
  orcidid: 0000-0003-2368-839X
  surname: Velt
  fullname: Velt, Amandine
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 11
  givenname: Vincent
  orcidid: 0000-0001-6089-3048
  surname: Dumas
  fullname: Dumas, Vincent
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 12
  givenname: Didier
  orcidid: 0000-0001-8568-0495
  surname: Merdinoglu
  fullname: Merdinoglu, Didier
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 13
  givenname: Camille
  surname: Rustenholz
  fullname: Rustenholz, Camille
  email: camille.rustenholz@inrae.fr
  organization: INRAE, Université de Strasbourg, SVQV
– sequence: 14
  givenname: Pere
  orcidid: 0000-0003-4488-6563
  surname: Mestre
  fullname: Mestre, Pere
  email: pere.mestre@inrae.fr
  organization: INRAE, Université de Strasbourg, SVQV
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40627157$$D View this record in MEDLINE/PubMed
BookMark eNp90U1rFTEUBuAgFXtb_QMuJODGzejJSTIfSyn1Ay4KRd2GTCYpKXOTMcn00v56c3urggtX4cDz5oS8Z-QkxGAJecngLQPo3mUAhtgAygbEIIfm_gnZMMGxQRR4QjYAAhrZSTwlZznfAFQK_Bk5FdBix2S3Ifur5Rapz3TRqdDoqKZmXnOx6TB82V5lmhdrvPOGlkh_-FJtimUNk3dx9prqMFETg7MpV1H0TJPNPhcdjD1ErpNe7K0Plk5xH-7ozs-T3T8nT52es33xeJ6T7x8uv118arZfP36-eL9tDMe-NJJpJ2EAZwYzOdf2TgAfh6FHEONkwDgxdsbgZDUwySfd49hJJrFtQdu25efkzfHeJcWfq81F7Xw2dp51sHHNiiP2gHyAvtLX_9CbuKZQX_egmGyhF1W9elTruLOTWpLf6XSnfn9pBXgEJsWck3V_CAN16E0de1O1DPXQm7qvIX4M5YrDtU1_d_8n9Quijprt
Cites_doi 10.1007/0-306-47914-1_14
10.1109/IPDPS.2019.00041
10.1093/gigascience/giab008
10.1007/BF00211051
10.1111/tpj.14551
10.1007/s00122-010-1511-6
10.17660/ActaHortic.2003.603.95
10.1111/j.1365-3059.2006.01512.x
10.1186/s12864-023-09514-y
10.1186/s12870-021-03266-1
10.1186/1471-2229-10-147
10.1007/s00122-007-0516-2
10.1016/j.mimet.2010.12.009
10.20870/oeno-one.2018.52.3.2116
10.1007/s11032-004-1362-4
10.1093/g3journal/jkac148
10.17660/ActaHortic.2003.603.57
10.1007/s00122-006-0295-1
10.1016/j.micron.2006.09.009
10.1093/g3journal/jkab033
10.1006/pmpp.1995.1014
10.1146/annurev.py.22.090184.001521
10.1186/1471-2105-6-31
10.7717/peerj.2988
10.1186/s13059-023-03133-2
10.1038/s41588-025-02111-7
10.1111/j.1469-1809.1943.tb02321.x
10.1094/PDIS-92-11-1577
10.1094/PHYTO-11-21-0458-R
10.1139/g96-080
10.1111/tpj.12327
10.1007/s00122-011-1703-8
10.1385/1-59259-192-2:365
10.1093/bioinformatics/btt656
10.1007/s00122-009-1167-2
10.1111/nph.19861
10.1038/nbt.1754
10.5344/ajev.1999.50.3.243
10.3390/microorganisms9010119
10.1016/j.cub.2021.03.009
10.1094/PHYTO-95-1445
10.1007/s00122-011-1695-4
10.1093/hr/uhad061
10.1139/g98-168
10.1007/s11032-004-7651-0
10.1007/s00122-018-3260-x
10.1094/PHYTO-98-7-0776
10.5344/ajev.1971.22.2.87
10.1093/hr/uhae080
10.1093/g3journal/jkac143
10.1078/0176-1617-01021
10.1371/journal.pcbi.1005944
10.6026/97320630003282
10.1093/bioinformatics/bts635
10.1186/s13059-020-02131-y
10.1371/journal.pone.0061228
10.1007/s00122-012-1942-3
10.1038/s41467-020-16700-z
10.1371/journal.pcbi.1006790
10.1186/s12864-022-08389-9
10.1186/s12870-021-03228-7
10.1016/j.meegid.2013.10.017
10.1111/j.1439-0434.2005.00984.x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1007/s00122-025-04959-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Entomology Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1432-2242
ExternalDocumentID 40627157
10_1007_s00122_025_04959_z
Genre Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GrantInformation_xml – fundername: Fondation Jean Poupelain
  grantid: HealthGrape2
– fundername: INRAE BAP Division
  grantid: IB2023_R2D2; PhD Award
– fundername: Conseil régional du Grand Est
  grantid: PhD Award
  funderid: http://dx.doi.org/10.13039/501100014674
– fundername: INRAE BAP Division
  grantid: IB2023_R2D2
– fundername: INRAE BAP Division
  grantid: PhD Award
– fundername: Conseil régional du Grand Est
  grantid: PhD Award
GroupedDBID ---
-DZ
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BENPR
BGNMA
BHPHI
BSONS
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IJ-
IKXTQ
INH
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LLZTM
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
ROL
RPX
RRX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WJK
WK8
Y6R
YLTOR
Z45
Z8Z
ZMTXR
ZOVNA
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
53G
5QI
7X7
88E
8AO
8FE
8FH
8FI
8FJ
A8Z
AANXM
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
ADYPR
AEBTG
AEFIE
AEKMD
AEXYK
AFEXP
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
BBWZM
BDATZ
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
EBD
EJD
EMB
EMOBN
EN4
FINBP
FSGXE
FYUFA
H13
HMCUK
I-F
INR
ITC
KOW
LK8
M1P
N2Q
NDZJH
O9-
P0-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
R4E
RNI
RZK
S26
S28
SBY
SCLPG
SV3
T16
UKHRP
UZXMN
VFIZW
WK6
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
8FD
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c328t-51af5090fc9cdff68f403b998204bdc0cf4b7cc2dea0153da82b75152660ae663
IEDL.DBID U2A
ISSN 0040-5752
1432-2242
IngestDate Fri Jul 11 17:03:49 EDT 2025
Sat Aug 16 22:23:20 EDT 2025
Sat Aug 16 01:30:53 EDT 2025
Thu Aug 21 00:39:13 EDT 2025
Fri Aug 15 01:10:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-51af5090fc9cdff68f403b998204bdc0cf4b7cc2dea0153da82b75152660ae663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6089-3048
0000-0001-8568-0495
0000-0003-2368-839X
0000-0002-7598-9322
0000-0003-4488-6563
0000-0003-2501-548X
PMID 40627157
PQID 3228156084
PQPubID 54040
ParticipantIDs proquest_miscellaneous_3228023908
proquest_journals_3228156084
pubmed_primary_40627157
crossref_primary_10_1007_s00122_025_04959_z
springer_journals_10_1007_s00122_025_04959_z
PublicationCentury 2000
PublicationDate 2025-07-08
PublicationDateYYYYMMDD 2025-07-08
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-08
  day: 08
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle International Journal of Plant Breeding Research
PublicationTitle Theoretical and applied genetics
PublicationTitleAbbrev Theor Appl Genet
PublicationTitleAlternate Theor Appl Genet
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References S Maestri (4959_CR42) 2022; 23
X Shi (4959_CR65) 2023
E Peressotti (4959_CR58) 2010; 10
MR Thomas (4959_CR68) 1993; 86
A Kortekamp (4959_CR38) 2003; 160
4959_CR1
S Blanc (4959_CR4) 2012; 125
WS Martins (4959_CR45) 2009; 3
Md Vasimuddin (4959_CR70) 2019; 2019
G Di Gaspero (4959_CR20) 2007; 114
S Foria (4959_CR30) 2020; 101
4959_CR40
L Guo (4959_CR33) 2025; 57
G Di Gaspero (4959_CR19) 2005; 15
P Maillot (4959_CR43) 2021; 21
M Massonnet (4959_CR47) 2020
M Moriondo (4959_CR53) 2005; 153
D Merdinoglu (4959_CR50) 2005; 15
L Cadle-Davidson (4959_CR10) 2008; 92
A Minio (4959_CR52) 2022
JE Bowers (4959_CR7) 1999; 50
MV Brown (4959_CR8) 1999; 53
C Cabau (4959_CR9) 2017; 5
S Rozen (4959_CR62) 2000; 132
GSC Slater (4959_CR66) 2005; 6
R Eibach (4959_CR27) 2003; 603
KM Sefc (4959_CR64) 1999; 42
NA Dunn (4959_CR26) 2019; 15
D Merdinoglu (4959_CR51) 2018; 52
M Paineau (4959_CR56) 2022; 112
S Riaz (4959_CR60) 2011; 122
H Badouin (4959_CR2) 2020; 21
F Massi (4959_CR46) 2021; 9
4959_CR55
HP Olmo (4959_CR54) 1971; 22
4959_CR14
E Peressotti (4959_CR59) 2011; 84
D Merdinoglu (4959_CR49) 2003; 603
D Bellin (4959_CR3) 2009; 120
D Boubals (4959_CR5) 1959; 6
A Dobin (4959_CR24) 2013; 29
A Diez-Navajas (4959_CR23) 2008; 98
N Cochetel (4959_CR13) 2023; 24
C Gessler (4959_CR31) 2011; 50
F Schwander (4959_CR63) 2012; 124
C Wingerter (4959_CR73) 2021; 21
M Paineau (4959_CR57) 2024; 243
P Danecek (4959_CR16) 2021
M Delame (4959_CR17) 2019; 132
JE Bowers (4959_CR6) 1996; 39
N Cochetel (4959_CR12) 2021
AM Diez-Navajas (4959_CR22) 2007; 38
U Gisi (4959_CR32) 2007; 56
MC Fontaine (4959_CR29) 2021
M Huff (4959_CR34) 2023; 24
G Marçais (4959_CR44) 2018; 14
MM Kennelly (4959_CR37) 2005; 95
F Delmotte (4959_CR18) 2014; 27
JT Robinson (4959_CR61) 2011; 29
GH Dai (4959_CR15) 1995; 46
G Staudt (4959_CR67) 1995; 34
4959_CR74
M Massonnet (4959_CR48) 2022
4959_CR72
D Kosambi (4959_CR39) 1944; 12
4959_CR35
Y Liao (4959_CR41) 2014; 30
A Feechan (4959_CR28) 2013; 76
A Doligez (4959_CR25) 2006; 113
R Johnson (4959_CR36) 1984; 22
JW Van Ooijen (4959_CR69) 2004
L Calderón (4959_CR11) 2024
S Venuti (4959_CR71) 2013
G Di Gaspero (4959_CR21) 2012; 124
References_xml – ident: 4959_CR74
  doi: 10.1007/0-306-47914-1_14
– volume: 2019
  start-page: 314
  year: 2019
  ident: 4959_CR70
  publication-title: IEEE Int Parall Distrib Process Symp (IPDPS)
  doi: 10.1109/IPDPS.2019.00041
– ident: 4959_CR72
– year: 2021
  ident: 4959_CR16
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab008
– volume: 86
  start-page: 985
  year: 1993
  ident: 4959_CR68
  publication-title: Theor Appl Genet
  doi: 10.1007/BF00211051
– volume: 101
  start-page: 529
  year: 2020
  ident: 4959_CR30
  publication-title: Plant J
  doi: 10.1111/tpj.14551
– volume: 122
  start-page: 1059
  year: 2011
  ident: 4959_CR60
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-010-1511-6
– volume: 603
  start-page: 687
  year: 2003
  ident: 4959_CR27
  publication-title: Acta Hort
  doi: 10.17660/ActaHortic.2003.603.95
– ident: 4959_CR14
– volume: 56
  start-page: 199
  year: 2007
  ident: 4959_CR32
  publication-title: Plant Pathol
  doi: 10.1111/j.1365-3059.2006.01512.x
– volume: 24
  start-page: 409
  year: 2023
  ident: 4959_CR34
  publication-title: BMC Genomics
  doi: 10.1186/s12864-023-09514-y
– volume: 21
  start-page: 487
  year: 2021
  ident: 4959_CR43
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-021-03266-1
– volume: 10
  start-page: 147
  year: 2010
  ident: 4959_CR58
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-147
– volume: 114
  start-page: 1249
  year: 2007
  ident: 4959_CR20
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-007-0516-2
– volume: 84
  start-page: 265
  year: 2011
  ident: 4959_CR59
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2010.12.009
– volume: 52
  start-page: 203
  year: 2018
  ident: 4959_CR51
  publication-title: OENO One
  doi: 10.20870/oeno-one.2018.52.3.2116
– volume: 15
  start-page: 11
  year: 2005
  ident: 4959_CR19
  publication-title: Mol Breeding
  doi: 10.1007/s11032-004-1362-4
– year: 2022
  ident: 4959_CR48
  publication-title: G3 (Bethesda)
  doi: 10.1093/g3journal/jkac148
– volume: 603
  start-page: 451
  year: 2003
  ident: 4959_CR49
  publication-title: Acta Hortic
  doi: 10.17660/ActaHortic.2003.603.57
– volume: 113
  start-page: 369
  year: 2006
  ident: 4959_CR25
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0295-1
– volume: 38
  start-page: 680
  year: 2007
  ident: 4959_CR22
  publication-title: Micron
  doi: 10.1016/j.micron.2006.09.009
– year: 2021
  ident: 4959_CR12
  publication-title: G3-Genes Genomes Genet
  doi: 10.1093/g3journal/jkab033
– volume: 46
  start-page: 177
  year: 1995
  ident: 4959_CR15
  publication-title: Plasmopara Viticola Physiol Mol Plant Pathol
  doi: 10.1006/pmpp.1995.1014
– volume: 34
  start-page: 225
  year: 1995
  ident: 4959_CR67
  publication-title: Vitis
– ident: 4959_CR1
– volume: 22
  start-page: 309
  year: 1984
  ident: 4959_CR36
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.py.22.090184.001521
– volume: 6
  start-page: 31
  year: 2005
  ident: 4959_CR66
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-31
– volume: 5
  year: 2017
  ident: 4959_CR9
  publication-title: PeerJ
  doi: 10.7717/peerj.2988
– volume: 24
  start-page: 290
  year: 2023
  ident: 4959_CR13
  publication-title: Genome Biol
  doi: 10.1186/s13059-023-03133-2
– volume: 57
  start-page: 741
  year: 2025
  ident: 4959_CR33
  publication-title: Nat Genet
  doi: 10.1038/s41588-025-02111-7
– volume: 12
  start-page: 172
  year: 1944
  ident: 4959_CR39
  publication-title: Ann Eugen
  doi: 10.1111/j.1469-1809.1943.tb02321.x
– volume: 92
  start-page: 1577
  year: 2008
  ident: 4959_CR10
  publication-title: Plant Dis
  doi: 10.1094/PDIS-92-11-1577
– volume: 112
  start-page: 2329
  year: 2022
  ident: 4959_CR56
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-11-21-0458-R
– volume: 53
  start-page: 22
  year: 1999
  ident: 4959_CR8
  publication-title: Fruit var J
– volume: 39
  start-page: 628
  year: 1996
  ident: 4959_CR6
  publication-title: Genome
  doi: 10.1139/g96-080
– volume: 76
  start-page: 661
  year: 2013
  ident: 4959_CR28
  publication-title: Plant J
  doi: 10.1111/tpj.12327
– volume: 124
  start-page: 277
  year: 2012
  ident: 4959_CR21
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-011-1703-8
– volume: 132
  start-page: 365
  year: 2000
  ident: 4959_CR62
  publication-title: Methods Mol Biol
  doi: 10.1385/1-59259-192-2:365
– volume: 30
  start-page: 923
  year: 2014
  ident: 4959_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 120
  start-page: 163
  year: 2009
  ident: 4959_CR3
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-009-1167-2
– volume: 243
  start-page: 1490
  year: 2024
  ident: 4959_CR57
  publication-title: New Phytol
  doi: 10.1111/nph.19861
– volume: 29
  start-page: 24
  year: 2011
  ident: 4959_CR61
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1754
– volume: 50
  start-page: 243
  year: 1999
  ident: 4959_CR7
  publication-title: Am J Enol Vitic
  doi: 10.5344/ajev.1999.50.3.243
– ident: 4959_CR40
– volume: 50
  start-page: 3
  year: 2011
  ident: 4959_CR31
  publication-title: Phytopathol Mediterr
– volume: 9
  start-page: 119
  year: 2021
  ident: 4959_CR46
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9010119
– year: 2021
  ident: 4959_CR29
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2021.03.009
– volume: 95
  start-page: 1445
  year: 2005
  ident: 4959_CR37
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-95-1445
– volume: 124
  start-page: 163
  year: 2012
  ident: 4959_CR63
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-011-1695-4
– year: 2023
  ident: 4959_CR65
  publication-title: Hortic Res
  doi: 10.1093/hr/uhad061
– volume: 42
  start-page: 367
  year: 1999
  ident: 4959_CR64
  publication-title: Genome
  doi: 10.1139/g98-168
– volume: 15
  start-page: 349
  year: 2005
  ident: 4959_CR50
  publication-title: Mol Breeding
  doi: 10.1007/s11032-004-7651-0
– volume-title: MapQTL 5, software for the mapping of quantitative trait mloci in experimental populations
  year: 2004
  ident: 4959_CR69
– volume: 132
  start-page: 1073
  year: 2019
  ident: 4959_CR17
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-018-3260-x
– ident: 4959_CR55
– volume: 98
  start-page: 776
  year: 2008
  ident: 4959_CR23
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-98-7-0776
– volume: 22
  start-page: 87
  year: 1971
  ident: 4959_CR54
  publication-title: Am J Enol Vitic
  doi: 10.5344/ajev.1971.22.2.87
– volume: 6
  start-page: 481
  year: 1959
  ident: 4959_CR5
  publication-title: Annales De L’amélioration des Plantes
– year: 2024
  ident: 4959_CR11
  publication-title: Hortic Res
  doi: 10.1093/hr/uhae080
– year: 2022
  ident: 4959_CR52
  publication-title: G3-Genes Genomes Genet
  doi: 10.1093/g3journal/jkac143
– volume: 160
  start-page: 1393
  year: 2003
  ident: 4959_CR38
  publication-title: J Plant Physiol
  doi: 10.1078/0176-1617-01021
– volume: 14
  year: 2018
  ident: 4959_CR44
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005944
– volume: 3
  start-page: 282
  year: 2009
  ident: 4959_CR45
  publication-title: Bioinformation
  doi: 10.6026/97320630003282
– volume: 29
  start-page: 15
  year: 2013
  ident: 4959_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 21
  start-page: 223
  year: 2020
  ident: 4959_CR2
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02131-y
– year: 2013
  ident: 4959_CR71
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0061228
– volume: 125
  start-page: 1663
  year: 2012
  ident: 4959_CR4
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-012-1942-3
– year: 2020
  ident: 4959_CR47
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16700-z
– volume: 15
  year: 2019
  ident: 4959_CR26
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1006790
– ident: 4959_CR35
– volume: 23
  start-page: 159
  year: 2022
  ident: 4959_CR42
  publication-title: BMC Genomics
  doi: 10.1186/s12864-022-08389-9
– volume: 21
  start-page: 470
  year: 2021
  ident: 4959_CR73
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-021-03228-7
– volume: 27
  start-page: 500
  year: 2014
  ident: 4959_CR18
  publication-title: Infect Genet Evol
  doi: 10.1016/j.meegid.2013.10.017
– volume: 153
  start-page: 350
  year: 2005
  ident: 4959_CR53
  publication-title: J Phytopathol
  doi: 10.1111/j.1439-0434.2005.00984.x
SSID ssj0002503
Score 2.4714525
Snippet Key message The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V....
The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia....
Key messageThe Rpv2locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V....
The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 177
SubjectTerms Agriculture
Biochemistry
Biomedical and Life Sciences
Biotechnology
Breeding
Chromosome Mapping
Chromosomes
Disease Resistance - genetics
Downy mildew
Environmental impact
Females
Gene mapping
Genes
Genes, Plant
Genetic Markers
Genomics
Genotype
Genotype & phenotype
Leaves
Life Sciences
Multigene Family
NLR Proteins - genetics
Oomycetes
Original Article
Pathogens
Peronospora
Phenotype
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Diseases - genetics
Plant Diseases - microbiology
Plant Genetics and Genomics
Plant Proteins - genetics
Proteins
Recombinants
Vitis - genetics
Vitis - microbiology
Vitis rotundifolia
Wines
Title Rpv2 is part of a cluster of NLRs specific to Vitis rotundifolia and confers total resistance to grapevine downy mildew
URI https://link.springer.com/article/10.1007/s00122-025-04959-z
https://www.ncbi.nlm.nih.gov/pubmed/40627157
https://www.proquest.com/docview/3228156084
https://www.proquest.com/docview/3228023908
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BKyR6QFBegVIZiRtY8jrOJjluUZeKxx4qFpVT5CdaaUlWm2yr9tczkxdChQOnKIqdRPnGnm8yns8Ab9ApJU7alKcBR5MSxvBcTQLPtRXYI_cq0H_IL4vp2VJ9vEgu-qKweljtPqQk25l6LHZrs0Cctl9FVpvk_OYu7CcYu5NdL-VsnH_RqY9r5ZCMyL5U5u_3-NMd3eKYt_KjrduZP4QHPV9ksw7gR3DHl4dwMPux7TUz_CHc6_aTvH4MV-ebS8lWNdugQbAqMM3sekdSCHSy-HxeM6qspNVBrKnYN9IzYtuq2ZVuFar1SjNdOmbbIsAaWyAxZxiOE8VE26AupG-NrrT0zGH4fs1-rtbOXz2B5fz06_sz3u-swG0ss4YnEx2QKYhgc-tCmGZBidhg5CWFMs4KG5RJrZXOa6QLsdOZNCkyH_TmQnskKU9hr6xK_xwYBrk6y6gcNvHKCpKzFyYNk6lPTOzzOIK3wwcuNp2ARjFKJbdwFAhH0cJR3ERwNGBQ9IOpLnDOIU0bkakIXo-XcRhQbkOXvtp1bahOV2QRPOuwGx-nSIp5kqQRvBvA_H3zf7_Li_9r_hLuy9awUi6yI9hrtjv_CglLY45hfzY_OVnQ8cP3T6fHrb3-ApvZ5Nw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKgQ9FCgvQ4FF4gZbbex1bB-jqiXQNIeqQeVk7RNFBDuK7UbNr2fWLwSFQ4-Wd9f27szON56ZbwHeo1EKta8iGlnUJs6kpAkfWpoIxbBHYrh1_yHPZqPJnH-5DC_borCiy3bvQpL1Tt0Xu9VRIOqOX0VUGyZ0exd2OPrg4QB2xp--nR73OzCa9T5bDuGI3xbL_HuUPw3SDZR5I0JaG56ThzDvXrnJN_lxWJXyUG3_YnO87Tc9gr0WiZJxIzqP4Y7J9mF3_H3dsnGYfbjXnFR5_QQ256srnywKskJRI7klgqhl5UgW3MVsel4QV7Pp8o5ImZOvjimJrPOyyvTC5suFICLTRNXlhQW2QMhP0NF34BWlznVxzNlopDNDdL7JrsnPxVKbzVOYnxxfHE1oe2YDVYEflzQcCosYhFmVKG3tKLacBRJ9Op9xqRVTlstIKV8bgUAk0CL2ZYSYCnECEwbhzzMYZHlmXgBB91nEsSu0DQ1XzBHlMxnZ4ciEMjBJ4MGHbuHSVUPNkfYkzPXEpjixaT2x6daDg25t01ZNixR3M8eWw2Luwbv-NiqYi5qIzORV08ZVALPYg-eNTPSP447keRhGHnzs1vf34P9_l5e3a_4W7k8uzqbp9PPs9BU88GtxiSiLD2BQrivzGmFRKd-0WvALFK0CBw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BEQgOFZSv0AJG4gZWHcfZJMdVYVWgrFDFot4if6KVlmS1m6Vqfz0zSTYFFQ4co9hOlBl7njPzngFeY1BKnbQZzwLOJiWM4YWKAy-0Fdij8CrQf8jP09HxTH08S89-Y_G31e7blGTHaSCVpqo5XLpwOBDf2owQp6NYEeGmBb-8CbdwOY6pqGsmx8NajAF-qJtDYCJ72szfx_gzNF3Dm9dypW0ImtyH3R47snFn7Adww1d7cG_8fdXrZ_g9uN2dLXnxEM5Plz8lm6_ZEp2D1YFpZhcbkkWgi-nJ6ZoRy5IqhVhTs2-kbcRWdbOp3DzUi7lmunLMtoTANbZAkM5wa05wE_2EupDWNYbVyjOHW_kL9mO-cP78Ecwm778eHfP-lAVuE5k3PI11QNQggi2sC2GUByUSg7swKZRxVtigTGatdF4jdEiczqXJEAVhZBfaI2B5DDtVXfmnwHDDq_OcqLGpV1aQtL0wWYhHPjWJL5II3mw_cLnsxDTKQTa5NUeJ5ihbc5SXERxsbVD2E2td4vpD-jYiVxG8Gm7jlKA8h658venaEGdX5BE86Ww3PE6RLHOcZhG83RrzavB_v8uz_2v-Eu58eTcpTz5MP-3DXdn6WMZFfgA7zWrjnyOOacyL1lV_AXUA6Ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rpv2+is+part+of+a+cluster+of+NLRs+specific+to+Vitis+rotundifolia+and+confers+total+resistance+to+grapevine+downy+mildew&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Marsan%2C+Laurie&rft.au=Prado%2C+Emilce&rft.au=Wiedemann-Merdinoglu%2C+Sabine&rft.au=Schmidlin%2C+Laure&rft.date=2025-07-08&rft.issn=1432-2242&rft.eissn=1432-2242&rft.volume=138&rft.issue=8&rft.spage=177&rft_id=info:doi/10.1007%2Fs00122-025-04959-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon