Rpv2 is part of a cluster of NLRs specific to Vitis rotundifolia and confers total resistance to grapevine downy mildew
Key message The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varie...
Saved in:
Published in | Theoretical and applied genetics Vol. 138; no. 8; p. 177 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
08.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0040-5752 1432-2242 1432-2242 |
DOI | 10.1007/s00122-025-04959-z |
Cover
Loading…
Abstract | Key message
The
Rpv2
locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to
V. rotundifolia.
Downy mildew caused by the oomycete
Plasmopara viticola
is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew
.
Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of
Rpv2
, a gene for total resistance to downy mildew derived from
Vitis rotundifolia
, and at characterizing its effect on pathogen development. Individuals from two populations segregating for
Rpv2
were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking
Rpv2
were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing
Rpv2
. Comparative genomics inside the
Vitaceae
, involving de novo assembly of the
V. rotundifolia
Regale genome, allowed narrowing down the list of candidate genes. We restrict
Rpv2
to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other
Vitis
species studied. We also show that
Rpv2
-mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that
Rpv2
belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance |
---|---|
AbstractList | The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew. Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2, a gene for total resistance to downy mildew derived from Vitis rotundifolia, and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2. Comparative genomics inside the Vitaceae, involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2-mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance.KEY MESSAGEThe Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew. Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2, a gene for total resistance to downy mildew derived from Vitis rotundifolia, and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2. Comparative genomics inside the Vitaceae, involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2-mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance. Key messageThe Rpv2locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia.Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew. Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2, a gene for total resistance to downy mildew derived from Vitis rotundifolia, and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2. Comparative genomics inside the Vitaceae, involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2-mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew. Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2, a gene for total resistance to downy mildew derived from Vitis rotundifolia, and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2. Comparative genomics inside the Vitaceae, involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2-mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance. Key message The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia. Downy mildew caused by the oomycete Plasmopara viticola is one of the most important diseases affecting grapevine. Resistant varieties are an environmentally friendly tool to control grapevine downy mildew . Efficient breeding for durable resistance requires knowledge of the underlying mechanisms. Here we aimed at identifying the molecular basis of Rpv2 , a gene for total resistance to downy mildew derived from Vitis rotundifolia , and at characterizing its effect on pathogen development. Individuals from two populations segregating for Rpv2 were evaluated for resistance to downy mildew and genotyped. Following genetic mapping, markers flanking Rpv2 were used to screen new populations and identify recombinant individuals. Sequencing of recombinants and in silico chromosome painting was used to reduce the interval containing Rpv2 . Comparative genomics inside the Vitaceae , involving de novo assembly of the V. rotundifolia Regale genome, allowed narrowing down the list of candidate genes. We restrict Rpv2 to a 250 kb genomic region that contains two resistance genes of the NLR type. Comparative genomics analyses could not find orthologs of both NLRs in the other Vitis species studied. We also show that Rpv2 -mediated resistance leads to pathogen arrest early in the infection cycle. Our results show that Rpv2 belongs to the NLR family of resistance genes, contributing thus to understand the potential and risks of its use in breeding programmes and suggesting that combining NLR-type genes may lead to durable resistance |
ArticleNumber | 177 |
Author | Marsan, Laurie Blanc, Sophie Arti, Burak Merdinoglu, Didier Delame, Marion Velt, Amandine Mestre, Pere Schmidlin, Laure Schnee, Sylvain Wiedemann-Merdinoglu, Sabine Prado, Emilce Barnabé, Guillaume Rustenholz, Camille Dumas, Vincent |
Author_xml | – sequence: 1 givenname: Laurie surname: Marsan fullname: Marsan, Laurie organization: INRAE, Université de Strasbourg, SVQV – sequence: 2 givenname: Emilce orcidid: 0000-0002-7598-9322 surname: Prado fullname: Prado, Emilce organization: INRAE, Université de Strasbourg, SVQV – sequence: 3 givenname: Sabine surname: Wiedemann-Merdinoglu fullname: Wiedemann-Merdinoglu, Sabine organization: INRAE, Université de Strasbourg, SVQV – sequence: 4 givenname: Laure surname: Schmidlin fullname: Schmidlin, Laure organization: INRAE, Université de Strasbourg, SVQV – sequence: 5 givenname: Sophie orcidid: 0000-0003-2501-548X surname: Blanc fullname: Blanc, Sophie organization: INRAE, Université de Strasbourg, SVQV – sequence: 6 givenname: Marion surname: Delame fullname: Delame, Marion organization: INRAE, Université de Strasbourg, SVQV – sequence: 7 givenname: Sylvain surname: Schnee fullname: Schnee, Sylvain organization: INRAE, Université de Strasbourg, SVQV – sequence: 8 givenname: Burak surname: Arti fullname: Arti, Burak organization: INRAE, Université de Strasbourg, SVQV – sequence: 9 givenname: Guillaume surname: Barnabé fullname: Barnabé, Guillaume organization: INRAE, Université de Strasbourg, SVQV – sequence: 10 givenname: Amandine orcidid: 0000-0003-2368-839X surname: Velt fullname: Velt, Amandine organization: INRAE, Université de Strasbourg, SVQV – sequence: 11 givenname: Vincent orcidid: 0000-0001-6089-3048 surname: Dumas fullname: Dumas, Vincent organization: INRAE, Université de Strasbourg, SVQV – sequence: 12 givenname: Didier orcidid: 0000-0001-8568-0495 surname: Merdinoglu fullname: Merdinoglu, Didier organization: INRAE, Université de Strasbourg, SVQV – sequence: 13 givenname: Camille surname: Rustenholz fullname: Rustenholz, Camille email: camille.rustenholz@inrae.fr organization: INRAE, Université de Strasbourg, SVQV – sequence: 14 givenname: Pere orcidid: 0000-0003-4488-6563 surname: Mestre fullname: Mestre, Pere email: pere.mestre@inrae.fr organization: INRAE, Université de Strasbourg, SVQV |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40627157$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1rFTEUBuAgFXtb_QMuJODGzejJSTIfSyn1Ay4KRd2GTCYpKXOTMcn00v56c3urggtX4cDz5oS8Z-QkxGAJecngLQPo3mUAhtgAygbEIIfm_gnZMMGxQRR4QjYAAhrZSTwlZznfAFQK_Bk5FdBix2S3Ifur5Rapz3TRqdDoqKZmXnOx6TB82V5lmhdrvPOGlkh_-FJtimUNk3dx9prqMFETg7MpV1H0TJPNPhcdjD1ErpNe7K0Plk5xH-7ozs-T3T8nT52es33xeJ6T7x8uv118arZfP36-eL9tDMe-NJJpJ2EAZwYzOdf2TgAfh6FHEONkwDgxdsbgZDUwySfd49hJJrFtQdu25efkzfHeJcWfq81F7Xw2dp51sHHNiiP2gHyAvtLX_9CbuKZQX_egmGyhF1W9elTruLOTWpLf6XSnfn9pBXgEJsWck3V_CAN16E0de1O1DPXQm7qvIX4M5YrDtU1_d_8n9Quijprt |
Cites_doi | 10.1007/0-306-47914-1_14 10.1109/IPDPS.2019.00041 10.1093/gigascience/giab008 10.1007/BF00211051 10.1111/tpj.14551 10.1007/s00122-010-1511-6 10.17660/ActaHortic.2003.603.95 10.1111/j.1365-3059.2006.01512.x 10.1186/s12864-023-09514-y 10.1186/s12870-021-03266-1 10.1186/1471-2229-10-147 10.1007/s00122-007-0516-2 10.1016/j.mimet.2010.12.009 10.20870/oeno-one.2018.52.3.2116 10.1007/s11032-004-1362-4 10.1093/g3journal/jkac148 10.17660/ActaHortic.2003.603.57 10.1007/s00122-006-0295-1 10.1016/j.micron.2006.09.009 10.1093/g3journal/jkab033 10.1006/pmpp.1995.1014 10.1146/annurev.py.22.090184.001521 10.1186/1471-2105-6-31 10.7717/peerj.2988 10.1186/s13059-023-03133-2 10.1038/s41588-025-02111-7 10.1111/j.1469-1809.1943.tb02321.x 10.1094/PDIS-92-11-1577 10.1094/PHYTO-11-21-0458-R 10.1139/g96-080 10.1111/tpj.12327 10.1007/s00122-011-1703-8 10.1385/1-59259-192-2:365 10.1093/bioinformatics/btt656 10.1007/s00122-009-1167-2 10.1111/nph.19861 10.1038/nbt.1754 10.5344/ajev.1999.50.3.243 10.3390/microorganisms9010119 10.1016/j.cub.2021.03.009 10.1094/PHYTO-95-1445 10.1007/s00122-011-1695-4 10.1093/hr/uhad061 10.1139/g98-168 10.1007/s11032-004-7651-0 10.1007/s00122-018-3260-x 10.1094/PHYTO-98-7-0776 10.5344/ajev.1971.22.2.87 10.1093/hr/uhae080 10.1093/g3journal/jkac143 10.1078/0176-1617-01021 10.1371/journal.pcbi.1005944 10.6026/97320630003282 10.1093/bioinformatics/bts635 10.1186/s13059-020-02131-y 10.1371/journal.pone.0061228 10.1007/s00122-012-1942-3 10.1038/s41467-020-16700-z 10.1371/journal.pcbi.1006790 10.1186/s12864-022-08389-9 10.1186/s12870-021-03228-7 10.1016/j.meegid.2013.10.017 10.1111/j.1439-0434.2005.00984.x |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7TK 8FD FR3 K9. P64 RC3 7X8 |
DOI | 10.1007/s00122-025-04959-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Entomology Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1432-2242 |
ExternalDocumentID | 40627157 10_1007_s00122_025_04959_z |
Genre | Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GrantInformation_xml | – fundername: Fondation Jean Poupelain grantid: HealthGrape2 – fundername: INRAE BAP Division grantid: IB2023_R2D2; PhD Award – fundername: Conseil régional du Grand Est grantid: PhD Award funderid: http://dx.doi.org/10.13039/501100014674 – fundername: INRAE BAP Division grantid: IB2023_R2D2 – fundername: INRAE BAP Division grantid: PhD Award – fundername: Conseil régional du Grand Est grantid: PhD Award |
GroupedDBID | --- -DZ -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BBNVY BENPR BGNMA BHPHI BSONS CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ INH ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LLZTM M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV ROL RPX RRX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WJK WK8 Y6R YLTOR Z45 Z8Z ZMTXR ZOVNA ~EX -Y2 1SB 2.D 28- 2P1 2VQ 3SX 53G 5QI 7X7 88E 8AO 8FE 8FH 8FI 8FJ A8Z AANXM AARHV AAYTO AAYXX ABQSL ABULA ABUWG ACBXY ADHKG ADYPR AEBTG AEFIE AEKMD AEXYK AFEXP AFGCZ AFKRA AGGDS AGQPQ AJBLW BBWZM BDATZ BPHCQ BVXVI CAG CCPQU CITATION COF EBD EJD EMB EMOBN EN4 FINBP FSGXE FYUFA H13 HMCUK I-F INR ITC KOW LK8 M1P N2Q NDZJH O9- P0- PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X R4E RNI RZK S26 S28 SBY SCLPG SV3 T16 UKHRP UZXMN VFIZW WK6 CGR CUY CVF ECM EIF NPM 7SS 7TK 8FD FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c328t-51af5090fc9cdff68f403b998204bdc0cf4b7cc2dea0153da82b75152660ae663 |
IEDL.DBID | U2A |
ISSN | 0040-5752 1432-2242 |
IngestDate | Fri Jul 11 17:03:49 EDT 2025 Sat Aug 16 22:23:20 EDT 2025 Sat Aug 16 01:30:53 EDT 2025 Thu Aug 21 00:39:13 EDT 2025 Fri Aug 15 01:10:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-51af5090fc9cdff68f403b998204bdc0cf4b7cc2dea0153da82b75152660ae663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6089-3048 0000-0001-8568-0495 0000-0003-2368-839X 0000-0002-7598-9322 0000-0003-4488-6563 0000-0003-2501-548X |
PMID | 40627157 |
PQID | 3228156084 |
PQPubID | 54040 |
ParticipantIDs | proquest_miscellaneous_3228023908 proquest_journals_3228156084 pubmed_primary_40627157 crossref_primary_10_1007_s00122_025_04959_z springer_journals_10_1007_s00122_025_04959_z |
PublicationCentury | 2000 |
PublicationDate | 2025-07-08 |
PublicationDateYYYYMMDD | 2025-07-08 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | International Journal of Plant Breeding Research |
PublicationTitle | Theoretical and applied genetics |
PublicationTitleAbbrev | Theor Appl Genet |
PublicationTitleAlternate | Theor Appl Genet |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | S Maestri (4959_CR42) 2022; 23 X Shi (4959_CR65) 2023 E Peressotti (4959_CR58) 2010; 10 MR Thomas (4959_CR68) 1993; 86 A Kortekamp (4959_CR38) 2003; 160 4959_CR1 S Blanc (4959_CR4) 2012; 125 WS Martins (4959_CR45) 2009; 3 Md Vasimuddin (4959_CR70) 2019; 2019 G Di Gaspero (4959_CR20) 2007; 114 S Foria (4959_CR30) 2020; 101 4959_CR40 L Guo (4959_CR33) 2025; 57 G Di Gaspero (4959_CR19) 2005; 15 P Maillot (4959_CR43) 2021; 21 M Massonnet (4959_CR47) 2020 M Moriondo (4959_CR53) 2005; 153 D Merdinoglu (4959_CR50) 2005; 15 L Cadle-Davidson (4959_CR10) 2008; 92 A Minio (4959_CR52) 2022 JE Bowers (4959_CR7) 1999; 50 MV Brown (4959_CR8) 1999; 53 C Cabau (4959_CR9) 2017; 5 S Rozen (4959_CR62) 2000; 132 GSC Slater (4959_CR66) 2005; 6 R Eibach (4959_CR27) 2003; 603 KM Sefc (4959_CR64) 1999; 42 NA Dunn (4959_CR26) 2019; 15 D Merdinoglu (4959_CR51) 2018; 52 M Paineau (4959_CR56) 2022; 112 S Riaz (4959_CR60) 2011; 122 H Badouin (4959_CR2) 2020; 21 F Massi (4959_CR46) 2021; 9 4959_CR55 HP Olmo (4959_CR54) 1971; 22 4959_CR14 E Peressotti (4959_CR59) 2011; 84 D Merdinoglu (4959_CR49) 2003; 603 D Bellin (4959_CR3) 2009; 120 D Boubals (4959_CR5) 1959; 6 A Dobin (4959_CR24) 2013; 29 A Diez-Navajas (4959_CR23) 2008; 98 N Cochetel (4959_CR13) 2023; 24 C Gessler (4959_CR31) 2011; 50 F Schwander (4959_CR63) 2012; 124 C Wingerter (4959_CR73) 2021; 21 M Paineau (4959_CR57) 2024; 243 P Danecek (4959_CR16) 2021 M Delame (4959_CR17) 2019; 132 JE Bowers (4959_CR6) 1996; 39 N Cochetel (4959_CR12) 2021 AM Diez-Navajas (4959_CR22) 2007; 38 U Gisi (4959_CR32) 2007; 56 MC Fontaine (4959_CR29) 2021 M Huff (4959_CR34) 2023; 24 G Marçais (4959_CR44) 2018; 14 MM Kennelly (4959_CR37) 2005; 95 F Delmotte (4959_CR18) 2014; 27 JT Robinson (4959_CR61) 2011; 29 GH Dai (4959_CR15) 1995; 46 G Staudt (4959_CR67) 1995; 34 4959_CR74 M Massonnet (4959_CR48) 2022 4959_CR72 D Kosambi (4959_CR39) 1944; 12 4959_CR35 Y Liao (4959_CR41) 2014; 30 A Feechan (4959_CR28) 2013; 76 A Doligez (4959_CR25) 2006; 113 R Johnson (4959_CR36) 1984; 22 JW Van Ooijen (4959_CR69) 2004 L Calderón (4959_CR11) 2024 S Venuti (4959_CR71) 2013 G Di Gaspero (4959_CR21) 2012; 124 |
References_xml | – ident: 4959_CR74 doi: 10.1007/0-306-47914-1_14 – volume: 2019 start-page: 314 year: 2019 ident: 4959_CR70 publication-title: IEEE Int Parall Distrib Process Symp (IPDPS) doi: 10.1109/IPDPS.2019.00041 – ident: 4959_CR72 – year: 2021 ident: 4959_CR16 publication-title: Gigascience doi: 10.1093/gigascience/giab008 – volume: 86 start-page: 985 year: 1993 ident: 4959_CR68 publication-title: Theor Appl Genet doi: 10.1007/BF00211051 – volume: 101 start-page: 529 year: 2020 ident: 4959_CR30 publication-title: Plant J doi: 10.1111/tpj.14551 – volume: 122 start-page: 1059 year: 2011 ident: 4959_CR60 publication-title: Theor Appl Genet doi: 10.1007/s00122-010-1511-6 – volume: 603 start-page: 687 year: 2003 ident: 4959_CR27 publication-title: Acta Hort doi: 10.17660/ActaHortic.2003.603.95 – ident: 4959_CR14 – volume: 56 start-page: 199 year: 2007 ident: 4959_CR32 publication-title: Plant Pathol doi: 10.1111/j.1365-3059.2006.01512.x – volume: 24 start-page: 409 year: 2023 ident: 4959_CR34 publication-title: BMC Genomics doi: 10.1186/s12864-023-09514-y – volume: 21 start-page: 487 year: 2021 ident: 4959_CR43 publication-title: BMC Plant Biol doi: 10.1186/s12870-021-03266-1 – volume: 10 start-page: 147 year: 2010 ident: 4959_CR58 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-10-147 – volume: 114 start-page: 1249 year: 2007 ident: 4959_CR20 publication-title: Theor Appl Genet doi: 10.1007/s00122-007-0516-2 – volume: 84 start-page: 265 year: 2011 ident: 4959_CR59 publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2010.12.009 – volume: 52 start-page: 203 year: 2018 ident: 4959_CR51 publication-title: OENO One doi: 10.20870/oeno-one.2018.52.3.2116 – volume: 15 start-page: 11 year: 2005 ident: 4959_CR19 publication-title: Mol Breeding doi: 10.1007/s11032-004-1362-4 – year: 2022 ident: 4959_CR48 publication-title: G3 (Bethesda) doi: 10.1093/g3journal/jkac148 – volume: 603 start-page: 451 year: 2003 ident: 4959_CR49 publication-title: Acta Hortic doi: 10.17660/ActaHortic.2003.603.57 – volume: 113 start-page: 369 year: 2006 ident: 4959_CR25 publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0295-1 – volume: 38 start-page: 680 year: 2007 ident: 4959_CR22 publication-title: Micron doi: 10.1016/j.micron.2006.09.009 – year: 2021 ident: 4959_CR12 publication-title: G3-Genes Genomes Genet doi: 10.1093/g3journal/jkab033 – volume: 46 start-page: 177 year: 1995 ident: 4959_CR15 publication-title: Plasmopara Viticola Physiol Mol Plant Pathol doi: 10.1006/pmpp.1995.1014 – volume: 34 start-page: 225 year: 1995 ident: 4959_CR67 publication-title: Vitis – ident: 4959_CR1 – volume: 22 start-page: 309 year: 1984 ident: 4959_CR36 publication-title: Annu Rev Phytopathol doi: 10.1146/annurev.py.22.090184.001521 – volume: 6 start-page: 31 year: 2005 ident: 4959_CR66 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-31 – volume: 5 year: 2017 ident: 4959_CR9 publication-title: PeerJ doi: 10.7717/peerj.2988 – volume: 24 start-page: 290 year: 2023 ident: 4959_CR13 publication-title: Genome Biol doi: 10.1186/s13059-023-03133-2 – volume: 57 start-page: 741 year: 2025 ident: 4959_CR33 publication-title: Nat Genet doi: 10.1038/s41588-025-02111-7 – volume: 12 start-page: 172 year: 1944 ident: 4959_CR39 publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1943.tb02321.x – volume: 92 start-page: 1577 year: 2008 ident: 4959_CR10 publication-title: Plant Dis doi: 10.1094/PDIS-92-11-1577 – volume: 112 start-page: 2329 year: 2022 ident: 4959_CR56 publication-title: Phytopathology doi: 10.1094/PHYTO-11-21-0458-R – volume: 53 start-page: 22 year: 1999 ident: 4959_CR8 publication-title: Fruit var J – volume: 39 start-page: 628 year: 1996 ident: 4959_CR6 publication-title: Genome doi: 10.1139/g96-080 – volume: 76 start-page: 661 year: 2013 ident: 4959_CR28 publication-title: Plant J doi: 10.1111/tpj.12327 – volume: 124 start-page: 277 year: 2012 ident: 4959_CR21 publication-title: Theor Appl Genet doi: 10.1007/s00122-011-1703-8 – volume: 132 start-page: 365 year: 2000 ident: 4959_CR62 publication-title: Methods Mol Biol doi: 10.1385/1-59259-192-2:365 – volume: 30 start-page: 923 year: 2014 ident: 4959_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 120 start-page: 163 year: 2009 ident: 4959_CR3 publication-title: Theor Appl Genet doi: 10.1007/s00122-009-1167-2 – volume: 243 start-page: 1490 year: 2024 ident: 4959_CR57 publication-title: New Phytol doi: 10.1111/nph.19861 – volume: 29 start-page: 24 year: 2011 ident: 4959_CR61 publication-title: Nat Biotechnol doi: 10.1038/nbt.1754 – volume: 50 start-page: 243 year: 1999 ident: 4959_CR7 publication-title: Am J Enol Vitic doi: 10.5344/ajev.1999.50.3.243 – ident: 4959_CR40 – volume: 50 start-page: 3 year: 2011 ident: 4959_CR31 publication-title: Phytopathol Mediterr – volume: 9 start-page: 119 year: 2021 ident: 4959_CR46 publication-title: Microorganisms doi: 10.3390/microorganisms9010119 – year: 2021 ident: 4959_CR29 publication-title: Curr Biol doi: 10.1016/j.cub.2021.03.009 – volume: 95 start-page: 1445 year: 2005 ident: 4959_CR37 publication-title: Phytopathology doi: 10.1094/PHYTO-95-1445 – volume: 124 start-page: 163 year: 2012 ident: 4959_CR63 publication-title: Theor Appl Genet doi: 10.1007/s00122-011-1695-4 – year: 2023 ident: 4959_CR65 publication-title: Hortic Res doi: 10.1093/hr/uhad061 – volume: 42 start-page: 367 year: 1999 ident: 4959_CR64 publication-title: Genome doi: 10.1139/g98-168 – volume: 15 start-page: 349 year: 2005 ident: 4959_CR50 publication-title: Mol Breeding doi: 10.1007/s11032-004-7651-0 – volume-title: MapQTL 5, software for the mapping of quantitative trait mloci in experimental populations year: 2004 ident: 4959_CR69 – volume: 132 start-page: 1073 year: 2019 ident: 4959_CR17 publication-title: Theor Appl Genet doi: 10.1007/s00122-018-3260-x – ident: 4959_CR55 – volume: 98 start-page: 776 year: 2008 ident: 4959_CR23 publication-title: Phytopathology doi: 10.1094/PHYTO-98-7-0776 – volume: 22 start-page: 87 year: 1971 ident: 4959_CR54 publication-title: Am J Enol Vitic doi: 10.5344/ajev.1971.22.2.87 – volume: 6 start-page: 481 year: 1959 ident: 4959_CR5 publication-title: Annales De L’amélioration des Plantes – year: 2024 ident: 4959_CR11 publication-title: Hortic Res doi: 10.1093/hr/uhae080 – year: 2022 ident: 4959_CR52 publication-title: G3-Genes Genomes Genet doi: 10.1093/g3journal/jkac143 – volume: 160 start-page: 1393 year: 2003 ident: 4959_CR38 publication-title: J Plant Physiol doi: 10.1078/0176-1617-01021 – volume: 14 year: 2018 ident: 4959_CR44 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005944 – volume: 3 start-page: 282 year: 2009 ident: 4959_CR45 publication-title: Bioinformation doi: 10.6026/97320630003282 – volume: 29 start-page: 15 year: 2013 ident: 4959_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 21 start-page: 223 year: 2020 ident: 4959_CR2 publication-title: Genome Biol doi: 10.1186/s13059-020-02131-y – year: 2013 ident: 4959_CR71 publication-title: PLoS ONE doi: 10.1371/journal.pone.0061228 – volume: 125 start-page: 1663 year: 2012 ident: 4959_CR4 publication-title: Theor Appl Genet doi: 10.1007/s00122-012-1942-3 – year: 2020 ident: 4959_CR47 publication-title: Nat Commun doi: 10.1038/s41467-020-16700-z – volume: 15 year: 2019 ident: 4959_CR26 publication-title: PLOS Comput Biol doi: 10.1371/journal.pcbi.1006790 – ident: 4959_CR35 – volume: 23 start-page: 159 year: 2022 ident: 4959_CR42 publication-title: BMC Genomics doi: 10.1186/s12864-022-08389-9 – volume: 21 start-page: 470 year: 2021 ident: 4959_CR73 publication-title: BMC Plant Biol doi: 10.1186/s12870-021-03228-7 – volume: 27 start-page: 500 year: 2014 ident: 4959_CR18 publication-title: Infect Genet Evol doi: 10.1016/j.meegid.2013.10.017 – volume: 153 start-page: 350 year: 2005 ident: 4959_CR53 publication-title: J Phytopathol doi: 10.1111/j.1439-0434.2005.00984.x |
SSID | ssj0002503 |
Score | 2.4714525 |
Snippet | Key message
The
Rpv2
locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to
V.... The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia.... Key messageThe Rpv2locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V.... The Rpv2 locus for total resistance to grapevine downy mildew is mapped to a 250 kb genomic region containing two NLR-type genes specific to V. rotundifolia.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 177 |
SubjectTerms | Agriculture Biochemistry Biomedical and Life Sciences Biotechnology Breeding Chromosome Mapping Chromosomes Disease Resistance - genetics Downy mildew Environmental impact Females Gene mapping Genes Genes, Plant Genetic Markers Genomics Genotype Genotype & phenotype Leaves Life Sciences Multigene Family NLR Proteins - genetics Oomycetes Original Article Pathogens Peronospora Phenotype Plant Biochemistry Plant Breeding/Biotechnology Plant Diseases - genetics Plant Diseases - microbiology Plant Genetics and Genomics Plant Proteins - genetics Proteins Recombinants Vitis - genetics Vitis - microbiology Vitis rotundifolia Wines |
Title | Rpv2 is part of a cluster of NLRs specific to Vitis rotundifolia and confers total resistance to grapevine downy mildew |
URI | https://link.springer.com/article/10.1007/s00122-025-04959-z https://www.ncbi.nlm.nih.gov/pubmed/40627157 https://www.proquest.com/docview/3228156084 https://www.proquest.com/docview/3228023908 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BKyR6QFBegVIZiRtY8jrOJjluUZeKxx4qFpVT5CdaaUlWm2yr9tczkxdChQOnKIqdRPnGnm8yns8Ab9ApJU7alKcBR5MSxvBcTQLPtRXYI_cq0H_IL4vp2VJ9vEgu-qKweljtPqQk25l6LHZrs0Cctl9FVpvk_OYu7CcYu5NdL-VsnH_RqY9r5ZCMyL5U5u_3-NMd3eKYt_KjrduZP4QHPV9ksw7gR3DHl4dwMPux7TUz_CHc6_aTvH4MV-ebS8lWNdugQbAqMM3sekdSCHSy-HxeM6qspNVBrKnYN9IzYtuq2ZVuFar1SjNdOmbbIsAaWyAxZxiOE8VE26AupG-NrrT0zGH4fs1-rtbOXz2B5fz06_sz3u-swG0ss4YnEx2QKYhgc-tCmGZBidhg5CWFMs4KG5RJrZXOa6QLsdOZNCkyH_TmQnskKU9hr6xK_xwYBrk6y6gcNvHKCpKzFyYNk6lPTOzzOIK3wwcuNp2ARjFKJbdwFAhH0cJR3ERwNGBQ9IOpLnDOIU0bkakIXo-XcRhQbkOXvtp1bahOV2QRPOuwGx-nSIp5kqQRvBvA_H3zf7_Li_9r_hLuy9awUi6yI9hrtjv_CglLY45hfzY_OVnQ8cP3T6fHrb3-ApvZ5Nw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKgQ9FCgvQ4FF4gZbbex1bB-jqiXQNIeqQeVk7RNFBDuK7UbNr2fWLwSFQ4-Wd9f27szON56ZbwHeo1EKta8iGlnUJs6kpAkfWpoIxbBHYrh1_yHPZqPJnH-5DC_borCiy3bvQpL1Tt0Xu9VRIOqOX0VUGyZ0exd2OPrg4QB2xp--nR73OzCa9T5bDuGI3xbL_HuUPw3SDZR5I0JaG56ThzDvXrnJN_lxWJXyUG3_YnO87Tc9gr0WiZJxIzqP4Y7J9mF3_H3dsnGYfbjXnFR5_QQ256srnywKskJRI7klgqhl5UgW3MVsel4QV7Pp8o5ImZOvjimJrPOyyvTC5suFICLTRNXlhQW2QMhP0NF34BWlznVxzNlopDNDdL7JrsnPxVKbzVOYnxxfHE1oe2YDVYEflzQcCosYhFmVKG3tKLacBRJ9Op9xqRVTlstIKV8bgUAk0CL2ZYSYCnECEwbhzzMYZHlmXgBB91nEsSu0DQ1XzBHlMxnZ4ciEMjBJ4MGHbuHSVUPNkfYkzPXEpjixaT2x6daDg25t01ZNixR3M8eWw2Luwbv-NiqYi5qIzORV08ZVALPYg-eNTPSP447keRhGHnzs1vf34P9_l5e3a_4W7k8uzqbp9PPs9BU88GtxiSiLD2BQrivzGmFRKd-0WvALFK0CBw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BEQgOFZSv0AJG4gZWHcfZJMdVYVWgrFDFot4if6KVlmS1m6Vqfz0zSTYFFQ4co9hOlBl7njPzngFeY1BKnbQZzwLOJiWM4YWKAy-0Fdij8CrQf8jP09HxTH08S89-Y_G31e7blGTHaSCVpqo5XLpwOBDf2owQp6NYEeGmBb-8CbdwOY6pqGsmx8NajAF-qJtDYCJ72szfx_gzNF3Dm9dypW0ImtyH3R47snFn7Adww1d7cG_8fdXrZ_g9uN2dLXnxEM5Plz8lm6_ZEp2D1YFpZhcbkkWgi-nJ6ZoRy5IqhVhTs2-kbcRWdbOp3DzUi7lmunLMtoTANbZAkM5wa05wE_2EupDWNYbVyjOHW_kL9mO-cP78Ecwm778eHfP-lAVuE5k3PI11QNQggi2sC2GUByUSg7swKZRxVtigTGatdF4jdEiczqXJEAVhZBfaI2B5DDtVXfmnwHDDq_OcqLGpV1aQtL0wWYhHPjWJL5II3mw_cLnsxDTKQTa5NUeJ5ihbc5SXERxsbVD2E2td4vpD-jYiVxG8Gm7jlKA8h658venaEGdX5BE86Ww3PE6RLHOcZhG83RrzavB_v8uz_2v-Eu58eTcpTz5MP-3DXdn6WMZFfgA7zWrjnyOOacyL1lV_AXUA6Ps |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rpv2+is+part+of+a+cluster+of+NLRs+specific+to+Vitis+rotundifolia+and+confers+total+resistance+to+grapevine+downy+mildew&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Marsan%2C+Laurie&rft.au=Prado%2C+Emilce&rft.au=Wiedemann-Merdinoglu%2C+Sabine&rft.au=Schmidlin%2C+Laure&rft.date=2025-07-08&rft.issn=1432-2242&rft.eissn=1432-2242&rft.volume=138&rft.issue=8&rft.spage=177&rft_id=info:doi/10.1007%2Fs00122-025-04959-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon |