Analysis of sentiment in tweets addressed to a single domain-specific Twitter account: Comparison of model performance and explainability of predictions
•Comparison of selected popular and recent natural language processing methods.•Use of explainable Artificial Intelligence tools in Twitter sentiment analysis.•Analysis of sentiment in tweets addressed to a single Twitter account.•Performance of selected transformer models on the SemEval-2017 data s...
Saved in:
Published in | Expert systems with applications Vol. 186; p. 115771 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
30.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Comparison of selected popular and recent natural language processing methods.•Use of explainable Artificial Intelligence tools in Twitter sentiment analysis.•Analysis of sentiment in tweets addressed to a single Twitter account.•Performance of selected transformer models on the SemEval-2017 data set.
Many institutions and companies find it valuable to know how people feel about their ventures; hence, scientific research in sentiment analysis has been intensely developed over time. Automated sentiment analysis can be considered as a machine learning (ML) prediction task, with classes representing human affective states. Due to the rapid development of ML and deep learning (DL), improvements in automatic sentiment analysis performance are achieved almost every year. Since 2013, Semantic Evaluation (SemEval) has hosted a worldwide community-acknowledged competition that allows for comparisons of recent innovations. The sentiment analysis tasks focus on assessing sentiment in Twitter posts authored by various publishers and addressing multiple subjects. Our study aimed to compare selected popular and recent natural language processing methods using a new data set of Twitter posts sent to a single Twitter account. For improved comparability of our experiments with SemEval, we adopted their metrics and also deployed our models on data published for SemEval-2017. In addition, we investigated if an unsupervised ML technique applied for the detection of topics in tweets can be leveraged to improve the predictive performance of a selected transformer model. We also demonstrated how a recent explainable artificial intelligence technique can be used in Twitter sentiment analysis to gain a deeper understanding of the models’ predictions. Our results show that the most recent DL language modeling approach provides the highest quality; however, this quality comes at reduced model transparency. |
---|---|
AbstractList | •Comparison of selected popular and recent natural language processing methods.•Use of explainable Artificial Intelligence tools in Twitter sentiment analysis.•Analysis of sentiment in tweets addressed to a single Twitter account.•Performance of selected transformer models on the SemEval-2017 data set.
Many institutions and companies find it valuable to know how people feel about their ventures; hence, scientific research in sentiment analysis has been intensely developed over time. Automated sentiment analysis can be considered as a machine learning (ML) prediction task, with classes representing human affective states. Due to the rapid development of ML and deep learning (DL), improvements in automatic sentiment analysis performance are achieved almost every year. Since 2013, Semantic Evaluation (SemEval) has hosted a worldwide community-acknowledged competition that allows for comparisons of recent innovations. The sentiment analysis tasks focus on assessing sentiment in Twitter posts authored by various publishers and addressing multiple subjects. Our study aimed to compare selected popular and recent natural language processing methods using a new data set of Twitter posts sent to a single Twitter account. For improved comparability of our experiments with SemEval, we adopted their metrics and also deployed our models on data published for SemEval-2017. In addition, we investigated if an unsupervised ML technique applied for the detection of topics in tweets can be leveraged to improve the predictive performance of a selected transformer model. We also demonstrated how a recent explainable artificial intelligence technique can be used in Twitter sentiment analysis to gain a deeper understanding of the models’ predictions. Our results show that the most recent DL language modeling approach provides the highest quality; however, this quality comes at reduced model transparency. Many institutions and companies find it valuable to know how people feel about their ventures; hence, scientific research in sentiment analysis has been intensely developed over time. Automated sentiment analysis can be considered as a machine learning (ML) prediction task, with classes representing human affective states. Due to the rapid development of ML and deep learning (DL), improvements in automatic sentiment analysis performance are achieved almost every year. Since 2013, Semantic Evaluation (SemEval) has hosted a worldwide community-acknowledged competition that allows for comparisons of recent innovations. The sentiment analysis tasks focus on assessing sentiment in Twitter posts authored by various publishers and addressing multiple subjects. Our study aimed to compare selected popular and recent natural language processing methods using a new data set of Twitter posts sent to a single Twitter account. For improved comparability of our experiments with SemEval, we adopted their metrics and also deployed our models on data published for SemEval-2017. In addition, we investigated if an unsupervised ML technique applied for the detection of topics in tweets can be leveraged to improve the predictive performance of a selected transformer model. We also demonstrated how a recent explainable artificial intelligence technique can be used in Twitter sentiment analysis to gain a deeper understanding of the models' predictions. Our results show that the most recent DL language modeling approach provides the highest quality; however, this quality comes at reduced model transparency. |
ArticleNumber | 115771 |
Author | Karwowski, Waldemar Wilamowski, Maciej Fiok, Krzysztof Gutierrez, Edgar |
Author_xml | – sequence: 1 givenname: Krzysztof surname: Fiok fullname: Fiok, Krzysztof email: fiok@ucf.edu organization: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA – sequence: 2 givenname: Waldemar surname: Karwowski fullname: Karwowski, Waldemar email: wkar@ucf.edu organization: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA – sequence: 3 givenname: Edgar surname: Gutierrez fullname: Gutierrez, Edgar email: edfranco@mit.edu organization: Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA – sequence: 4 givenname: Maciej surname: Wilamowski fullname: Wilamowski, Maciej email: mwilamowski@wne.uw.edu.pl organization: University of Warsaw, Faculty of Economic Sciences, Warsaw, Poland |
BookMark | eNp9kUFv1DAQhS3USmwLf6AnS5yz2E4cJ4hLtaKAVIlLOVtee1zNKrGD7WXZf9Kfi6PlxKGXmcv7nmbeuyFXIQYg5I6zLWe8_3jYQj6ZrWCCbzmXSvE3ZMMH1Ta9GtsrsmGjVE3HVfeW3OR8YIwrxtSGvNwHM50zZho9zRAKznVQDLScAEqmxrkEOYOjJVJDM4bnCaiLs8HQ5AUserT06YSlQKLG2ngM5RPdxXkxCXMMq_EcHUx0geRjmk2wQE1wFP4sU3Uxe5ywnFfdksChLRhDfkeuvZkyvP-3b8nPhy9Pu2_N44-v33f3j41txVCabt8qsx-8GiX3nPu2xuHd6Pt-cFLspefMSdOKbuwcN73nTvaid52VTgg29O0t-XDxXVL8dYRc9CEeUw0layHHsYbZcVlVw0VlU8w5gdcWi1kPLcngpDnTaw_6oNce9NqDvvRQUfEfuiScTTq_Dn2-QFBf_42QdLYINTiHCWzRLuJr-F9BxKaN |
CitedBy_id | crossref_primary_10_1007_s10844_022_00736_2 crossref_primary_10_1016_j_ipm_2022_103058 crossref_primary_10_1080_01969722_2023_2296251 crossref_primary_10_1145_3524022 crossref_primary_10_1177_15485129211028651 crossref_primary_10_1007_s10639_023_11943_x crossref_primary_10_1186_s42492_024_00154_x crossref_primary_10_3390_info14010021 crossref_primary_10_1016_j_caeai_2024_100338 crossref_primary_10_1016_j_eswa_2021_116472 crossref_primary_10_1109_TIM_2022_3171613 crossref_primary_10_3390_analytics1020009 crossref_primary_10_1038_s41598_024_70766_z crossref_primary_10_1016_j_compeleceng_2024_109302 crossref_primary_10_1016_j_eswa_2022_119128 crossref_primary_10_3390_computers13040092 crossref_primary_10_7717_peerj_cs_1039 crossref_primary_10_1007_s10489_023_04471_1 crossref_primary_10_1007_s10115_024_02214_3 crossref_primary_10_1007_s00521_023_08236_2 crossref_primary_10_3390_fi14050141 |
Cites_doi | 10.18653/v1/S17-2094 10.1007/s00521-020-05102-3 10.3758/s13428-016-0743-z 10.18653/v1/2020.acl-main.703 10.3390/sym12061054 10.1109/ACCESS.2018.2870052 10.18653/v1/W17-5221 10.1038/s42256-019-0138-9 10.1145/2938640 10.1371/journal.pone.0239441 10.1016/j.eswa.2013.05.057 10.1016/j.ins.2016.06.040 10.18653/v1/2020.acl-main.747 10.18653/v1/P19-3007 10.1016/j.inffus.2019.12.012 10.18653/v1/S17-2088 10.1016/j.procs.2016.06.095 10.18653/v1/N16-1082 10.1002/cpe.5107 10.3115/1220575.1220643 10.18653/v1/D18-2029 10.1162/tacl_a_00051 10.1016/j.cogsys.2018.10.001 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 30, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 30, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.115771 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_115771 S0957417421011428 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-4b37ab8f7951f11f3101fd9f668d52b5f10d5a32494d1a6f1d5626d4c5d220863 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 06:29:30 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 Tue Jul 01 04:05:55 EDT 2025 Fri Feb 23 02:40:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Sentiment analysis Natural language processing Explainability Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-4b37ab8f7951f11f3101fd9f668d52b5f10d5a32494d1a6f1d5626d4c5d220863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2599115415 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2599115415 crossref_citationtrail_10_1016_j_eswa_2021_115771 crossref_primary_10_1016_j_eswa_2021_115771 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115771 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-30 |
PublicationDateYYYYMMDD | 2021-12-30 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Adadi, Berrada (b0005) 2018; 6 Wang, Can, Kazemzadeh, Bar, Narayanan (b0315) 2012 Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., … Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461. SemEval-2017 Task 4. (2020). from Kouloumpis, Wilson, Moore (b0135) 2011 Sklearn.metrics.mean_absolute_error. (2020). from Ribeiro, Singh, Guestrin (b0240) 2016 Pennebaker, Francis, Booth (b0215) 2001; 71 Rosenthal, S., Farra, N., & Nakov, P. (2019). SemEval-2017 task 4: Sentiment analysis in Twitter. arXiv preprint arXiv:1912.00741. Si, Mukherjee, Liu, Li, Li, Deng (b0275) 2013 Miller (b0190) 1998 Blei, Ng, Jordan (b0045) 2003; 3 Scipy.stats.wasserstein_distance. (2020) from Krippendorff, K. (2011). Computing Krippendorff's alpha-reliability. Bojanowski, Grave, Joulin, Mikolov (b0050) 2017; 5 Ghiassi, Skinner, Zimbra (b0100) 2013; 40 Pagolu, Reddy, Panda, Majhi (b0205) 2016 Saif, He, Alani (b0250) 2012 Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., … Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116. Giachanou, Crestani (b0105) 2016; 49 Kumar, Jaiswal (b0145) 2020; 32 Karpathy (b0130) 2015; 21 Schwarz, Theóphilo, Rocha (b0255) 2020 Transformers. (2020). from Li, J., Chen, X., Hovy, E., & Jurafsky, D. (2015). Visualizing and understanding neural models in nlp. arXiv preprint arXiv:1506.01066. . Pak, Paroubek (b0210) 2010; 10 Lundberg, Lee (b0175) 2017 Mishra, Mishra (b0195) 2019 Arras, L., Montavon, G., Müller, K. R., & Samek, W. (2017). Explaining recurrent neural network predictions in sentiment analysis. arXiv preprint arXiv:1706.07206. Munson, A., Cardie, C., & Caruana, R. (2005, October). Optimizing to arbitrary NLP metrics using ensemble selection. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing (pp. 539-546). Association for Computational Linguistics. Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., … Sung, Y. H. (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175. Fiok, K., (2020). Analysis of Twitter sentiment with various Language Models. Github Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Lee (b0180) 2020; 2 Sousa, Sakiyama, de Souza Rodrigues, Moraes, Fernandes, Matsubara (b0295) 2019 Zhao, S., Fard, M. M., Narasimhan, H., & Gupta, M. (2018). Metric-optimized example weights. arXiv preprint arXiv:1805.10582. Fiok, Karwowski, Gutierrez, Ahram (b0085) 2020; 12 Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291. Gambino, G., & Pirrone, R. (2019). Investigating Embeddings for Sentiment Analysis in Italian. Go, Huang, Bhayani (b0110) 2009; 17 Ibrahim (b0125) 2019; 1073 González, J. Á., Hurtado, L. F., & Pla, F. (2019). ELiRF-UPV at TASS 2019: Transformer Encoders for Twitter Sentiment Analysis in Spanish. Gensim Python Package. XGboost Python Package Introduction. (2020). from (Accessed May 15, 2020). Xiang, Zhou (b0320) 2014 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Polosukhin (b0305) 2017 Vig, J. (2019). A multiscale visualization of attention in the transformer model. arXiv preprint arXiv:1906.05714. Song, Y., Wang, J., Liang, Z., Liu, Z., & Jiang, T. (2020). Utilizing BERT intermediate layers for aspect based sentiment analysis and natural language inference. arXiv preprint arXiv:2002.04815. Beel, Langer, Genzmehr, Gipp, Breitinger, Nürnberger (b0035) 2013 Xue, Chen, Chen, Zheng, Li, Zhu (b0325) 2020; 15 Pennington, Socher, Manning (b0220) 2014 Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. Potamias, R. A., Siolas, G., & Stafylopatis, A. G. (2019). A Transformer-based approach to Irony and Sarcasm detection. arXiv preprint arXiv:1911.10401. Severyn, Moschitti (b0270) 2015 Crossley, Kyle, McNamara (b0070) 2017; 49 Yang, Dai, Yang, Carbonell, Salakhutdinov, Le (b0330) 2019 Agarwal, Xie, Vovsha, Rambow, Passonneau (b0010) 2011 Hutto, Gilbert (b0120) 2014 Singh, Kumari (b0280) 2016; 89 Language recognition chart. (2019, August). from Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Akbik, Bergmann, Blythe, Rasul, Schweter, Flair (b0015) 2019 (Accessed June 15, 2020). Bertviz. (2020). Master branch commit 590c957799c3c09a4e1306b43d9ec10785e53745 from Alharbi, de Doncker (b0020) 2019; 54 Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., … Chatila, R. (2019). Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. arXiv, arXiv-1910. Accessed November 3, 2020). Ren, Wang, Ji (b0235) 2016; 369 Cliche, M. (2017). Bb_twtr at semeval-2017 task 4: Twitter sentiment analysis with cnns and lstms. arXiv preprint arXiv:1704.06125. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., … Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. Pennington (10.1016/j.eswa.2021.115771_b0220) 2014 Wang (10.1016/j.eswa.2021.115771_b0315) 2012 Bojanowski (10.1016/j.eswa.2021.115771_b0050) 2017; 5 Sousa (10.1016/j.eswa.2021.115771_b0295) 2019 Akbik (10.1016/j.eswa.2021.115771_b0015) 2019 Alharbi (10.1016/j.eswa.2021.115771_b0020) 2019; 54 Vaswani (10.1016/j.eswa.2021.115771_b0305) 2017 Miller (10.1016/j.eswa.2021.115771_b0190) 1998 10.1016/j.eswa.2021.115771_b0150 10.1016/j.eswa.2021.115771_b0030 10.1016/j.eswa.2021.115771_b0075 Lundberg (10.1016/j.eswa.2021.115771_b0180) 2020; 2 10.1016/j.eswa.2021.115771_b0230 10.1016/j.eswa.2021.115771_b0155 Adadi (10.1016/j.eswa.2021.115771_b0005) 2018; 6 Hutto (10.1016/j.eswa.2021.115771_b0120) 2014 10.1016/j.eswa.2021.115771_b0310 10.1016/j.eswa.2021.115771_b0115 Go (10.1016/j.eswa.2021.115771_b0110) 2009; 17 Kouloumpis (10.1016/j.eswa.2021.115771_b0135) 2011 Pak (10.1016/j.eswa.2021.115771_b0210) 2010; 10 Ribeiro (10.1016/j.eswa.2021.115771_b0240) 2016 Xue (10.1016/j.eswa.2021.115771_b0325) 2020; 15 10.1016/j.eswa.2021.115771_b0080 10.1016/j.eswa.2021.115771_b0160 10.1016/j.eswa.2021.115771_b0040 Ren (10.1016/j.eswa.2021.115771_b0235) 2016; 369 10.1016/j.eswa.2021.115771_b0285 10.1016/j.eswa.2021.115771_b0165 Mishra (10.1016/j.eswa.2021.115771_b0195) 2019 10.1016/j.eswa.2021.115771_b0200 10.1016/j.eswa.2021.115771_b0245 Beel (10.1016/j.eswa.2021.115771_b0035) 2013 Fiok (10.1016/j.eswa.2021.115771_b0085) 2020; 12 Crossley (10.1016/j.eswa.2021.115771_b0070) 2017; 49 10.1016/j.eswa.2021.115771_b0090 Giachanou (10.1016/j.eswa.2021.115771_b0105) 2016; 49 10.1016/j.eswa.2021.115771_b0290 10.1016/j.eswa.2021.115771_b0170 10.1016/j.eswa.2021.115771_b0095 10.1016/j.eswa.2021.115771_b0055 Lundberg (10.1016/j.eswa.2021.115771_b0175) 2017 Saif (10.1016/j.eswa.2021.115771_b0250) 2012 10.1016/j.eswa.2021.115771_b0335 Yang (10.1016/j.eswa.2021.115771_b0330) 2019 Xiang (10.1016/j.eswa.2021.115771_b0320) 2014 Ghiassi (10.1016/j.eswa.2021.115771_b0100) 2013; 40 Singh (10.1016/j.eswa.2021.115771_b0280) 2016; 89 Pennebaker (10.1016/j.eswa.2021.115771_b0215) 2001; 71 Ibrahim (10.1016/j.eswa.2021.115771_b0125) 2019; 1073 Agarwal (10.1016/j.eswa.2021.115771_b0010) 2011 Kumar (10.1016/j.eswa.2021.115771_b0145) 2020; 32 Schwarz (10.1016/j.eswa.2021.115771_b0255) 2020 Blei (10.1016/j.eswa.2021.115771_b0045) 2003; 3 10.1016/j.eswa.2021.115771_b0060 Si (10.1016/j.eswa.2021.115771_b0275) 2013 10.1016/j.eswa.2021.115771_b0260 Severyn (10.1016/j.eswa.2021.115771_b0270) 2015 10.1016/j.eswa.2021.115771_b0140 10.1016/j.eswa.2021.115771_b0185 10.1016/j.eswa.2021.115771_b0065 Karpathy (10.1016/j.eswa.2021.115771_b0130) 2015; 21 10.1016/j.eswa.2021.115771_b0265 10.1016/j.eswa.2021.115771_b0025 10.1016/j.eswa.2021.115771_b0300 Pagolu (10.1016/j.eswa.2021.115771_b0205) 2016 10.1016/j.eswa.2021.115771_b0225 |
References_xml | – start-page: 54 year: 2019 end-page: 59 ident: b0015 article-title: An easy-to-use framework for state-of-the-art nlp publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations) – start-page: 1345 year: 2016 end-page: 1350 ident: b0205 article-title: Sentiment analysis of Twitter data for predicting stock market movements publication-title: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) – reference: Krippendorff, K. (2011). Computing Krippendorff's alpha-reliability. – reference: Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., … Sung, Y. H. (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175. – volume: 21 start-page: 23 year: 2015 ident: b0130 article-title: The unreasonable effectiveness of recurrent neural networks publication-title: Andrej Karpathy Blog – reference: Potamias, R. A., Siolas, G., & Stafylopatis, A. G. (2019). A Transformer-based approach to Irony and Sarcasm detection. arXiv preprint arXiv:1911.10401. – reference: > <Accessed November 3, 2020). – volume: 5 start-page: 135 year: 2017 end-page: 146 ident: b0050 article-title: Enriching word vectors with subword information publication-title: Transactions of the Association for Computational Linguistics – volume: 40 start-page: 6266 year: 2013 end-page: 6282 ident: b0100 article-title: Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network publication-title: Expert Systems with Applications – reference: Language recognition chart. (2019, August). from < – reference: Sklearn.metrics.mean_absolute_error. (2020). from < – reference: Song, Y., Wang, J., Liang, Z., Liu, Z., & Jiang, T. (2020). Utilizing BERT intermediate layers for aspect based sentiment analysis and natural language inference. arXiv preprint arXiv:2002.04815. – start-page: 4765 year: 2017 end-page: 4774 ident: b0175 article-title: A unified approach to interpreting model predictions publication-title: Advances in neural information processing systems – volume: 12 start-page: 1054 year: 2020 ident: b0085 article-title: Predicting the volume of response to tweets posted by a single Twitter account publication-title: Symmetry – reference: Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291. – volume: 2 start-page: 56 year: 2020 end-page: 67 ident: b0180 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nature Machine Intelligence – volume: 54 start-page: 50 year: 2019 end-page: 61 ident: b0020 article-title: Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information publication-title: Cognitive Systems Research – start-page: 2777 year: 2020 end-page: 2781 ident: b0255 article-title: EMET: Embeddings from multilingual-encoder transformer for fake news detection publication-title: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 32 year: 2020 ident: b0145 article-title: Systematic literature review of sentiment analysis on Twitter using soft computing techniques publication-title: Concurrency and Computation: Practice and Experience – reference: Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., … Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461. – start-page: 1597 year: 2019 end-page: 1601 ident: b0295 article-title: BERT for stock market sentiment analysis publication-title: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) – volume: 17 start-page: 252 year: 2009 ident: b0110 article-title: Twitter sentiment analysis publication-title: Entropy – reference: Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. – reference: Transformers. (2020). from < – year: 2019 ident: b0195 article-title: 3Idiots at HASOC 2019: Fine-tuning Transformer Neural Networks for Hate Speech Identification in Indo-European Languages. publication-title: Proceedings of the 11th annual meeting of the Forum for Information Retrieval Evaluation (December 2019) – reference: SemEval-2017 Task 4. (2020). from < – reference: Cliche, M. (2017). Bb_twtr at semeval-2017 task 4: Twitter sentiment analysis with cnns and lstms. arXiv preprint arXiv:1704.06125. – reference: González, J. Á., Hurtado, L. F., & Pla, F. (2019). ELiRF-UPV at TASS 2019: Transformer Encoders for Twitter Sentiment Analysis in Spanish. – reference: Rosenthal, S., Farra, N., & Nakov, P. (2019). SemEval-2017 task 4: Sentiment analysis in Twitter. arXiv preprint arXiv:1912.00741. – start-page: 959 year: 2015 end-page: 962 ident: b0270 article-title: August). Twitter sentiment analysis with deep convolutional neural networks publication-title: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval – reference: Gensim Python Package. < – start-page: 5998 year: 2017 end-page: 6008 ident: b0305 article-title: Attention is all you need publication-title: Advances in neural information processing systems – reference: Li, J., Chen, X., Hovy, E., & Jurafsky, D. (2015). Visualizing and understanding neural models in nlp. arXiv preprint arXiv:1506.01066. – start-page: 1135 year: 2016 end-page: 1144 ident: b0240 article-title: “Why should i trust you?” Explaining the predictions of any classifier publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: b0045 article-title: Latent dirichlet allocation publication-title: Journal of Machine Learning Research – year: 2014 ident: b0120 article-title: Vader: A parsimonious rule-based model for sentiment analysis of social media text publication-title: Eighth international AAAI conference on weblogs and social media – reference: > (Accessed June 15, 2020). – reference: Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., … Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. – volume: 10 start-page: 1320 year: 2010 end-page: 1326 ident: b0210 article-title: Twitter as a corpus for sentiment analysis and opinion mining publication-title: LREc – start-page: 115 year: 2012 end-page: 120 ident: b0315 article-title: A system for real-time twitter sentiment analysis of 2012 us presidential election cycle publication-title: Proceedings of the ACL 2012 system demonstrations – year: 1998 ident: b0190 article-title: WordNet: An electronic lexical database – reference: Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., … Chatila, R. (2019). Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. arXiv, arXiv-1910. – reference: > (Accessed May 15, 2020). – start-page: 434 year: 2014 end-page: 439 ident: b0320 article-title: June). Improving twitter sentiment analysis with topic-based mixture modeling and semi-supervised training publication-title: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) – volume: 49 start-page: 1 year: 2016 end-page: 41 ident: b0105 article-title: Like it or not: A survey of twitter sentiment analysis methods publication-title: ACM Computing Surveys (CSUR) – reference: Vig, J. (2019). A multiscale visualization of attention in the transformer model. arXiv preprint arXiv:1906.05714. – reference: Munson, A., Cardie, C., & Caruana, R. (2005, October). Optimizing to arbitrary NLP metrics using ensemble selection. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing (pp. 539-546). Association for Computational Linguistics. – year: 2011 ident: b0135 article-title: Twitter sentiment analysis: The good the bad and the omg! publication-title: Fifth International AAAI conference on weblogs and social media, Barcelona, Spain – reference: XGboost Python Package Introduction. (2020). from < – volume: 49 start-page: 803 year: 2017 end-page: 821 ident: b0070 article-title: Sentiment analysis and social cognition engine (SEANCE): An automatic tool for sentiment, social cognition, and social order analysis publication-title: Behavior Research Methods – reference: Fiok, K., (2020). Analysis of Twitter sentiment with various Language Models. Github < – reference: Scipy.stats.wasserstein_distance. (2020) from < – volume: 89 start-page: 549 year: 2016 end-page: 554 ident: b0280 article-title: Role of text pre-processing in twitter sentiment analysis publication-title: Procedia Computer Science – reference: Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., … Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116. – reference: >. – start-page: 30 year: 2011 end-page: 38 ident: b0010 article-title: Sentiment analysis of twitter data publication-title: Proceedings of the Workshop on Language in Social Media (LSM 2011) – start-page: 24 year: 2013 end-page: 29 ident: b0275 article-title: August). Exploiting topic-based twitter sentiment for stock prediction publication-title: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) – volume: 1073 start-page: 428 year: 2019 ident: b0125 article-title: TwitterBERT: Framework for Twitter Sentiment Analysis Based on Pre-trained Language Model Representations publication-title: Emerging Trends in Intelligent Computing and Informatics: Data Science, Intelligent Information Systems and Smart Computing – start-page: 1532 year: 2014 end-page: 1543 ident: b0220 article-title: Glove: Global vectors for word representation publication-title: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: b0005 article-title: Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI) publication-title: IEEE Accessed – start-page: 15 year: 2013 end-page: 22 ident: b0035 article-title: October). Research paper recommender system evaluation: A quantitative literature survey publication-title: Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation – volume: 369 start-page: 188 year: 2016 end-page: 198 ident: b0235 article-title: A topic-enhanced word embedding for Twitter sentiment classification publication-title: Information Sciences – start-page: 508 year: 2012 end-page: 524 ident: b0250 article-title: Semantic sentiment analysis of twitter publication-title: International semantic web conference – volume: 71 year: 2001 ident: b0215 article-title: Linguistic inquiry and word count: LIWC 2001 publication-title: Mahway: Lawrence Erlbaum Associates – reference: Gambino, G., & Pirrone, R. (2019). Investigating Embeddings for Sentiment Analysis in Italian. – reference: Arras, L., Montavon, G., Müller, K. R., & Samek, W. (2017). Explaining recurrent neural network predictions in sentiment analysis. arXiv preprint arXiv:1706.07206. – reference: Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. – volume: 15 year: 2020 ident: b0325 article-title: Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter publication-title: PLoS ONE – reference: Zhao, S., Fard, M. M., Narasimhan, H., & Gupta, M. (2018). Metric-optimized example weights. arXiv preprint arXiv:1805.10582. – reference: Bertviz. (2020). Master branch commit 590c957799c3c09a4e1306b43d9ec10785e53745 from < – start-page: 5754 year: 2019 end-page: 5764 ident: b0330 article-title: Xlnet: Generalized autoregressive pretraining for language understanding publication-title: Advances in neural information processing systems – year: 2019 ident: 10.1016/j.eswa.2021.115771_b0195 article-title: 3Idiots at HASOC 2019: Fine-tuning Transformer Neural Networks for Hate Speech Identification in Indo-European Languages. – start-page: 30 year: 2011 ident: 10.1016/j.eswa.2021.115771_b0010 article-title: Sentiment analysis of twitter data – ident: 10.1016/j.eswa.2021.115771_b0060 doi: 10.18653/v1/S17-2094 – ident: 10.1016/j.eswa.2021.115771_b0150 – ident: 10.1016/j.eswa.2021.115771_b0225 doi: 10.1007/s00521-020-05102-3 – year: 2011 ident: 10.1016/j.eswa.2021.115771_b0135 article-title: Twitter sentiment analysis: The good the bad and the omg! – volume: 49 start-page: 803 issue: 3 year: 2017 ident: 10.1016/j.eswa.2021.115771_b0070 article-title: Sentiment analysis and social cognition engine (SEANCE): An automatic tool for sentiment, social cognition, and social order analysis publication-title: Behavior Research Methods doi: 10.3758/s13428-016-0743-z – ident: 10.1016/j.eswa.2021.115771_b0160 doi: 10.18653/v1/2020.acl-main.703 – start-page: 434 year: 2014 ident: 10.1016/j.eswa.2021.115771_b0320 article-title: June). Improving twitter sentiment analysis with topic-based mixture modeling and semi-supervised training – start-page: 4765 year: 2017 ident: 10.1016/j.eswa.2021.115771_b0175 article-title: A unified approach to interpreting model predictions – start-page: 5754 year: 2019 ident: 10.1016/j.eswa.2021.115771_b0330 article-title: Xlnet: Generalized autoregressive pretraining for language understanding – volume: 12 start-page: 1054 issue: 6 year: 2020 ident: 10.1016/j.eswa.2021.115771_b0085 article-title: Predicting the volume of response to tweets posted by a single Twitter account publication-title: Symmetry doi: 10.3390/sym12061054 – volume: 6 start-page: 52138 year: 2018 ident: 10.1016/j.eswa.2021.115771_b0005 article-title: Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI) publication-title: IEEE Accessed doi: 10.1109/ACCESS.2018.2870052 – ident: 10.1016/j.eswa.2021.115771_b0140 – ident: 10.1016/j.eswa.2021.115771_b0025 doi: 10.18653/v1/W17-5221 – start-page: 15 year: 2013 ident: 10.1016/j.eswa.2021.115771_b0035 article-title: October). Research paper recommender system evaluation: A quantitative literature survey – volume: 2 start-page: 56 issue: 1 year: 2020 ident: 10.1016/j.eswa.2021.115771_b0180 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nature Machine Intelligence doi: 10.1038/s42256-019-0138-9 – ident: 10.1016/j.eswa.2021.115771_b0230 – volume: 49 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.eswa.2021.115771_b0105 article-title: Like it or not: A survey of twitter sentiment analysis methods publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/2938640 – start-page: 1597 year: 2019 ident: 10.1016/j.eswa.2021.115771_b0295 article-title: BERT for stock market sentiment analysis – volume: 15 issue: 9 year: 2020 ident: 10.1016/j.eswa.2021.115771_b0325 article-title: Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter publication-title: PLoS ONE doi: 10.1371/journal.pone.0239441 – start-page: 959 year: 2015 ident: 10.1016/j.eswa.2021.115771_b0270 article-title: August). Twitter sentiment analysis with deep convolutional neural networks – ident: 10.1016/j.eswa.2021.115771_b0075 – start-page: 54 year: 2019 ident: 10.1016/j.eswa.2021.115771_b0015 article-title: An easy-to-use framework for state-of-the-art nlp – volume: 17 start-page: 252 year: 2009 ident: 10.1016/j.eswa.2021.115771_b0110 article-title: Twitter sentiment analysis publication-title: Entropy – volume: 40 start-page: 6266 issue: 16 year: 2013 ident: 10.1016/j.eswa.2021.115771_b0100 article-title: Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.05.057 – volume: 369 start-page: 188 year: 2016 ident: 10.1016/j.eswa.2021.115771_b0235 article-title: A topic-enhanced word embedding for Twitter sentiment classification publication-title: Information Sciences doi: 10.1016/j.ins.2016.06.040 – ident: 10.1016/j.eswa.2021.115771_b0170 – ident: 10.1016/j.eswa.2021.115771_b0065 doi: 10.18653/v1/2020.acl-main.747 – ident: 10.1016/j.eswa.2021.115771_b0115 – volume: 10 start-page: 1320 issue: 2010 year: 2010 ident: 10.1016/j.eswa.2021.115771_b0210 article-title: Twitter as a corpus for sentiment analysis and opinion mining publication-title: LREc – ident: 10.1016/j.eswa.2021.115771_b0310 doi: 10.18653/v1/P19-3007 – ident: 10.1016/j.eswa.2021.115771_b0040 – volume: 1073 start-page: 428 year: 2019 ident: 10.1016/j.eswa.2021.115771_b0125 article-title: TwitterBERT: Framework for Twitter Sentiment Analysis Based on Pre-trained Language Model Representations publication-title: Emerging Trends in Intelligent Computing and Informatics: Data Science, Intelligent Information Systems and Smart Computing – ident: 10.1016/j.eswa.2021.115771_b0030 doi: 10.1016/j.inffus.2019.12.012 – start-page: 2777 year: 2020 ident: 10.1016/j.eswa.2021.115771_b0255 article-title: EMET: Embeddings from multilingual-encoder transformer for fake news detection – ident: 10.1016/j.eswa.2021.115771_b0095 – volume: 21 start-page: 23 year: 2015 ident: 10.1016/j.eswa.2021.115771_b0130 article-title: The unreasonable effectiveness of recurrent neural networks publication-title: Andrej Karpathy Blog – start-page: 5998 year: 2017 ident: 10.1016/j.eswa.2021.115771_b0305 article-title: Attention is all you need – ident: 10.1016/j.eswa.2021.115771_b0245 doi: 10.18653/v1/S17-2088 – ident: 10.1016/j.eswa.2021.115771_b0265 – start-page: 24 year: 2013 ident: 10.1016/j.eswa.2021.115771_b0275 article-title: August). Exploiting topic-based twitter sentiment for stock prediction – ident: 10.1016/j.eswa.2021.115771_b0290 – volume: 3 start-page: 993 issue: 1 year: 2003 ident: 10.1016/j.eswa.2021.115771_b0045 article-title: Latent dirichlet allocation publication-title: Journal of Machine Learning Research – ident: 10.1016/j.eswa.2021.115771_b0185 – start-page: 1532 year: 2014 ident: 10.1016/j.eswa.2021.115771_b0220 article-title: Glove: Global vectors for word representation – volume: 89 start-page: 549 year: 2016 ident: 10.1016/j.eswa.2021.115771_b0280 article-title: Role of text pre-processing in twitter sentiment analysis publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.06.095 – start-page: 1135 year: 2016 ident: 10.1016/j.eswa.2021.115771_b0240 article-title: “Why should i trust you?” Explaining the predictions of any classifier – ident: 10.1016/j.eswa.2021.115771_b0165 doi: 10.18653/v1/N16-1082 – year: 1998 ident: 10.1016/j.eswa.2021.115771_b0190 – volume: 32 issue: 1 year: 2020 ident: 10.1016/j.eswa.2021.115771_b0145 article-title: Systematic literature review of sentiment analysis on Twitter using soft computing techniques publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.5107 – year: 2014 ident: 10.1016/j.eswa.2021.115771_b0120 article-title: Vader: A parsimonious rule-based model for sentiment analysis of social media text – ident: 10.1016/j.eswa.2021.115771_b0155 – ident: 10.1016/j.eswa.2021.115771_b0200 doi: 10.3115/1220575.1220643 – ident: 10.1016/j.eswa.2021.115771_b0300 – ident: 10.1016/j.eswa.2021.115771_b0260 – ident: 10.1016/j.eswa.2021.115771_b0285 – ident: 10.1016/j.eswa.2021.115771_b0055 doi: 10.18653/v1/D18-2029 – start-page: 115 year: 2012 ident: 10.1016/j.eswa.2021.115771_b0315 article-title: A system for real-time twitter sentiment analysis of 2012 us presidential election cycle – ident: 10.1016/j.eswa.2021.115771_b0090 – volume: 71 year: 2001 ident: 10.1016/j.eswa.2021.115771_b0215 article-title: Linguistic inquiry and word count: LIWC 2001 publication-title: Mahway: Lawrence Erlbaum Associates – ident: 10.1016/j.eswa.2021.115771_b0335 – start-page: 1345 year: 2016 ident: 10.1016/j.eswa.2021.115771_b0205 article-title: Sentiment analysis of Twitter data for predicting stock market movements – volume: 5 start-page: 135 year: 2017 ident: 10.1016/j.eswa.2021.115771_b0050 article-title: Enriching word vectors with subword information publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00051 – volume: 54 start-page: 50 year: 2019 ident: 10.1016/j.eswa.2021.115771_b0020 article-title: Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.10.001 – ident: 10.1016/j.eswa.2021.115771_b0080 – start-page: 508 year: 2012 ident: 10.1016/j.eswa.2021.115771_b0250 article-title: Semantic sentiment analysis of twitter |
SSID | ssj0017007 |
Score | 2.5063388 |
Snippet | •Comparison of selected popular and recent natural language processing methods.•Use of explainable Artificial Intelligence tools in Twitter sentiment... Many institutions and companies find it valuable to know how people feel about their ventures; hence, scientific research in sentiment analysis has been... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115771 |
SubjectTerms | Artificial intelligence Data mining Deep learning Explainability Explainable artificial intelligence Machine learning Natural language processing Performance prediction Sentiment analysis Social networks |
Title | Analysis of sentiment in tweets addressed to a single domain-specific Twitter account: Comparison of model performance and explainability of predictions |
URI | https://dx.doi.org/10.1016/j.eswa.2021.115771 https://www.proquest.com/docview/2599115415 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xecyB28Sd5OmL2-yuKwKXlTwFtKmgcraLW5Fvfg7_Llm0nRFQQ8eW5JQOpOZSft93xByFJnEpuWBpjlPIyq0yGlacEGVsMWHNpixHED2Ohrficv78H6BDDsuDMIqfexvY7qL1v5O37_Nfl2W_RtbHNh0aI92zBFCkfArRIxefvI-h3mg_Fzc6u3FFEd74kyL8SpmL6g9xNkJas7E7Lfk9CNMu9wzWiMrvmiEs_a51slCUW2Q1a4hA_j9uUk-OokRmBpAVpGT7oeyAgRjNTOwYcaJhWtopqAAvxNMCtDTR1VWFEmXCByC25cSOT6g2k4SpzCcNyvEhV3zHKi_GAegKg3Faz1xTCwE277huPoJfwI5v94id6Pz2-GY-tYLNA940lCRBbHKEhPbAswwZm02YEanJooSHfIsNGygQ2WLsVRopiLDtK2jImvpUHNuT0nBNlmsplWxQ0BkaRAFQuksTUQR5irLAmXrTsV4niec7RLWvXOZe11ybI8xkR0A7UGinSTaSbZ22iXH8zl1q8rx5-iwM6X85lvSpo0_5x10dpd-Z8-kPS6mKGHEwr1_LrtPlvHKqUUODshi8_RcHNrKpsl6znV7ZOns4mp8_QmfqPnG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUoHNoLpdCqUErn0Bsyu3acr96qVdHyUS5dJG6WE8dS0DYbsUHQS39Hf25nHGdRkeDQa-JEUcaeeU7ee8PY58RlWJbHlpcyT7iyquR5JRU3CsGHdVSxPEH2IpleqtOr-GqNTQYtDNEqQ-7vc7rP1uHIKLzNUVvXox8IDrAc4tZOeEFo9oJtKFy-1Mbg6PeK50H-c2lvuJdyGh6UMz3Jq1rekfmQFEdkOpOKp6rTozzti8_xFtsMqBG-9g_2hq1VzTZ7PXRkgLBAd9ifwWMEFg5IVuS9-6FugNhY3RIwz3i3cAvdAgzQh4J5BXbx09QNJ9UlMYdgdleTyAdM30riC0xW3Qrpxr57DrQPkgMwjYXqvp17KRaxbX_RuPaG_gL5if2WXR5_m02mPPRe4GUks46rIkpNkbkUEZgTAoM2Fs7mLkkyG8sidmJsY4NoLFdWmMQJi0AqwVDHVkrcJkXv2HqzaKr3DFSRR0mkjC3yTFVxaYoiMgg8jZBlmUmxy8TwznUZjMmpP8ZcDwy0a01x0hQn3cdplx2urml7W45nR8dDKPU_k0tj3Xj2uv0h7jos7aXG_WJOHkYi3vvP235iL6ez7-f6_OTi7AN7RWe8deR4n613N7fVR4Q5XXHgp_FfTFz7VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+sentiment+in+tweets+addressed+to+a+single+domain-specific+Twitter+account%3A+Comparison+of+model+performance+and+explainability+of+predictions&rft.jtitle=Expert+systems+with+applications&rft.au=Fiok%2C+Krzysztof&rft.au=Karwowski%2C+Waldemar&rft.au=Gutierrez%2C+Edgar&rft.au=Wilamowski%2C+Maciej&rft.date=2021-12-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=186&rft_id=info:doi/10.1016%2Fj.eswa.2021.115771&rft.externalDocID=S0957417421011428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |