Sparsity in Bayesian inversion of parametric operator equations

We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy observation data δ. We generalize the results and algorithms introduced in C Schillings and C Schwab (2013 Inverse Problems 29 065011) for the part...

Full description

Saved in:
Bibliographic Details
Published inInverse problems Vol. 30; no. 6; pp. 65007 - 30
Main Authors Schillings, Cl, Schwab, Ch
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2014
Subjects
Online AccessGet full text
ISSN0266-5611
1361-6420
DOI10.1088/0266-5611/30/6/065007

Cover

Loading…
Abstract We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy observation data δ. We generalize the results and algorithms introduced in C Schillings and C Schwab (2013 Inverse Problems 29 065011) for the particular case of scalar diffusion problems with random coefficients to broad classes of forward problems, including general elliptic and parabolic operators with uncertain coefficients, and in random domains. For countably parametric, deterministic representations of uncertain parameters in the forward problem, which belong to a specified sparsity class, we quantify analytic regularity of the likewise countably parametric, deterministic Bayesian posterior density with respect to a uniform prior on the uncertain parameter sequences and prove that the parametric, deterministic density of the Bayesian posterior belongs to the same sparsity class. Generalizing C Schillings and C Schwab (2013 Inverse Problems 29 065011) and C Schwab and A M Stuart (2012 Inverse Problems 28 045003) the forward problems are converted to countably parametric, deterministic operator equations. Computational Bayesian inversion amounts to numerically evaluating expectations of quantities of interest (QoIs) under the Bayesian posterior, conditional on noisy observation data. Our results imply, on the one hand, sparsity of Legendre (generalized) polynomial chaos expansions of the density of the Bayesian posterior with respect to uniform prior and, on the other hand, convergence rates for data-adaptive Smolyak integration algorithms for computational Bayesian estimation, which are independent of the dimension of the parameter space. We prove, mathematically and computationally, that for uncertain inputs with sufficient sparsity convergence rates are, in particular, superior to Markov chain Monte-Carlo sampling of the posterior, in terms of the number N of instances of the parametric forward problem to be solved.
AbstractList We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy observation data [delta]. We generalize the results and algorithms introduced in C Schillings and C Schwab for the particular case of scalar diffusion problems with random coefficients to broad classes of forward problems, including general elliptic and parabolic operators with uncertain coefficients, and in random domains. For countably parametric, deterministic representations of uncertain parameters in the forward problem, which belong to a specified sparsity class, we quantify analytic regularity of the likewise countably parametric, deterministic Bayesian posterior density with respect to a uniform prior on the uncertain parameter sequences and prove that the parametric, deterministic density of the Bayesian posterior belongs to the same sparsity class. We prove, mathematically and computationally, that for uncertain inputs with sufficient sparsity convergence rates are, in particular, superior to Markov chain Monte-Carlo sampling of the posterior, in terms of the number N of instances of the parametric forward problem to be solved.
We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy observation data δ. We generalize the results and algorithms introduced in C Schillings and C Schwab (2013 Inverse Problems 29 065011) for the particular case of scalar diffusion problems with random coefficients to broad classes of forward problems, including general elliptic and parabolic operators with uncertain coefficients, and in random domains. For countably parametric, deterministic representations of uncertain parameters in the forward problem, which belong to a specified sparsity class, we quantify analytic regularity of the likewise countably parametric, deterministic Bayesian posterior density with respect to a uniform prior on the uncertain parameter sequences and prove that the parametric, deterministic density of the Bayesian posterior belongs to the same sparsity class. Generalizing C Schillings and C Schwab (2013 Inverse Problems 29 065011) and C Schwab and A M Stuart (2012 Inverse Problems 28 045003) the forward problems are converted to countably parametric, deterministic operator equations. Computational Bayesian inversion amounts to numerically evaluating expectations of quantities of interest (QoIs) under the Bayesian posterior, conditional on noisy observation data. Our results imply, on the one hand, sparsity of Legendre (generalized) polynomial chaos expansions of the density of the Bayesian posterior with respect to uniform prior and, on the other hand, convergence rates for data-adaptive Smolyak integration algorithms for computational Bayesian estimation, which are independent of the dimension of the parameter space. We prove, mathematically and computationally, that for uncertain inputs with sufficient sparsity convergence rates are, in particular, superior to Markov chain Monte-Carlo sampling of the posterior, in terms of the number N of instances of the parametric forward problem to be solved.
Author Schwab, Ch
Schillings, Cl
Author_xml – sequence: 1
  givenname: Cl
  surname: Schillings
  fullname: Schillings, Cl
  email: claudia.schillings@sam.math.ethz.ch
  organization: Seminar for Applied Mathematics , ETH, CH-8092 Zurich, Switzerland
– sequence: 2
  givenname: Ch
  surname: Schwab
  fullname: Schwab, Ch
  email: christoph.schwab@sam.math.ethz.ch
  organization: Seminar for Applied Mathematics , ETH, CH-8092 Zurich, Switzerland
BookMark eNqFkE1LxDAQhoOs4O7qTxB69FI7k7RJiwfRxS9Y8KCeQzZNIUu36SapsP_erhUPXjzNMPM-w_AsyKxznSHkEuEaoSwzoJynBUfMGGQ8A14AiBMyR8Yx5TmFGZn_Zs7IIoQtAGKJYk5u33rlg42HxHbJvTqYYFU39p9mnLoucU0yBtTORG914nrjVXQ-MftBxXEfzslpo9pgLn7qknw8PryvntP169PL6m6dakbLmOYclBGVKUqj8xI1zyuBaDZlzVWtuKgrRbUQLBcb1lTAG4pY1WgYV0B1UbAluZru9t7tBxOi3NmgTduqzrghSORCVEArmo_RmymqvQvBm0ZqG7-_jV7ZViLIozZ5VCKPSiQDyeWkbaSLP3Tv7U75w78cTpx1vdy6wXejjn-YLysjgIk
CODEN INPEEY
CitedBy_id crossref_primary_10_1002_mats_202100017
crossref_primary_10_1142_S0218202519500349
crossref_primary_10_1007_s00211_021_01257_w
crossref_primary_10_1016_j_cma_2015_08_006
crossref_primary_10_1137_17M1156010
crossref_primary_10_1016_j_jcp_2016_02_055
crossref_primary_10_1051_m2an_2016005
crossref_primary_10_1137_19M1260293
crossref_primary_10_1080_01621459_2019_1574583
crossref_primary_10_1137_140999050
crossref_primary_10_1142_S0218202517500439
crossref_primary_10_1137_140985913
crossref_primary_10_1142_S021820251750021X
crossref_primary_10_1017_S0962492915000033
crossref_primary_10_1137_23M1576451
crossref_primary_10_1137_16M1061692
crossref_primary_10_1007_s10208_016_9329_5
crossref_primary_10_1007_s10444_018_9594_8
crossref_primary_10_1007_s11222_022_10123_0
crossref_primary_10_1137_16M1096116
crossref_primary_10_1007_s00211_020_01131_1
crossref_primary_10_1051_m2an_2018012
crossref_primary_10_1137_16M1078690
crossref_primary_10_1016_j_camwa_2018_09_019
Cites_doi 10.1017/S0962492910000061
10.1007/s00607-003-0015-5
10.1088/0266-5611/28/4/045003
10.1016/j.jco.2003.11.008
10.4208/cicp.2009.v6.p826
10.1016/j.jcp.2006.01.048
10.1137/110845598
10.1142/S0219530512500145
10.1016/j.jcp.2008.11.024
10.1016/j.jat.2012.11.005
10.1088/0266-5611/29/6/065011
10.1090/S0025-5718-08-02009-7
10.1007/978-1-4757-3071-5
10.1007/b138659
10.1142/S0219530511001728
10.1007/s10208-012-9140-x
10.1142/S0219530513500012
10.1137/120894725
10.1007/s10208-010-9072-2
10.1007/s10013-013-0011-9
10.1214/11-AAP817
10.1051/m2an/2012027
10.1090/S0025-5718-08-02205-9
10.1007/s00211-011-0377-0
10.1029/96WR00160
10.1016/j.jcp.2006.10.010
10.1016/j.jat.2011.02.001
10.1090/S0002-9939-2012-11291-2
ContentType Journal Article
Copyright 2014 IOP Publishing Ltd
Copyright_xml – notice: 2014 IOP Publishing Ltd
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1088/0266-5611/30/6/065007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
DocumentTitleAlternate Sparsity in Bayesian inversion of parametric operator equations
EISSN 1361-6420
EndPage 30
ExternalDocumentID 10_1088_0266_5611_30_6_065007
ip478579
GroupedDBID -~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHFT
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
KZ1
LAP
LMP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
ZMT
~02
AAYXX
ADACN
ADEQX
AERVB
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-460ae79e58ec481c649711eb8d6ada67d9a2c77347b3f906f2119d1e36a02c553
IEDL.DBID IOP
ISSN 0266-5611
IngestDate Thu Jul 10 17:12:16 EDT 2025
Tue Jul 01 00:41:23 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
Wed Aug 21 03:33:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-460ae79e58ec481c649711eb8d6ada67d9a2c77347b3f906f2119d1e36a02c553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1677902924
PQPubID 23500
PageCount 30
ParticipantIDs crossref_citationtrail_10_1088_0266_5611_30_6_065007
crossref_primary_10_1088_0266_5611_30_6_065007
proquest_miscellaneous_1677902924
iop_journals_10_1088_0266_5611_30_6_065007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Inverse problems
PublicationTitleAbbrev IP
PublicationTitleAlternate Inverse Problems
PublicationYear 2014
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Schillings C (32) 2013; 29
23
24
25
26
27
29
Schwab C (34) 2012; 28
Ketelsen C (21) 2013
Minka T P (28) 2001
Schillings C (31) 2013; 10
Hansen M (16) 2013
Bui-Thanh T (3) 2012; 28
Kaipio J (20) 2005
30
10
11
33
12
13
35
14
36
15
17
18
Liu J (22) 2001
1
2
4
5
6
7
8
Chkifa A (9) 2013
Ha Hoang V (19) 2013; 29
References_xml – ident: 36
  doi: 10.1017/S0962492910000061
– ident: 14
  doi: 10.1007/s00607-003-0015-5
– volume: 28
  issn: 0266-5611
  year: 2012
  ident: 34
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/28/4/045003
– volume: 28
  issn: 0266-5611
  year: 2012
  ident: 3
  publication-title: Inverse Problems
– ident: 12
  doi: 10.1016/j.jco.2003.11.008
– ident: 25
  doi: 10.4208/cicp.2009.v6.p826
– ident: 35
  doi: 10.1016/j.jcp.2006.01.048
– ident: 23
  doi: 10.1137/110845598
– ident: 17
  doi: 10.1142/S0219530512500145
– volume: 29
  issn: 0266-5611
  year: 2013
  ident: 19
  publication-title: Inverse Problems
– year: 2001
  ident: 22
  publication-title: Monte Carlo Strategies in Scientific Computing
– ident: 26
  doi: 10.1016/j.jcp.2008.11.024
– ident: 6
  doi: 10.1016/j.jat.2012.11.005
– volume: 29
  issn: 0266-5611
  year: 2013
  ident: 32
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/6/065011
– ident: 13
  doi: 10.1090/S0025-5718-08-02009-7
– ident: 29
  doi: 10.1007/978-1-4757-3071-5
– year: 2005
  ident: 20
  publication-title: Statistical and Computational Inverse Problems
  doi: 10.1007/b138659
– year: 2013
  ident: 21
– year: 2013
  ident: 16
  publication-title: Proc. 5th Conf. High Performance Computing
– ident: 11
  doi: 10.1142/S0219530511001728
– ident: 8
  doi: 10.1007/s10208-012-9140-x
– ident: 18
  doi: 10.1142/S0219530513500012
– ident: 1
  doi: 10.1137/120894725
– ident: 10
  doi: 10.1007/s10208-010-9072-2
– ident: 15
  doi: 10.1007/s10013-013-0011-9
– ident: 30
  doi: 10.1214/11-AAP817
– ident: 7
  doi: 10.1051/m2an/2012027
– start-page: 362
  year: 2001
  ident: 28
  publication-title: Proc. 17th Conf. in Uncertainty in Artificial Intelligence
– ident: 33
  doi: 10.1090/S0025-5718-08-02205-9
– year: 2013
  ident: 9
– ident: 2
  doi: 10.1007/s00211-011-0377-0
– ident: 27
  doi: 10.1029/96WR00160
– ident: 24
  doi: 10.1016/j.jcp.2006.10.010
– ident: 4
  doi: 10.1016/j.jat.2011.02.001
– ident: 5
  doi: 10.1090/S0002-9939-2012-11291-2
– volume: 10
  start-page: 280
  year: 2013
  ident: 31
  publication-title: Oberwolfach Rep.
SSID ssj0011817
Score 2.2825584
Snippet We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65007
SubjectTerms Algorithms
Bayesian analysis
Bayesian inverse problems
Density
Forward problem
Inverse problems
Inversions
Mathematical analysis
Operators
parametric operator equations
Smolyak quadrature
sparsity
uniform prior measures
Title Sparsity in Bayesian inversion of parametric operator equations
URI https://iopscience.iop.org/article/10.1088/0266-5611/30/6/065007
https://www.proquest.com/docview/1677902924
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4-LnrwLb5ZwZOw7e7m2aOKpQhVDwrewmw2C0XdrbYV9Nc72WxLVaSItyxkQnaSzEzm8YWQkzTnyoDJwyiBKGScohwUHEKUlWivA01N5dPtXovOPbt64A9TVfy9sl-L_gY2PVCwZ2GdEKeaeGsQIar9uEmjpmg6G8OVky9ShbrGlfDd3E7iCKi_pPeyeJJxDc9vw3zRTvM4gx8iutI77VUC4xn7dJPHxmiYNszHNzDH__zSGlmpjdLgzPdfJ3O22CDLU1CF-NWd4LsONtHE70OVzRH0iuAc3q0rxcT2m_e-BWUeOEzxZ_dclwnKvq2C-YF98cDigy1y3768u-iE9VMMoaGJGoZMRGBly3JlDVOxEawl49imKhOQgZBZCxIjJWUypXkrErkDjstiSwVEieGcbpOFoizsDgkiCmiEcSu5MIxLSCEHhqPEWZrlOZO7hI2XQJsap9w9l_Gkq3i5UtpxSztuaRppoT23dkljQtb3QB2zCE5xOXR9ZAezOh-Pt4HG8-eCKlDYcoRkwiE2JniN3fvLgPtkCU0v5pPODsjC8HVkD9G8GaZH1Q7-BJf96d4
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBY5oDQPOdqG3HWhTwWvZevyPuZa0iPbPHRh34QsSxCS2E52N5D8-ows2yQtYSl5s8Ej5JE080kz8wmhr5llqVbahjhROKSMgB3kTIVgKwGvK5Lp-kz3fMjPRvTHmI0X0ElXC1NWjenvwaMnCvYqbBLi0gh2DTwEtx9HBEc8chgDi6jK7SJaZoSTuozv90UXSwAfJvxJixdr63hea-qFh1qEXvxjpmvfM1hDpu21Tzm56s2mWU8__kXo-NbfWkerDTgNDr3MBlowxQe08oyyEN7OO57XyUeA-pWqszqCyyI4Ug_GlWTC870_hQtKGzhu8Rt3bZcOysrUQf3A3HqC8cknNBqc_jk-C5srGUJNknQaUo6VEX3DUqNpGmtO-yKOTZbmXOWKi7yvEi0EoSIjto-5dQRyeWwIVzjRjJFNtFSUhdlCASYKwBgzgnFNmVCZsopCK3Ge5dZSsY1oOwxSN3zl7tqMa1nHzdNUOo1JpzFJsOTSa2wb9TqxyhN2zBP4BkMim6U7mffxl3YqSFiHLriiClPOQIw75sYEtrM7_9PgZ_Tu4mQgf30f_txF7wGNUZ-HtoeWpnczsw-IZ5od1BP6CYdM70I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity+in+Bayesian+inversion+of+parametric+operator+equations&rft.jtitle=Inverse+problems&rft.au=Schillings%2C+Cl&rft.au=Schwab%2C+Ch&rft.date=2014-06-01&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=30&rft.issue=6&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1088%2F0266-5611%2F30%2F6%2F065007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon