Sparsity in Bayesian inversion of parametric operator equations
We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy observation data δ. We generalize the results and algorithms introduced in C Schillings and C Schwab (2013 Inverse Problems 29 065011) for the part...
Saved in:
Published in | Inverse problems Vol. 30; no. 6; pp. 65007 - 30 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0266-5611 1361-6420 |
DOI | 10.1088/0266-5611/30/6/065007 |
Cover
Loading…
Abstract | We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy observation data δ. We generalize the results and algorithms introduced in C Schillings and C Schwab (2013 Inverse Problems 29 065011) for the particular case of scalar diffusion problems with random coefficients to broad classes of forward problems, including general elliptic and parabolic operators with uncertain coefficients, and in random domains. For countably parametric, deterministic representations of uncertain parameters in the forward problem, which belong to a specified sparsity class, we quantify analytic regularity of the likewise countably parametric, deterministic Bayesian posterior density with respect to a uniform prior on the uncertain parameter sequences and prove that the parametric, deterministic density of the Bayesian posterior belongs to the same sparsity class. Generalizing C Schillings and C Schwab (2013 Inverse Problems 29 065011) and C Schwab and A M Stuart (2012 Inverse Problems 28 045003) the forward problems are converted to countably parametric, deterministic operator equations. Computational Bayesian inversion amounts to numerically evaluating expectations of quantities of interest (QoIs) under the Bayesian posterior, conditional on noisy observation data. Our results imply, on the one hand, sparsity of Legendre (generalized) polynomial chaos expansions of the density of the Bayesian posterior with respect to uniform prior and, on the other hand, convergence rates for data-adaptive Smolyak integration algorithms for computational Bayesian estimation, which are independent of the dimension of the parameter space. We prove, mathematically and computationally, that for uncertain inputs with sufficient sparsity convergence rates are, in particular, superior to Markov chain Monte-Carlo sampling of the posterior, in terms of the number N of instances of the parametric forward problem to be solved. |
---|---|
AbstractList | We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy observation data [delta]. We generalize the results and algorithms introduced in C Schillings and C Schwab for the particular case of scalar diffusion problems with random coefficients to broad classes of forward problems, including general elliptic and parabolic operators with uncertain coefficients, and in random domains. For countably parametric, deterministic representations of uncertain parameters in the forward problem, which belong to a specified sparsity class, we quantify analytic regularity of the likewise countably parametric, deterministic Bayesian posterior density with respect to a uniform prior on the uncertain parameter sequences and prove that the parametric, deterministic density of the Bayesian posterior belongs to the same sparsity class. We prove, mathematically and computationally, that for uncertain inputs with sufficient sparsity convergence rates are, in particular, superior to Markov chain Monte-Carlo sampling of the posterior, in terms of the number N of instances of the parametric forward problem to be solved. We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy observation data δ. We generalize the results and algorithms introduced in C Schillings and C Schwab (2013 Inverse Problems 29 065011) for the particular case of scalar diffusion problems with random coefficients to broad classes of forward problems, including general elliptic and parabolic operators with uncertain coefficients, and in random domains. For countably parametric, deterministic representations of uncertain parameters in the forward problem, which belong to a specified sparsity class, we quantify analytic regularity of the likewise countably parametric, deterministic Bayesian posterior density with respect to a uniform prior on the uncertain parameter sequences and prove that the parametric, deterministic density of the Bayesian posterior belongs to the same sparsity class. Generalizing C Schillings and C Schwab (2013 Inverse Problems 29 065011) and C Schwab and A M Stuart (2012 Inverse Problems 28 045003) the forward problems are converted to countably parametric, deterministic operator equations. Computational Bayesian inversion amounts to numerically evaluating expectations of quantities of interest (QoIs) under the Bayesian posterior, conditional on noisy observation data. Our results imply, on the one hand, sparsity of Legendre (generalized) polynomial chaos expansions of the density of the Bayesian posterior with respect to uniform prior and, on the other hand, convergence rates for data-adaptive Smolyak integration algorithms for computational Bayesian estimation, which are independent of the dimension of the parameter space. We prove, mathematically and computationally, that for uncertain inputs with sufficient sparsity convergence rates are, in particular, superior to Markov chain Monte-Carlo sampling of the posterior, in terms of the number N of instances of the parametric forward problem to be solved. |
Author | Schwab, Ch Schillings, Cl |
Author_xml | – sequence: 1 givenname: Cl surname: Schillings fullname: Schillings, Cl email: claudia.schillings@sam.math.ethz.ch organization: Seminar for Applied Mathematics , ETH, CH-8092 Zurich, Switzerland – sequence: 2 givenname: Ch surname: Schwab fullname: Schwab, Ch email: christoph.schwab@sam.math.ethz.ch organization: Seminar for Applied Mathematics , ETH, CH-8092 Zurich, Switzerland |
BookMark | eNqFkE1LxDAQhoOs4O7qTxB69FI7k7RJiwfRxS9Y8KCeQzZNIUu36SapsP_erhUPXjzNMPM-w_AsyKxznSHkEuEaoSwzoJynBUfMGGQ8A14AiBMyR8Yx5TmFGZn_Zs7IIoQtAGKJYk5u33rlg42HxHbJvTqYYFU39p9mnLoucU0yBtTORG914nrjVXQ-MftBxXEfzslpo9pgLn7qknw8PryvntP169PL6m6dakbLmOYclBGVKUqj8xI1zyuBaDZlzVWtuKgrRbUQLBcb1lTAG4pY1WgYV0B1UbAluZru9t7tBxOi3NmgTduqzrghSORCVEArmo_RmymqvQvBm0ZqG7-_jV7ZViLIozZ5VCKPSiQDyeWkbaSLP3Tv7U75w78cTpx1vdy6wXejjn-YLysjgIk |
CODEN | INPEEY |
CitedBy_id | crossref_primary_10_1002_mats_202100017 crossref_primary_10_1142_S0218202519500349 crossref_primary_10_1007_s00211_021_01257_w crossref_primary_10_1016_j_cma_2015_08_006 crossref_primary_10_1137_17M1156010 crossref_primary_10_1016_j_jcp_2016_02_055 crossref_primary_10_1051_m2an_2016005 crossref_primary_10_1137_19M1260293 crossref_primary_10_1080_01621459_2019_1574583 crossref_primary_10_1137_140999050 crossref_primary_10_1142_S0218202517500439 crossref_primary_10_1137_140985913 crossref_primary_10_1142_S021820251750021X crossref_primary_10_1017_S0962492915000033 crossref_primary_10_1137_23M1576451 crossref_primary_10_1137_16M1061692 crossref_primary_10_1007_s10208_016_9329_5 crossref_primary_10_1007_s10444_018_9594_8 crossref_primary_10_1007_s11222_022_10123_0 crossref_primary_10_1137_16M1096116 crossref_primary_10_1007_s00211_020_01131_1 crossref_primary_10_1051_m2an_2018012 crossref_primary_10_1137_16M1078690 crossref_primary_10_1016_j_camwa_2018_09_019 |
Cites_doi | 10.1017/S0962492910000061 10.1007/s00607-003-0015-5 10.1088/0266-5611/28/4/045003 10.1016/j.jco.2003.11.008 10.4208/cicp.2009.v6.p826 10.1016/j.jcp.2006.01.048 10.1137/110845598 10.1142/S0219530512500145 10.1016/j.jcp.2008.11.024 10.1016/j.jat.2012.11.005 10.1088/0266-5611/29/6/065011 10.1090/S0025-5718-08-02009-7 10.1007/978-1-4757-3071-5 10.1007/b138659 10.1142/S0219530511001728 10.1007/s10208-012-9140-x 10.1142/S0219530513500012 10.1137/120894725 10.1007/s10208-010-9072-2 10.1007/s10013-013-0011-9 10.1214/11-AAP817 10.1051/m2an/2012027 10.1090/S0025-5718-08-02205-9 10.1007/s00211-011-0377-0 10.1029/96WR00160 10.1016/j.jcp.2006.10.010 10.1016/j.jat.2011.02.001 10.1090/S0002-9939-2012-11291-2 |
ContentType | Journal Article |
Copyright | 2014 IOP Publishing Ltd |
Copyright_xml | – notice: 2014 IOP Publishing Ltd |
DBID | AAYXX CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1088/0266-5611/30/6/065007 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
DocumentTitleAlternate | Sparsity in Bayesian inversion of parametric operator equations |
EISSN | 1361-6420 |
EndPage | 30 |
ExternalDocumentID | 10_1088_0266_5611_30_6_065007 ip478579 |
GroupedDBID | -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHFT ABHWH ABJNI ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO JCGBZ KOT KZ1 LAP LMP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP ZMT ~02 AAYXX ADACN ADEQX AERVB CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-460ae79e58ec481c649711eb8d6ada67d9a2c77347b3f906f2119d1e36a02c553 |
IEDL.DBID | IOP |
ISSN | 0266-5611 |
IngestDate | Thu Jul 10 17:12:16 EDT 2025 Tue Jul 01 00:41:23 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Wed Aug 21 03:33:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-460ae79e58ec481c649711eb8d6ada67d9a2c77347b3f906f2119d1e36a02c553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1677902924 |
PQPubID | 23500 |
PageCount | 30 |
ParticipantIDs | crossref_citationtrail_10_1088_0266_5611_30_6_065007 crossref_primary_10_1088_0266_5611_30_6_065007 proquest_miscellaneous_1677902924 iop_journals_10_1088_0266_5611_30_6_065007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Inverse problems |
PublicationTitleAbbrev | IP |
PublicationTitleAlternate | Inverse Problems |
PublicationYear | 2014 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Schillings C (32) 2013; 29 23 24 25 26 27 29 Schwab C (34) 2012; 28 Ketelsen C (21) 2013 Minka T P (28) 2001 Schillings C (31) 2013; 10 Hansen M (16) 2013 Bui-Thanh T (3) 2012; 28 Kaipio J (20) 2005 30 10 11 33 12 13 35 14 36 15 17 18 Liu J (22) 2001 1 2 4 5 6 7 8 Chkifa A (9) 2013 Ha Hoang V (19) 2013; 29 |
References_xml | – ident: 36 doi: 10.1017/S0962492910000061 – ident: 14 doi: 10.1007/s00607-003-0015-5 – volume: 28 issn: 0266-5611 year: 2012 ident: 34 publication-title: Inverse Problems doi: 10.1088/0266-5611/28/4/045003 – volume: 28 issn: 0266-5611 year: 2012 ident: 3 publication-title: Inverse Problems – ident: 12 doi: 10.1016/j.jco.2003.11.008 – ident: 25 doi: 10.4208/cicp.2009.v6.p826 – ident: 35 doi: 10.1016/j.jcp.2006.01.048 – ident: 23 doi: 10.1137/110845598 – ident: 17 doi: 10.1142/S0219530512500145 – volume: 29 issn: 0266-5611 year: 2013 ident: 19 publication-title: Inverse Problems – year: 2001 ident: 22 publication-title: Monte Carlo Strategies in Scientific Computing – ident: 26 doi: 10.1016/j.jcp.2008.11.024 – ident: 6 doi: 10.1016/j.jat.2012.11.005 – volume: 29 issn: 0266-5611 year: 2013 ident: 32 publication-title: Inverse Problems doi: 10.1088/0266-5611/29/6/065011 – ident: 13 doi: 10.1090/S0025-5718-08-02009-7 – ident: 29 doi: 10.1007/978-1-4757-3071-5 – year: 2005 ident: 20 publication-title: Statistical and Computational Inverse Problems doi: 10.1007/b138659 – year: 2013 ident: 21 – year: 2013 ident: 16 publication-title: Proc. 5th Conf. High Performance Computing – ident: 11 doi: 10.1142/S0219530511001728 – ident: 8 doi: 10.1007/s10208-012-9140-x – ident: 18 doi: 10.1142/S0219530513500012 – ident: 1 doi: 10.1137/120894725 – ident: 10 doi: 10.1007/s10208-010-9072-2 – ident: 15 doi: 10.1007/s10013-013-0011-9 – ident: 30 doi: 10.1214/11-AAP817 – ident: 7 doi: 10.1051/m2an/2012027 – start-page: 362 year: 2001 ident: 28 publication-title: Proc. 17th Conf. in Uncertainty in Artificial Intelligence – ident: 33 doi: 10.1090/S0025-5718-08-02205-9 – year: 2013 ident: 9 – ident: 2 doi: 10.1007/s00211-011-0377-0 – ident: 27 doi: 10.1029/96WR00160 – ident: 24 doi: 10.1016/j.jcp.2006.10.010 – ident: 4 doi: 10.1016/j.jat.2011.02.001 – ident: 5 doi: 10.1090/S0002-9939-2012-11291-2 – volume: 10 start-page: 280 year: 2013 ident: 31 publication-title: Oberwolfach Rep. |
SSID | ssj0011817 |
Score | 2.2825584 |
Snippet | We establish posterior sparsity in Bayesian inversion for systems governed by operator equations with distributed parameter uncertainty subject to noisy... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 65007 |
SubjectTerms | Algorithms Bayesian analysis Bayesian inverse problems Density Forward problem Inverse problems Inversions Mathematical analysis Operators parametric operator equations Smolyak quadrature sparsity uniform prior measures |
Title | Sparsity in Bayesian inversion of parametric operator equations |
URI | https://iopscience.iop.org/article/10.1088/0266-5611/30/6/065007 https://www.proquest.com/docview/1677902924 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4-LnrwLb5ZwZOw7e7m2aOKpQhVDwrewmw2C0XdrbYV9Nc72WxLVaSItyxkQnaSzEzm8YWQkzTnyoDJwyiBKGScohwUHEKUlWivA01N5dPtXovOPbt64A9TVfy9sl-L_gY2PVCwZ2GdEKeaeGsQIar9uEmjpmg6G8OVky9ShbrGlfDd3E7iCKi_pPeyeJJxDc9vw3zRTvM4gx8iutI77VUC4xn7dJPHxmiYNszHNzDH__zSGlmpjdLgzPdfJ3O22CDLU1CF-NWd4LsONtHE70OVzRH0iuAc3q0rxcT2m_e-BWUeOEzxZ_dclwnKvq2C-YF98cDigy1y3768u-iE9VMMoaGJGoZMRGBly3JlDVOxEawl49imKhOQgZBZCxIjJWUypXkrErkDjstiSwVEieGcbpOFoizsDgkiCmiEcSu5MIxLSCEHhqPEWZrlOZO7hI2XQJsap9w9l_Gkq3i5UtpxSztuaRppoT23dkljQtb3QB2zCE5xOXR9ZAezOh-Pt4HG8-eCKlDYcoRkwiE2JniN3fvLgPtkCU0v5pPODsjC8HVkD9G8GaZH1Q7-BJf96d4 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBY5oDQPOdqG3HWhTwWvZevyPuZa0iPbPHRh34QsSxCS2E52N5D8-ows2yQtYSl5s8Ej5JE080kz8wmhr5llqVbahjhROKSMgB3kTIVgKwGvK5Lp-kz3fMjPRvTHmI0X0ElXC1NWjenvwaMnCvYqbBLi0gh2DTwEtx9HBEc8chgDi6jK7SJaZoSTuozv90UXSwAfJvxJixdr63hea-qFh1qEXvxjpmvfM1hDpu21Tzm56s2mWU8__kXo-NbfWkerDTgNDr3MBlowxQe08oyyEN7OO57XyUeA-pWqszqCyyI4Ug_GlWTC870_hQtKGzhu8Rt3bZcOysrUQf3A3HqC8cknNBqc_jk-C5srGUJNknQaUo6VEX3DUqNpGmtO-yKOTZbmXOWKi7yvEi0EoSIjto-5dQRyeWwIVzjRjJFNtFSUhdlCASYKwBgzgnFNmVCZsopCK3Ge5dZSsY1oOwxSN3zl7tqMa1nHzdNUOo1JpzFJsOTSa2wb9TqxyhN2zBP4BkMim6U7mffxl3YqSFiHLriiClPOQIw75sYEtrM7_9PgZ_Tu4mQgf30f_txF7wGNUZ-HtoeWpnczsw-IZ5od1BP6CYdM70I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity+in+Bayesian+inversion+of+parametric+operator+equations&rft.jtitle=Inverse+problems&rft.au=Schillings%2C+Cl&rft.au=Schwab%2C+Ch&rft.date=2014-06-01&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=30&rft.issue=6&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1088%2F0266-5611%2F30%2F6%2F065007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon |