On the intra-subject similarity of hand vein patterns in biometric recognition

In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the advantages it offers with respect to conventional approaches, such as those relying on fingerprint, iris, or face. Nevertheless, there are stil...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 192; p. 116305
Main Authors Kuzu, Rıdvan Salih, Maiorana, Emanuele, Campisi, Patrizio
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.04.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the advantages it offers with respect to conventional approaches, such as those relying on fingerprint, iris, or face. Nevertheless, there are still several properties of vein traits that need to be investigated and well understood. In this paper, we here analyze the level of similarity, evaluated in terms of recognition rate of a biometric system, of vein patterns in the fingers, palms, and dorsa of a person’s left and right hands. In other words, we analyze whether a subject, enrolled using vein patterns, either finger-vein, palm-vein, dorsal-vein, from one hand, can be recognized using the corresponding patterns from the other hand. Our investigation is conducted using deep-learning-based feature extraction approaches, three different vein modalities, and four different databases. The obtained experimental results show that corresponding fingers, palms, and dorsal regions from different hands of the same subject show more resemblance with respect to the traits from the same hand of different persons. Furthermore, our findings point out that similarities among vein patterns in corresponding fingers could be used for recognition purposes, while this still cannot be applied to palm and dorsum vein patterns. •Similarity between left and right hand vein patterns analyzed in a biometrics context.•Evaluation conducted on palm, dorsum, and finger veins from four different datasets.•State-of-the-art convolutional network employed for feature extraction.•Different network training models used to analyze vein pattern cross-hand similarity.•Activation maps computed to show discriminative patterns in distinct training models.
AbstractList In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the advantages it offers with respect to conventional approaches, such as those relying on fingerprint, iris, or face. Nevertheless, there are still several properties of vein traits that need to be investigated and well understood. In this paper, we here analyze the level of similarity, evaluated in terms of recognition rate of a biometric system, of vein patterns in the fingers, palms, and dorsa of a person’s left and right hands. In other words, we analyze whether a subject, enrolled using vein patterns, either finger-vein, palm-vein, dorsal-vein, from one hand, can be recognized using the corresponding patterns from the other hand. Our investigation is conducted using deep-learning-based feature extraction approaches, three different vein modalities, and four different databases. The obtained experimental results show that corresponding fingers, palms, and dorsal regions from different hands of the same subject show more resemblance with respect to the traits from the same hand of different persons. Furthermore, our findings point out that similarities among vein patterns in corresponding fingers could be used for recognition purposes, while this still cannot be applied to palm and dorsum vein patterns. •Similarity between left and right hand vein patterns analyzed in a biometrics context.•Evaluation conducted on palm, dorsum, and finger veins from four different datasets.•State-of-the-art convolutional network employed for feature extraction.•Different network training models used to analyze vein pattern cross-hand similarity.•Activation maps computed to show discriminative patterns in distinct training models.
In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the advantages it offers with respect to conventional approaches, such as those relying on fingerprint, iris, or face. Nevertheless, there are still several properties of vein traits that need to be investigated and well understood. In this paper, we here analyze the level of similarity, evaluated in terms of recognition rate of a biometric system, of vein patterns in the fingers, palms, and dorsa of a person's left and right hands. In other words, we analyze whether a subject, enrolled using vein patterns, either finger-vein, palm-vein, dorsal-vein, from one hand, can be recognized using the corresponding patterns from the other hand. Our investigation is conducted using deep-learning-based feature extraction approaches, three different vein modalities, and four different databases. The obtained experimental results show that corresponding fingers, palms, and dorsal regions from different hands of the same subject show more resemblance with respect to the traits from the same hand of different persons. Furthermore, our findings point out that similarities among vein patterns in corresponding fingers could be used for recognition purposes, while this still cannot be applied to palm and dorsum vein patterns.
ArticleNumber 116305
Author Campisi, Patrizio
Maiorana, Emanuele
Kuzu, Rıdvan Salih
Author_xml – sequence: 1
  givenname: Rıdvan Salih
  orcidid: 0000-0002-1816-181X
  surname: Kuzu
  fullname: Kuzu, Rıdvan Salih
  email: ridvansalih.kuzu@uniroma3.it
– sequence: 2
  givenname: Emanuele
  orcidid: 0000-0002-4312-6434
  surname: Maiorana
  fullname: Maiorana, Emanuele
  email: emanuele.maiorana@uniroma3.it
– sequence: 3
  givenname: Patrizio
  orcidid: 0000-0002-1923-2739
  surname: Campisi
  fullname: Campisi, Patrizio
  email: patrizio.campisi@uniroma3.it
BookMark eNp9kD1P5DAQhq0TJ7HA_QEqS9TZm7GTOCtdgxBfEoIGamvinRyOdu3F9oL495dor6KgmuZ9ZuZ9TsRRiIGFOEdYImD7e1xy_qClAoVLxFZD80MssDO6as1KH4kFrBpT1WjqY3GS8wiABsAsxONTkOWVpQ8lUZX3_ciuyOy3fkPJl08ZB_lKYS3f2Qe5o1I4hTzFZe_jlkvyTiZ28W_wxcdwJn4OtMn86_88FS83189Xd9XD0-391eVD5bTqSlU3TENH6IwC0yvWmkkBDisHrm0JVE9uAAX1oBtsqSXGoUdjnFKkqAN9Ki4Oe3cpvu05FzvGfQrTSavaGqHRqOdUd0i5FHNOPFjnC81_TmX9xiLY2Z4d7WzPzvbswd6Eqi_oLvktpc_voT8HiKfq756Tzc5zcLz2k6Ni19F_h_8DCbmLBQ
CitedBy_id crossref_primary_10_1117_1_JEI_33_4_043035
crossref_primary_10_1080_02533839_2025_2456472
crossref_primary_10_3390_photonics11121113
crossref_primary_10_1007_s11760_023_02671_3
crossref_primary_10_1109_TBIOM_2024_3364021
crossref_primary_10_1063_5_0136623
crossref_primary_10_1016_j_vlsi_2023_01_002
crossref_primary_10_1051_matecconf_202439201059
crossref_primary_10_1016_j_inffus_2024_102716
Cites_doi 10.1109/CVPR.2019.00482
10.1109/TIFS.2011.2158423
10.1016/j.cviu.2011.06.010
10.1109/TIFS.2020.2971144
10.1093/ietisy/e90-d.8.1185
10.1109/TCSVT.2003.818350
10.1016/j.neucom.2018.02.042
10.1109/TCSVT.2017.2684833
10.1109/ICCV.2017.74
10.1109/CVPR.2017.243
10.1109/TIFS.2019.2922331
10.1049/iet-cvi.2010.0175
10.1049/iet-bmt.2018.5027
10.1109/ACCESS.2018.2839720
10.1111/joa.12252
10.1109/TIP.2011.2171697
10.1109/BIOSIG.2016.7736908
10.1109/ACCESS.2019.2927230
10.1109/TIP.2014.2380171
10.1109/TIFS.2019.2912552
10.1109/CCST.2010.5678702
10.3906/elk-1311-43
10.1109/TIM.2009.2028772
10.1109/TIFS.2019.2902819
10.1109/ICB.2013.6612966
10.1007/978-3-642-25449-9_33
10.1016/j.patcog.2007.07.012
10.1145/1631272.1631444
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Apr 15, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 15, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.116305
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_116305
S0957417421016080
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-45eaf8a1c7207b2e33ea201f9c0c66a02bacf0204f3516a6ae1fb177c22a2a803
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sun Jul 13 03:22:42 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Tue Jul 01 04:05:57 EDT 2025
Fri Feb 23 02:43:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Biometric recognition
Vein patterns
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-45eaf8a1c7207b2e33ea201f9c0c66a02bacf0204f3516a6ae1fb177c22a2a803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1816-181X
0000-0002-1923-2739
0000-0002-4312-6434
PQID 2641053130
PQPubID 2045477
ParticipantIDs proquest_journals_2641053130
crossref_citationtrail_10_1016_j_eswa_2021_116305
crossref_primary_10_1016_j_eswa_2021_116305
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_116305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References (pp. 618–626).
(pp. 4690–4699).
Miura, Nagasaka, Miyatake (b21) 2007; E90-D
Rice, J. (1987). Apparatus for the identification of individuals. Google Patents. US Patent 4,699,149.
Yang, Hui, Chen, Xue, Liao (b38) 2019
(pp. 1–5).
Xu, Fei, Zhang (b37) 2015; 24
Yang, Yang, Yin, Xi (b39) 2018; 28
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In
Jalilian, Uhl (b13) 2018
Yuksel, Akarun, Sankur (b42) 2011; 5
Fang, Wu, Kang (b8) 2018; 290
Kuzu, Piciucco, Maiorana, Campisi (b19) 2020; 15
Hollingsworth, Bowyer, Lagree, Fenker, Flynn (b10) 2011; 115
Thapar, Jaswal, Nigam, Kanhangad (b29) 2019
Yang, W., Yu, X., & Liao, Q. (2009). Personal authentication using finger vein pattern and finger-dorsa texture fusion. In
Bowyer, K., Lagree, S., & Fenker, S. (2010). Human versus biometric detection of texture similarity in left and right irises. In
Zhou, Kumar (b45) 2011; 6
Wang, Sun, Sowmya (b34) 2020; 15
Kumar, A., & Wang, K., et al. (2016). Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network. In
.
Wang, Leedham, Cho (b32) 2008; 41
Ton, B. T., & Veldhuis, R. N. J. (2013). A high quality finger vascular pattern dataset collected using a custom designed capturing device. In
Uhl, Busch, Marcel, Veldhuis (b31) 2020
Yin, Y., Liu, L., & Sun, X. (2011). SDUMLA-HMT: A multimodal biometric database. In
Qin, El-Yacoubi, Lin, Liu (b24) 2019
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: visual explanations from deep networks via gradient-based localization. In
Kabaciński, Kowalski (b14) 2011
Kauba, C., Piciucco, E., Maiorana, E., Campisi, P., & Uhl, A. (2016). Advanced variants of feature level fusion for finger vein recognition. In
Claes, Reijniers, Shriver, Snyders, Suetens, Nielandt (b4) 2015; 226
Daugman (b6) 2004; 14
(pp. 905–908).
Das, Pal, Ballester, Blumenstein (b5) 2014
Wu, Elliott, Lin, Yuan (b35) 2019; 8
Pan, Wang, Shen, Chen, Li (b22) 2019; 7
Hao, Sun, Tan, Ren (b9) 2008
Ahmad, Cheng, Khan (b1) 2019
Piciucco, Kuzu, Maiorana, Campisi (b23) 2019
Song, Kim, Park (b28) 2019
Kuzu, R. S., Maiorana, E., & Campisi, P. (2020). Loss functions for CNN-based biometric vein recognition. In
Radzi, Khalil-Hani, Bakhteri (b25) 2016; 24
Biswas, S., Rohdin, J., Mňuk, T., & Drahanský, M. (2019). Is there any similarity between a person’s left and right retina?. In
Zhong, Shao, Du (b44) 2019; 14
(pp. 1–7).
Zhang, Guo, Lu, Zhang, Zuo (b43) 2009; 59
Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: additive angular margin loss for deep face recognition. In
Wang, Pan, Wang, Li, Li (b33) 2018; 6
Lu, Xie, Yoon, Wang, Park (b20) 2013
International Organization for Standardization (b12) 2006
Xie, Kumar (b36) 2017
Kumar, Zhou (b17) 2011; 21
Das (10.1016/j.eswa.2021.116305_b5) 2014
10.1016/j.eswa.2021.116305_b30
Yang (10.1016/j.eswa.2021.116305_b39) 2018; 28
Yuksel (10.1016/j.eswa.2021.116305_b42) 2011; 5
Jalilian (10.1016/j.eswa.2021.116305_b13) 2018
Zhou (10.1016/j.eswa.2021.116305_b45) 2011; 6
Yang (10.1016/j.eswa.2021.116305_b38) 2019
Wang (10.1016/j.eswa.2021.116305_b33) 2018; 6
Fang (10.1016/j.eswa.2021.116305_b8) 2018; 290
10.1016/j.eswa.2021.116305_b26
10.1016/j.eswa.2021.116305_b27
Claes (10.1016/j.eswa.2021.116305_b4) 2015; 226
Thapar (10.1016/j.eswa.2021.116305_b29) 2019
10.1016/j.eswa.2021.116305_b7
Lu (10.1016/j.eswa.2021.116305_b20) 2013
Ahmad (10.1016/j.eswa.2021.116305_b1) 2019
Kuzu (10.1016/j.eswa.2021.116305_b19) 2020; 15
Qin (10.1016/j.eswa.2021.116305_b24) 2019
Song (10.1016/j.eswa.2021.116305_b28) 2019
10.1016/j.eswa.2021.116305_b3
10.1016/j.eswa.2021.116305_b2
Wang (10.1016/j.eswa.2021.116305_b32) 2008; 41
Radzi (10.1016/j.eswa.2021.116305_b25) 2016; 24
Daugman (10.1016/j.eswa.2021.116305_b6) 2004; 14
Kabaciński (10.1016/j.eswa.2021.116305_b14) 2011
Miura (10.1016/j.eswa.2021.116305_b21) 2007; E90-D
International Organization for Standardization (10.1016/j.eswa.2021.116305_b12) 2006
Piciucco (10.1016/j.eswa.2021.116305_b23) 2019
Zhong (10.1016/j.eswa.2021.116305_b44) 2019; 14
Zhang (10.1016/j.eswa.2021.116305_b43) 2009; 59
Hollingsworth (10.1016/j.eswa.2021.116305_b10) 2011; 115
10.1016/j.eswa.2021.116305_b40
10.1016/j.eswa.2021.116305_b41
10.1016/j.eswa.2021.116305_b11
Wang (10.1016/j.eswa.2021.116305_b34) 2020; 15
Wu (10.1016/j.eswa.2021.116305_b35) 2019; 8
10.1016/j.eswa.2021.116305_b15
Hao (10.1016/j.eswa.2021.116305_b9) 2008
10.1016/j.eswa.2021.116305_b16
10.1016/j.eswa.2021.116305_b18
Pan (10.1016/j.eswa.2021.116305_b22) 2019; 7
Xu (10.1016/j.eswa.2021.116305_b37) 2015; 24
Kumar (10.1016/j.eswa.2021.116305_b17) 2011; 21
Xie (10.1016/j.eswa.2021.116305_b36) 2017
Uhl (10.1016/j.eswa.2021.116305_b31) 2020
References_xml – volume: 41
  start-page: 920
  year: 2008
  end-page: 929
  ident: b32
  article-title: Minutiae feature analysis for infrared hand vein pattern biometrics
  publication-title: Pattern Recognition
– year: 2020
  ident: b31
  article-title: Handbook of vascular biometrics
– volume: 15
  start-page: 375
  year: 2020
  end-page: 390
  ident: b34
  article-title: Multi-weighted co-occurrence descriptor encoding for vein recognition
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2019
  ident: b38
  article-title: FV-GAN: FInger vein representation using generative adversarial networks
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2019
  ident: b1
  article-title: Lightweight and privacy-preserving template generation for palm-vein based human recognition
  publication-title: IEEE Transactions on Information Forensics and Security
– reference: Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: additive angular margin loss for deep face recognition. In
– reference: Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In
– volume: 24
  start-page: 1863
  year: 2016
  end-page: 1878
  ident: b25
  article-title: Finger-vein biometric identification using convolutional neural network
  publication-title: Turkish Journal Electrical Engineering and Computer Sciences
– reference: (pp. 1–5).
– start-page: 12
  year: 2019
  end-page: 20
  ident: b23
  article-title: On the cross-finger similarity of vein patterns
  publication-title: International conference on image analysis and processing
– reference: Kauba, C., Piciucco, E., Maiorana, E., Campisi, P., & Uhl, A. (2016). Advanced variants of feature level fusion for finger vein recognition. In
– volume: 59
  start-page: 480
  year: 2009
  end-page: 490
  ident: b43
  article-title: An online system of multispectral palmprint verification
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 15
  start-page: 2641
  year: 2020
  end-page: 2654
  ident: b19
  article-title: On-the-fly finger-vein-based biometric recognition using deep neural networks
  publication-title: IEEE Transactions on Information Forensics and Security
– reference: Biswas, S., Rohdin, J., Mňuk, T., & Drahanský, M. (2019). Is there any similarity between a person’s left and right retina?. In
– reference: (pp. 4690–4699).
– volume: 7
  start-page: 90608
  year: 2019
  end-page: 90619
  ident: b22
  article-title: Multi-layer convolutional features concatenation with semantic feature selector for vein recognition
  publication-title: IEEE Access
– reference: Ton, B. T., & Veldhuis, R. N. J. (2013). A high quality finger vascular pattern dataset collected using a custom designed capturing device. In
– year: 2019
  ident: b28
  article-title: Finger-vein recognition based on deep DenseNet using composite image
  publication-title: IEEE Access
– volume: 24
  start-page: 549
  year: 2015
  end-page: 559
  ident: b37
  article-title: Combining left and right palmprint images for more accurate personal identification
  publication-title: IEEE Transactions on on Image Processing
– volume: 28
  start-page: 1892
  year: 2018
  end-page: 1905
  ident: b39
  article-title: Finger vein recognition with anatomy structure analysis
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– reference: Kumar, A., & Wang, K., et al. (2016). Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network. In
– year: 2019
  ident: b24
  article-title: An iterative deep neural network for hand-vein verification
  publication-title: IEEE Access
– volume: 14
  start-page: 3140
  year: 2019
  end-page: 3150
  ident: b44
  article-title: A hand-based multi-biometrics via deep hashing network and biometric graph matching
  publication-title: IEEE Transactions on Information Forensics and Security
– reference: (pp. 1–7).
– volume: 115
  start-page: 1493
  year: 2011
  end-page: -1502
  ident: b10
  article-title: Genetically identical irises have texture similarity that is not detected by iris biometrics
  publication-title: Computer Vision and Image Understanding
– reference: Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: visual explanations from deep networks via gradient-based localization. In
– start-page: 1
  year: 2018
  end-page: 8
  ident: b13
  article-title: Finger-vein recognition using deep fully convolutional neural semantic segmentation networks: The impact of training data
  publication-title: 2018 IEEE international workshop on information forensics and security
– volume: 5
  start-page: 398
  year: 2011
  end-page: 406
  ident: b42
  article-title: Hand vein biometry based on geometry and appearance methods
  publication-title: IET computer vision,
– volume: 6
  start-page: 1259
  year: 2011
  end-page: 1274
  ident: b45
  article-title: Human identification using palm-vein images
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 290
  start-page: 100
  year: 2018
  end-page: 107
  ident: b8
  article-title: A novel finger vein verification system based on two-stream convolutional network learning
  publication-title: Neurocomputing
– start-page: 68
  year: 2014
  end-page: 75
  ident: b5
  article-title: A new wrist vein biometric system
  publication-title: 2014 IEEE symposium on computational intelligence in biometrics and identity management
– volume: 14
  start-page: 21
  year: 2004
  end-page: 30
  ident: b6
  article-title: How iris recognition works
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– reference: (pp. 905–908).
– volume: 21
  start-page: 2228
  year: 2011
  end-page: 2244
  ident: b17
  article-title: Human identification using finger images
  publication-title: IEEE Transactions on Image Processing
– start-page: 109
  year: 2017
  end-page: 132
  ident: b36
  article-title: Finger vein identification using convolutional neural network and supervised discrete hashing
  publication-title: Deep learning for biometrics
– start-page: 410
  year: 2013
  end-page: 415
  ident: b20
  article-title: An available database for the research of finger vein recognition
  publication-title: 2013 6th International congress on image and signal processing. Vol. 1
– reference: Bowyer, K., Lagree, S., & Fenker, S. (2010). Human versus biometric detection of texture similarity in left and right irises. In
– volume: 226
  start-page: 60
  year: 2015
  end-page: 72
  ident: b4
  article-title: An investigation of matching symmetry in the human pinnae with possible implications for 3D ear recognition and sound localization
  publication-title: Journal of Anatomy
– start-page: 1
  year: 2019
  end-page: 8
  ident: b29
  article-title: PVSNet: Palm vein authentication siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features
  publication-title: 2019 IEEE 5th international conference on identity, security, and behavior analysis
– reference: Rice, J. (1987). Apparatus for the identification of individuals. Google Patents. US Patent 4,699,149.
– volume: E90-D
  start-page: 1185
  year: 2007
  end-page: 1194
  ident: b21
  article-title: Extraction of finger-vein patterns using maximum curvature points in image profiles
  publication-title: IEICE Transactions on Information and Systems
– volume: 8
  start-page: 206
  year: 2019
  end-page: 214
  ident: b35
  article-title: Low-cost biometric recognition system based on NIR palm vein image
  publication-title: IET Biometrics
– reference: .
– reference: Yin, Y., Liu, L., & Sun, X. (2011). SDUMLA-HMT: A multimodal biometric database. In
– start-page: 51
  year: 2011
  end-page: 59
  ident: b14
  article-title: Human vein pattern correlation - a comparison of segmentation methods
  publication-title: Computer recognition systems. Vol. 4
– reference: (pp. 618–626).
– reference: Yang, W., Yu, X., & Liao, Q. (2009). Personal authentication using finger vein pattern and finger-dorsa texture fusion. In
– year: 2006
  ident: b12
  article-title: ISO/IEC 19795 standard - -information technology–biometric performance testing and reporting – part 1: principles and framework
– reference: Kuzu, R. S., Maiorana, E., & Campisi, P. (2020). Loss functions for CNN-based biometric vein recognition. In
– start-page: 281
  year: 2008
  end-page: 284
  ident: b9
  article-title: Multispectral palm image fusion for accurate contact-free palmprint recognition
  publication-title: 2008 15th IEEE international conference on image processing
– volume: 6
  start-page: 28563
  year: 2018
  end-page: 28572
  ident: b33
  article-title: Spatial pyramid pooling of selective convolutional features for vein recognition
  publication-title: IEEE Access
– ident: 10.1016/j.eswa.2021.116305_b2
– ident: 10.1016/j.eswa.2021.116305_b7
  doi: 10.1109/CVPR.2019.00482
– start-page: 410
  year: 2013
  ident: 10.1016/j.eswa.2021.116305_b20
  article-title: An available database for the research of finger vein recognition
– year: 2019
  ident: 10.1016/j.eswa.2021.116305_b24
  article-title: An iterative deep neural network for hand-vein verification
  publication-title: IEEE Access
– volume: 6
  start-page: 1259
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2021.116305_b45
  article-title: Human identification using palm-vein images
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2011.2158423
– volume: 115
  start-page: 1493
  issue: 11
  year: 2011
  ident: 10.1016/j.eswa.2021.116305_b10
  article-title: Genetically identical irises have texture similarity that is not detected by iris biometrics
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2011.06.010
– start-page: 281
  year: 2008
  ident: 10.1016/j.eswa.2021.116305_b9
  article-title: Multispectral palm image fusion for accurate contact-free palmprint recognition
– volume: 15
  start-page: 2641
  year: 2020
  ident: 10.1016/j.eswa.2021.116305_b19
  article-title: On-the-fly finger-vein-based biometric recognition using deep neural networks
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2020.2971144
– year: 2019
  ident: 10.1016/j.eswa.2021.116305_b28
  article-title: Finger-vein recognition based on deep DenseNet using composite image
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.116305_b29
  article-title: PVSNet: Palm vein authentication siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features
– year: 2006
  ident: 10.1016/j.eswa.2021.116305_b12
– volume: E90-D
  start-page: 1185
  issue: 8
  year: 2007
  ident: 10.1016/j.eswa.2021.116305_b21
  article-title: Extraction of finger-vein patterns using maximum curvature points in image profiles
  publication-title: IEICE Transactions on Information and Systems
  doi: 10.1093/ietisy/e90-d.8.1185
– ident: 10.1016/j.eswa.2021.116305_b18
– volume: 14
  start-page: 21
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2021.116305_b6
  article-title: How iris recognition works
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2003.818350
– year: 2019
  ident: 10.1016/j.eswa.2021.116305_b1
  article-title: Lightweight and privacy-preserving template generation for palm-vein based human recognition
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 290
  start-page: 100
  year: 2018
  ident: 10.1016/j.eswa.2021.116305_b8
  article-title: A novel finger vein verification system based on two-stream convolutional network learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.042
– year: 2020
  ident: 10.1016/j.eswa.2021.116305_b31
– start-page: 109
  year: 2017
  ident: 10.1016/j.eswa.2021.116305_b36
  article-title: Finger vein identification using convolutional neural network and supervised discrete hashing
– start-page: 51
  year: 2011
  ident: 10.1016/j.eswa.2021.116305_b14
  article-title: Human vein pattern correlation - a comparison of segmentation methods
– volume: 28
  start-page: 1892
  issue: 8
  year: 2018
  ident: 10.1016/j.eswa.2021.116305_b39
  article-title: Finger vein recognition with anatomy structure analysis
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2017.2684833
– ident: 10.1016/j.eswa.2021.116305_b16
– ident: 10.1016/j.eswa.2021.116305_b27
  doi: 10.1109/ICCV.2017.74
– ident: 10.1016/j.eswa.2021.116305_b11
  doi: 10.1109/CVPR.2017.243
– volume: 15
  start-page: 375
  issn: 1556-6021
  year: 2020
  ident: 10.1016/j.eswa.2021.116305_b34
  article-title: Multi-weighted co-occurrence descriptor encoding for vein recognition
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2922331
– volume: 5
  start-page: 398
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2021.116305_b42
  article-title: Hand vein biometry based on geometry and appearance methods
  publication-title: IET computer vision,
  doi: 10.1049/iet-cvi.2010.0175
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.116305_b13
  article-title: Finger-vein recognition using deep fully convolutional neural semantic segmentation networks: The impact of training data
– volume: 8
  start-page: 206
  issn: 2047-4938
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2021.116305_b35
  article-title: Low-cost biometric recognition system based on NIR palm vein image
  publication-title: IET Biometrics
  doi: 10.1049/iet-bmt.2018.5027
– volume: 6
  start-page: 28563
  year: 2018
  ident: 10.1016/j.eswa.2021.116305_b33
  article-title: Spatial pyramid pooling of selective convolutional features for vein recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2839720
– volume: 226
  start-page: 60
  year: 2015
  ident: 10.1016/j.eswa.2021.116305_b4
  article-title: An investigation of matching symmetry in the human pinnae with possible implications for 3D ear recognition and sound localization
  publication-title: Journal of Anatomy
  doi: 10.1111/joa.12252
– volume: 21
  start-page: 2228
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2021.116305_b17
  article-title: Human identification using finger images
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2171697
– ident: 10.1016/j.eswa.2021.116305_b15
  doi: 10.1109/BIOSIG.2016.7736908
– ident: 10.1016/j.eswa.2021.116305_b26
– volume: 7
  start-page: 90608
  year: 2019
  ident: 10.1016/j.eswa.2021.116305_b22
  article-title: Multi-layer convolutional features concatenation with semantic feature selector for vein recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927230
– volume: 24
  start-page: 549
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2021.116305_b37
  article-title: Combining left and right palmprint images for more accurate personal identification
  publication-title: IEEE Transactions on on Image Processing
  doi: 10.1109/TIP.2014.2380171
– volume: 14
  start-page: 3140
  issue: 12
  year: 2019
  ident: 10.1016/j.eswa.2021.116305_b44
  article-title: A hand-based multi-biometrics via deep hashing network and biometric graph matching
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2912552
– ident: 10.1016/j.eswa.2021.116305_b3
  doi: 10.1109/CCST.2010.5678702
– volume: 24
  start-page: 1863
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2021.116305_b25
  article-title: Finger-vein biometric identification using convolutional neural network
  publication-title: Turkish Journal Electrical Engineering and Computer Sciences
  doi: 10.3906/elk-1311-43
– volume: 59
  start-page: 480
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2021.116305_b43
  article-title: An online system of multispectral palmprint verification
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2009.2028772
– start-page: 12
  year: 2019
  ident: 10.1016/j.eswa.2021.116305_b23
  article-title: On the cross-finger similarity of vein patterns
– year: 2019
  ident: 10.1016/j.eswa.2021.116305_b38
  article-title: FV-GAN: FInger vein representation using generative adversarial networks
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2902819
– ident: 10.1016/j.eswa.2021.116305_b30
  doi: 10.1109/ICB.2013.6612966
– ident: 10.1016/j.eswa.2021.116305_b41
  doi: 10.1007/978-3-642-25449-9_33
– start-page: 68
  year: 2014
  ident: 10.1016/j.eswa.2021.116305_b5
  article-title: A new wrist vein biometric system
– volume: 41
  start-page: 920
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2021.116305_b32
  article-title: Minutiae feature analysis for infrared hand vein pattern biometrics
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.07.012
– ident: 10.1016/j.eswa.2021.116305_b40
  doi: 10.1145/1631272.1631444
SSID ssj0017007
Score 2.4471955
Snippet In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116305
SubjectTerms Biometric recognition
Biometrics
Deep learning
Feature extraction
Fingers
Hand (anatomy)
Machine learning
Palm
Pattern recognition
Similarity
Vein patterns
Title On the intra-subject similarity of hand vein patterns in biometric recognition
URI https://dx.doi.org/10.1016/j.eswa.2021.116305
https://www.proquest.com/docview/2641053130
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W_wxRw7eJK5J07Q9juGYivOgg91C0iVQ0W7YTW_-7ea16UCRHbyWJJSXl-99Ce99D6HLmaMRwpqAJFEqCFcmJVpxQYygOgkc4RAhFAo_jMVowu-m0bSFBk0tDKRVeuyvMb1Ca_-l563ZW-R578mRAxcO3dWuUklL4N7OeQxefv21TvMA-bm41tuLCYz2hTN1jpcpP0F7iFGHHCKEFnZ_B6dfMF3FnuEe2vGkEffr_9pHLVMcoN2mIQP25_MQjR8L7AgdzuHFlpQrDY8suMzfcnd_dXQbzy2Gl3L8YfICLyppzaJ0w3FVhQ9i_XidUTQvjtBkePM8GBHfMIFkIUuWhEdG2UTRLGZBrJkJQ6NcgLdpFmRCqIBplVmohrVhRIUSylAL8lMZY4qpJAiPUbuYF-YE4ZnRKVVUxzri3OhMJypQzHLr6IxyMHCKaGMpmXk1cWhq8SqbtLEXCdaVYF1ZW_cUXa3nLGotjY2jo2YD5A-PkA7sN87rNLsl_XkspaN9FOAmDM7-uew52mZQ-QAyj1EHtZfvK3Ph-MhSdyuH66Kt_u39aPwN2s7e0Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqGGDhG1Eo4IENmcZO4qQjqkAF2jIAEptlB1sKgrQiLWz8du4SpxIIMbBGthWdfe-erbt3hJw8AY2QzgYsjXuSRdr2mNGRZFZykwZAOGSIhcKjsRw8RNeP8WOL9JtaGEyr9NhfY3qF1v5L11uzO83z7h2QAwiHcLWrVNJSuLcvR-C-2Mbg7HOR54H6c0ktuJcwHO4rZ-okL1t-oPiQ4AAdMsQedr9Hpx84XQWfyw2y5lkjPa9_bJO0bLFF1puODNQ76DYZ3xYUGB3N8cmWlXODryy0zF9zuMAC36YTR_GpnL7bvKDTSluzKGE4rcrwUa2fLlKKJsUOebi8uO8PmO-YwLJQpDMWxVa7VPMsEUFihA1DqyHCu14WZFLqQBidOSyHdWHMpZbacof6U5kQWug0CHfJUjEp7B6hT9b0uOYmMXEUWZOZVAdauMgBn9GAA23CG0upzMuJY1eLF9XkjT0rtK5C66raum1yupgzrcU0_hwdNxugvh0JBWj_57xOs1vKO2SpgPdxxJsw2P_nssdkZXA_Gqrh1fjmgKwKLINAzce4Q5Zmb3N7CORkZo6qw_cFDS7gXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+intra-subject+similarity+of+hand+vein+patterns+in+biometric+recognition&rft.jtitle=Expert+systems+with+applications&rft.au=Kuzu%2C+R%C4%B1dvan+Salih&rft.au=Maiorana%2C+Emanuele&rft.au=Campisi%2C+Patrizio&rft.date=2022-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=192&rft_id=info:doi/10.1016%2Fj.eswa.2021.116305&rft.externalDocID=S0957417421016080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon