On the intra-subject similarity of hand vein patterns in biometric recognition
In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the advantages it offers with respect to conventional approaches, such as those relying on fingerprint, iris, or face. Nevertheless, there are stil...
Saved in:
Published in | Expert systems with applications Vol. 192; p. 116305 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.04.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the advantages it offers with respect to conventional approaches, such as those relying on fingerprint, iris, or face. Nevertheless, there are still several properties of vein traits that need to be investigated and well understood. In this paper, we here analyze the level of similarity, evaluated in terms of recognition rate of a biometric system, of vein patterns in the fingers, palms, and dorsa of a person’s left and right hands. In other words, we analyze whether a subject, enrolled using vein patterns, either finger-vein, palm-vein, dorsal-vein, from one hand, can be recognized using the corresponding patterns from the other hand. Our investigation is conducted using deep-learning-based feature extraction approaches, three different vein modalities, and four different databases. The obtained experimental results show that corresponding fingers, palms, and dorsal regions from different hands of the same subject show more resemblance with respect to the traits from the same hand of different persons. Furthermore, our findings point out that similarities among vein patterns in corresponding fingers could be used for recognition purposes, while this still cannot be applied to palm and dorsum vein patterns.
•Similarity between left and right hand vein patterns analyzed in a biometrics context.•Evaluation conducted on palm, dorsum, and finger veins from four different datasets.•State-of-the-art convolutional network employed for feature extraction.•Different network training models used to analyze vein pattern cross-hand similarity.•Activation maps computed to show discriminative patterns in distinct training models. |
---|---|
AbstractList | In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the advantages it offers with respect to conventional approaches, such as those relying on fingerprint, iris, or face. Nevertheless, there are still several properties of vein traits that need to be investigated and well understood. In this paper, we here analyze the level of similarity, evaluated in terms of recognition rate of a biometric system, of vein patterns in the fingers, palms, and dorsa of a person’s left and right hands. In other words, we analyze whether a subject, enrolled using vein patterns, either finger-vein, palm-vein, dorsal-vein, from one hand, can be recognized using the corresponding patterns from the other hand. Our investigation is conducted using deep-learning-based feature extraction approaches, three different vein modalities, and four different databases. The obtained experimental results show that corresponding fingers, palms, and dorsal regions from different hands of the same subject show more resemblance with respect to the traits from the same hand of different persons. Furthermore, our findings point out that similarities among vein patterns in corresponding fingers could be used for recognition purposes, while this still cannot be applied to palm and dorsum vein patterns.
•Similarity between left and right hand vein patterns analyzed in a biometrics context.•Evaluation conducted on palm, dorsum, and finger veins from four different datasets.•State-of-the-art convolutional network employed for feature extraction.•Different network training models used to analyze vein pattern cross-hand similarity.•Activation maps computed to show discriminative patterns in distinct training models. In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the advantages it offers with respect to conventional approaches, such as those relying on fingerprint, iris, or face. Nevertheless, there are still several properties of vein traits that need to be investigated and well understood. In this paper, we here analyze the level of similarity, evaluated in terms of recognition rate of a biometric system, of vein patterns in the fingers, palms, and dorsa of a person's left and right hands. In other words, we analyze whether a subject, enrolled using vein patterns, either finger-vein, palm-vein, dorsal-vein, from one hand, can be recognized using the corresponding patterns from the other hand. Our investigation is conducted using deep-learning-based feature extraction approaches, three different vein modalities, and four different databases. The obtained experimental results show that corresponding fingers, palms, and dorsal regions from different hands of the same subject show more resemblance with respect to the traits from the same hand of different persons. Furthermore, our findings point out that similarities among vein patterns in corresponding fingers could be used for recognition purposes, while this still cannot be applied to palm and dorsum vein patterns. |
ArticleNumber | 116305 |
Author | Campisi, Patrizio Maiorana, Emanuele Kuzu, Rıdvan Salih |
Author_xml | – sequence: 1 givenname: Rıdvan Salih orcidid: 0000-0002-1816-181X surname: Kuzu fullname: Kuzu, Rıdvan Salih email: ridvansalih.kuzu@uniroma3.it – sequence: 2 givenname: Emanuele orcidid: 0000-0002-4312-6434 surname: Maiorana fullname: Maiorana, Emanuele email: emanuele.maiorana@uniroma3.it – sequence: 3 givenname: Patrizio orcidid: 0000-0002-1923-2739 surname: Campisi fullname: Campisi, Patrizio email: patrizio.campisi@uniroma3.it |
BookMark | eNp9kD1P5DAQhq0TJ7HA_QEqS9TZm7GTOCtdgxBfEoIGamvinRyOdu3F9oL495dor6KgmuZ9ZuZ9TsRRiIGFOEdYImD7e1xy_qClAoVLxFZD80MssDO6as1KH4kFrBpT1WjqY3GS8wiABsAsxONTkOWVpQ8lUZX3_ciuyOy3fkPJl08ZB_lKYS3f2Qe5o1I4hTzFZe_jlkvyTiZ28W_wxcdwJn4OtMn86_88FS83189Xd9XD0-391eVD5bTqSlU3TENH6IwC0yvWmkkBDisHrm0JVE9uAAX1oBtsqSXGoUdjnFKkqAN9Ki4Oe3cpvu05FzvGfQrTSavaGqHRqOdUd0i5FHNOPFjnC81_TmX9xiLY2Z4d7WzPzvbswd6Eqi_oLvktpc_voT8HiKfq756Tzc5zcLz2k6Ni19F_h_8DCbmLBQ |
CitedBy_id | crossref_primary_10_1117_1_JEI_33_4_043035 crossref_primary_10_1080_02533839_2025_2456472 crossref_primary_10_3390_photonics11121113 crossref_primary_10_1007_s11760_023_02671_3 crossref_primary_10_1109_TBIOM_2024_3364021 crossref_primary_10_1063_5_0136623 crossref_primary_10_1016_j_vlsi_2023_01_002 crossref_primary_10_1051_matecconf_202439201059 crossref_primary_10_1016_j_inffus_2024_102716 |
Cites_doi | 10.1109/CVPR.2019.00482 10.1109/TIFS.2011.2158423 10.1016/j.cviu.2011.06.010 10.1109/TIFS.2020.2971144 10.1093/ietisy/e90-d.8.1185 10.1109/TCSVT.2003.818350 10.1016/j.neucom.2018.02.042 10.1109/TCSVT.2017.2684833 10.1109/ICCV.2017.74 10.1109/CVPR.2017.243 10.1109/TIFS.2019.2922331 10.1049/iet-cvi.2010.0175 10.1049/iet-bmt.2018.5027 10.1109/ACCESS.2018.2839720 10.1111/joa.12252 10.1109/TIP.2011.2171697 10.1109/BIOSIG.2016.7736908 10.1109/ACCESS.2019.2927230 10.1109/TIP.2014.2380171 10.1109/TIFS.2019.2912552 10.1109/CCST.2010.5678702 10.3906/elk-1311-43 10.1109/TIM.2009.2028772 10.1109/TIFS.2019.2902819 10.1109/ICB.2013.6612966 10.1007/978-3-642-25449-9_33 10.1016/j.patcog.2007.07.012 10.1145/1631272.1631444 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Apr 15, 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Apr 15, 2022 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.116305 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_116305 S0957417421016080 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-45eaf8a1c7207b2e33ea201f9c0c66a02bacf0204f3516a6ae1fb177c22a2a803 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Sun Jul 13 03:22:42 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Tue Jul 01 04:05:57 EDT 2025 Fri Feb 23 02:43:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Biometric recognition Vein patterns |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-45eaf8a1c7207b2e33ea201f9c0c66a02bacf0204f3516a6ae1fb177c22a2a803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1816-181X 0000-0002-1923-2739 0000-0002-4312-6434 |
PQID | 2641053130 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2641053130 crossref_citationtrail_10_1016_j_eswa_2021_116305 crossref_primary_10_1016_j_eswa_2021_116305 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_116305 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | (pp. 618–626). (pp. 4690–4699). Miura, Nagasaka, Miyatake (b21) 2007; E90-D Rice, J. (1987). Apparatus for the identification of individuals. Google Patents. US Patent 4,699,149. Yang, Hui, Chen, Xue, Liao (b38) 2019 (pp. 1–5). Xu, Fei, Zhang (b37) 2015; 24 Yang, Yang, Yin, Xi (b39) 2018; 28 Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Jalilian, Uhl (b13) 2018 Yuksel, Akarun, Sankur (b42) 2011; 5 Fang, Wu, Kang (b8) 2018; 290 Kuzu, Piciucco, Maiorana, Campisi (b19) 2020; 15 Hollingsworth, Bowyer, Lagree, Fenker, Flynn (b10) 2011; 115 Thapar, Jaswal, Nigam, Kanhangad (b29) 2019 Yang, W., Yu, X., & Liao, Q. (2009). Personal authentication using finger vein pattern and finger-dorsa texture fusion. In Bowyer, K., Lagree, S., & Fenker, S. (2010). Human versus biometric detection of texture similarity in left and right irises. In Zhou, Kumar (b45) 2011; 6 Wang, Sun, Sowmya (b34) 2020; 15 Kumar, A., & Wang, K., et al. (2016). Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network. In . Wang, Leedham, Cho (b32) 2008; 41 Ton, B. T., & Veldhuis, R. N. J. (2013). A high quality finger vascular pattern dataset collected using a custom designed capturing device. In Uhl, Busch, Marcel, Veldhuis (b31) 2020 Yin, Y., Liu, L., & Sun, X. (2011). SDUMLA-HMT: A multimodal biometric database. In Qin, El-Yacoubi, Lin, Liu (b24) 2019 Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: visual explanations from deep networks via gradient-based localization. In Kabaciński, Kowalski (b14) 2011 Kauba, C., Piciucco, E., Maiorana, E., Campisi, P., & Uhl, A. (2016). Advanced variants of feature level fusion for finger vein recognition. In Claes, Reijniers, Shriver, Snyders, Suetens, Nielandt (b4) 2015; 226 Daugman (b6) 2004; 14 (pp. 905–908). Das, Pal, Ballester, Blumenstein (b5) 2014 Wu, Elliott, Lin, Yuan (b35) 2019; 8 Pan, Wang, Shen, Chen, Li (b22) 2019; 7 Hao, Sun, Tan, Ren (b9) 2008 Ahmad, Cheng, Khan (b1) 2019 Piciucco, Kuzu, Maiorana, Campisi (b23) 2019 Song, Kim, Park (b28) 2019 Kuzu, R. S., Maiorana, E., & Campisi, P. (2020). Loss functions for CNN-based biometric vein recognition. In Radzi, Khalil-Hani, Bakhteri (b25) 2016; 24 Biswas, S., Rohdin, J., Mňuk, T., & Drahanský, M. (2019). Is there any similarity between a person’s left and right retina?. In Zhong, Shao, Du (b44) 2019; 14 (pp. 1–7). Zhang, Guo, Lu, Zhang, Zuo (b43) 2009; 59 Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: additive angular margin loss for deep face recognition. In Wang, Pan, Wang, Li, Li (b33) 2018; 6 Lu, Xie, Yoon, Wang, Park (b20) 2013 International Organization for Standardization (b12) 2006 Xie, Kumar (b36) 2017 Kumar, Zhou (b17) 2011; 21 Das (10.1016/j.eswa.2021.116305_b5) 2014 10.1016/j.eswa.2021.116305_b30 Yang (10.1016/j.eswa.2021.116305_b39) 2018; 28 Yuksel (10.1016/j.eswa.2021.116305_b42) 2011; 5 Jalilian (10.1016/j.eswa.2021.116305_b13) 2018 Zhou (10.1016/j.eswa.2021.116305_b45) 2011; 6 Yang (10.1016/j.eswa.2021.116305_b38) 2019 Wang (10.1016/j.eswa.2021.116305_b33) 2018; 6 Fang (10.1016/j.eswa.2021.116305_b8) 2018; 290 10.1016/j.eswa.2021.116305_b26 10.1016/j.eswa.2021.116305_b27 Claes (10.1016/j.eswa.2021.116305_b4) 2015; 226 Thapar (10.1016/j.eswa.2021.116305_b29) 2019 10.1016/j.eswa.2021.116305_b7 Lu (10.1016/j.eswa.2021.116305_b20) 2013 Ahmad (10.1016/j.eswa.2021.116305_b1) 2019 Kuzu (10.1016/j.eswa.2021.116305_b19) 2020; 15 Qin (10.1016/j.eswa.2021.116305_b24) 2019 Song (10.1016/j.eswa.2021.116305_b28) 2019 10.1016/j.eswa.2021.116305_b3 10.1016/j.eswa.2021.116305_b2 Wang (10.1016/j.eswa.2021.116305_b32) 2008; 41 Radzi (10.1016/j.eswa.2021.116305_b25) 2016; 24 Daugman (10.1016/j.eswa.2021.116305_b6) 2004; 14 Kabaciński (10.1016/j.eswa.2021.116305_b14) 2011 Miura (10.1016/j.eswa.2021.116305_b21) 2007; E90-D International Organization for Standardization (10.1016/j.eswa.2021.116305_b12) 2006 Piciucco (10.1016/j.eswa.2021.116305_b23) 2019 Zhong (10.1016/j.eswa.2021.116305_b44) 2019; 14 Zhang (10.1016/j.eswa.2021.116305_b43) 2009; 59 Hollingsworth (10.1016/j.eswa.2021.116305_b10) 2011; 115 10.1016/j.eswa.2021.116305_b40 10.1016/j.eswa.2021.116305_b41 10.1016/j.eswa.2021.116305_b11 Wang (10.1016/j.eswa.2021.116305_b34) 2020; 15 Wu (10.1016/j.eswa.2021.116305_b35) 2019; 8 10.1016/j.eswa.2021.116305_b15 Hao (10.1016/j.eswa.2021.116305_b9) 2008 10.1016/j.eswa.2021.116305_b16 10.1016/j.eswa.2021.116305_b18 Pan (10.1016/j.eswa.2021.116305_b22) 2019; 7 Xu (10.1016/j.eswa.2021.116305_b37) 2015; 24 Kumar (10.1016/j.eswa.2021.116305_b17) 2011; 21 Xie (10.1016/j.eswa.2021.116305_b36) 2017 Uhl (10.1016/j.eswa.2021.116305_b31) 2020 |
References_xml | – volume: 41 start-page: 920 year: 2008 end-page: 929 ident: b32 article-title: Minutiae feature analysis for infrared hand vein pattern biometrics publication-title: Pattern Recognition – year: 2020 ident: b31 article-title: Handbook of vascular biometrics – volume: 15 start-page: 375 year: 2020 end-page: 390 ident: b34 article-title: Multi-weighted co-occurrence descriptor encoding for vein recognition publication-title: IEEE Transactions on Information Forensics and Security – year: 2019 ident: b38 article-title: FV-GAN: FInger vein representation using generative adversarial networks publication-title: IEEE Transactions on Information Forensics and Security – year: 2019 ident: b1 article-title: Lightweight and privacy-preserving template generation for palm-vein based human recognition publication-title: IEEE Transactions on Information Forensics and Security – reference: Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: additive angular margin loss for deep face recognition. In – reference: Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In – volume: 24 start-page: 1863 year: 2016 end-page: 1878 ident: b25 article-title: Finger-vein biometric identification using convolutional neural network publication-title: Turkish Journal Electrical Engineering and Computer Sciences – reference: (pp. 1–5). – start-page: 12 year: 2019 end-page: 20 ident: b23 article-title: On the cross-finger similarity of vein patterns publication-title: International conference on image analysis and processing – reference: Kauba, C., Piciucco, E., Maiorana, E., Campisi, P., & Uhl, A. (2016). Advanced variants of feature level fusion for finger vein recognition. In – volume: 59 start-page: 480 year: 2009 end-page: 490 ident: b43 article-title: An online system of multispectral palmprint verification publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 15 start-page: 2641 year: 2020 end-page: 2654 ident: b19 article-title: On-the-fly finger-vein-based biometric recognition using deep neural networks publication-title: IEEE Transactions on Information Forensics and Security – reference: Biswas, S., Rohdin, J., Mňuk, T., & Drahanský, M. (2019). Is there any similarity between a person’s left and right retina?. In – reference: (pp. 4690–4699). – volume: 7 start-page: 90608 year: 2019 end-page: 90619 ident: b22 article-title: Multi-layer convolutional features concatenation with semantic feature selector for vein recognition publication-title: IEEE Access – reference: Ton, B. T., & Veldhuis, R. N. J. (2013). A high quality finger vascular pattern dataset collected using a custom designed capturing device. In – year: 2019 ident: b28 article-title: Finger-vein recognition based on deep DenseNet using composite image publication-title: IEEE Access – volume: 24 start-page: 549 year: 2015 end-page: 559 ident: b37 article-title: Combining left and right palmprint images for more accurate personal identification publication-title: IEEE Transactions on on Image Processing – volume: 28 start-page: 1892 year: 2018 end-page: 1905 ident: b39 article-title: Finger vein recognition with anatomy structure analysis publication-title: IEEE Transactions on Circuits and Systems for Video Technology – reference: Kumar, A., & Wang, K., et al. (2016). Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network. In – year: 2019 ident: b24 article-title: An iterative deep neural network for hand-vein verification publication-title: IEEE Access – volume: 14 start-page: 3140 year: 2019 end-page: 3150 ident: b44 article-title: A hand-based multi-biometrics via deep hashing network and biometric graph matching publication-title: IEEE Transactions on Information Forensics and Security – reference: (pp. 1–7). – volume: 115 start-page: 1493 year: 2011 end-page: -1502 ident: b10 article-title: Genetically identical irises have texture similarity that is not detected by iris biometrics publication-title: Computer Vision and Image Understanding – reference: Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: visual explanations from deep networks via gradient-based localization. In – start-page: 1 year: 2018 end-page: 8 ident: b13 article-title: Finger-vein recognition using deep fully convolutional neural semantic segmentation networks: The impact of training data publication-title: 2018 IEEE international workshop on information forensics and security – volume: 5 start-page: 398 year: 2011 end-page: 406 ident: b42 article-title: Hand vein biometry based on geometry and appearance methods publication-title: IET computer vision, – volume: 6 start-page: 1259 year: 2011 end-page: 1274 ident: b45 article-title: Human identification using palm-vein images publication-title: IEEE Transactions on Information Forensics and Security – volume: 290 start-page: 100 year: 2018 end-page: 107 ident: b8 article-title: A novel finger vein verification system based on two-stream convolutional network learning publication-title: Neurocomputing – start-page: 68 year: 2014 end-page: 75 ident: b5 article-title: A new wrist vein biometric system publication-title: 2014 IEEE symposium on computational intelligence in biometrics and identity management – volume: 14 start-page: 21 year: 2004 end-page: 30 ident: b6 article-title: How iris recognition works publication-title: IEEE Transactions on Circuits and Systems for Video Technology – reference: (pp. 905–908). – volume: 21 start-page: 2228 year: 2011 end-page: 2244 ident: b17 article-title: Human identification using finger images publication-title: IEEE Transactions on Image Processing – start-page: 109 year: 2017 end-page: 132 ident: b36 article-title: Finger vein identification using convolutional neural network and supervised discrete hashing publication-title: Deep learning for biometrics – start-page: 410 year: 2013 end-page: 415 ident: b20 article-title: An available database for the research of finger vein recognition publication-title: 2013 6th International congress on image and signal processing. Vol. 1 – reference: Bowyer, K., Lagree, S., & Fenker, S. (2010). Human versus biometric detection of texture similarity in left and right irises. In – volume: 226 start-page: 60 year: 2015 end-page: 72 ident: b4 article-title: An investigation of matching symmetry in the human pinnae with possible implications for 3D ear recognition and sound localization publication-title: Journal of Anatomy – start-page: 1 year: 2019 end-page: 8 ident: b29 article-title: PVSNet: Palm vein authentication siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features publication-title: 2019 IEEE 5th international conference on identity, security, and behavior analysis – reference: Rice, J. (1987). Apparatus for the identification of individuals. Google Patents. US Patent 4,699,149. – volume: E90-D start-page: 1185 year: 2007 end-page: 1194 ident: b21 article-title: Extraction of finger-vein patterns using maximum curvature points in image profiles publication-title: IEICE Transactions on Information and Systems – volume: 8 start-page: 206 year: 2019 end-page: 214 ident: b35 article-title: Low-cost biometric recognition system based on NIR palm vein image publication-title: IET Biometrics – reference: . – reference: Yin, Y., Liu, L., & Sun, X. (2011). SDUMLA-HMT: A multimodal biometric database. In – start-page: 51 year: 2011 end-page: 59 ident: b14 article-title: Human vein pattern correlation - a comparison of segmentation methods publication-title: Computer recognition systems. Vol. 4 – reference: (pp. 618–626). – reference: Yang, W., Yu, X., & Liao, Q. (2009). Personal authentication using finger vein pattern and finger-dorsa texture fusion. In – year: 2006 ident: b12 article-title: ISO/IEC 19795 standard - -information technology–biometric performance testing and reporting – part 1: principles and framework – reference: Kuzu, R. S., Maiorana, E., & Campisi, P. (2020). Loss functions for CNN-based biometric vein recognition. In – start-page: 281 year: 2008 end-page: 284 ident: b9 article-title: Multispectral palm image fusion for accurate contact-free palmprint recognition publication-title: 2008 15th IEEE international conference on image processing – volume: 6 start-page: 28563 year: 2018 end-page: 28572 ident: b33 article-title: Spatial pyramid pooling of selective convolutional features for vein recognition publication-title: IEEE Access – ident: 10.1016/j.eswa.2021.116305_b2 – ident: 10.1016/j.eswa.2021.116305_b7 doi: 10.1109/CVPR.2019.00482 – start-page: 410 year: 2013 ident: 10.1016/j.eswa.2021.116305_b20 article-title: An available database for the research of finger vein recognition – year: 2019 ident: 10.1016/j.eswa.2021.116305_b24 article-title: An iterative deep neural network for hand-vein verification publication-title: IEEE Access – volume: 6 start-page: 1259 issue: 4 year: 2011 ident: 10.1016/j.eswa.2021.116305_b45 article-title: Human identification using palm-vein images publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2011.2158423 – volume: 115 start-page: 1493 issue: 11 year: 2011 ident: 10.1016/j.eswa.2021.116305_b10 article-title: Genetically identical irises have texture similarity that is not detected by iris biometrics publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2011.06.010 – start-page: 281 year: 2008 ident: 10.1016/j.eswa.2021.116305_b9 article-title: Multispectral palm image fusion for accurate contact-free palmprint recognition – volume: 15 start-page: 2641 year: 2020 ident: 10.1016/j.eswa.2021.116305_b19 article-title: On-the-fly finger-vein-based biometric recognition using deep neural networks publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2020.2971144 – year: 2019 ident: 10.1016/j.eswa.2021.116305_b28 article-title: Finger-vein recognition based on deep DenseNet using composite image publication-title: IEEE Access – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.116305_b29 article-title: PVSNet: Palm vein authentication siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features – year: 2006 ident: 10.1016/j.eswa.2021.116305_b12 – volume: E90-D start-page: 1185 issue: 8 year: 2007 ident: 10.1016/j.eswa.2021.116305_b21 article-title: Extraction of finger-vein patterns using maximum curvature points in image profiles publication-title: IEICE Transactions on Information and Systems doi: 10.1093/ietisy/e90-d.8.1185 – ident: 10.1016/j.eswa.2021.116305_b18 – volume: 14 start-page: 21 issue: 1 year: 2004 ident: 10.1016/j.eswa.2021.116305_b6 article-title: How iris recognition works publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2003.818350 – year: 2019 ident: 10.1016/j.eswa.2021.116305_b1 article-title: Lightweight and privacy-preserving template generation for palm-vein based human recognition publication-title: IEEE Transactions on Information Forensics and Security – volume: 290 start-page: 100 year: 2018 ident: 10.1016/j.eswa.2021.116305_b8 article-title: A novel finger vein verification system based on two-stream convolutional network learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.042 – year: 2020 ident: 10.1016/j.eswa.2021.116305_b31 – start-page: 109 year: 2017 ident: 10.1016/j.eswa.2021.116305_b36 article-title: Finger vein identification using convolutional neural network and supervised discrete hashing – start-page: 51 year: 2011 ident: 10.1016/j.eswa.2021.116305_b14 article-title: Human vein pattern correlation - a comparison of segmentation methods – volume: 28 start-page: 1892 issue: 8 year: 2018 ident: 10.1016/j.eswa.2021.116305_b39 article-title: Finger vein recognition with anatomy structure analysis publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2017.2684833 – ident: 10.1016/j.eswa.2021.116305_b16 – ident: 10.1016/j.eswa.2021.116305_b27 doi: 10.1109/ICCV.2017.74 – ident: 10.1016/j.eswa.2021.116305_b11 doi: 10.1109/CVPR.2017.243 – volume: 15 start-page: 375 issn: 1556-6021 year: 2020 ident: 10.1016/j.eswa.2021.116305_b34 article-title: Multi-weighted co-occurrence descriptor encoding for vein recognition publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2019.2922331 – volume: 5 start-page: 398 issue: 6 year: 2011 ident: 10.1016/j.eswa.2021.116305_b42 article-title: Hand vein biometry based on geometry and appearance methods publication-title: IET computer vision, doi: 10.1049/iet-cvi.2010.0175 – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2021.116305_b13 article-title: Finger-vein recognition using deep fully convolutional neural semantic segmentation networks: The impact of training data – volume: 8 start-page: 206 issn: 2047-4938 issue: 3 year: 2019 ident: 10.1016/j.eswa.2021.116305_b35 article-title: Low-cost biometric recognition system based on NIR palm vein image publication-title: IET Biometrics doi: 10.1049/iet-bmt.2018.5027 – volume: 6 start-page: 28563 year: 2018 ident: 10.1016/j.eswa.2021.116305_b33 article-title: Spatial pyramid pooling of selective convolutional features for vein recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2839720 – volume: 226 start-page: 60 year: 2015 ident: 10.1016/j.eswa.2021.116305_b4 article-title: An investigation of matching symmetry in the human pinnae with possible implications for 3D ear recognition and sound localization publication-title: Journal of Anatomy doi: 10.1111/joa.12252 – volume: 21 start-page: 2228 issue: 4 year: 2011 ident: 10.1016/j.eswa.2021.116305_b17 article-title: Human identification using finger images publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2171697 – ident: 10.1016/j.eswa.2021.116305_b15 doi: 10.1109/BIOSIG.2016.7736908 – ident: 10.1016/j.eswa.2021.116305_b26 – volume: 7 start-page: 90608 year: 2019 ident: 10.1016/j.eswa.2021.116305_b22 article-title: Multi-layer convolutional features concatenation with semantic feature selector for vein recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927230 – volume: 24 start-page: 549 issue: 2 year: 2015 ident: 10.1016/j.eswa.2021.116305_b37 article-title: Combining left and right palmprint images for more accurate personal identification publication-title: IEEE Transactions on on Image Processing doi: 10.1109/TIP.2014.2380171 – volume: 14 start-page: 3140 issue: 12 year: 2019 ident: 10.1016/j.eswa.2021.116305_b44 article-title: A hand-based multi-biometrics via deep hashing network and biometric graph matching publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2019.2912552 – ident: 10.1016/j.eswa.2021.116305_b3 doi: 10.1109/CCST.2010.5678702 – volume: 24 start-page: 1863 issue: 3 year: 2016 ident: 10.1016/j.eswa.2021.116305_b25 article-title: Finger-vein biometric identification using convolutional neural network publication-title: Turkish Journal Electrical Engineering and Computer Sciences doi: 10.3906/elk-1311-43 – volume: 59 start-page: 480 issue: 2 year: 2009 ident: 10.1016/j.eswa.2021.116305_b43 article-title: An online system of multispectral palmprint verification publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2009.2028772 – start-page: 12 year: 2019 ident: 10.1016/j.eswa.2021.116305_b23 article-title: On the cross-finger similarity of vein patterns – year: 2019 ident: 10.1016/j.eswa.2021.116305_b38 article-title: FV-GAN: FInger vein representation using generative adversarial networks publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2019.2902819 – ident: 10.1016/j.eswa.2021.116305_b30 doi: 10.1109/ICB.2013.6612966 – ident: 10.1016/j.eswa.2021.116305_b41 doi: 10.1007/978-3-642-25449-9_33 – start-page: 68 year: 2014 ident: 10.1016/j.eswa.2021.116305_b5 article-title: A new wrist vein biometric system – volume: 41 start-page: 920 issue: 3 year: 2008 ident: 10.1016/j.eswa.2021.116305_b32 article-title: Minutiae feature analysis for infrared hand vein pattern biometrics publication-title: Pattern Recognition doi: 10.1016/j.patcog.2007.07.012 – ident: 10.1016/j.eswa.2021.116305_b40 doi: 10.1145/1631272.1631444 |
SSID | ssj0017007 |
Score | 2.4471955 |
Snippet | In these years, biometric recognition based on hand vein patterns is receiving an always increasing attention from both industry and academia, thanks to the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116305 |
SubjectTerms | Biometric recognition Biometrics Deep learning Feature extraction Fingers Hand (anatomy) Machine learning Palm Pattern recognition Similarity Vein patterns |
Title | On the intra-subject similarity of hand vein patterns in biometric recognition |
URI | https://dx.doi.org/10.1016/j.eswa.2021.116305 https://www.proquest.com/docview/2641053130 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W_wxRw7eJK5J07Q9juGYivOgg91C0iVQ0W7YTW_-7ea16UCRHbyWJJSXl-99Ce99D6HLmaMRwpqAJFEqCFcmJVpxQYygOgkc4RAhFAo_jMVowu-m0bSFBk0tDKRVeuyvMb1Ca_-l563ZW-R578mRAxcO3dWuUklL4N7OeQxefv21TvMA-bm41tuLCYz2hTN1jpcpP0F7iFGHHCKEFnZ_B6dfMF3FnuEe2vGkEffr_9pHLVMcoN2mIQP25_MQjR8L7AgdzuHFlpQrDY8suMzfcnd_dXQbzy2Gl3L8YfICLyppzaJ0w3FVhQ9i_XidUTQvjtBkePM8GBHfMIFkIUuWhEdG2UTRLGZBrJkJQ6NcgLdpFmRCqIBplVmohrVhRIUSylAL8lMZY4qpJAiPUbuYF-YE4ZnRKVVUxzri3OhMJypQzHLr6IxyMHCKaGMpmXk1cWhq8SqbtLEXCdaVYF1ZW_cUXa3nLGotjY2jo2YD5A-PkA7sN87rNLsl_XkspaN9FOAmDM7-uew52mZQ-QAyj1EHtZfvK3Ph-MhSdyuH66Kt_u39aPwN2s7e0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqGGDhG1Eo4IENmcZO4qQjqkAF2jIAEptlB1sKgrQiLWz8du4SpxIIMbBGthWdfe-erbt3hJw8AY2QzgYsjXuSRdr2mNGRZFZykwZAOGSIhcKjsRw8RNeP8WOL9JtaGEyr9NhfY3qF1v5L11uzO83z7h2QAwiHcLWrVNJSuLcvR-C-2Mbg7HOR54H6c0ktuJcwHO4rZ-okL1t-oPiQ4AAdMsQedr9Hpx84XQWfyw2y5lkjPa9_bJO0bLFF1puODNQ76DYZ3xYUGB3N8cmWlXODryy0zF9zuMAC36YTR_GpnL7bvKDTSluzKGE4rcrwUa2fLlKKJsUOebi8uO8PmO-YwLJQpDMWxVa7VPMsEUFihA1DqyHCu14WZFLqQBidOSyHdWHMpZbacof6U5kQWug0CHfJUjEp7B6hT9b0uOYmMXEUWZOZVAdauMgBn9GAA23CG0upzMuJY1eLF9XkjT0rtK5C66raum1yupgzrcU0_hwdNxugvh0JBWj_57xOs1vKO2SpgPdxxJsw2P_nssdkZXA_Gqrh1fjmgKwKLINAzce4Q5Zmb3N7CORkZo6qw_cFDS7gXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+intra-subject+similarity+of+hand+vein+patterns+in+biometric+recognition&rft.jtitle=Expert+systems+with+applications&rft.au=Kuzu%2C+R%C4%B1dvan+Salih&rft.au=Maiorana%2C+Emanuele&rft.au=Campisi%2C+Patrizio&rft.date=2022-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=192&rft_id=info:doi/10.1016%2Fj.eswa.2021.116305&rft.externalDocID=S0957417421016080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |