A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer’s diagnosis
Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between subjects and groups. During the development of neurodegenerative diseases, these changes are more intense and accentuated. As Alzheimer’s disease (...
Saved in:
Published in | Expert systems with applications Vol. 195; p. 116622 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.06.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2022.116622 |
Cover
Loading…
Abstract | Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between subjects and groups. During the development of neurodegenerative diseases, these changes are more intense and accentuated. As Alzheimer’s disease (AD) develops, the brain reflects accelerated aging with minor extends associated with mild cognitive impairment (MCI), i.e., the prodromal stage of AD. Therefore, it is crucial to understand a healthy brain aging process to predict a cognitive decline. This study produced an efficient age estimation framework using only the hippocampal regions that explores the associations of the brain age prediction error of age-matched cognitively normal (CN) subjects with AD and MCI subjects. For this, we have developed two convolutional neural networks. The first achieved very competitive state-of-the-art metrics, i.e., mean absolute error (MAE) of 3.31 and root mean square error (RMSE) of 4.65. The second has also achieved competitive metrics, but more importantly, we founded a statistically significant analysis of our delta estimation error between the compared groups. Further, we correlated our results with clinical measurements, e.g., Mini-Mental State Examination (MMSE) score, and obtained a significant negative correlation. In addition, we compared our results with other published studies. Therefore, our findings suggest that our delta could become a biomarker to support AD and MCI diagnosis.
[Display omitted]
•Hippocampal age estimation using an efficient 3D CNN architecture.•Data augmentation with an oversample over the age bins to obtain even distribution.•End-to-end framework to process new images within less than seven minutes.•Age-matched analyses with distinct aging effects and stages of neuro diseases.•Significant correlation between brain-predicted age delta error and clinical score. |
---|---|
AbstractList | Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between subjects and groups. During the development of neurodegenerative diseases, these changes are more intense and accentuated. As Alzheimer's disease (AD) develops, the brain reflects accelerated aging with minor extends associated with mild cognitive impairment (MCI), i.e., the prodromal stage of AD. Therefore, it is crucial to understand a healthy brain aging process to predict a cognitive decline. This study produced an efficient age estimation framework using only the hippocampal regions that explores the associations of the brain age prediction error of age-matched cognitively normal (CN) subjects with AD and MCI subjects. For this, we have developed two convolutional neural networks. The first achieved very competitive state-of-the-art metrics, i.e., mean absolute error (MAE) of 3.31 and root mean square error (RMSE) of 4.65. The second has also achieved competitive metrics, but more importantly, we founded a statistically significant analysis of our delta estimation error between the compared groups. Further, we correlated our results with clinical measurements, e.g., Mini-Mental State Examination (MMSE) score, and obtained a significant negative correlation. In addition, we compared our results with other published studies. Therefore, our findings suggest that our delta could become a biomarker to support AD and MCI diagnosis. Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between subjects and groups. During the development of neurodegenerative diseases, these changes are more intense and accentuated. As Alzheimer’s disease (AD) develops, the brain reflects accelerated aging with minor extends associated with mild cognitive impairment (MCI), i.e., the prodromal stage of AD. Therefore, it is crucial to understand a healthy brain aging process to predict a cognitive decline. This study produced an efficient age estimation framework using only the hippocampal regions that explores the associations of the brain age prediction error of age-matched cognitively normal (CN) subjects with AD and MCI subjects. For this, we have developed two convolutional neural networks. The first achieved very competitive state-of-the-art metrics, i.e., mean absolute error (MAE) of 3.31 and root mean square error (RMSE) of 4.65. The second has also achieved competitive metrics, but more importantly, we founded a statistically significant analysis of our delta estimation error between the compared groups. Further, we correlated our results with clinical measurements, e.g., Mini-Mental State Examination (MMSE) score, and obtained a significant negative correlation. In addition, we compared our results with other published studies. Therefore, our findings suggest that our delta could become a biomarker to support AD and MCI diagnosis. [Display omitted] •Hippocampal age estimation using an efficient 3D CNN architecture.•Data augmentation with an oversample over the age bins to obtain even distribution.•End-to-end framework to process new images within less than seven minutes.•Age-matched analyses with distinct aging effects and stages of neuro diseases.•Significant correlation between brain-predicted age delta error and clinical score. |
ArticleNumber | 116622 |
Author | Ferrari, Ricardo José Poloni, Katia Maria |
Author_xml | – sequence: 1 givenname: Katia Maria orcidid: 0000-0003-1173-2277 surname: Poloni fullname: Poloni, Katia Maria email: katiampoloni@gmail.com, kpoloni@estudante.ufscar.br – sequence: 2 givenname: Ricardo José orcidid: 0000-0003-1197-2553 surname: Ferrari fullname: Ferrari, Ricardo José email: rferrari@ufscar.br |
BookMark | eNp9kEtOwzAQhi0EEm3hAqwssU7wI4kdiU1V8ZKqsoG15TiT1lESBzsFwYprcD1OQkpZsehqNNJ8M_N_U3TcuQ4QuqAkpoRmV3UM4U3HjDAWU5pljB2hCZWCR5nI-TGakDwVUUJFcoqmIdSEUEGImCA9xyVAj6EL0BYN4I3te2d02-sGL1Yr3LoSGlw5jwuvbYf1GjCEwbZ6sG5s-76xUOLB4XnzsQHbgv_-_Aq4tHrduWDDGTqpdBPg_K_O0PPtzdPiPlo-3j0s5svIcCaHiJvcFFxXUhMiWZrqNM2rjJKCGMK0EDmllSylTillMuGCpUIk0lQJL3SVFMBn6HK_t_fuZTu-qGq39d14UrEsETwXnJJxiu2njHcheKhU78cs_l1RonYqVa12KtVOpdqrHCH5DzJ2-M0_jE6aw-j1HoUx-qsFr4Kx0BkorQczqNLZQ_gPcuKRgg |
CitedBy_id | crossref_primary_10_1016_j_health_2023_100223 crossref_primary_10_1016_j_ibmed_2025_100219 crossref_primary_10_1007_s10479_024_06440_4 crossref_primary_10_1007_s42979_025_03686_y crossref_primary_10_1016_j_neunet_2024_106592 crossref_primary_10_1007_s11042_023_15738_7 crossref_primary_10_3390_tomography10080093 crossref_primary_10_1007_s11042_022_13935_4 crossref_primary_10_3390_s22114250 crossref_primary_10_1016_j_eswa_2023_121929 crossref_primary_10_1016_j_neucom_2024_127974 crossref_primary_10_1016_j_brainres_2023_148668 crossref_primary_10_1016_j_neuroimage_2024_120825 crossref_primary_10_1097_CM9_0000000000003180 crossref_primary_10_1126_sciadv_adr3757 crossref_primary_10_1515_revneuro_2022_0122 crossref_primary_10_1016_j_eswa_2024_124415 crossref_primary_10_1016_j_neurad_2023_09_002 crossref_primary_10_1093_bfgp_elae042 crossref_primary_10_1016_j_eswa_2022_118910 crossref_primary_10_1162_imag_a_00195 crossref_primary_10_1016_j_inffus_2023_101945 crossref_primary_10_1016_j_eswa_2022_118633 crossref_primary_10_1016_j_cmpb_2025_108617 crossref_primary_10_1007_s12204_023_2590_2 crossref_primary_10_1016_j_inffus_2023_03_007 crossref_primary_10_1038_s41598_024_61915_5 |
Cites_doi | 10.1016/j.jalz.2011.03.005 10.1109/JBHI.2016.2559938 10.1016/j.jalz.2011.10.007 10.1137/040616024 10.1038/nn.4393 10.1109/JBHI.2017.2704614 10.1097/NEN.0b013e31824b211b 10.1371/journal.pone.0067346 10.1016/0169-7439(89)80095-4 10.1016/j.neuroimage.2020.117401 10.1109/ISBI.2017.7950650 10.1523/JNEUROSCI.23-08-03295.2003 10.1016/j.neuroimage.2017.07.059 10.1002/jmri.21049 10.1007/s11704-019-8208-z 10.1111/ejn.13835 10.3174/ajnr.A5943 10.1176/appi.ajp.2015.15070922 10.1002/hipo.20573 10.1016/j.media.2017.10.005 10.1111/j.1532-5415.1999.tb02571.x 10.1109/42.836373 10.1016/j.neuroimage.2010.01.005 10.1016/S0893-6080(98)00116-6 10.1109/ISBI.2019.8759392 10.1002/hbm.22401 10.1016/j.knosys.2020.106396 10.1001/archneur.1996.00550010045015 10.1016/j.media.2016.10.004 10.1016/j.tins.2017.10.001 10.1109/ICPR.2010.112 10.1007/s00521-021-06105-4 10.1016/j.pscychresns.2011.07.016 10.1016/j.media.2020.101871 10.1371/journal.pone.0242712 10.1016/j.proenv.2011.10.100 10.1109/TMI.2010.2046908 10.1006/nimg.2001.0857 10.1016/j.neurobiolaging.2020.02.009 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2022 |
CorporateAuthor | Alzheimer’s Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: Alzheimer’s Disease Neuroimaging Initiative |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2022.116622 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2022_116622 S0957417422001129 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-3c9cb3af8a008255a559f610b0c02a77911f8d8a51128437257748cf43baf4be3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 05:17:15 EDT 2025 Tue Jul 01 04:05:58 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Fri Feb 23 02:40:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain-age estimation Convolutional Neural Networks Age biomarker Alzheimer’s disease Mild cognitive impairment Deep Learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-3c9cb3af8a008255a559f610b0c02a77911f8d8a51128437257748cf43baf4be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1197-2553 0000-0003-1173-2277 |
PQID | 2647397310 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2647397310 crossref_primary_10_1016_j_eswa_2022_116622 crossref_citationtrail_10_1016_j_eswa_2022_116622 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116622 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (b19) 2001; 14 Huang, T., Chen, H., Fujimoto, R., Ito, K., Wu, K., Sato, K., et al. (2017). Age estimation from brain MRI images using deep learning. In Guadalupe, Zwiers, Teumer, Wittfeld, Vasquez, Hoogman (b20) 2014; 35 Li, Liu, Wang, Wang, Xu, Qiu (b36) 2017; 16 Korolev, Safiullin, Belyaev, Dodonova (b34) 2017 Dong, Yu, Cao, Shi, Qianli (b12) 2020; 14 Zhang, Liu, An, Gao, Shen (b67) 2017; 21 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas (b43) 2011; 7 Nyúl, Udupa, Zhang (b45) 2000; 19 Ito, Fujimoto, Huang, Chen, Wu, Sato (b27) 2018 Pardakhti, Sajedi (b48) 2017 Ioffe, Szegedy (b26) 2015 Pérez-García, Sparks, Ourselin (b52) 2020 (pp. 424–427). Wijnhoven, R. G., & de With, P. (2010). Fast training of object detection using stochastic gradient descent. In Smith (b59) 2017 Dinsdale, Bluemke, Smith, Arya, Vidaurre, Jenkinson (b11) 2021; 224 Woolard, Heckers (b66) 2012; 201 Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector (b10) 2017; 163 Ueda, M., Ito, K., Wu, K., Sato, K., Taki, Y., Fukuda, H., et al. (2019). An age estimation method using 3D-CNN from brain MRI images. In (pp. 894–852). Melbourne, Australia. Hu, Shen, Sun (b23) 2018 Ahmed, Kim, Lee, Jung (b2) 2020; 15 Sandler, Howard, Zhu, Zhmoginov, Chen (b55) 2018 Alzheimer’s Association (b3) 2020; 16 Baumgartner, Tezcan, Chaitanya, Hötker, Muehlematter, Schawkat (b5) 2019 Jiang, Lu, Chen, Yao, Li, Zhang (b29) 2020; 10 Abdi, Williams (b1) 2010; 3 Fujimoto, Ito, Wu, Sato, Taki, Fukuda (b15) 2017 Tieleman, Hinton (b62) 2012 Lars, Svante (b35) 1989; 6 Resnick, Pham, Kraut, Zonderman, Davatzikos (b54) 2003; 23 Halle, Talos, Jakab, Makris, Meier, Wald (b21) 2017 Logan, Williams, Ferreira da Silva, Indani, Schcolnicov, Ganguly (b40) 2021; 17 Buades, Coll, Morel (b7) 2005; 4 (pp. 380–383). Venice, Italy. Ardekani, Hadid, Blessing, Bachman (b4) 2019; 40 Organization (b46) 2019 Shi, Liu, Zhou, Yu, Jiang (b57) 2009; 19 Gaser, Franke, Klöppel, Koutsouleris, Sauer, Initiative (b16) 2013; 8 Lim, Tsuang, Kukull, Nochlin, Leverenz, McCormick (b37) 1999; 47 Ourselin, Stefanescu, Pennec (b47) 2002 He, Shao, Zhong, Zhao (b22) 2020; 207 Kingma, Ba (b32) 2014 Simonyan, Zisserman (b58) 2014 Cherubini, Caligiuri, Péran, Sabatini, Cosentino, Amato (b8) 2016; 20 Johnson, Fox, Sperling, Klunk (b30) 2012 Beach, Monsell, Phillips, Kukull (b6) 2012; 71 Gaugler, Ascher-Svanum, Roth, Fafowora, Siderowf, Beach (b17) 2013; 13 Jack, Bernstein, Fox, Thompson, Alexander, Harvey (b28) 2017; 27 Su, Wang, Shen, Hu (b60) 2011; 8 Lin, Tong, Gao, Guo, Du, Yang (b38) 2018; 12 Giovannetti, Gianluca, Casti, Mencattini, Pusil, L’/opez (b18) 2021; 33 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu (b44) 2016; 19 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon (b31) 2017; 36 Liu, Zhang, Adeli, Shen (b39) 2018; 43 Schnack, Van Haren, Nieuwenhuis, Hulshoff Pol, Cahn, Kahn (b56) 2016; 173 Cole, Franke (b9) 2017; 40 Peng, Gong, Beckmann, Vedaldi, Smith (b51) 2021; 68 Hyman, Phelps, Beach, Bigio, Cairns, Carrillo (b25) 2012; 8 Pardakhti, Sajedi (b49) 2019 Pardakhti, Sajedi (b50) 2020 Feng, Lipton, Yang, Small, Provenzano (b13) 2020; 91 Qian (b53) 1999; 12 Tustison, Avants, Cook, Zheng, Egan, Yushkevich (b63) 2010; 29 Madan, Kensinger (b42) 2018; 47 Luo, Tang (b41) 2017 Tan, Le (b61) 2019 Franke, Ziegler, Klöppel, Gaser, Initiative (b14) 2010; 50 Klatka, Schiffer, Powers, Kazee (b33) 1996; 53 Johnson (10.1016/j.eswa.2022.116622_b30) 2012 Gaugler (10.1016/j.eswa.2022.116622_b17) 2013; 13 Ito (10.1016/j.eswa.2022.116622_b27) 2018 Pardakhti (10.1016/j.eswa.2022.116622_b50) 2020 Ioffe (10.1016/j.eswa.2022.116622_b26) 2015 Kingma (10.1016/j.eswa.2022.116622_b32) 2014 Smith (10.1016/j.eswa.2022.116622_b59) 2017 Zhang (10.1016/j.eswa.2022.116622_b67) 2017; 21 Abdi (10.1016/j.eswa.2022.116622_b1) 2010; 3 Buades (10.1016/j.eswa.2022.116622_b7) 2005; 4 Cole (10.1016/j.eswa.2022.116622_b10) 2017; 163 Miller (10.1016/j.eswa.2022.116622_b44) 2016; 19 Qian (10.1016/j.eswa.2022.116622_b53) 1999; 12 Ahmed (10.1016/j.eswa.2022.116622_b2) 2020; 15 Gaser (10.1016/j.eswa.2022.116622_b16) 2013; 8 He (10.1016/j.eswa.2022.116622_b22) 2020; 207 Li (10.1016/j.eswa.2022.116622_b36) 2017; 16 Tieleman (10.1016/j.eswa.2022.116622_b62) 2012 Franke (10.1016/j.eswa.2022.116622_b14) 2010; 50 Guadalupe (10.1016/j.eswa.2022.116622_b20) 2014; 35 Dinsdale (10.1016/j.eswa.2022.116622_b11) 2021; 224 Giovannetti (10.1016/j.eswa.2022.116622_b18) 2021; 33 Liu (10.1016/j.eswa.2022.116622_b39) 2018; 43 Beach (10.1016/j.eswa.2022.116622_b6) 2012; 71 Pardakhti (10.1016/j.eswa.2022.116622_b49) 2019 Tan (10.1016/j.eswa.2022.116622_b61) 2019 Organization (10.1016/j.eswa.2022.116622_b46) 2019 Resnick (10.1016/j.eswa.2022.116622_b54) 2003; 23 Ardekani (10.1016/j.eswa.2022.116622_b4) 2019; 40 Cherubini (10.1016/j.eswa.2022.116622_b8) 2016; 20 Halle (10.1016/j.eswa.2022.116622_b21) 2017 Lars (10.1016/j.eswa.2022.116622_b35) 1989; 6 Pardakhti (10.1016/j.eswa.2022.116622_b48) 2017 Madan (10.1016/j.eswa.2022.116622_b42) 2018; 47 Luo (10.1016/j.eswa.2022.116622_b41) 2017 Hu (10.1016/j.eswa.2022.116622_b23) 2018 Jack (10.1016/j.eswa.2022.116622_b28) 2017; 27 Kamnitsas (10.1016/j.eswa.2022.116622_b31) 2017; 36 Schnack (10.1016/j.eswa.2022.116622_b56) 2016; 173 Tustison (10.1016/j.eswa.2022.116622_b63) 2010; 29 Fujimoto (10.1016/j.eswa.2022.116622_b15) 2017 Ourselin (10.1016/j.eswa.2022.116622_b47) 2002 Cole (10.1016/j.eswa.2022.116622_b9) 2017; 40 Pérez-García (10.1016/j.eswa.2022.116622_b52) 2020 Klatka (10.1016/j.eswa.2022.116622_b33) 1996; 53 Feng (10.1016/j.eswa.2022.116622_b13) 2020; 91 Korolev (10.1016/j.eswa.2022.116622_b34) 2017 Hyman (10.1016/j.eswa.2022.116622_b25) 2012; 8 Baumgartner (10.1016/j.eswa.2022.116622_b5) 2019 Lim (10.1016/j.eswa.2022.116622_b37) 1999; 47 Su (10.1016/j.eswa.2022.116622_b60) 2011; 8 Peng (10.1016/j.eswa.2022.116622_b51) 2021; 68 McKhann (10.1016/j.eswa.2022.116622_b43) 2011; 7 Shi (10.1016/j.eswa.2022.116622_b57) 2009; 19 Good (10.1016/j.eswa.2022.116622_b19) 2001; 14 10.1016/j.eswa.2022.116622_b65 Dong (10.1016/j.eswa.2022.116622_b12) 2020; 14 Lin (10.1016/j.eswa.2022.116622_b38) 2018; 12 10.1016/j.eswa.2022.116622_b24 Simonyan (10.1016/j.eswa.2022.116622_b58) 2014 Nyúl (10.1016/j.eswa.2022.116622_b45) 2000; 19 10.1016/j.eswa.2022.116622_b64 Logan (10.1016/j.eswa.2022.116622_b40) 2021; 17 Sandler (10.1016/j.eswa.2022.116622_b55) 2018 Jiang (10.1016/j.eswa.2022.116622_b29) 2020; 10 Alzheimer’s Association (10.1016/j.eswa.2022.116622_b3) 2020; 16 Woolard (10.1016/j.eswa.2022.116622_b66) 2012; 201 |
References_xml | – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: b63 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Transactions on Medical Imaging – reference: (pp. 424–427). – volume: 8 start-page: 645 year: 2011 end-page: 652 ident: b60 article-title: Age-related classification and prediction based on MRI: A sparse representation method publication-title: Procedia Environmental Sciences – start-page: 1573 year: 2020 end-page: 7721 ident: b50 article-title: Brain age estimation based on 3D MRI images using 3D convolutional neural network publication-title: Multimedia tools and applications – volume: 20 start-page: 1232 year: 2016 end-page: 1239 ident: b8 article-title: Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction publication-title: Journal of Biomedical and Health Informatics – volume: 33 start-page: 14651 year: 2021 end-page: 14667 ident: b18 article-title: Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography publication-title: Neural Computing and Applications – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: b14 article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: Neuroimage – volume: 15 year: 2020 ident: b2 article-title: Ensemble of ROI-based convolutional neural network classifiers for staging the Alzheimer disease spectrum from magnetic resonance imaging publication-title: PLoS One – volume: 207 year: 2020 ident: b22 article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions publication-title: Knowledge-Based Systems – volume: 47 start-page: 399 year: 2018 end-page: 416 ident: b42 article-title: Predicting age from cortical structure across the lifespan publication-title: European Journal of Neuroscience – volume: 91 start-page: 15 year: 2020 end-page: 25 ident: b13 article-title: Estimating brain age based on a healthy population with deep learning and structural MRI publication-title: Neurobiology of Aging – year: 2014 ident: b32 article-title: Adam: A method for stochastic optimization – volume: 6 start-page: 259 year: 1989 end-page: 272 ident: b35 article-title: Analysis of variance (anova) publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 47 start-page: 564 year: 1999 end-page: 569 ident: b37 article-title: Clinico-neuropathological correlation of alzheimer’s disease in a community-based case series publication-title: Journal of the American Geriatrics Society – volume: 12 year: 2018 ident: b38 article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment publication-title: Frontiers in Neuroscience – volume: 43 start-page: 157 year: 2018 end-page: 168 ident: b39 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Medical Image Analysis – volume: 14 start-page: 241 year: 2020 end-page: 258 ident: b12 article-title: A survey on ensemble learning publication-title: Frontiers of Computer Science – volume: 68 year: 2021 ident: b51 article-title: Accurate brain age prediction with lightweight deep neural networks publication-title: Medical Image Analysis – reference: (pp. 894–852). Melbourne, Australia. – reference: Ueda, M., Ito, K., Wu, K., Sato, K., Taki, Y., Fukuda, H., et al. (2019). An age estimation method using 3D-CNN from brain MRI images. In – year: 2012 ident: b30 article-title: Brain imaging in alzheimer disease. Vol. 2 – volume: 3 start-page: 1 year: 2010 end-page: 5 ident: b1 article-title: Tukey’s honestly significant difference (hsd) test publication-title: Encyclopedia of Research Design – volume: 40 start-page: 681 year: 2017 end-page: 690 ident: b9 article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers publication-title: Trends in Neurosciences – volume: 19 start-page: 143 year: 2000 end-page: 150 ident: b45 article-title: New variants of a method of MRI scale standardization publication-title: IEEE Transactions on Medical Imaging – reference: Huang, T., Chen, H., Fujimoto, R., Ito, K., Wu, K., Sato, K., et al. (2017). Age estimation from brain MRI images using deep learning. In – start-page: 694 year: 2018 end-page: 697 ident: b27 article-title: Performance evaluation of age estimation from t1-weighted images using brain local features and CNN publication-title: 2018 40th Annual international conference of the IEEE engineering in medicine and biology society – start-page: 275 year: 2017 end-page: 283 ident: b41 article-title: Automated diagnosis of Alzheimer’s disease with multi-atlas based whole brain segmentations publication-title: Medical imaging 2017: biomedical applications in molecular, structural, and functional imaging – volume: 35 start-page: 3277 year: 2014 end-page: 3289 ident: b20 article-title: Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets publication-title: Human Brain Mapping – start-page: 835 year: 2017 end-page: 838 ident: b34 article-title: Residual and plain convolutional neural networks for 3d brain MRI classification publication-title: International symposium on biomedical imaging – start-page: 6105 year: 2019 end-page: 6114 ident: b61 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks publication-title: International conference on machine learning – volume: 163 start-page: 115 year: 2017 end-page: 124 ident: b10 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage – volume: 8 year: 2013 ident: b16 article-title: Brainage in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease publication-title: PLoS One – year: 2019 ident: b46 article-title: Risk reduction of cognitive decline and dementia: Who guidelines – volume: 8 start-page: 1 year: 2012 end-page: 13 ident: b25 article-title: National institute on aging–alzheimer’s association guidelines for the neuropathologic assessment of alzheimer’s disease publication-title: Alzheimer’s & Dementia – start-page: 140 year: 2002 end-page: 147 ident: b47 article-title: Robust registration of multi-modal images: Towards real-time clinical applications publication-title: Medical image computing and computer-assisted intervention – volume: 10 year: 2020 ident: b29 article-title: Predicting brain age of healthy adults based on structural MRI parcellation using convolutional neural networks publication-title: Frontiers in Neurology – year: 2020 ident: b52 article-title: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning – volume: 16 start-page: 1 year: 2017 end-page: 20 ident: b36 article-title: Dependency criterion based brain pathological age estimation of alzheimer’s disease patients with MR scans publication-title: Biomedical Engineering – year: 2012 ident: b62 article-title: Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA: neural networks for machine learning – volume: 201 start-page: 48 year: 2012 end-page: 53 ident: b66 article-title: Anatomical and functional correlates of human hippocampal volume asymmetry publication-title: Psychiatry Research: Neuroimaging – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: b43 article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s & Dementia – year: 2015 ident: b26 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – start-page: 464 year: 2017 end-page: 472 ident: b59 article-title: Cyclical learning rates for training neural networks publication-title: Winter conference on applications of computer vision – volume: 12 start-page: 145 year: 1999 end-page: 151 ident: b53 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Networks – volume: 19 start-page: 1523 year: 2016 end-page: 1536 ident: b44 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nature Neuroscience – year: 2014 ident: b58 article-title: Very deep convolutional networks for large-scale image recognition – start-page: 119 year: 2019 end-page: 127 ident: b5 article-title: Phiseg: Capturing uncertainty in medical image segmentation publication-title: International conference on medical image computing and computer-assisted intervention – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: b31 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Medical Image Analysis – reference: Wijnhoven, R. G., & de With, P. (2010). Fast training of object detection using stochastic gradient descent. In – volume: 23 start-page: 3295 year: 2003 end-page: 3301 ident: b54 article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain publication-title: Journal of Neuroscience – start-page: 3028 year: 2017 end-page: 3031 ident: b15 article-title: Brain age estimation from t1-weighted images using effective local features publication-title: International conference of the IEEE engineering in medicine and biology society – volume: 13 year: 2013 ident: b17 article-title: Characteristics of patients misdiagnosed with Alzheimer’s disease and their medication use: an analysis of the nacc-uds database publication-title: BMC Geriatrics – start-page: 386 year: 2019 end-page: 390 ident: b49 article-title: Brain age estimation using brain MRI and 3D convolutional neural network publication-title: 2019 9th International conference on computer and knowledge engineering – reference: (pp. 380–383). Venice, Italy. – year: 2017 ident: b21 article-title: Multi-modality MRI-based atlas of the brain – volume: 17 year: 2021 ident: b40 article-title: Deep convolutional neural networks with ensemble learning and generative adversarial networks for Alzheimer’s disease image data classification publication-title: Frontiers in Aging Neuroscience – start-page: 000267 year: 2017 end-page: 000270 ident: b48 article-title: Age prediction based on brain MRI images using feature learning publication-title: International symposium on intelligent systems and informatics – volume: 224 year: 2021 ident: b11 article-title: Learning patterns of the ageing brain in MRI using deep convolutional networks publication-title: NeuroImage – start-page: 4510 year: 2018 end-page: 4520 ident: b55 article-title: Mobilenetv2: Inverted residuals and linear bottlenecks publication-title: Conference on computer vision and pattern recognition – volume: 27 start-page: 685 year: 2017 end-page: 691 ident: b28 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: Journal of Magnetic Resonance Imaging – volume: 21 start-page: 1607 year: 2017 end-page: 1616 ident: b67 article-title: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 71 start-page: 266 year: 2012 end-page: 273 ident: b6 article-title: Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging alzheimer disease centers, 2005–2010 publication-title: Journal of Neuropathology and Experimental Neurology – volume: 19 start-page: 1055 year: 2009 end-page: 1064 ident: b57 article-title: Hippocampal volume and asymmetry in mild cognitive impairment and alzheimer’s disease: Meta-analyses of MRI studies publication-title: Hippocampus – volume: 16 year: 2020 ident: b3 article-title: Alzheimer’s disease facts and figures publication-title: Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association – start-page: 7132 year: 2018 end-page: 7141 ident: b23 article-title: Squeeze-and-excitation networks publication-title: Conference on computer vision and pattern recognition – volume: 53 start-page: 35 year: 1996 end-page: 42 ident: b33 article-title: Incorrect diagnosis of Alzheimer’s disease: a clinicopathologic study publication-title: Archives of Neurology – volume: 4 start-page: 490 year: 2005 end-page: 530 ident: b7 article-title: A review of image denoising algorithms, with a new one publication-title: Multiscale Modeling & Simulation – volume: 14 start-page: 685 year: 2001 end-page: 700 ident: b19 article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains publication-title: Neuroimage – volume: 40 start-page: 276 year: 2019 end-page: 282 ident: b4 article-title: Sexual dimorphism and hemispheric asymmetry of hippocampal volumetric integrity in normal aging and alzheimer disease publication-title: American Journal of Neuroradiology – volume: 173 start-page: 607 year: 2016 end-page: 616 ident: b56 article-title: Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study publication-title: American Journal of Psychiatry – volume: 16 start-page: 1 year: 2017 ident: 10.1016/j.eswa.2022.116622_b36 article-title: Dependency criterion based brain pathological age estimation of alzheimer’s disease patients with MR scans publication-title: Biomedical Engineering – volume: 17 year: 2021 ident: 10.1016/j.eswa.2022.116622_b40 article-title: Deep convolutional neural networks with ensemble learning and generative adversarial networks for Alzheimer’s disease image data classification publication-title: Frontiers in Aging Neuroscience – volume: 7 start-page: 263 year: 2011 ident: 10.1016/j.eswa.2022.116622_b43 article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2011.03.005 – volume: 20 start-page: 1232 year: 2016 ident: 10.1016/j.eswa.2022.116622_b8 article-title: Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction publication-title: Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2016.2559938 – year: 2020 ident: 10.1016/j.eswa.2022.116622_b52 – volume: 8 start-page: 1 year: 2012 ident: 10.1016/j.eswa.2022.116622_b25 article-title: National institute on aging–alzheimer’s association guidelines for the neuropathologic assessment of alzheimer’s disease publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2011.10.007 – start-page: 275 year: 2017 ident: 10.1016/j.eswa.2022.116622_b41 article-title: Automated diagnosis of Alzheimer’s disease with multi-atlas based whole brain segmentations – volume: 4 start-page: 490 year: 2005 ident: 10.1016/j.eswa.2022.116622_b7 article-title: A review of image denoising algorithms, with a new one publication-title: Multiscale Modeling & Simulation doi: 10.1137/040616024 – start-page: 386 year: 2019 ident: 10.1016/j.eswa.2022.116622_b49 article-title: Brain age estimation using brain MRI and 3D convolutional neural network – year: 2019 ident: 10.1016/j.eswa.2022.116622_b46 – start-page: 000267 year: 2017 ident: 10.1016/j.eswa.2022.116622_b48 article-title: Age prediction based on brain MRI images using feature learning – volume: 19 start-page: 1523 year: 2016 ident: 10.1016/j.eswa.2022.116622_b44 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nature Neuroscience doi: 10.1038/nn.4393 – volume: 21 start-page: 1607 year: 2017 ident: 10.1016/j.eswa.2022.116622_b67 article-title: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2017.2704614 – volume: 71 start-page: 266 year: 2012 ident: 10.1016/j.eswa.2022.116622_b6 article-title: Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging alzheimer disease centers, 2005–2010 publication-title: Journal of Neuropathology and Experimental Neurology doi: 10.1097/NEN.0b013e31824b211b – start-page: 119 year: 2019 ident: 10.1016/j.eswa.2022.116622_b5 article-title: Phiseg: Capturing uncertainty in medical image segmentation – volume: 8 year: 2013 ident: 10.1016/j.eswa.2022.116622_b16 article-title: Brainage in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0067346 – volume: 16 issue: 391 year: 2020 ident: 10.1016/j.eswa.2022.116622_b3 article-title: Alzheimer’s disease facts and figures publication-title: Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association – volume: 6 start-page: 259 year: 1989 ident: 10.1016/j.eswa.2022.116622_b35 article-title: Analysis of variance (anova) publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(89)80095-4 – volume: 224 year: 2021 ident: 10.1016/j.eswa.2022.116622_b11 article-title: Learning patterns of the ageing brain in MRI using deep convolutional networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117401 – volume: 10 issue: 1346 year: 2020 ident: 10.1016/j.eswa.2022.116622_b29 article-title: Predicting brain age of healthy adults based on structural MRI parcellation using convolutional neural networks publication-title: Frontiers in Neurology – ident: 10.1016/j.eswa.2022.116622_b24 doi: 10.1109/ISBI.2017.7950650 – year: 2014 ident: 10.1016/j.eswa.2022.116622_b32 – volume: 23 start-page: 3295 year: 2003 ident: 10.1016/j.eswa.2022.116622_b54 article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.23-08-03295.2003 – volume: 163 start-page: 115 year: 2017 ident: 10.1016/j.eswa.2022.116622_b10 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.059 – volume: 27 start-page: 685 year: 2017 ident: 10.1016/j.eswa.2022.116622_b28 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.21049 – volume: 14 start-page: 241 year: 2020 ident: 10.1016/j.eswa.2022.116622_b12 article-title: A survey on ensemble learning publication-title: Frontiers of Computer Science doi: 10.1007/s11704-019-8208-z – volume: 47 start-page: 399 year: 2018 ident: 10.1016/j.eswa.2022.116622_b42 article-title: Predicting age from cortical structure across the lifespan publication-title: European Journal of Neuroscience doi: 10.1111/ejn.13835 – volume: 40 start-page: 276 year: 2019 ident: 10.1016/j.eswa.2022.116622_b4 article-title: Sexual dimorphism and hemispheric asymmetry of hippocampal volumetric integrity in normal aging and alzheimer disease publication-title: American Journal of Neuroradiology doi: 10.3174/ajnr.A5943 – start-page: 7132 year: 2018 ident: 10.1016/j.eswa.2022.116622_b23 article-title: Squeeze-and-excitation networks – volume: 173 start-page: 607 year: 2016 ident: 10.1016/j.eswa.2022.116622_b56 article-title: Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study publication-title: American Journal of Psychiatry doi: 10.1176/appi.ajp.2015.15070922 – volume: 19 start-page: 1055 year: 2009 ident: 10.1016/j.eswa.2022.116622_b57 article-title: Hippocampal volume and asymmetry in mild cognitive impairment and alzheimer’s disease: Meta-analyses of MRI studies publication-title: Hippocampus doi: 10.1002/hipo.20573 – start-page: 140 year: 2002 ident: 10.1016/j.eswa.2022.116622_b47 article-title: Robust registration of multi-modal images: Towards real-time clinical applications – volume: 12 issue: 777 year: 2018 ident: 10.1016/j.eswa.2022.116622_b38 article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment publication-title: Frontiers in Neuroscience – volume: 43 start-page: 157 year: 2018 ident: 10.1016/j.eswa.2022.116622_b39 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Medical Image Analysis doi: 10.1016/j.media.2017.10.005 – volume: 47 start-page: 564 year: 1999 ident: 10.1016/j.eswa.2022.116622_b37 article-title: Clinico-neuropathological correlation of alzheimer’s disease in a community-based case series publication-title: Journal of the American Geriatrics Society doi: 10.1111/j.1532-5415.1999.tb02571.x – start-page: 835 year: 2017 ident: 10.1016/j.eswa.2022.116622_b34 article-title: Residual and plain convolutional neural networks for 3d brain MRI classification – start-page: 464 year: 2017 ident: 10.1016/j.eswa.2022.116622_b59 article-title: Cyclical learning rates for training neural networks – start-page: 4510 year: 2018 ident: 10.1016/j.eswa.2022.116622_b55 article-title: Mobilenetv2: Inverted residuals and linear bottlenecks – volume: 19 start-page: 143 year: 2000 ident: 10.1016/j.eswa.2022.116622_b45 article-title: New variants of a method of MRI scale standardization publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.836373 – volume: 50 start-page: 883 year: 2010 ident: 10.1016/j.eswa.2022.116622_b14 article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 12 start-page: 145 year: 1999 ident: 10.1016/j.eswa.2022.116622_b53 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Networks doi: 10.1016/S0893-6080(98)00116-6 – ident: 10.1016/j.eswa.2022.116622_b64 doi: 10.1109/ISBI.2019.8759392 – year: 2012 ident: 10.1016/j.eswa.2022.116622_b62 article-title: Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude – volume: 35 start-page: 3277 year: 2014 ident: 10.1016/j.eswa.2022.116622_b20 article-title: Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets publication-title: Human Brain Mapping doi: 10.1002/hbm.22401 – volume: 207 year: 2020 ident: 10.1016/j.eswa.2022.116622_b22 article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106396 – start-page: 1573 year: 2020 ident: 10.1016/j.eswa.2022.116622_b50 article-title: Brain age estimation based on 3D MRI images using 3D convolutional neural network – start-page: 694 year: 2018 ident: 10.1016/j.eswa.2022.116622_b27 article-title: Performance evaluation of age estimation from t1-weighted images using brain local features and CNN – volume: 53 start-page: 35 year: 1996 ident: 10.1016/j.eswa.2022.116622_b33 article-title: Incorrect diagnosis of Alzheimer’s disease: a clinicopathologic study publication-title: Archives of Neurology doi: 10.1001/archneur.1996.00550010045015 – year: 2017 ident: 10.1016/j.eswa.2022.116622_b21 – start-page: 6105 year: 2019 ident: 10.1016/j.eswa.2022.116622_b61 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.eswa.2022.116622_b31 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Medical Image Analysis doi: 10.1016/j.media.2016.10.004 – volume: 40 start-page: 681 year: 2017 ident: 10.1016/j.eswa.2022.116622_b9 article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers publication-title: Trends in Neurosciences doi: 10.1016/j.tins.2017.10.001 – ident: 10.1016/j.eswa.2022.116622_b65 doi: 10.1109/ICPR.2010.112 – volume: 13 issue: 137 year: 2013 ident: 10.1016/j.eswa.2022.116622_b17 article-title: Characteristics of patients misdiagnosed with Alzheimer’s disease and their medication use: an analysis of the nacc-uds database publication-title: BMC Geriatrics – volume: 33 start-page: 14651 year: 2021 ident: 10.1016/j.eswa.2022.116622_b18 article-title: Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06105-4 – year: 2012 ident: 10.1016/j.eswa.2022.116622_b30 – volume: 201 start-page: 48 year: 2012 ident: 10.1016/j.eswa.2022.116622_b66 article-title: Anatomical and functional correlates of human hippocampal volume asymmetry publication-title: Psychiatry Research: Neuroimaging doi: 10.1016/j.pscychresns.2011.07.016 – volume: 68 year: 2021 ident: 10.1016/j.eswa.2022.116622_b51 article-title: Accurate brain age prediction with lightweight deep neural networks publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101871 – year: 2014 ident: 10.1016/j.eswa.2022.116622_b58 – volume: 15 year: 2020 ident: 10.1016/j.eswa.2022.116622_b2 article-title: Ensemble of ROI-based convolutional neural network classifiers for staging the Alzheimer disease spectrum from magnetic resonance imaging publication-title: PLoS One doi: 10.1371/journal.pone.0242712 – year: 2015 ident: 10.1016/j.eswa.2022.116622_b26 – start-page: 3028 year: 2017 ident: 10.1016/j.eswa.2022.116622_b15 article-title: Brain age estimation from t1-weighted images using effective local features – volume: 8 start-page: 645 year: 2011 ident: 10.1016/j.eswa.2022.116622_b60 article-title: Age-related classification and prediction based on MRI: A sparse representation method publication-title: Procedia Environmental Sciences doi: 10.1016/j.proenv.2011.10.100 – volume: 3 start-page: 1 year: 2010 ident: 10.1016/j.eswa.2022.116622_b1 article-title: Tukey’s honestly significant difference (hsd) test publication-title: Encyclopedia of Research Design – volume: 29 start-page: 1310 year: 2010 ident: 10.1016/j.eswa.2022.116622_b63 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2046908 – volume: 14 start-page: 685 year: 2001 ident: 10.1016/j.eswa.2022.116622_b19 article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains publication-title: Neuroimage doi: 10.1006/nimg.2001.0857 – volume: 91 start-page: 15 year: 2020 ident: 10.1016/j.eswa.2022.116622_b13 article-title: Estimating brain age based on a healthy population with deep learning and structural MRI publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2020.02.009 |
SSID | ssj0017007 |
Score | 2.5529723 |
Snippet | Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116622 |
SubjectTerms | Age Age biomarker Alzheimer's disease Artificial neural networks Biomarkers Brain Brain-age estimation Chronology Convolutional Neural Networks Deep Learning Diagnosis Error analysis Life expectancy Mild cognitive impairment Root-mean-square errors |
Title | A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer’s diagnosis |
URI | https://dx.doi.org/10.1016/j.eswa.2022.116622 https://www.proquest.com/docview/2647397310 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VFDt5k7Tb77LEUpSr2ooXeQpJN6EofS7cieBD_hn_PX-LMJiso2IPHXZJlmUm--bL7zQwh50JJI-JEeZE2vhdCyPNSJTqeMRl-x5FBW2Oi8P0g7g_D21E0apBenQuDskqH_RbTK7R2d1rOmq0iz1sPQA4gHMLRDmVBELYwgz1MUNZ3-fYt88Dyc4mtt5d4ONolzliNly5fsPYQY4AccczYX8HpF0xXsed6m2w60ki79r12SEPPdslW3ZCBuv25R0SXZloXFI6meionmo7zooBgBVt-QnuDAa363lDgqVRiawgKYEKxzIbNX6TCUlK6nNPu5HWs86lefL5_lDSzgry83CfD66vHXt9zPRQ8FbB06QWqo2QgTCqqw2Ak4ARhgDJJX_lMJAlgnUmzVCDvSvEfXgR8MFUmDKQwodTBAVmbzWf6kNCEZRoDus8MkBYB3mdCpjLugFOFH6gmadfG48oVGMc-FxNeK8meOBqco8G5NXiTXHzPKWx5jZWjo9on_Mci4YD_K-ed1A7kbouWHJhgEmDjLv_on489Jht4ZYVjJ2RtuXjWp0BRlvKsWoNnZL17c9cffAGZTOXf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFHbHjAzcUNThrj1UFKlsugMTNsh1bBLUlokVInPgNfo8vYaZ2kECCA9ckjqKx_d6beBaAQ6mVlWmmg8TYMIiR8oJcy05gbUn_cVR0bChR-KpI-7fx-V1yNwO9JheGwio99jtMn6K1v9L21mzXVdW-RnGAdIiuHYUFIW3NwhxVp4pbMNc9u-gXX4cJWeiypvH5gAb43BkX5mXGL1R-iHMEjzTl_Dd--oHUU_o5XYZFrxtZ133aCsyY0SosNT0ZmN-iayC7rDSmZuidmqEaGHZf1TXyFe76AesVBZu2vmEoVZmi7hAM8YRRpQ2XwsikU6Vs8si6g9d7Uw3N08fb-5iVLiavGq_D7enJTa8f-DYKgY54Pgki3dEqkjaXU38wkehEWFRNKtQhl1mGcGfzMpckvXI6xktQEubaxpGSNlYm2oDW6HFkNoFlvDTE6SG3qFskLgAuVa7SDs6rDCO9BceN8YT2Ncap1cVANMFkD4IMLsjgwhl8C46-xtSuwsafTyfNnIhv60QgBfw5breZQOF36VigGMwi6t0Vbv_ztQcw37-5uhSXZ8XFDizQHRdHtgutydOz2UPFMlH7fkV-AoMQ6JA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+ensemble+hippocampal+CNN+model+for+brain+age+estimation+applied+to+Alzheimer%27s+diagnosis&rft.jtitle=Expert+systems+with+applications&rft.au=Poloni%2C+Katia+Maria&rft.au=Ferrari%2C+Ricardo+Jos%C3%A9&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=195&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2022.116622&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |