A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer’s diagnosis

Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between subjects and groups. During the development of neurodegenerative diseases, these changes are more intense and accentuated. As Alzheimer’s disease (...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 195; p. 116622
Main Authors Poloni, Katia Maria, Ferrari, Ricardo José
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.06.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2022.116622

Cover

Loading…
Abstract Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between subjects and groups. During the development of neurodegenerative diseases, these changes are more intense and accentuated. As Alzheimer’s disease (AD) develops, the brain reflects accelerated aging with minor extends associated with mild cognitive impairment (MCI), i.e., the prodromal stage of AD. Therefore, it is crucial to understand a healthy brain aging process to predict a cognitive decline. This study produced an efficient age estimation framework using only the hippocampal regions that explores the associations of the brain age prediction error of age-matched cognitively normal (CN) subjects with AD and MCI subjects. For this, we have developed two convolutional neural networks. The first achieved very competitive state-of-the-art metrics, i.e., mean absolute error (MAE) of 3.31 and root mean square error (RMSE) of 4.65. The second has also achieved competitive metrics, but more importantly, we founded a statistically significant analysis of our delta estimation error between the compared groups. Further, we correlated our results with clinical measurements, e.g., Mini-Mental State Examination (MMSE) score, and obtained a significant negative correlation. In addition, we compared our results with other published studies. Therefore, our findings suggest that our delta could become a biomarker to support AD and MCI diagnosis. [Display omitted] •Hippocampal age estimation using an efficient 3D CNN architecture.•Data augmentation with an oversample over the age bins to obtain even distribution.•End-to-end framework to process new images within less than seven minutes.•Age-matched analyses with distinct aging effects and stages of neuro diseases.•Significant correlation between brain-predicted age delta error and clinical score.
AbstractList Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between subjects and groups. During the development of neurodegenerative diseases, these changes are more intense and accentuated. As Alzheimer's disease (AD) develops, the brain reflects accelerated aging with minor extends associated with mild cognitive impairment (MCI), i.e., the prodromal stage of AD. Therefore, it is crucial to understand a healthy brain aging process to predict a cognitive decline. This study produced an efficient age estimation framework using only the hippocampal regions that explores the associations of the brain age prediction error of age-matched cognitively normal (CN) subjects with AD and MCI subjects. For this, we have developed two convolutional neural networks. The first achieved very competitive state-of-the-art metrics, i.e., mean absolute error (MAE) of 3.31 and root mean square error (RMSE) of 4.65. The second has also achieved competitive metrics, but more importantly, we founded a statistically significant analysis of our delta estimation error between the compared groups. Further, we correlated our results with clinical measurements, e.g., Mini-Mental State Examination (MMSE) score, and obtained a significant negative correlation. In addition, we compared our results with other published studies. Therefore, our findings suggest that our delta could become a biomarker to support AD and MCI diagnosis.
Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between subjects and groups. During the development of neurodegenerative diseases, these changes are more intense and accentuated. As Alzheimer’s disease (AD) develops, the brain reflects accelerated aging with minor extends associated with mild cognitive impairment (MCI), i.e., the prodromal stage of AD. Therefore, it is crucial to understand a healthy brain aging process to predict a cognitive decline. This study produced an efficient age estimation framework using only the hippocampal regions that explores the associations of the brain age prediction error of age-matched cognitively normal (CN) subjects with AD and MCI subjects. For this, we have developed two convolutional neural networks. The first achieved very competitive state-of-the-art metrics, i.e., mean absolute error (MAE) of 3.31 and root mean square error (RMSE) of 4.65. The second has also achieved competitive metrics, but more importantly, we founded a statistically significant analysis of our delta estimation error between the compared groups. Further, we correlated our results with clinical measurements, e.g., Mini-Mental State Examination (MMSE) score, and obtained a significant negative correlation. In addition, we compared our results with other published studies. Therefore, our findings suggest that our delta could become a biomarker to support AD and MCI diagnosis. [Display omitted] •Hippocampal age estimation using an efficient 3D CNN architecture.•Data augmentation with an oversample over the age bins to obtain even distribution.•End-to-end framework to process new images within less than seven minutes.•Age-matched analyses with distinct aging effects and stages of neuro diseases.•Significant correlation between brain-predicted age delta error and clinical score.
ArticleNumber 116622
Author Ferrari, Ricardo José
Poloni, Katia Maria
Author_xml – sequence: 1
  givenname: Katia Maria
  orcidid: 0000-0003-1173-2277
  surname: Poloni
  fullname: Poloni, Katia Maria
  email: katiampoloni@gmail.com, kpoloni@estudante.ufscar.br
– sequence: 2
  givenname: Ricardo José
  orcidid: 0000-0003-1197-2553
  surname: Ferrari
  fullname: Ferrari, Ricardo José
  email: rferrari@ufscar.br
BookMark eNp9kEtOwzAQhi0EEm3hAqwssU7wI4kdiU1V8ZKqsoG15TiT1lESBzsFwYprcD1OQkpZsehqNNJ8M_N_U3TcuQ4QuqAkpoRmV3UM4U3HjDAWU5pljB2hCZWCR5nI-TGakDwVUUJFcoqmIdSEUEGImCA9xyVAj6EL0BYN4I3te2d02-sGL1Yr3LoSGlw5jwuvbYf1GjCEwbZ6sG5s-76xUOLB4XnzsQHbgv_-_Aq4tHrduWDDGTqpdBPg_K_O0PPtzdPiPlo-3j0s5svIcCaHiJvcFFxXUhMiWZrqNM2rjJKCGMK0EDmllSylTillMuGCpUIk0lQJL3SVFMBn6HK_t_fuZTu-qGq39d14UrEsETwXnJJxiu2njHcheKhU78cs_l1RonYqVa12KtVOpdqrHCH5DzJ2-M0_jE6aw-j1HoUx-qsFr4Kx0BkorQczqNLZQ_gPcuKRgg
CitedBy_id crossref_primary_10_1016_j_health_2023_100223
crossref_primary_10_1016_j_ibmed_2025_100219
crossref_primary_10_1007_s10479_024_06440_4
crossref_primary_10_1007_s42979_025_03686_y
crossref_primary_10_1016_j_neunet_2024_106592
crossref_primary_10_1007_s11042_023_15738_7
crossref_primary_10_3390_tomography10080093
crossref_primary_10_1007_s11042_022_13935_4
crossref_primary_10_3390_s22114250
crossref_primary_10_1016_j_eswa_2023_121929
crossref_primary_10_1016_j_neucom_2024_127974
crossref_primary_10_1016_j_brainres_2023_148668
crossref_primary_10_1016_j_neuroimage_2024_120825
crossref_primary_10_1097_CM9_0000000000003180
crossref_primary_10_1126_sciadv_adr3757
crossref_primary_10_1515_revneuro_2022_0122
crossref_primary_10_1016_j_eswa_2024_124415
crossref_primary_10_1016_j_neurad_2023_09_002
crossref_primary_10_1093_bfgp_elae042
crossref_primary_10_1016_j_eswa_2022_118910
crossref_primary_10_1162_imag_a_00195
crossref_primary_10_1016_j_inffus_2023_101945
crossref_primary_10_1016_j_eswa_2022_118633
crossref_primary_10_1016_j_cmpb_2025_108617
crossref_primary_10_1007_s12204_023_2590_2
crossref_primary_10_1016_j_inffus_2023_03_007
crossref_primary_10_1038_s41598_024_61915_5
Cites_doi 10.1016/j.jalz.2011.03.005
10.1109/JBHI.2016.2559938
10.1016/j.jalz.2011.10.007
10.1137/040616024
10.1038/nn.4393
10.1109/JBHI.2017.2704614
10.1097/NEN.0b013e31824b211b
10.1371/journal.pone.0067346
10.1016/0169-7439(89)80095-4
10.1016/j.neuroimage.2020.117401
10.1109/ISBI.2017.7950650
10.1523/JNEUROSCI.23-08-03295.2003
10.1016/j.neuroimage.2017.07.059
10.1002/jmri.21049
10.1007/s11704-019-8208-z
10.1111/ejn.13835
10.3174/ajnr.A5943
10.1176/appi.ajp.2015.15070922
10.1002/hipo.20573
10.1016/j.media.2017.10.005
10.1111/j.1532-5415.1999.tb02571.x
10.1109/42.836373
10.1016/j.neuroimage.2010.01.005
10.1016/S0893-6080(98)00116-6
10.1109/ISBI.2019.8759392
10.1002/hbm.22401
10.1016/j.knosys.2020.106396
10.1001/archneur.1996.00550010045015
10.1016/j.media.2016.10.004
10.1016/j.tins.2017.10.001
10.1109/ICPR.2010.112
10.1007/s00521-021-06105-4
10.1016/j.pscychresns.2011.07.016
10.1016/j.media.2020.101871
10.1371/journal.pone.0242712
10.1016/j.proenv.2011.10.100
10.1109/TMI.2010.2046908
10.1006/nimg.2001.0857
10.1016/j.neurobiolaging.2020.02.009
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2022
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.116622
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_116622
S0957417422001129
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-3c9cb3af8a008255a559f610b0c02a77911f8d8a51128437257748cf43baf4be3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 05:17:15 EDT 2025
Tue Jul 01 04:05:58 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Fri Feb 23 02:40:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brain-age estimation
Convolutional Neural Networks
Age biomarker
Alzheimer’s disease
Mild cognitive impairment
Deep Learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-3c9cb3af8a008255a559f610b0c02a77911f8d8a51128437257748cf43baf4be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1197-2553
0000-0003-1173-2277
PQID 2647397310
PQPubID 2045477
ParticipantIDs proquest_journals_2647397310
crossref_primary_10_1016_j_eswa_2022_116622
crossref_citationtrail_10_1016_j_eswa_2022_116622
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116622
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (b19) 2001; 14
Huang, T., Chen, H., Fujimoto, R., Ito, K., Wu, K., Sato, K., et al. (2017). Age estimation from brain MRI images using deep learning. In
Guadalupe, Zwiers, Teumer, Wittfeld, Vasquez, Hoogman (b20) 2014; 35
Li, Liu, Wang, Wang, Xu, Qiu (b36) 2017; 16
Korolev, Safiullin, Belyaev, Dodonova (b34) 2017
Dong, Yu, Cao, Shi, Qianli (b12) 2020; 14
Zhang, Liu, An, Gao, Shen (b67) 2017; 21
McKhann, Knopman, Chertkow, Hyman, Jack, Kawas (b43) 2011; 7
Nyúl, Udupa, Zhang (b45) 2000; 19
Ito, Fujimoto, Huang, Chen, Wu, Sato (b27) 2018
Pardakhti, Sajedi (b48) 2017
Ioffe, Szegedy (b26) 2015
Pérez-García, Sparks, Ourselin (b52) 2020
(pp. 424–427).
Wijnhoven, R. G., & de With, P. (2010). Fast training of object detection using stochastic gradient descent. In
Smith (b59) 2017
Dinsdale, Bluemke, Smith, Arya, Vidaurre, Jenkinson (b11) 2021; 224
Woolard, Heckers (b66) 2012; 201
Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector (b10) 2017; 163
Ueda, M., Ito, K., Wu, K., Sato, K., Taki, Y., Fukuda, H., et al. (2019). An age estimation method using 3D-CNN from brain MRI images. In
(pp. 894–852). Melbourne, Australia.
Hu, Shen, Sun (b23) 2018
Ahmed, Kim, Lee, Jung (b2) 2020; 15
Sandler, Howard, Zhu, Zhmoginov, Chen (b55) 2018
Alzheimer’s Association (b3) 2020; 16
Baumgartner, Tezcan, Chaitanya, Hötker, Muehlematter, Schawkat (b5) 2019
Jiang, Lu, Chen, Yao, Li, Zhang (b29) 2020; 10
Abdi, Williams (b1) 2010; 3
Fujimoto, Ito, Wu, Sato, Taki, Fukuda (b15) 2017
Tieleman, Hinton (b62) 2012
Lars, Svante (b35) 1989; 6
Resnick, Pham, Kraut, Zonderman, Davatzikos (b54) 2003; 23
Halle, Talos, Jakab, Makris, Meier, Wald (b21) 2017
Logan, Williams, Ferreira da Silva, Indani, Schcolnicov, Ganguly (b40) 2021; 17
Buades, Coll, Morel (b7) 2005; 4
(pp. 380–383). Venice, Italy.
Ardekani, Hadid, Blessing, Bachman (b4) 2019; 40
Organization (b46) 2019
Shi, Liu, Zhou, Yu, Jiang (b57) 2009; 19
Gaser, Franke, Klöppel, Koutsouleris, Sauer, Initiative (b16) 2013; 8
Lim, Tsuang, Kukull, Nochlin, Leverenz, McCormick (b37) 1999; 47
Ourselin, Stefanescu, Pennec (b47) 2002
He, Shao, Zhong, Zhao (b22) 2020; 207
Kingma, Ba (b32) 2014
Simonyan, Zisserman (b58) 2014
Cherubini, Caligiuri, Péran, Sabatini, Cosentino, Amato (b8) 2016; 20
Johnson, Fox, Sperling, Klunk (b30) 2012
Beach, Monsell, Phillips, Kukull (b6) 2012; 71
Gaugler, Ascher-Svanum, Roth, Fafowora, Siderowf, Beach (b17) 2013; 13
Jack, Bernstein, Fox, Thompson, Alexander, Harvey (b28) 2017; 27
Su, Wang, Shen, Hu (b60) 2011; 8
Lin, Tong, Gao, Guo, Du, Yang (b38) 2018; 12
Giovannetti, Gianluca, Casti, Mencattini, Pusil, L’/opez (b18) 2021; 33
Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu (b44) 2016; 19
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon (b31) 2017; 36
Liu, Zhang, Adeli, Shen (b39) 2018; 43
Schnack, Van Haren, Nieuwenhuis, Hulshoff Pol, Cahn, Kahn (b56) 2016; 173
Cole, Franke (b9) 2017; 40
Peng, Gong, Beckmann, Vedaldi, Smith (b51) 2021; 68
Hyman, Phelps, Beach, Bigio, Cairns, Carrillo (b25) 2012; 8
Pardakhti, Sajedi (b49) 2019
Pardakhti, Sajedi (b50) 2020
Feng, Lipton, Yang, Small, Provenzano (b13) 2020; 91
Qian (b53) 1999; 12
Tustison, Avants, Cook, Zheng, Egan, Yushkevich (b63) 2010; 29
Madan, Kensinger (b42) 2018; 47
Luo, Tang (b41) 2017
Tan, Le (b61) 2019
Franke, Ziegler, Klöppel, Gaser, Initiative (b14) 2010; 50
Klatka, Schiffer, Powers, Kazee (b33) 1996; 53
Johnson (10.1016/j.eswa.2022.116622_b30) 2012
Gaugler (10.1016/j.eswa.2022.116622_b17) 2013; 13
Ito (10.1016/j.eswa.2022.116622_b27) 2018
Pardakhti (10.1016/j.eswa.2022.116622_b50) 2020
Ioffe (10.1016/j.eswa.2022.116622_b26) 2015
Kingma (10.1016/j.eswa.2022.116622_b32) 2014
Smith (10.1016/j.eswa.2022.116622_b59) 2017
Zhang (10.1016/j.eswa.2022.116622_b67) 2017; 21
Abdi (10.1016/j.eswa.2022.116622_b1) 2010; 3
Buades (10.1016/j.eswa.2022.116622_b7) 2005; 4
Cole (10.1016/j.eswa.2022.116622_b10) 2017; 163
Miller (10.1016/j.eswa.2022.116622_b44) 2016; 19
Qian (10.1016/j.eswa.2022.116622_b53) 1999; 12
Ahmed (10.1016/j.eswa.2022.116622_b2) 2020; 15
Gaser (10.1016/j.eswa.2022.116622_b16) 2013; 8
He (10.1016/j.eswa.2022.116622_b22) 2020; 207
Li (10.1016/j.eswa.2022.116622_b36) 2017; 16
Tieleman (10.1016/j.eswa.2022.116622_b62) 2012
Franke (10.1016/j.eswa.2022.116622_b14) 2010; 50
Guadalupe (10.1016/j.eswa.2022.116622_b20) 2014; 35
Dinsdale (10.1016/j.eswa.2022.116622_b11) 2021; 224
Giovannetti (10.1016/j.eswa.2022.116622_b18) 2021; 33
Liu (10.1016/j.eswa.2022.116622_b39) 2018; 43
Beach (10.1016/j.eswa.2022.116622_b6) 2012; 71
Pardakhti (10.1016/j.eswa.2022.116622_b49) 2019
Tan (10.1016/j.eswa.2022.116622_b61) 2019
Organization (10.1016/j.eswa.2022.116622_b46) 2019
Resnick (10.1016/j.eswa.2022.116622_b54) 2003; 23
Ardekani (10.1016/j.eswa.2022.116622_b4) 2019; 40
Cherubini (10.1016/j.eswa.2022.116622_b8) 2016; 20
Halle (10.1016/j.eswa.2022.116622_b21) 2017
Lars (10.1016/j.eswa.2022.116622_b35) 1989; 6
Pardakhti (10.1016/j.eswa.2022.116622_b48) 2017
Madan (10.1016/j.eswa.2022.116622_b42) 2018; 47
Luo (10.1016/j.eswa.2022.116622_b41) 2017
Hu (10.1016/j.eswa.2022.116622_b23) 2018
Jack (10.1016/j.eswa.2022.116622_b28) 2017; 27
Kamnitsas (10.1016/j.eswa.2022.116622_b31) 2017; 36
Schnack (10.1016/j.eswa.2022.116622_b56) 2016; 173
Tustison (10.1016/j.eswa.2022.116622_b63) 2010; 29
Fujimoto (10.1016/j.eswa.2022.116622_b15) 2017
Ourselin (10.1016/j.eswa.2022.116622_b47) 2002
Cole (10.1016/j.eswa.2022.116622_b9) 2017; 40
Pérez-García (10.1016/j.eswa.2022.116622_b52) 2020
Klatka (10.1016/j.eswa.2022.116622_b33) 1996; 53
Feng (10.1016/j.eswa.2022.116622_b13) 2020; 91
Korolev (10.1016/j.eswa.2022.116622_b34) 2017
Hyman (10.1016/j.eswa.2022.116622_b25) 2012; 8
Baumgartner (10.1016/j.eswa.2022.116622_b5) 2019
Lim (10.1016/j.eswa.2022.116622_b37) 1999; 47
Su (10.1016/j.eswa.2022.116622_b60) 2011; 8
Peng (10.1016/j.eswa.2022.116622_b51) 2021; 68
McKhann (10.1016/j.eswa.2022.116622_b43) 2011; 7
Shi (10.1016/j.eswa.2022.116622_b57) 2009; 19
Good (10.1016/j.eswa.2022.116622_b19) 2001; 14
10.1016/j.eswa.2022.116622_b65
Dong (10.1016/j.eswa.2022.116622_b12) 2020; 14
Lin (10.1016/j.eswa.2022.116622_b38) 2018; 12
10.1016/j.eswa.2022.116622_b24
Simonyan (10.1016/j.eswa.2022.116622_b58) 2014
Nyúl (10.1016/j.eswa.2022.116622_b45) 2000; 19
10.1016/j.eswa.2022.116622_b64
Logan (10.1016/j.eswa.2022.116622_b40) 2021; 17
Sandler (10.1016/j.eswa.2022.116622_b55) 2018
Jiang (10.1016/j.eswa.2022.116622_b29) 2020; 10
Alzheimer’s Association (10.1016/j.eswa.2022.116622_b3) 2020; 16
Woolard (10.1016/j.eswa.2022.116622_b66) 2012; 201
References_xml – volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: b63
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Transactions on Medical Imaging
– reference: (pp. 424–427).
– volume: 8
  start-page: 645
  year: 2011
  end-page: 652
  ident: b60
  article-title: Age-related classification and prediction based on MRI: A sparse representation method
  publication-title: Procedia Environmental Sciences
– start-page: 1573
  year: 2020
  end-page: 7721
  ident: b50
  article-title: Brain age estimation based on 3D MRI images using 3D convolutional neural network
  publication-title: Multimedia tools and applications
– volume: 20
  start-page: 1232
  year: 2016
  end-page: 1239
  ident: b8
  article-title: Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction
  publication-title: Journal of Biomedical and Health Informatics
– volume: 33
  start-page: 14651
  year: 2021
  end-page: 14667
  ident: b18
  article-title: Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography
  publication-title: Neural Computing and Applications
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: b14
  article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
– volume: 15
  year: 2020
  ident: b2
  article-title: Ensemble of ROI-based convolutional neural network classifiers for staging the Alzheimer disease spectrum from magnetic resonance imaging
  publication-title: PLoS One
– volume: 207
  year: 2020
  ident: b22
  article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions
  publication-title: Knowledge-Based Systems
– volume: 47
  start-page: 399
  year: 2018
  end-page: 416
  ident: b42
  article-title: Predicting age from cortical structure across the lifespan
  publication-title: European Journal of Neuroscience
– volume: 91
  start-page: 15
  year: 2020
  end-page: 25
  ident: b13
  article-title: Estimating brain age based on a healthy population with deep learning and structural MRI
  publication-title: Neurobiology of Aging
– year: 2014
  ident: b32
  article-title: Adam: A method for stochastic optimization
– volume: 6
  start-page: 259
  year: 1989
  end-page: 272
  ident: b35
  article-title: Analysis of variance (anova)
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 47
  start-page: 564
  year: 1999
  end-page: 569
  ident: b37
  article-title: Clinico-neuropathological correlation of alzheimer’s disease in a community-based case series
  publication-title: Journal of the American Geriatrics Society
– volume: 12
  year: 2018
  ident: b38
  article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment
  publication-title: Frontiers in Neuroscience
– volume: 43
  start-page: 157
  year: 2018
  end-page: 168
  ident: b39
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Medical Image Analysis
– volume: 14
  start-page: 241
  year: 2020
  end-page: 258
  ident: b12
  article-title: A survey on ensemble learning
  publication-title: Frontiers of Computer Science
– volume: 68
  year: 2021
  ident: b51
  article-title: Accurate brain age prediction with lightweight deep neural networks
  publication-title: Medical Image Analysis
– reference: (pp. 894–852). Melbourne, Australia.
– reference: Ueda, M., Ito, K., Wu, K., Sato, K., Taki, Y., Fukuda, H., et al. (2019). An age estimation method using 3D-CNN from brain MRI images. In
– year: 2012
  ident: b30
  article-title: Brain imaging in alzheimer disease. Vol. 2
– volume: 3
  start-page: 1
  year: 2010
  end-page: 5
  ident: b1
  article-title: Tukey’s honestly significant difference (hsd) test
  publication-title: Encyclopedia of Research Design
– volume: 40
  start-page: 681
  year: 2017
  end-page: 690
  ident: b9
  article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers
  publication-title: Trends in Neurosciences
– volume: 19
  start-page: 143
  year: 2000
  end-page: 150
  ident: b45
  article-title: New variants of a method of MRI scale standardization
  publication-title: IEEE Transactions on Medical Imaging
– reference: Huang, T., Chen, H., Fujimoto, R., Ito, K., Wu, K., Sato, K., et al. (2017). Age estimation from brain MRI images using deep learning. In
– start-page: 694
  year: 2018
  end-page: 697
  ident: b27
  article-title: Performance evaluation of age estimation from t1-weighted images using brain local features and CNN
  publication-title: 2018 40th Annual international conference of the IEEE engineering in medicine and biology society
– start-page: 275
  year: 2017
  end-page: 283
  ident: b41
  article-title: Automated diagnosis of Alzheimer’s disease with multi-atlas based whole brain segmentations
  publication-title: Medical imaging 2017: biomedical applications in molecular, structural, and functional imaging
– volume: 35
  start-page: 3277
  year: 2014
  end-page: 3289
  ident: b20
  article-title: Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets
  publication-title: Human Brain Mapping
– start-page: 835
  year: 2017
  end-page: 838
  ident: b34
  article-title: Residual and plain convolutional neural networks for 3d brain MRI classification
  publication-title: International symposium on biomedical imaging
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: b61
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: International conference on machine learning
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  ident: b10
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
– volume: 8
  year: 2013
  ident: b16
  article-title: Brainage in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease
  publication-title: PLoS One
– year: 2019
  ident: b46
  article-title: Risk reduction of cognitive decline and dementia: Who guidelines
– volume: 8
  start-page: 1
  year: 2012
  end-page: 13
  ident: b25
  article-title: National institute on aging–alzheimer’s association guidelines for the neuropathologic assessment of alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
– start-page: 140
  year: 2002
  end-page: 147
  ident: b47
  article-title: Robust registration of multi-modal images: Towards real-time clinical applications
  publication-title: Medical image computing and computer-assisted intervention
– volume: 10
  year: 2020
  ident: b29
  article-title: Predicting brain age of healthy adults based on structural MRI parcellation using convolutional neural networks
  publication-title: Frontiers in Neurology
– year: 2020
  ident: b52
  article-title: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning
– volume: 16
  start-page: 1
  year: 2017
  end-page: 20
  ident: b36
  article-title: Dependency criterion based brain pathological age estimation of alzheimer’s disease patients with MR scans
  publication-title: Biomedical Engineering
– year: 2012
  ident: b62
  article-title: Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: neural networks for machine learning
– volume: 201
  start-page: 48
  year: 2012
  end-page: 53
  ident: b66
  article-title: Anatomical and functional correlates of human hippocampal volume asymmetry
  publication-title: Psychiatry Research: Neuroimaging
– volume: 7
  start-page: 263
  year: 2011
  end-page: 269
  ident: b43
  article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
– year: 2015
  ident: b26
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– start-page: 464
  year: 2017
  end-page: 472
  ident: b59
  article-title: Cyclical learning rates for training neural networks
  publication-title: Winter conference on applications of computer vision
– volume: 12
  start-page: 145
  year: 1999
  end-page: 151
  ident: b53
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Networks
– volume: 19
  start-page: 1523
  year: 2016
  end-page: 1536
  ident: b44
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nature Neuroscience
– year: 2014
  ident: b58
  article-title: Very deep convolutional networks for large-scale image recognition
– start-page: 119
  year: 2019
  end-page: 127
  ident: b5
  article-title: Phiseg: Capturing uncertainty in medical image segmentation
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: b31
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Medical Image Analysis
– reference: Wijnhoven, R. G., & de With, P. (2010). Fast training of object detection using stochastic gradient descent. In
– volume: 23
  start-page: 3295
  year: 2003
  end-page: 3301
  ident: b54
  article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain
  publication-title: Journal of Neuroscience
– start-page: 3028
  year: 2017
  end-page: 3031
  ident: b15
  article-title: Brain age estimation from t1-weighted images using effective local features
  publication-title: International conference of the IEEE engineering in medicine and biology society
– volume: 13
  year: 2013
  ident: b17
  article-title: Characteristics of patients misdiagnosed with Alzheimer’s disease and their medication use: an analysis of the nacc-uds database
  publication-title: BMC Geriatrics
– start-page: 386
  year: 2019
  end-page: 390
  ident: b49
  article-title: Brain age estimation using brain MRI and 3D convolutional neural network
  publication-title: 2019 9th International conference on computer and knowledge engineering
– reference: (pp. 380–383). Venice, Italy.
– year: 2017
  ident: b21
  article-title: Multi-modality MRI-based atlas of the brain
– volume: 17
  year: 2021
  ident: b40
  article-title: Deep convolutional neural networks with ensemble learning and generative adversarial networks for Alzheimer’s disease image data classification
  publication-title: Frontiers in Aging Neuroscience
– start-page: 000267
  year: 2017
  end-page: 000270
  ident: b48
  article-title: Age prediction based on brain MRI images using feature learning
  publication-title: International symposium on intelligent systems and informatics
– volume: 224
  year: 2021
  ident: b11
  article-title: Learning patterns of the ageing brain in MRI using deep convolutional networks
  publication-title: NeuroImage
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: b55
  article-title: Mobilenetv2: Inverted residuals and linear bottlenecks
  publication-title: Conference on computer vision and pattern recognition
– volume: 27
  start-page: 685
  year: 2017
  end-page: 691
  ident: b28
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 21
  start-page: 1607
  year: 2017
  end-page: 1616
  ident: b67
  article-title: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 71
  start-page: 266
  year: 2012
  end-page: 273
  ident: b6
  article-title: Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging alzheimer disease centers, 2005–2010
  publication-title: Journal of Neuropathology and Experimental Neurology
– volume: 19
  start-page: 1055
  year: 2009
  end-page: 1064
  ident: b57
  article-title: Hippocampal volume and asymmetry in mild cognitive impairment and alzheimer’s disease: Meta-analyses of MRI studies
  publication-title: Hippocampus
– volume: 16
  year: 2020
  ident: b3
  article-title: Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: b23
  article-title: Squeeze-and-excitation networks
  publication-title: Conference on computer vision and pattern recognition
– volume: 53
  start-page: 35
  year: 1996
  end-page: 42
  ident: b33
  article-title: Incorrect diagnosis of Alzheimer’s disease: a clinicopathologic study
  publication-title: Archives of Neurology
– volume: 4
  start-page: 490
  year: 2005
  end-page: 530
  ident: b7
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Modeling & Simulation
– volume: 14
  start-page: 685
  year: 2001
  end-page: 700
  ident: b19
  article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains
  publication-title: Neuroimage
– volume: 40
  start-page: 276
  year: 2019
  end-page: 282
  ident: b4
  article-title: Sexual dimorphism and hemispheric asymmetry of hippocampal volumetric integrity in normal aging and alzheimer disease
  publication-title: American Journal of Neuroradiology
– volume: 173
  start-page: 607
  year: 2016
  end-page: 616
  ident: b56
  article-title: Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study
  publication-title: American Journal of Psychiatry
– volume: 16
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b36
  article-title: Dependency criterion based brain pathological age estimation of alzheimer’s disease patients with MR scans
  publication-title: Biomedical Engineering
– volume: 17
  year: 2021
  ident: 10.1016/j.eswa.2022.116622_b40
  article-title: Deep convolutional neural networks with ensemble learning and generative adversarial networks for Alzheimer’s disease image data classification
  publication-title: Frontiers in Aging Neuroscience
– volume: 7
  start-page: 263
  year: 2011
  ident: 10.1016/j.eswa.2022.116622_b43
  article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.03.005
– volume: 20
  start-page: 1232
  year: 2016
  ident: 10.1016/j.eswa.2022.116622_b8
  article-title: Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction
  publication-title: Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2016.2559938
– year: 2020
  ident: 10.1016/j.eswa.2022.116622_b52
– volume: 8
  start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2022.116622_b25
  article-title: National institute on aging–alzheimer’s association guidelines for the neuropathologic assessment of alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.10.007
– start-page: 275
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b41
  article-title: Automated diagnosis of Alzheimer’s disease with multi-atlas based whole brain segmentations
– volume: 4
  start-page: 490
  year: 2005
  ident: 10.1016/j.eswa.2022.116622_b7
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Modeling & Simulation
  doi: 10.1137/040616024
– start-page: 386
  year: 2019
  ident: 10.1016/j.eswa.2022.116622_b49
  article-title: Brain age estimation using brain MRI and 3D convolutional neural network
– year: 2019
  ident: 10.1016/j.eswa.2022.116622_b46
– start-page: 000267
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b48
  article-title: Age prediction based on brain MRI images using feature learning
– volume: 19
  start-page: 1523
  year: 2016
  ident: 10.1016/j.eswa.2022.116622_b44
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4393
– volume: 21
  start-page: 1607
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b67
  article-title: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2017.2704614
– volume: 71
  start-page: 266
  year: 2012
  ident: 10.1016/j.eswa.2022.116622_b6
  article-title: Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging alzheimer disease centers, 2005–2010
  publication-title: Journal of Neuropathology and Experimental Neurology
  doi: 10.1097/NEN.0b013e31824b211b
– start-page: 119
  year: 2019
  ident: 10.1016/j.eswa.2022.116622_b5
  article-title: Phiseg: Capturing uncertainty in medical image segmentation
– volume: 8
  year: 2013
  ident: 10.1016/j.eswa.2022.116622_b16
  article-title: Brainage in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0067346
– volume: 16
  issue: 391
  year: 2020
  ident: 10.1016/j.eswa.2022.116622_b3
  article-title: Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association
– volume: 6
  start-page: 259
  year: 1989
  ident: 10.1016/j.eswa.2022.116622_b35
  article-title: Analysis of variance (anova)
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(89)80095-4
– volume: 224
  year: 2021
  ident: 10.1016/j.eswa.2022.116622_b11
  article-title: Learning patterns of the ageing brain in MRI using deep convolutional networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117401
– volume: 10
  issue: 1346
  year: 2020
  ident: 10.1016/j.eswa.2022.116622_b29
  article-title: Predicting brain age of healthy adults based on structural MRI parcellation using convolutional neural networks
  publication-title: Frontiers in Neurology
– ident: 10.1016/j.eswa.2022.116622_b24
  doi: 10.1109/ISBI.2017.7950650
– year: 2014
  ident: 10.1016/j.eswa.2022.116622_b32
– volume: 23
  start-page: 3295
  year: 2003
  ident: 10.1016/j.eswa.2022.116622_b54
  article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.23-08-03295.2003
– volume: 163
  start-page: 115
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b10
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.059
– volume: 27
  start-page: 685
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b28
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.21049
– volume: 14
  start-page: 241
  year: 2020
  ident: 10.1016/j.eswa.2022.116622_b12
  article-title: A survey on ensemble learning
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-019-8208-z
– volume: 47
  start-page: 399
  year: 2018
  ident: 10.1016/j.eswa.2022.116622_b42
  article-title: Predicting age from cortical structure across the lifespan
  publication-title: European Journal of Neuroscience
  doi: 10.1111/ejn.13835
– volume: 40
  start-page: 276
  year: 2019
  ident: 10.1016/j.eswa.2022.116622_b4
  article-title: Sexual dimorphism and hemispheric asymmetry of hippocampal volumetric integrity in normal aging and alzheimer disease
  publication-title: American Journal of Neuroradiology
  doi: 10.3174/ajnr.A5943
– start-page: 7132
  year: 2018
  ident: 10.1016/j.eswa.2022.116622_b23
  article-title: Squeeze-and-excitation networks
– volume: 173
  start-page: 607
  year: 2016
  ident: 10.1016/j.eswa.2022.116622_b56
  article-title: Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study
  publication-title: American Journal of Psychiatry
  doi: 10.1176/appi.ajp.2015.15070922
– volume: 19
  start-page: 1055
  year: 2009
  ident: 10.1016/j.eswa.2022.116622_b57
  article-title: Hippocampal volume and asymmetry in mild cognitive impairment and alzheimer’s disease: Meta-analyses of MRI studies
  publication-title: Hippocampus
  doi: 10.1002/hipo.20573
– start-page: 140
  year: 2002
  ident: 10.1016/j.eswa.2022.116622_b47
  article-title: Robust registration of multi-modal images: Towards real-time clinical applications
– volume: 12
  issue: 777
  year: 2018
  ident: 10.1016/j.eswa.2022.116622_b38
  article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment
  publication-title: Frontiers in Neuroscience
– volume: 43
  start-page: 157
  year: 2018
  ident: 10.1016/j.eswa.2022.116622_b39
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2017.10.005
– volume: 47
  start-page: 564
  year: 1999
  ident: 10.1016/j.eswa.2022.116622_b37
  article-title: Clinico-neuropathological correlation of alzheimer’s disease in a community-based case series
  publication-title: Journal of the American Geriatrics Society
  doi: 10.1111/j.1532-5415.1999.tb02571.x
– start-page: 835
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b34
  article-title: Residual and plain convolutional neural networks for 3d brain MRI classification
– start-page: 464
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b59
  article-title: Cyclical learning rates for training neural networks
– start-page: 4510
  year: 2018
  ident: 10.1016/j.eswa.2022.116622_b55
  article-title: Mobilenetv2: Inverted residuals and linear bottlenecks
– volume: 19
  start-page: 143
  year: 2000
  ident: 10.1016/j.eswa.2022.116622_b45
  article-title: New variants of a method of MRI scale standardization
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.836373
– volume: 50
  start-page: 883
  year: 2010
  ident: 10.1016/j.eswa.2022.116622_b14
  article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 12
  start-page: 145
  year: 1999
  ident: 10.1016/j.eswa.2022.116622_b53
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(98)00116-6
– ident: 10.1016/j.eswa.2022.116622_b64
  doi: 10.1109/ISBI.2019.8759392
– year: 2012
  ident: 10.1016/j.eswa.2022.116622_b62
  article-title: Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude
– volume: 35
  start-page: 3277
  year: 2014
  ident: 10.1016/j.eswa.2022.116622_b20
  article-title: Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22401
– volume: 207
  year: 2020
  ident: 10.1016/j.eswa.2022.116622_b22
  article-title: Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106396
– start-page: 1573
  year: 2020
  ident: 10.1016/j.eswa.2022.116622_b50
  article-title: Brain age estimation based on 3D MRI images using 3D convolutional neural network
– start-page: 694
  year: 2018
  ident: 10.1016/j.eswa.2022.116622_b27
  article-title: Performance evaluation of age estimation from t1-weighted images using brain local features and CNN
– volume: 53
  start-page: 35
  year: 1996
  ident: 10.1016/j.eswa.2022.116622_b33
  article-title: Incorrect diagnosis of Alzheimer’s disease: a clinicopathologic study
  publication-title: Archives of Neurology
  doi: 10.1001/archneur.1996.00550010045015
– year: 2017
  ident: 10.1016/j.eswa.2022.116622_b21
– start-page: 6105
  year: 2019
  ident: 10.1016/j.eswa.2022.116622_b61
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b31
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.10.004
– volume: 40
  start-page: 681
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b9
  article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers
  publication-title: Trends in Neurosciences
  doi: 10.1016/j.tins.2017.10.001
– ident: 10.1016/j.eswa.2022.116622_b65
  doi: 10.1109/ICPR.2010.112
– volume: 13
  issue: 137
  year: 2013
  ident: 10.1016/j.eswa.2022.116622_b17
  article-title: Characteristics of patients misdiagnosed with Alzheimer’s disease and their medication use: an analysis of the nacc-uds database
  publication-title: BMC Geriatrics
– volume: 33
  start-page: 14651
  year: 2021
  ident: 10.1016/j.eswa.2022.116622_b18
  article-title: Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06105-4
– year: 2012
  ident: 10.1016/j.eswa.2022.116622_b30
– volume: 201
  start-page: 48
  year: 2012
  ident: 10.1016/j.eswa.2022.116622_b66
  article-title: Anatomical and functional correlates of human hippocampal volume asymmetry
  publication-title: Psychiatry Research: Neuroimaging
  doi: 10.1016/j.pscychresns.2011.07.016
– volume: 68
  year: 2021
  ident: 10.1016/j.eswa.2022.116622_b51
  article-title: Accurate brain age prediction with lightweight deep neural networks
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101871
– year: 2014
  ident: 10.1016/j.eswa.2022.116622_b58
– volume: 15
  year: 2020
  ident: 10.1016/j.eswa.2022.116622_b2
  article-title: Ensemble of ROI-based convolutional neural network classifiers for staging the Alzheimer disease spectrum from magnetic resonance imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0242712
– year: 2015
  ident: 10.1016/j.eswa.2022.116622_b26
– start-page: 3028
  year: 2017
  ident: 10.1016/j.eswa.2022.116622_b15
  article-title: Brain age estimation from t1-weighted images using effective local features
– volume: 8
  start-page: 645
  year: 2011
  ident: 10.1016/j.eswa.2022.116622_b60
  article-title: Age-related classification and prediction based on MRI: A sparse representation method
  publication-title: Procedia Environmental Sciences
  doi: 10.1016/j.proenv.2011.10.100
– volume: 3
  start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2022.116622_b1
  article-title: Tukey’s honestly significant difference (hsd) test
  publication-title: Encyclopedia of Research Design
– volume: 29
  start-page: 1310
  year: 2010
  ident: 10.1016/j.eswa.2022.116622_b63
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 14
  start-page: 685
  year: 2001
  ident: 10.1016/j.eswa.2022.116622_b19
  article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0857
– volume: 91
  start-page: 15
  year: 2020
  ident: 10.1016/j.eswa.2022.116622_b13
  article-title: Estimating brain age based on a healthy population with deep learning and structural MRI
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2020.02.009
SSID ssj0017007
Score 2.5529723
Snippet Age-associated diseases rise as life expectancy increases. The brain presents age-related structural changes across life, with different extends between...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116622
SubjectTerms Age
Age biomarker
Alzheimer's disease
Artificial neural networks
Biomarkers
Brain
Brain-age estimation
Chronology
Convolutional Neural Networks
Deep Learning
Diagnosis
Error analysis
Life expectancy
Mild cognitive impairment
Root-mean-square errors
Title A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer’s diagnosis
URI https://dx.doi.org/10.1016/j.eswa.2022.116622
https://www.proquest.com/docview/2647397310
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VFDt5k7Tb77LEUpSr2ooXeQpJN6EofS7cieBD_hn_PX-LMJiso2IPHXZJlmUm--bL7zQwh50JJI-JEeZE2vhdCyPNSJTqeMRl-x5FBW2Oi8P0g7g_D21E0apBenQuDskqH_RbTK7R2d1rOmq0iz1sPQA4gHMLRDmVBELYwgz1MUNZ3-fYt88Dyc4mtt5d4ONolzliNly5fsPYQY4AccczYX8HpF0xXsed6m2w60ki79r12SEPPdslW3ZCBuv25R0SXZloXFI6meionmo7zooBgBVt-QnuDAa363lDgqVRiawgKYEKxzIbNX6TCUlK6nNPu5HWs86lefL5_lDSzgry83CfD66vHXt9zPRQ8FbB06QWqo2QgTCqqw2Ak4ARhgDJJX_lMJAlgnUmzVCDvSvEfXgR8MFUmDKQwodTBAVmbzWf6kNCEZRoDus8MkBYB3mdCpjLugFOFH6gmadfG48oVGMc-FxNeK8meOBqco8G5NXiTXHzPKWx5jZWjo9on_Mci4YD_K-ed1A7kbouWHJhgEmDjLv_on489Jht4ZYVjJ2RtuXjWp0BRlvKsWoNnZL17c9cffAGZTOXf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFHbHjAzcUNThrj1UFKlsugMTNsh1bBLUlokVInPgNfo8vYaZ2kECCA9ckjqKx_d6beBaAQ6mVlWmmg8TYMIiR8oJcy05gbUn_cVR0bChR-KpI-7fx-V1yNwO9JheGwio99jtMn6K1v9L21mzXVdW-RnGAdIiuHYUFIW3NwhxVp4pbMNc9u-gXX4cJWeiypvH5gAb43BkX5mXGL1R-iHMEjzTl_Dd--oHUU_o5XYZFrxtZ133aCsyY0SosNT0ZmN-iayC7rDSmZuidmqEaGHZf1TXyFe76AesVBZu2vmEoVZmi7hAM8YRRpQ2XwsikU6Vs8si6g9d7Uw3N08fb-5iVLiavGq_D7enJTa8f-DYKgY54Pgki3dEqkjaXU38wkehEWFRNKtQhl1mGcGfzMpckvXI6xktQEubaxpGSNlYm2oDW6HFkNoFlvDTE6SG3qFskLgAuVa7SDs6rDCO9BceN8YT2Ncap1cVANMFkD4IMLsjgwhl8C46-xtSuwsafTyfNnIhv60QgBfw5breZQOF36VigGMwi6t0Vbv_ztQcw37-5uhSXZ8XFDizQHRdHtgutydOz2UPFMlH7fkV-AoMQ6JA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+ensemble+hippocampal+CNN+model+for+brain+age+estimation+applied+to+Alzheimer%27s+diagnosis&rft.jtitle=Expert+systems+with+applications&rft.au=Poloni%2C+Katia+Maria&rft.au=Ferrari%2C+Ricardo+Jos%C3%A9&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=195&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2022.116622&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon