ARIMA-Based Time Series Model of Stochastic Wind Power Generation

This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 25; no. 2; pp. 667 - 676
Main Authors Peiyuan Chen, Pedersen, Troels, Bak-Jensen, Birgitte, Zhe Chen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power generation.
AbstractList This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power generation.
Author Zhe Chen
Peiyuan Chen
Bak-Jensen, Birgitte
Pedersen, Troels
Author_xml – sequence: 1
  surname: Peiyuan Chen
  fullname: Peiyuan Chen
  email: pch@iet.aau.dk
  organization: Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark
– sequence: 2
  givenname: Troels
  surname: Pedersen
  fullname: Pedersen, Troels
  email: troels@es.aau.dk
  organization: Dept. of Electron. Syst., Aalborg Univ., Aalborg, Denmark
– sequence: 3
  givenname: Birgitte
  surname: Bak-Jensen
  fullname: Bak-Jensen, Birgitte
  email: bbj@iet.aau.dk
  organization: Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark
– sequence: 4
  surname: Zhe Chen
  fullname: Zhe Chen
  email: zch@iet.aau.dk
  organization: Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark
BookMark eNp9kE1PwjAYxxuDiYB-Ab0s8eJl-LRd1_aIRNEEIgEMx2XZnsWSsWI7Yvz2lpd44OClz6G___Py65FOYxsk5JbCgFLQj8vZar4YMAAdHs6ZlBekS4VQMaRSd0gXlBKx0gKuSM_7NQCk4aNLhsP523QYP-Uey2hpNhgt0Bn00dSWWEe2ihatLT5z35oiWpmmjGb2G100xgZd3hrbXJPLKq893pxqn3y8PC9Hr_Hkffw2Gk7igjPVxrxIK9QgkRYpCiE0TVkudSIopsCUklpwnXAqU8YqDbSsyiowgaSSAyS8Tx6OfbfOfu3Qt9nG-ALrOm_Q7nxGgSeKUSogoPdn6NruXBO2CxSTVLKUskCxI1U4673DKts6s8ndT4CyvdXsYDXbW81OVkNInYUK0x48tC439f_Ru2PUIOLfLMETCCfzX4Wcgu8
CODEN ITPSEG
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2962152
crossref_primary_10_1016_j_epsr_2015_07_013
crossref_primary_10_1016_j_renene_2023_03_094
crossref_primary_10_1080_15325008_2018_1511006
crossref_primary_10_1038_s41598_020_65281_w
crossref_primary_10_1002_eej_23150
crossref_primary_10_3390_en12010069
crossref_primary_10_1016_j_renene_2022_11_002
crossref_primary_10_1016_j_jksuci_2018_02_010
crossref_primary_10_1049_rpg2_12132
crossref_primary_10_1049_iet_rpg_2015_0477
crossref_primary_10_1016_j_enconman_2014_04_082
crossref_primary_10_3390_su12229310
crossref_primary_10_1016_j_energy_2025_134388
crossref_primary_10_3390_s21030983
crossref_primary_10_3390_en6020662
crossref_primary_10_1016_j_ijepes_2019_105814
crossref_primary_10_1109_TSTE_2020_2976038
crossref_primary_10_1109_ACCESS_2020_3047077
crossref_primary_10_1016_j_energy_2023_127942
crossref_primary_10_1109_TII_2022_3204282
crossref_primary_10_1061__ASCE_EY_1943_7897_0000199
crossref_primary_10_1109_JSEN_2025_3525541
crossref_primary_10_12720_ijoee_2_2_112_118
crossref_primary_10_1002_er_6897
crossref_primary_10_1016_j_epsr_2023_109159
crossref_primary_10_1109_TSTE_2013_2252433
crossref_primary_10_1016_j_renene_2022_07_009
crossref_primary_10_1111_geoa_12052
crossref_primary_10_1016_j_enbuild_2022_112601
crossref_primary_10_1016_j_jweia_2020_104198
crossref_primary_10_1049_rpg2_12825
crossref_primary_10_1109_TIM_2024_3476536
crossref_primary_10_2516_stet_2024100
crossref_primary_10_1155_2019_1240717
crossref_primary_10_1109_TPWRS_2017_2775188
crossref_primary_10_3233_IDT_180346
crossref_primary_10_1088_1755_1315_766_1_012045
crossref_primary_10_1109_TPWRS_2023_3294839
crossref_primary_10_1049_rpg2_12394
crossref_primary_10_1007_s11633_017_1086_7
crossref_primary_10_3389_fenrg_2023_1252067
crossref_primary_10_1109_TSTE_2017_2774195
crossref_primary_10_3390_en11051040
crossref_primary_10_1016_j_asej_2022_102095
crossref_primary_10_1016_j_enconman_2016_03_078
crossref_primary_10_1109_TII_2016_2569531
crossref_primary_10_1109_JPETS_2015_2424700
crossref_primary_10_1007_s40745_023_00495_z
crossref_primary_10_1109_TSTE_2013_2284490
crossref_primary_10_1109_TIM_2024_3427837
crossref_primary_10_32604_ee_2024_046374
crossref_primary_10_3390_en11030591
crossref_primary_10_1109_ACCESS_2023_3240422
crossref_primary_10_3390_en15228417
crossref_primary_10_1145_3666006
crossref_primary_10_1002_we_2354
crossref_primary_10_1080_03772063_2018_1537814
crossref_primary_10_1049_iet_rpg_2019_0596
crossref_primary_10_1177_0959651819887261
crossref_primary_10_1016_j_ifacol_2018_07_253
crossref_primary_10_1109_TPWRS_2012_2231968
crossref_primary_10_1109_ACCESS_2020_3027435
crossref_primary_10_1016_j_neucom_2020_10_093
crossref_primary_10_1109_TII_2022_3175958
crossref_primary_10_1007_s40565_013_0020_4
crossref_primary_10_1109_TPWRS_2017_2687624
crossref_primary_10_1002_we_1496
crossref_primary_10_1016_j_energy_2023_127914
crossref_primary_10_1109_TII_2021_3097716
crossref_primary_10_1109_ACCESS_2018_2843774
crossref_primary_10_1109_TSTE_2016_2604852
crossref_primary_10_1109_TPWRS_2021_3118278
crossref_primary_10_3390_en11081992
crossref_primary_10_3390_su151410816
crossref_primary_10_1109_TSTE_2015_2429586
crossref_primary_10_1049_iet_gtd_2017_1476
crossref_primary_10_1109_TPWRS_2022_3210106
crossref_primary_10_1016_j_epsr_2015_12_015
crossref_primary_10_1109_TSTE_2022_3141549
crossref_primary_10_1049_iet_rpg_2015_0568
crossref_primary_10_1016_j_cie_2025_110901
crossref_primary_10_1016_j_neunet_2019_05_018
crossref_primary_10_1002_tee_22103
crossref_primary_10_1016_j_renene_2019_04_139
crossref_primary_10_1049_rpg2_13159
crossref_primary_10_1109_TPWRS_2020_3018936
crossref_primary_10_1155_2016_3623412
crossref_primary_10_1016_j_energy_2022_126173
crossref_primary_10_1109_JSYST_2019_2961172
crossref_primary_10_1080_0740817X_2016_1204489
crossref_primary_10_1049_iet_gtd_2016_1822
crossref_primary_10_1177_0309524X211056822
crossref_primary_10_1016_j_apenergy_2020_115182
crossref_primary_10_1109_ACCESS_2020_3012406
crossref_primary_10_1061__ASCE_CP_1943_5487_0000730
crossref_primary_10_3390_en15103594
crossref_primary_10_1109_TSTE_2012_2190529
crossref_primary_10_1016_j_apenergy_2020_115992
crossref_primary_10_1109_TPWRS_2016_2585619
crossref_primary_10_1108_IJESM_10_2018_0010
crossref_primary_10_1016_j_rser_2018_02_021
crossref_primary_10_1109_ACCESS_2020_2984851
crossref_primary_10_1109_ACCESS_2021_3091460
crossref_primary_10_1016_j_ijepes_2019_105556
crossref_primary_10_2139_ssrn_4132502
crossref_primary_10_1002_we_471
crossref_primary_10_1016_j_ijepes_2018_03_012
crossref_primary_10_1080_15567036_2021_2006370
crossref_primary_10_1007_s10479_024_06236_6
crossref_primary_10_3233_AIS_230144
crossref_primary_10_1109_TSTE_2014_2360702
crossref_primary_10_1016_j_ijepes_2020_106411
crossref_primary_10_1088_1748_9326_ab5e54
crossref_primary_10_1016_j_rser_2013_07_052
crossref_primary_10_3390_ijerph17134743
crossref_primary_10_3390_su132313383
crossref_primary_10_1109_TFUZZ_2012_2226890
crossref_primary_10_1109_ACCESS_2023_3284678
crossref_primary_10_1109_TIA_2012_2190817
crossref_primary_10_1016_j_asoc_2022_109337
crossref_primary_10_1063_5_0138488
crossref_primary_10_1016_j_epsr_2012_07_001
crossref_primary_10_1109_ACCESS_2024_3482572
crossref_primary_10_1016_j_epsr_2024_110735
crossref_primary_10_1109_TAES_2022_3167624
crossref_primary_10_1016_j_ijhydene_2015_03_133
crossref_primary_10_1109_ACCESS_2020_3011060
crossref_primary_10_1109_JSYST_2020_3037341
crossref_primary_10_1016_j_egyr_2024_07_023
crossref_primary_10_1109_JETCAS_2023_3291145
crossref_primary_10_1109_TSTE_2017_2764065
crossref_primary_10_1016_j_engappai_2024_108543
crossref_primary_10_3390_app13031908
crossref_primary_10_1109_TPWRS_2014_2315491
crossref_primary_10_1007_s00202_021_01457_5
crossref_primary_10_1109_TPWRS_2023_3298004
crossref_primary_10_3390_en10081210
crossref_primary_10_1016_j_rser_2014_12_019
crossref_primary_10_1109_JSYST_2011_2163003
crossref_primary_10_1109_TPWRS_2015_2468586
crossref_primary_10_3390_en5093329
crossref_primary_10_1016_j_rser_2012_04_019
crossref_primary_10_1007_s11431_014_5720_0
crossref_primary_10_1016_j_epsr_2010_11_009
crossref_primary_10_1088_1742_6596_2018_1_012011
crossref_primary_10_3390_en18030503
crossref_primary_10_1109_ACCESS_2019_2942012
crossref_primary_10_1108_JQME_03_2020_0017
crossref_primary_10_1109_TSTE_2019_2907699
crossref_primary_10_1002_ese3_1562
crossref_primary_10_1109_TSTE_2010_2044900
crossref_primary_10_1155_2013_971389
crossref_primary_10_1016_j_knosys_2025_113147
crossref_primary_10_1016_j_epsr_2011_10_008
crossref_primary_10_1016_j_rser_2022_112519
crossref_primary_10_1007_s42421_024_00097_y
crossref_primary_10_1016_j_jksuci_2020_09_009
crossref_primary_10_1063_5_0033313
crossref_primary_10_1016_j_rser_2014_07_130
crossref_primary_10_1080_02664763_2019_1671962
crossref_primary_10_1016_j_apenergy_2025_125295
crossref_primary_10_1016_j_cnsns_2023_107358
crossref_primary_10_3233_KES_200065
crossref_primary_10_1016_j_egyr_2023_05_226
crossref_primary_10_1016_j_asoc_2023_110873
crossref_primary_10_1016_j_scs_2024_105463
crossref_primary_10_1016_j_apenergy_2017_11_035
crossref_primary_10_1016_j_jpowsour_2018_06_098
crossref_primary_10_1109_TPWRS_2016_2531739
crossref_primary_10_1115_1_4037521
crossref_primary_10_1007_s42835_022_01027_0
crossref_primary_10_1016_j_energy_2021_119848
crossref_primary_10_3390_wevj15010011
crossref_primary_10_37391_ijeer_120415
crossref_primary_10_1049_iet_rpg_2019_0064
crossref_primary_10_1541_ieejpes_138_482
crossref_primary_10_1016_j_energy_2023_128289
crossref_primary_10_3390_su11061764
crossref_primary_10_1016_j_energy_2024_133911
crossref_primary_10_1109_TSTE_2023_3259939
crossref_primary_10_1007_s10462_024_10728_z
crossref_primary_10_1016_j_eneco_2024_107890
crossref_primary_10_1016_j_rser_2016_01_009
crossref_primary_10_1063_1_5139039
crossref_primary_10_3390_en16062915
crossref_primary_10_1002_tee_23970
crossref_primary_10_1002_wcm_2710
crossref_primary_10_1109_TITS_2018_2870400
crossref_primary_10_1109_ACCESS_2019_2942040
crossref_primary_10_1109_JSYST_2021_3065566
crossref_primary_10_1049_iet_rpg_2016_0235
crossref_primary_10_1108_IJESM_06_2018_0002
crossref_primary_10_1016_j_apenergy_2022_119182
crossref_primary_10_3934_mbe_2023642
crossref_primary_10_1016_j_egyr_2024_09_021
crossref_primary_10_1016_j_renene_2018_09_110
crossref_primary_10_1109_TEVC_2021_3122191
crossref_primary_10_3390_s23156976
crossref_primary_10_1016_j_engappai_2023_106273
crossref_primary_10_1109_ACCESS_2024_3435674
crossref_primary_10_1016_j_energy_2022_123857
crossref_primary_10_1109_TPWRS_2018_2890714
crossref_primary_10_1080_02286203_2022_2147044
crossref_primary_10_1016_j_rser_2018_05_056
crossref_primary_10_1038_s41598_024_62567_1
crossref_primary_10_1088_1755_1315_838_1_012002
crossref_primary_10_1016_j_energy_2022_125248
crossref_primary_10_1049_el_2014_1908
crossref_primary_10_1049_iet_rpg_2016_0118
crossref_primary_10_1109_TSTE_2021_3123337
crossref_primary_10_1016_j_ijepes_2019_105710
crossref_primary_10_1016_j_energy_2015_08_039
crossref_primary_10_1109_ACCESS_2020_3040382
crossref_primary_10_3390_math12203295
Cites_doi 10.1016/j.energy.2004.05.026
10.1201/9781315215006
10.1109/TEC.2007.914174
10.1049/ip-gtd:19960488
10.1002/we.244
10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2
10.1109/TPWRS.2006.889126
10.1016/0026-2714(95)00154-9
10.1016/S0167-6105(03)00037-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
7SU
C1K
F28
DOI 10.1109/TPWRS.2009.2033277
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Environmental Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 676
ExternalDocumentID 2716714381
10_1109_TPWRS_2009_2033277
5340622
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
7SU
C1K
F28
ID FETCH-LOGICAL-c328t-3c6fe907e1c6e5559162a79451e60288795394317622f901dfdf9165551730043
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri Jul 11 04:19:32 EDT 2025
Mon Jun 30 10:29:19 EDT 2025
Tue Jul 01 01:35:26 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Wed Aug 27 02:51:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-3c6fe907e1c6e5559162a79451e60288795394317622f901dfdf9165551730043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1027172612
PQPubID 85441
PageCount 10
ParticipantIDs proquest_miscellaneous_1034821150
proquest_journals_1027172612
crossref_primary_10_1109_TPWRS_2009_2033277
ieee_primary_5340622
crossref_citationtrail_10_1109_TPWRS_2009_2033277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-May
2010-05-00
20100501
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-May
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References papoulis (ref12) 2002
linhart (ref14) 1986
box (ref10) 1994
ref2
wei (ref11) 1990
ref8
ref7
ref9
ref4
ref3
ref6
ref5
willis (ref1) 2000
leon-garcia (ref13) 2009
References_xml – year: 2009
  ident: ref13
  publication-title: Probability and Random Processes of Electrical Engineering
– ident: ref5
  doi: 10.1016/j.energy.2004.05.026
– year: 2000
  ident: ref1
  publication-title: Distributed Power Generation Planning and Evaluation
  doi: 10.1201/9781315215006
– ident: ref9
  doi: 10.1109/TEC.2007.914174
– year: 1994
  ident: ref10
  publication-title: Time Series Analysis Forecasting and Control
– year: 1990
  ident: ref11
  publication-title: Time Series Analysis Univariate and Multivariate Methods
– year: 2002
  ident: ref12
  publication-title: Probability random variables and stochastic processes
– ident: ref6
  doi: 10.1049/ip-gtd:19960488
– ident: ref7
  doi: 10.1002/we.244
– year: 1986
  ident: ref14
  publication-title: Model Selection
– ident: ref4
  doi: 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2
– ident: ref2
  doi: 10.1109/TPWRS.2006.889126
– ident: ref3
  doi: 10.1016/0026-2714(95)00154-9
– ident: ref8
  doi: 10.1016/S0167-6105(03)00037-0
SSID ssj0006679
Score 2.4797285
Snippet This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 667
SubjectTerms ARIMA processes
Autoregressive processes
Correlation
Driving
Markov models
Markov processes
Offshore
Power measurement
Power system modeling
Power system planning
Probability distribution
Stochastic processes
Stochasticity
Temporal logic
time series
Wind energy
Wind farms
Wind power
Wind power generation
Wind speed
Title ARIMA-Based Time Series Model of Stochastic Wind Power Generation
URI https://ieeexplore.ieee.org/document/5340622
https://www.proquest.com/docview/1027172612
https://www.proquest.com/docview/1034821150
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC7Uk3vwse6y44ss7G03Y3eSznQfR1FUGBnGGfTWpPNAUKZFey7-eqv6xb5Y9tbQlRBSqVR9SeorgG9BpYWMnOB6JBxXTgSObijwAo0ryUxkTKDk5MmNvlyo6_vkfg1-9Lkw3vv68Zkf0md9l-9Ku6KjspNEovsRuOGuI3BrcrX6XVfrhlcvTROeZknUJchE2cl8eje7bagpRSSlGI1-cUJ1VZU_tuLav1xsw6QbWfOs5HG4qoqhffuNtPF_h74DW22gycbNytiFNb_8CB9-oh_cg_F4djUZ81N0ZI5RLgijszL_yqhA2hMrA7utSvtgiMqZ3SF4Z1OqqcYaqmrS6CdYXJzPzy55W1KBWynSikurg0c87GOrfYJoItbCoEkmsdcYaVDlcZlRTIFjDRgquOACyqBkTMT2Sn6GjWW59F-AKWUCwmdhiixSylkjjEDsI70trLNKDyDu5ji3Ld84lb14ymvcEWV5rReqg5nlrV4G8L1v89ywbfxTeo8mupds53gAh50q89YgX7EXgcCV-NIG8LX_jaZE9yNm6csVyRDTD4XI-3_v-QA2u8cDUXwIG9XLyh9hTFIVx_VifAcEEtlV
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5F5UA58GhBTSngStyK013b6-weA6JKoamiJlF7W3n9EBJVFrWbC7-emX2ppRXittKOLcvj8cxne74B-BhUWsjICa7HwnHlRODohgIv0LiSzETGBEpOnp3r6Up9u0quBvCpz4Xx3tePz_yIPuu7fFfaDR2VHScS3Y_ADfcJ-v0kbrK1-n1X64ZZL00TnmZJ1KXIRNnxcn55sWjIKUUkpRiP77mhuq7Kg8249jAnL2DWja15WPJztKmKkf39F23j_w7-JTxvQ002adbGKxj49Q48u0NAuAuTycXpbMI_oytzjLJBGJ2W-VtGJdKuWRnYoirtD0NkzuwS4TubU1U11pBVk05fw-rk6_LLlLdFFbiVIq24tDp4RMQ-ttoniCdiLQwaZRJ7jbEG1R6XGUUVONaAwYILLqAMSsZEba_kG9hal2u_B0wpExBAC1NkkVLOGmEEoh_pbWGdVXoIcTfHuW0Zx6nwxXVeI48oy2u9UCXMLG_1MoSjvs2vhm_jn9K7NNG9ZDvHQzjoVJm3JnmLvQiErsSYNoTD_jcaE92QmLUvNyRDXD8UJO8_3vMHeDpdzs7ys9Pz729hu3tKEMUHsFXdbPw7jFCq4n29MP8AiOLcng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARIMA-Based+Time+Series+Model+of+Stochastic+Wind+Power+Generation&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Peiyuan+Chen&rft.au=Pedersen%2C+Troels&rft.au=Bak-Jensen%2C+Birgitte&rft.au=Zhe+Chen&rft.date=2010-05-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=25&rft.issue=2&rft.spage=667&rft.epage=676&rft_id=info:doi/10.1109%2FTPWRS.2009.2033277&rft.externalDocID=5340622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon