ARIMA-Based Time Series Model of Stochastic Wind Power Generation
This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...
Saved in:
Published in | IEEE transactions on power systems Vol. 25; no. 2; pp. 667 - 676 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power generation. |
---|---|
AbstractList | This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power generation. |
Author | Zhe Chen Peiyuan Chen Bak-Jensen, Birgitte Pedersen, Troels |
Author_xml | – sequence: 1 surname: Peiyuan Chen fullname: Peiyuan Chen email: pch@iet.aau.dk organization: Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark – sequence: 2 givenname: Troels surname: Pedersen fullname: Pedersen, Troels email: troels@es.aau.dk organization: Dept. of Electron. Syst., Aalborg Univ., Aalborg, Denmark – sequence: 3 givenname: Birgitte surname: Bak-Jensen fullname: Bak-Jensen, Birgitte email: bbj@iet.aau.dk organization: Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark – sequence: 4 surname: Zhe Chen fullname: Zhe Chen email: zch@iet.aau.dk organization: Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark |
BookMark | eNp9kE1PwjAYxxuDiYB-Ab0s8eJl-LRd1_aIRNEEIgEMx2XZnsWSsWI7Yvz2lpd44OClz6G___Py65FOYxsk5JbCgFLQj8vZar4YMAAdHs6ZlBekS4VQMaRSd0gXlBKx0gKuSM_7NQCk4aNLhsP523QYP-Uey2hpNhgt0Bn00dSWWEe2ihatLT5z35oiWpmmjGb2G100xgZd3hrbXJPLKq893pxqn3y8PC9Hr_Hkffw2Gk7igjPVxrxIK9QgkRYpCiE0TVkudSIopsCUklpwnXAqU8YqDbSsyiowgaSSAyS8Tx6OfbfOfu3Qt9nG-ALrOm_Q7nxGgSeKUSogoPdn6NruXBO2CxSTVLKUskCxI1U4673DKts6s8ndT4CyvdXsYDXbW81OVkNInYUK0x48tC439f_Ru2PUIOLfLMETCCfzX4Wcgu8 |
CODEN | ITPSEG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2962152 crossref_primary_10_1016_j_epsr_2015_07_013 crossref_primary_10_1016_j_renene_2023_03_094 crossref_primary_10_1080_15325008_2018_1511006 crossref_primary_10_1038_s41598_020_65281_w crossref_primary_10_1002_eej_23150 crossref_primary_10_3390_en12010069 crossref_primary_10_1016_j_renene_2022_11_002 crossref_primary_10_1016_j_jksuci_2018_02_010 crossref_primary_10_1049_rpg2_12132 crossref_primary_10_1049_iet_rpg_2015_0477 crossref_primary_10_1016_j_enconman_2014_04_082 crossref_primary_10_3390_su12229310 crossref_primary_10_1016_j_energy_2025_134388 crossref_primary_10_3390_s21030983 crossref_primary_10_3390_en6020662 crossref_primary_10_1016_j_ijepes_2019_105814 crossref_primary_10_1109_TSTE_2020_2976038 crossref_primary_10_1109_ACCESS_2020_3047077 crossref_primary_10_1016_j_energy_2023_127942 crossref_primary_10_1109_TII_2022_3204282 crossref_primary_10_1061__ASCE_EY_1943_7897_0000199 crossref_primary_10_1109_JSEN_2025_3525541 crossref_primary_10_12720_ijoee_2_2_112_118 crossref_primary_10_1002_er_6897 crossref_primary_10_1016_j_epsr_2023_109159 crossref_primary_10_1109_TSTE_2013_2252433 crossref_primary_10_1016_j_renene_2022_07_009 crossref_primary_10_1111_geoa_12052 crossref_primary_10_1016_j_enbuild_2022_112601 crossref_primary_10_1016_j_jweia_2020_104198 crossref_primary_10_1049_rpg2_12825 crossref_primary_10_1109_TIM_2024_3476536 crossref_primary_10_2516_stet_2024100 crossref_primary_10_1155_2019_1240717 crossref_primary_10_1109_TPWRS_2017_2775188 crossref_primary_10_3233_IDT_180346 crossref_primary_10_1088_1755_1315_766_1_012045 crossref_primary_10_1109_TPWRS_2023_3294839 crossref_primary_10_1049_rpg2_12394 crossref_primary_10_1007_s11633_017_1086_7 crossref_primary_10_3389_fenrg_2023_1252067 crossref_primary_10_1109_TSTE_2017_2774195 crossref_primary_10_3390_en11051040 crossref_primary_10_1016_j_asej_2022_102095 crossref_primary_10_1016_j_enconman_2016_03_078 crossref_primary_10_1109_TII_2016_2569531 crossref_primary_10_1109_JPETS_2015_2424700 crossref_primary_10_1007_s40745_023_00495_z crossref_primary_10_1109_TSTE_2013_2284490 crossref_primary_10_1109_TIM_2024_3427837 crossref_primary_10_32604_ee_2024_046374 crossref_primary_10_3390_en11030591 crossref_primary_10_1109_ACCESS_2023_3240422 crossref_primary_10_3390_en15228417 crossref_primary_10_1145_3666006 crossref_primary_10_1002_we_2354 crossref_primary_10_1080_03772063_2018_1537814 crossref_primary_10_1049_iet_rpg_2019_0596 crossref_primary_10_1177_0959651819887261 crossref_primary_10_1016_j_ifacol_2018_07_253 crossref_primary_10_1109_TPWRS_2012_2231968 crossref_primary_10_1109_ACCESS_2020_3027435 crossref_primary_10_1016_j_neucom_2020_10_093 crossref_primary_10_1109_TII_2022_3175958 crossref_primary_10_1007_s40565_013_0020_4 crossref_primary_10_1109_TPWRS_2017_2687624 crossref_primary_10_1002_we_1496 crossref_primary_10_1016_j_energy_2023_127914 crossref_primary_10_1109_TII_2021_3097716 crossref_primary_10_1109_ACCESS_2018_2843774 crossref_primary_10_1109_TSTE_2016_2604852 crossref_primary_10_1109_TPWRS_2021_3118278 crossref_primary_10_3390_en11081992 crossref_primary_10_3390_su151410816 crossref_primary_10_1109_TSTE_2015_2429586 crossref_primary_10_1049_iet_gtd_2017_1476 crossref_primary_10_1109_TPWRS_2022_3210106 crossref_primary_10_1016_j_epsr_2015_12_015 crossref_primary_10_1109_TSTE_2022_3141549 crossref_primary_10_1049_iet_rpg_2015_0568 crossref_primary_10_1016_j_cie_2025_110901 crossref_primary_10_1016_j_neunet_2019_05_018 crossref_primary_10_1002_tee_22103 crossref_primary_10_1016_j_renene_2019_04_139 crossref_primary_10_1049_rpg2_13159 crossref_primary_10_1109_TPWRS_2020_3018936 crossref_primary_10_1155_2016_3623412 crossref_primary_10_1016_j_energy_2022_126173 crossref_primary_10_1109_JSYST_2019_2961172 crossref_primary_10_1080_0740817X_2016_1204489 crossref_primary_10_1049_iet_gtd_2016_1822 crossref_primary_10_1177_0309524X211056822 crossref_primary_10_1016_j_apenergy_2020_115182 crossref_primary_10_1109_ACCESS_2020_3012406 crossref_primary_10_1061__ASCE_CP_1943_5487_0000730 crossref_primary_10_3390_en15103594 crossref_primary_10_1109_TSTE_2012_2190529 crossref_primary_10_1016_j_apenergy_2020_115992 crossref_primary_10_1109_TPWRS_2016_2585619 crossref_primary_10_1108_IJESM_10_2018_0010 crossref_primary_10_1016_j_rser_2018_02_021 crossref_primary_10_1109_ACCESS_2020_2984851 crossref_primary_10_1109_ACCESS_2021_3091460 crossref_primary_10_1016_j_ijepes_2019_105556 crossref_primary_10_2139_ssrn_4132502 crossref_primary_10_1002_we_471 crossref_primary_10_1016_j_ijepes_2018_03_012 crossref_primary_10_1080_15567036_2021_2006370 crossref_primary_10_1007_s10479_024_06236_6 crossref_primary_10_3233_AIS_230144 crossref_primary_10_1109_TSTE_2014_2360702 crossref_primary_10_1016_j_ijepes_2020_106411 crossref_primary_10_1088_1748_9326_ab5e54 crossref_primary_10_1016_j_rser_2013_07_052 crossref_primary_10_3390_ijerph17134743 crossref_primary_10_3390_su132313383 crossref_primary_10_1109_TFUZZ_2012_2226890 crossref_primary_10_1109_ACCESS_2023_3284678 crossref_primary_10_1109_TIA_2012_2190817 crossref_primary_10_1016_j_asoc_2022_109337 crossref_primary_10_1063_5_0138488 crossref_primary_10_1016_j_epsr_2012_07_001 crossref_primary_10_1109_ACCESS_2024_3482572 crossref_primary_10_1016_j_epsr_2024_110735 crossref_primary_10_1109_TAES_2022_3167624 crossref_primary_10_1016_j_ijhydene_2015_03_133 crossref_primary_10_1109_ACCESS_2020_3011060 crossref_primary_10_1109_JSYST_2020_3037341 crossref_primary_10_1016_j_egyr_2024_07_023 crossref_primary_10_1109_JETCAS_2023_3291145 crossref_primary_10_1109_TSTE_2017_2764065 crossref_primary_10_1016_j_engappai_2024_108543 crossref_primary_10_3390_app13031908 crossref_primary_10_1109_TPWRS_2014_2315491 crossref_primary_10_1007_s00202_021_01457_5 crossref_primary_10_1109_TPWRS_2023_3298004 crossref_primary_10_3390_en10081210 crossref_primary_10_1016_j_rser_2014_12_019 crossref_primary_10_1109_JSYST_2011_2163003 crossref_primary_10_1109_TPWRS_2015_2468586 crossref_primary_10_3390_en5093329 crossref_primary_10_1016_j_rser_2012_04_019 crossref_primary_10_1007_s11431_014_5720_0 crossref_primary_10_1016_j_epsr_2010_11_009 crossref_primary_10_1088_1742_6596_2018_1_012011 crossref_primary_10_3390_en18030503 crossref_primary_10_1109_ACCESS_2019_2942012 crossref_primary_10_1108_JQME_03_2020_0017 crossref_primary_10_1109_TSTE_2019_2907699 crossref_primary_10_1002_ese3_1562 crossref_primary_10_1109_TSTE_2010_2044900 crossref_primary_10_1155_2013_971389 crossref_primary_10_1016_j_knosys_2025_113147 crossref_primary_10_1016_j_epsr_2011_10_008 crossref_primary_10_1016_j_rser_2022_112519 crossref_primary_10_1007_s42421_024_00097_y crossref_primary_10_1016_j_jksuci_2020_09_009 crossref_primary_10_1063_5_0033313 crossref_primary_10_1016_j_rser_2014_07_130 crossref_primary_10_1080_02664763_2019_1671962 crossref_primary_10_1016_j_apenergy_2025_125295 crossref_primary_10_1016_j_cnsns_2023_107358 crossref_primary_10_3233_KES_200065 crossref_primary_10_1016_j_egyr_2023_05_226 crossref_primary_10_1016_j_asoc_2023_110873 crossref_primary_10_1016_j_scs_2024_105463 crossref_primary_10_1016_j_apenergy_2017_11_035 crossref_primary_10_1016_j_jpowsour_2018_06_098 crossref_primary_10_1109_TPWRS_2016_2531739 crossref_primary_10_1115_1_4037521 crossref_primary_10_1007_s42835_022_01027_0 crossref_primary_10_1016_j_energy_2021_119848 crossref_primary_10_3390_wevj15010011 crossref_primary_10_37391_ijeer_120415 crossref_primary_10_1049_iet_rpg_2019_0064 crossref_primary_10_1541_ieejpes_138_482 crossref_primary_10_1016_j_energy_2023_128289 crossref_primary_10_3390_su11061764 crossref_primary_10_1016_j_energy_2024_133911 crossref_primary_10_1109_TSTE_2023_3259939 crossref_primary_10_1007_s10462_024_10728_z crossref_primary_10_1016_j_eneco_2024_107890 crossref_primary_10_1016_j_rser_2016_01_009 crossref_primary_10_1063_1_5139039 crossref_primary_10_3390_en16062915 crossref_primary_10_1002_tee_23970 crossref_primary_10_1002_wcm_2710 crossref_primary_10_1109_TITS_2018_2870400 crossref_primary_10_1109_ACCESS_2019_2942040 crossref_primary_10_1109_JSYST_2021_3065566 crossref_primary_10_1049_iet_rpg_2016_0235 crossref_primary_10_1108_IJESM_06_2018_0002 crossref_primary_10_1016_j_apenergy_2022_119182 crossref_primary_10_3934_mbe_2023642 crossref_primary_10_1016_j_egyr_2024_09_021 crossref_primary_10_1016_j_renene_2018_09_110 crossref_primary_10_1109_TEVC_2021_3122191 crossref_primary_10_3390_s23156976 crossref_primary_10_1016_j_engappai_2023_106273 crossref_primary_10_1109_ACCESS_2024_3435674 crossref_primary_10_1016_j_energy_2022_123857 crossref_primary_10_1109_TPWRS_2018_2890714 crossref_primary_10_1080_02286203_2022_2147044 crossref_primary_10_1016_j_rser_2018_05_056 crossref_primary_10_1038_s41598_024_62567_1 crossref_primary_10_1088_1755_1315_838_1_012002 crossref_primary_10_1016_j_energy_2022_125248 crossref_primary_10_1049_el_2014_1908 crossref_primary_10_1049_iet_rpg_2016_0118 crossref_primary_10_1109_TSTE_2021_3123337 crossref_primary_10_1016_j_ijepes_2019_105710 crossref_primary_10_1016_j_energy_2015_08_039 crossref_primary_10_1109_ACCESS_2020_3040382 crossref_primary_10_3390_math12203295 |
Cites_doi | 10.1016/j.energy.2004.05.026 10.1201/9781315215006 10.1109/TEC.2007.914174 10.1049/ip-gtd:19960488 10.1002/we.244 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2 10.1109/TPWRS.2006.889126 10.1016/0026-2714(95)00154-9 10.1016/S0167-6105(03)00037-0 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M 7SU C1K F28 |
DOI | 10.1109/TPWRS.2009.2033277 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environmental Engineering Abstracts Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Environmental Engineering Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0679 |
EndPage | 676 |
ExternalDocumentID | 2716714381 10_1109_TPWRS_2009_2033277 5340622 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M 7SU C1K F28 |
ID | FETCH-LOGICAL-c328t-3c6fe907e1c6e5559162a79451e60288795394317622f901dfdf9165551730043 |
IEDL.DBID | RIE |
ISSN | 0885-8950 |
IngestDate | Fri Jul 11 04:19:32 EDT 2025 Mon Jun 30 10:29:19 EDT 2025 Tue Jul 01 01:35:26 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Wed Aug 27 02:51:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-3c6fe907e1c6e5559162a79451e60288795394317622f901dfdf9165551730043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1027172612 |
PQPubID | 85441 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1034821150 proquest_journals_1027172612 crossref_primary_10_1109_TPWRS_2009_2033277 ieee_primary_5340622 crossref_citationtrail_10_1109_TPWRS_2009_2033277 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-May 2010-05-00 20100501 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-May |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power systems |
PublicationTitleAbbrev | TPWRS |
PublicationYear | 2010 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | papoulis (ref12) 2002 linhart (ref14) 1986 box (ref10) 1994 ref2 wei (ref11) 1990 ref8 ref7 ref9 ref4 ref3 ref6 ref5 willis (ref1) 2000 leon-garcia (ref13) 2009 |
References_xml | – year: 2009 ident: ref13 publication-title: Probability and Random Processes of Electrical Engineering – ident: ref5 doi: 10.1016/j.energy.2004.05.026 – year: 2000 ident: ref1 publication-title: Distributed Power Generation Planning and Evaluation doi: 10.1201/9781315215006 – ident: ref9 doi: 10.1109/TEC.2007.914174 – year: 1994 ident: ref10 publication-title: Time Series Analysis Forecasting and Control – year: 1990 ident: ref11 publication-title: Time Series Analysis Univariate and Multivariate Methods – year: 2002 ident: ref12 publication-title: Probability random variables and stochastic processes – ident: ref6 doi: 10.1049/ip-gtd:19960488 – ident: ref7 doi: 10.1002/we.244 – year: 1986 ident: ref14 publication-title: Model Selection – ident: ref4 doi: 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2 – ident: ref2 doi: 10.1109/TPWRS.2006.889126 – ident: ref3 doi: 10.1016/0026-2714(95)00154-9 – ident: ref8 doi: 10.1016/S0167-6105(03)00037-0 |
SSID | ssj0006679 |
Score | 2.4797285 |
Snippet | This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 667 |
SubjectTerms | ARIMA processes Autoregressive processes Correlation Driving Markov models Markov processes Offshore Power measurement Power system modeling Power system planning Probability distribution Stochastic processes Stochasticity Temporal logic time series Wind energy Wind farms Wind power Wind power generation Wind speed |
Title | ARIMA-Based Time Series Model of Stochastic Wind Power Generation |
URI | https://ieeexplore.ieee.org/document/5340622 https://www.proquest.com/docview/1027172612 https://www.proquest.com/docview/1034821150 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC7Uk3vwse6y44ss7G03Y3eSznQfR1FUGBnGGfTWpPNAUKZFey7-eqv6xb5Y9tbQlRBSqVR9SeorgG9BpYWMnOB6JBxXTgSObijwAo0ryUxkTKDk5MmNvlyo6_vkfg1-9Lkw3vv68Zkf0md9l-9Ku6KjspNEovsRuOGuI3BrcrX6XVfrhlcvTROeZknUJchE2cl8eje7bagpRSSlGI1-cUJ1VZU_tuLav1xsw6QbWfOs5HG4qoqhffuNtPF_h74DW22gycbNytiFNb_8CB9-oh_cg_F4djUZ81N0ZI5RLgijszL_yqhA2hMrA7utSvtgiMqZ3SF4Z1OqqcYaqmrS6CdYXJzPzy55W1KBWynSikurg0c87GOrfYJoItbCoEkmsdcYaVDlcZlRTIFjDRgquOACyqBkTMT2Sn6GjWW59F-AKWUCwmdhiixSylkjjEDsI70trLNKDyDu5ji3Ld84lb14ymvcEWV5rReqg5nlrV4G8L1v89ywbfxTeo8mupds53gAh50q89YgX7EXgcCV-NIG8LX_jaZE9yNm6csVyRDTD4XI-3_v-QA2u8cDUXwIG9XLyh9hTFIVx_VifAcEEtlV |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5F5UA58GhBTSngStyK013b6-weA6JKoamiJlF7W3n9EBJVFrWbC7-emX2ppRXittKOLcvj8cxne74B-BhUWsjICa7HwnHlRODohgIv0LiSzETGBEpOnp3r6Up9u0quBvCpz4Xx3tePz_yIPuu7fFfaDR2VHScS3Y_ADfcJ-v0kbrK1-n1X64ZZL00TnmZJ1KXIRNnxcn55sWjIKUUkpRiP77mhuq7Kg8249jAnL2DWja15WPJztKmKkf39F23j_w7-JTxvQ002adbGKxj49Q48u0NAuAuTycXpbMI_oytzjLJBGJ2W-VtGJdKuWRnYoirtD0NkzuwS4TubU1U11pBVk05fw-rk6_LLlLdFFbiVIq24tDp4RMQ-ttoniCdiLQwaZRJ7jbEG1R6XGUUVONaAwYILLqAMSsZEba_kG9hal2u_B0wpExBAC1NkkVLOGmEEoh_pbWGdVXoIcTfHuW0Zx6nwxXVeI48oy2u9UCXMLG_1MoSjvs2vhm_jn9K7NNG9ZDvHQzjoVJm3JnmLvQiErsSYNoTD_jcaE92QmLUvNyRDXD8UJO8_3vMHeDpdzs7ys9Pz729hu3tKEMUHsFXdbPw7jFCq4n29MP8AiOLcng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARIMA-Based+Time+Series+Model+of+Stochastic+Wind+Power+Generation&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Peiyuan+Chen&rft.au=Pedersen%2C+Troels&rft.au=Bak-Jensen%2C+Birgitte&rft.au=Zhe+Chen&rft.date=2010-05-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=25&rft.issue=2&rft.spage=667&rft.epage=676&rft_id=info:doi/10.1109%2FTPWRS.2009.2033277&rft.externalDocID=5340622 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |