A tactual weld seam tracking method in super narrow gap of thick plates

The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was developed. The mechanical part of this system was installed and independent of the robot, which can realize the detection of right-left deviati...

Full description

Saved in:
Bibliographic Details
Published inRobotics and computer-integrated manufacturing Vol. 62; p. 101864
Main Authors Lei, Ting, Huang, Yu, Shao, Wenjun, Liu, Weinan, Rong, Youmin
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.04.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was developed. The mechanical part of this system was installed and independent of the robot, which can realize the detection of right-left deviation and up–down offset of the weld path. In the experiment, the position coordinates of the detection point in weld groove were calculated and weld seam tracking was carried out simultaneously owing to its single control system. When the absolute interpolation algorithm was adopted, the average error of width deviation and depth deviation were 0.1817 mm and 0.1449 mm, respectively. [Display omitted]
AbstractList The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was developed. The mechanical part of this system was installed and independent of the robot, which can realize the detection of right-left deviation and up–down offset of the weld path. In the experiment, the position coordinates of the detection point in weld groove were calculated and weld seam tracking was carried out simultaneously owing to its single control system. When the absolute interpolation algorithm was adopted, the average error of width deviation and depth deviation were 0.1817 mm and 0.1449 mm, respectively.
The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was developed. The mechanical part of this system was installed and independent of the robot, which can realize the detection of right-left deviation and up–down offset of the weld path. In the experiment, the position coordinates of the detection point in weld groove were calculated and weld seam tracking was carried out simultaneously owing to its single control system. When the absolute interpolation algorithm was adopted, the average error of width deviation and depth deviation were 0.1817 mm and 0.1449 mm, respectively. [Display omitted]
ArticleNumber 101864
Author Liu, Weinan
Rong, Youmin
Shao, Wenjun
Lei, Ting
Huang, Yu
Author_xml – sequence: 1
  givenname: Ting
  surname: Lei
  fullname: Lei, Ting
  organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Yu
  surname: Huang
  fullname: Huang, Yu
  organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Wenjun
  surname: Shao
  fullname: Shao, Wenjun
  organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Weinan
  surname: Liu
  fullname: Liu, Weinan
  organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Youmin
  surname: Rong
  fullname: Rong, Youmin
  email: rym@hust.edu.cn
  organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kLFOwzAQhi1UJNrCCzBZYk6xnbiJJZaqgoJUiQVmy3HOrdM0DrZDxduTKkwMnU463Xf_3TdDk9a1gNA9JQtK6PKxXnhtjwtGqDg3imV2haa0yEXCeJpP0JTk6TLhRcZv0CyEmhDCMp5O0WaFo9KxVw0-QVPhAOqIo1f6YNsdPkLcuwrbFoe-A49b5b074Z3qsDM47q0-4K5REcItujaqCXD3V-fo8-X5Y_2abN83b-vVNtEpK2LCKqGMKIWhaZllOScsXwpiirJMQbDhyIoDGJExnvG8IlVGDHCVc8qVoGVh0jl6GPd23n31EKKsXe_bIVKyISElTAgxTLFxSnsXggcjO2-Pyv9ISuRZmKzlWZg8C5OjsAEq_kHaRhWtawcftrmMPo0oDK9_W_AyaAuthsp60FFWzl7CfwEEz4dJ
CitedBy_id crossref_primary_10_1007_s00170_024_12959_4
crossref_primary_10_3233_JIFS_213082
crossref_primary_10_1109_JSEN_2022_3189681
crossref_primary_10_1016_j_jmapro_2023_08_053
crossref_primary_10_1007_s40194_023_01629_w
crossref_primary_10_1016_j_measurement_2024_115376
crossref_primary_10_1016_j_rcim_2024_102840
crossref_primary_10_1016_j_aei_2025_103124
crossref_primary_10_1016_j_compind_2020_103326
crossref_primary_10_1007_s00170_021_08454_9
crossref_primary_10_1007_s00170_024_13942_9
crossref_primary_10_1016_j_optlastec_2024_110669
crossref_primary_10_1016_j_rcim_2021_102183
crossref_primary_10_1016_j_optlaseng_2022_107255
crossref_primary_10_1007_s40194_025_01939_1
crossref_primary_10_1364_JOSAA_445585
crossref_primary_10_3390_met11071135
crossref_primary_10_1007_s00170_021_07601_6
crossref_primary_10_1016_j_rcim_2025_102987
crossref_primary_10_1016_j_jmapro_2024_05_014
crossref_primary_10_1016_j_jmapro_2022_01_017
crossref_primary_10_1080_0951192X_2021_1901319
Cites_doi 10.1016/j.jmatprotec.2012.03.007
10.1007/s10845-009-0267-9
10.1016/j.jmatprotec.2017.04.025
10.1007/s10845-014-0971-y
10.1016/j.jmatprotec.2017.07.005
10.1016/j.optlastec.2017.05.011
10.1109/TIE.2009.2031195
10.1016/j.rcim.2011.06.001
10.1016/j.rcim.2018.08.003
10.1016/j.rcim.2016.05.012
10.1108/IR-04-2016-0120
10.1016/j.optlastec.2007.04.009
10.1007/s00170-016-9481-8
10.1016/j.jmapro.2013.07.002
10.1016/j.rcim.2017.06.004
10.1109/TIM.2013.2283139
10.1109/TIE.2012.2193854
10.1109/JSEN.2017.2730280
10.1179/1362171813Y.0000000180
10.1007/s00170-016-8922-8
10.1016/j.jmatprotec.2016.12.029
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Apr 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2020
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.rcim.2019.101864
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1879-2537
ExternalDocumentID 10_1016_j_rcim_2019_101864
S0736584518305544
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
7TB
8FD
EFKBS
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-2d9af9b9f13b4475027690f8bb3e92073d5eef9425457d0d40fe5a7515a91b8f3
IEDL.DBID .~1
ISSN 0736-5845
IngestDate Fri Jul 25 08:27:33 EDT 2025
Tue Jul 01 02:40:44 EDT 2025
Thu Apr 24 23:10:40 EDT 2025
Fri Feb 23 02:26:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Weld seam tracking
Contact-type sensors
Real time compensation
Online detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-2d9af9b9f13b4475027690f8bb3e92073d5eef9425457d0d40fe5a7515a91b8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2328302999
PQPubID 2045404
ParticipantIDs proquest_journals_2328302999
crossref_primary_10_1016_j_rcim_2019_101864
crossref_citationtrail_10_1016_j_rcim_2019_101864
elsevier_sciencedirect_doi_10_1016_j_rcim_2019_101864
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xu, Yu, Zhong, Lin, Chen (bib0006) 2012; 212
Huang, Kovacevic (bib0009) 2011; 22
Le, Li, Zhang (bib0012) 2016; 43
Lv, Xu, Li, Yu, Chen (bib0014) 2017; 250
Muhammad (bib0010) 2018; 94
Le, Zhang, Chen (bib0007) 2018; 49
Li, Li, Khyam, Ge (bib0001) 2017; 17
Zhang, Ye, Yang, Jiao (bib0011) 2014; 63
You, Gao, Katayama (bib0005) 2014; 19
Rout, Deepak, Biswal (bib0015) 2019; 56
Liu, Li, Hong, Yue (bib0016) 2017
Chang, Son, Lee, Lee, Kim, Lee, Kim (bib0008) 2012; 28
Qibo Feng, Gao, Kuang, Fei, Li, Ding (bib0018) 2008; 40
Düzcükoğlu, Aydoğdu, Öztürk, Akkuş (bib0023) 2018; 36
Suwanratchatamanee, Member, Matsumoto, Hashimoto (bib0021) 2010; 57
Tactile Seam Tracking Systems, (n.d.).
Lü, Zhang, Wu (bib0013) 2017; 88
Xu, Lv, Fang, Du, Zhao, Ye, Chen (bib0002) 2017; 248
.
Chen, Lv (bib0004) 2014; 16
Nilsen, Sikström, Christiansson, Ancona (bib0019) 2017; 96
Ding, Huang, Kovacevic (bib0003) 2016; 42
Zhu, Wang, Su, Xu, Yang (bib0017) 2017; 243
Gao, You, Katayama (bib0024) 2012; 59
Zhang, Chen (bib0020) 2017; 28
Chang (10.1016/j.rcim.2019.101864_bib0008) 2012; 28
Nilsen (10.1016/j.rcim.2019.101864_bib0019) 2017; 96
Huang (10.1016/j.rcim.2019.101864_bib0009) 2011; 22
Chen (10.1016/j.rcim.2019.101864_bib0004) 2014; 16
Lü (10.1016/j.rcim.2019.101864_bib0013) 2017; 88
Xu (10.1016/j.rcim.2019.101864_bib0002) 2017; 248
Li (10.1016/j.rcim.2019.101864_bib0001) 2017; 17
Gao (10.1016/j.rcim.2019.101864_bib0024) 2012; 59
Düzcükoğlu (10.1016/j.rcim.2019.101864_bib0023) 2018; 36
Lv (10.1016/j.rcim.2019.101864_bib0014) 2017; 250
Zhu (10.1016/j.rcim.2019.101864_bib0017) 2017; 243
Le (10.1016/j.rcim.2019.101864_bib0007) 2018; 49
Muhammad (10.1016/j.rcim.2019.101864_bib0010) 2018; 94
Suwanratchatamanee (10.1016/j.rcim.2019.101864_bib0021) 2010; 57
Ding (10.1016/j.rcim.2019.101864_bib0003) 2016; 42
Qibo Feng (10.1016/j.rcim.2019.101864_bib0018) 2008; 40
Xu (10.1016/j.rcim.2019.101864_bib0006) 2012; 212
Liu (10.1016/j.rcim.2019.101864_bib0016) 2017
10.1016/j.rcim.2019.101864_bib0022
Zhang (10.1016/j.rcim.2019.101864_bib0011) 2014; 63
Zhang (10.1016/j.rcim.2019.101864_bib0020) 2017; 28
You (10.1016/j.rcim.2019.101864_bib0005) 2014; 19
Le (10.1016/j.rcim.2019.101864_bib0012) 2016; 43
Rout (10.1016/j.rcim.2019.101864_bib0015) 2019; 56
References_xml – volume: 19
  start-page: 181
  year: 2014
  end-page: 201
  ident: bib0005
  article-title: Review of laser welding monitoring
  publication-title: Sci. Technol. Weld. Join.
– volume: 49
  start-page: 263
  year: 2018
  end-page: 276
  ident: bib0007
  article-title: Realization of rectangular fillet weld tracking based on rotating arc sensors and analysis of experimental results in gas metal arc welding
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 28
  start-page: 207
  year: 2017
  end-page: 218
  ident: bib0020
  article-title: Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals
  publication-title: J. Intell. Manuf.
– volume: 17
  start-page: 5609
  year: 2017
  end-page: 5617
  ident: bib0001
  article-title: Robust welding seam tracking and recognition
  publication-title: IEEE Sens. J.
– reference: Tactile Seam Tracking Systems, (n.d.).
– volume: 57
  start-page: 1074
  year: 2010
  end-page: 1087
  ident: bib0021
  article-title: Robotic tactile sensor system and applications
  publication-title: IEEE Trans. Ind. Electron.
– volume: 59
  start-page: 4315
  year: 2012
  end-page: 4325
  ident: bib0024
  article-title: Seam tracking monitoring based on adaptive Kalman filter embedded elman neural network during high-power fiber laser welding
  publication-title: IEEE Trans. Ind. Electron.
– volume: 63
  start-page: 742
  year: 2014
  end-page: 753
  ident: bib0011
  article-title: Weld line detection and tracking via spatial-temporal cascaded hidden Markov
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 88
  start-page: 2201
  year: 2017
  end-page: 2210
  ident: bib0013
  article-title: The seam position detection and tracking for the mobile welding robot
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 40
  start-page: 252
  year: 2008
  end-page: 255
  ident: bib0018
  article-title: A new laser displacement sensor based on triangulation for gauge real-time measurement
  publication-title: Opt. Laser Technol.
– volume: 96
  start-page: 107
  year: 2017
  end-page: 116
  ident: bib0019
  article-title: Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding
  publication-title: Opt. Laser Technol.
– volume: 22
  start-page: 131
  year: 2011
  end-page: 143
  ident: bib0009
  article-title: A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures
  publication-title: J. Intell. Manuf.
– volume: 36
  start-page: 33
  year: 2018
  end-page: 48
  ident: bib0023
  article-title: Design and manufacture of a new two axes welding seam tracking system using laser sensor fuzzy logic control
  publication-title: Sigma J. Eng. Nat. Sci.
– volume: 56
  start-page: 12
  year: 2019
  end-page: 37
  ident: bib0015
  article-title: Advances in weld seam tracking techniques for robotic welding : a review
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 42
  start-page: 103
  year: 2016
  end-page: 112
  ident: bib0003
  article-title: An on-line shape-matching weld seam tracking system
  publication-title: Robot. Comput. Integr. Manuf.
– start-page: 17
  year: 2017
  ident: bib0016
  article-title: Linear mathematical model for seam tracking with an arc sensor in P-GMAW processes
  publication-title: Sensors (Switzerland)
– volume: 28
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib0008
  article-title: A new seam-tracking algorithm through characteristic-point detection for a portable welding robot
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 16
  start-page: 109
  year: 2014
  end-page: 122
  ident: bib0004
  article-title: Research evolution on intelligentized technologies for arc welding process
  publication-title: J. Manuf. Process.
– reference: .
– volume: 243
  start-page: 258
  year: 2017
  end-page: 268
  ident: bib0017
  article-title: An infrared visual sensing detection approach for swing arc narrow gap weld deviation
  publication-title: J. Mater. Process. Technol.
– volume: 94
  start-page: 13
  year: 2018
  end-page: 29
  ident: bib0010
  article-title: A robust butt welding seam finding technique for intelligent robotic welding system using active laser vision
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 43
  start-page: 636
  year: 2016
  end-page: 646
  ident: bib0012
  article-title: Space curved fillet weld joints tracking by robots based on rotational arc sensors
  publication-title: Ind. Robot. An. Int. J.
– volume: 248
  start-page: 18
  year: 2017
  end-page: 30
  ident: bib0002
  article-title: Welding seam tracking in robotic gas metal arc welding
  publication-title: J. Mater. Process. Technol.
– volume: 212
  start-page: 1654
  year: 2012
  end-page: 1662
  ident: bib0006
  article-title: Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor
  publication-title: J. Mater. Process. Technol.
– volume: 250
  start-page: 81
  year: 2017
  end-page: 98
  ident: bib0014
  article-title: Automated control of welding penetration based on audio sensing technology
  publication-title: J. Mater. Process. Technol.
– volume: 212
  start-page: 1654
  year: 2012
  ident: 10.1016/j.rcim.2019.101864_bib0006
  article-title: Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2012.03.007
– volume: 22
  start-page: 131
  year: 2011
  ident: 10.1016/j.rcim.2019.101864_bib0009
  article-title: A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-009-0267-9
– volume: 36
  start-page: 33
  year: 2018
  ident: 10.1016/j.rcim.2019.101864_bib0023
  article-title: Design and manufacture of a new two axes welding seam tracking system using laser sensor fuzzy logic control
  publication-title: Sigma J. Eng. Nat. Sci.
– volume: 248
  start-page: 18
  year: 2017
  ident: 10.1016/j.rcim.2019.101864_bib0002
  article-title: Welding seam tracking in robotic gas metal arc welding
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.04.025
– start-page: 17
  year: 2017
  ident: 10.1016/j.rcim.2019.101864_bib0016
  article-title: Linear mathematical model for seam tracking with an arc sensor in P-GMAW processes
  publication-title: Sensors (Switzerland)
– volume: 28
  start-page: 207
  year: 2017
  ident: 10.1016/j.rcim.2019.101864_bib0020
  article-title: Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0971-y
– volume: 250
  start-page: 81
  year: 2017
  ident: 10.1016/j.rcim.2019.101864_bib0014
  article-title: Automated control of welding penetration based on audio sensing technology
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.07.005
– volume: 96
  start-page: 107
  year: 2017
  ident: 10.1016/j.rcim.2019.101864_bib0019
  article-title: Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2017.05.011
– volume: 57
  start-page: 1074
  year: 2010
  ident: 10.1016/j.rcim.2019.101864_bib0021
  article-title: Robotic tactile sensor system and applications
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2009.2031195
– volume: 28
  start-page: 1
  year: 2012
  ident: 10.1016/j.rcim.2019.101864_bib0008
  article-title: A new seam-tracking algorithm through characteristic-point detection for a portable welding robot
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2011.06.001
– volume: 56
  start-page: 12
  year: 2019
  ident: 10.1016/j.rcim.2019.101864_bib0015
  article-title: Advances in weld seam tracking techniques for robotic welding : a review
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2018.08.003
– volume: 42
  start-page: 103
  year: 2016
  ident: 10.1016/j.rcim.2019.101864_bib0003
  article-title: An on-line shape-matching weld seam tracking system
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2016.05.012
– volume: 43
  start-page: 636
  year: 2016
  ident: 10.1016/j.rcim.2019.101864_bib0012
  article-title: Space curved fillet weld joints tracking by robots based on rotational arc sensors
  publication-title: Ind. Robot. An. Int. J.
  doi: 10.1108/IR-04-2016-0120
– volume: 40
  start-page: 252
  year: 2008
  ident: 10.1016/j.rcim.2019.101864_bib0018
  article-title: A new laser displacement sensor based on triangulation for gauge real-time measurement
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2007.04.009
– volume: 94
  start-page: 13
  year: 2018
  ident: 10.1016/j.rcim.2019.101864_bib0010
  article-title: A robust butt welding seam finding technique for intelligent robotic welding system using active laser vision
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-9481-8
– volume: 16
  start-page: 109
  year: 2014
  ident: 10.1016/j.rcim.2019.101864_bib0004
  article-title: Research evolution on intelligentized technologies for arc welding process
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2013.07.002
– ident: 10.1016/j.rcim.2019.101864_bib0022
– volume: 49
  start-page: 263
  year: 2018
  ident: 10.1016/j.rcim.2019.101864_bib0007
  article-title: Realization of rectangular fillet weld tracking based on rotating arc sensors and analysis of experimental results in gas metal arc welding
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2017.06.004
– volume: 63
  start-page: 742
  year: 2014
  ident: 10.1016/j.rcim.2019.101864_bib0011
  article-title: Weld line detection and tracking via spatial-temporal cascaded hidden Markov
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2283139
– volume: 59
  start-page: 4315
  year: 2012
  ident: 10.1016/j.rcim.2019.101864_bib0024
  article-title: Seam tracking monitoring based on adaptive Kalman filter embedded elman neural network during high-power fiber laser welding
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2193854
– volume: 17
  start-page: 5609
  year: 2017
  ident: 10.1016/j.rcim.2019.101864_bib0001
  article-title: Robust welding seam tracking and recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2730280
– volume: 19
  start-page: 181
  year: 2014
  ident: 10.1016/j.rcim.2019.101864_bib0005
  article-title: Review of laser welding monitoring
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/1362171813Y.0000000180
– volume: 88
  start-page: 2201
  year: 2017
  ident: 10.1016/j.rcim.2019.101864_bib0013
  article-title: The seam position detection and tracking for the mobile welding robot
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8922-8
– volume: 243
  start-page: 258
  year: 2017
  ident: 10.1016/j.rcim.2019.101864_bib0017
  article-title: An infrared visual sensing detection approach for swing arc narrow gap weld deviation
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.12.029
SSID ssj0002453
Score 2.3807292
Snippet The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101864
SubjectTerms Algorithms
Contact angle
Contact-type sensors
Deviation
Grooves
Interpolation
Online detection
Real time compensation
Seam tracking
Thick plates
Tracking systems
Weld seam tracking
Title A tactual weld seam tracking method in super narrow gap of thick plates
URI https://dx.doi.org/10.1016/j.rcim.2019.101864
https://www.proquest.com/docview/2328302999
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXODAY4AYDJQDN1S2tsnSHqcJGA9NCJi0W5S0CRqMUo1O3Pjt2G3KS4IDp0pREkWOY3-u7M-EHFodmUSxjmfg8j0muPK06GrPBjpVPreBMGWW77A7GLGLMR8vkH5dC4Nplc72Vza9tNZupO2k2c4nk_YtKCe6Tw5K2QGniJygjAnU8uO3zzSPgFVMlDDZw9mucKbK8ZolE6xG92MciLrsN-f0w0yXvud0naw60Eh71bk2yILJGmStbshA3ftskJUv7IKb5KxHC1XWh9BXM00pKPUTLWYqwb_jtGodTScZfZnnsElWsjHSe5XTZ0sxC_6R5lNEoltkdHpy1x94rm-Cl4RBVHhBGisb69j6oUY-P4g8IQa2kdahiQOQRMqNsTG8VsZF2klZxxquBCAbFfs6suE2WcyeM7NDaKxUmAhfay4SpkQYGasDiHFSYUMAPn6T-LXAZOJIxbG3xVTW2WMPEoUsUciyEnKTHH2syStKjT9n8_oe5DfFkGDz_1zXqi9Numf5IgE-It8ZgOLdf267R5YDjLjL3J0WWSxmc7MPsKTQB6XeHZClXv_m6hq_55eD4TvFnuGi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBRwFRnh7YUNQmsetkrCqgvLoAUjfLTmxUKGnUpuLvc04cBEgwsFq2FZ3v8V109x3AmVGRTiTteBof36OcSU_xrvJMoFLpMxNwXVb5DruDJ3ozYqMl6Ne9MLas0vn-yqeX3tqttJ002_l43H5A5bThk6FSdjAo0mVYsexUrAErvevbwfDTIQe0IqPE_Z494HpnqjKvWTK2Del-bBeiLv0tPv3w1GX4udyCDYcbSa_6tG1Y0lkTNuuZDMSZaBPWvxAM7sBVjxSybBEh73qSEtTrN1LMZGJ_kJNqejQZZ2S-yPGSrCRkJM8yJ1NDbCH8K8knFozuwtPlxWN_4LnRCV4SBlHhBWksTaxi44fKUvph8olpsImUCnUcoCRSprWJ0WAp42knpR2jmeQIbmTsq8iEe9DIppneBxJLGSbcV4rxhEoeRtqoANOclJsQsY_fAr8WmEgcr7gdbzERdQHZi7BCFlbIohJyC84_z-QVq8afu1n9DuKbbgh0-3-eO6ofTTjLnAtEkJbyDHHxwT-vPYXVweP9nbi7Ht4ewlpgE_CylOcIGsVsoY8RpRTqxGnhB3yo4r4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tactual+weld+seam+tracking+method+in+super+narrow+gap+of+thick+plates&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Lei%2C+Ting&rft.au=Huang%2C+Yu&rft.au=Shao%2C+Wenjun&rft.au=Liu%2C+Weinan&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=62&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rcim.2019.101864&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon