A tactual weld seam tracking method in super narrow gap of thick plates
The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was developed. The mechanical part of this system was installed and independent of the robot, which can realize the detection of right-left deviati...
Saved in:
Published in | Robotics and computer-integrated manufacturing Vol. 62; p. 101864 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was developed. The mechanical part of this system was installed and independent of the robot, which can realize the detection of right-left deviation and up–down offset of the weld path. In the experiment, the position coordinates of the detection point in weld groove were calculated and weld seam tracking was carried out simultaneously owing to its single control system. When the absolute interpolation algorithm was adopted, the average error of width deviation and depth deviation were 0.1817 mm and 0.1449 mm, respectively.
[Display omitted] |
---|---|
AbstractList | The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was developed. The mechanical part of this system was installed and independent of the robot, which can realize the detection of right-left deviation and up–down offset of the weld path. In the experiment, the position coordinates of the detection point in weld groove were calculated and weld seam tracking was carried out simultaneously owing to its single control system. When the absolute interpolation algorithm was adopted, the average error of width deviation and depth deviation were 0.1817 mm and 0.1449 mm, respectively. The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was developed. The mechanical part of this system was installed and independent of the robot, which can realize the detection of right-left deviation and up–down offset of the weld path. In the experiment, the position coordinates of the detection point in weld groove were calculated and weld seam tracking was carried out simultaneously owing to its single control system. When the absolute interpolation algorithm was adopted, the average error of width deviation and depth deviation were 0.1817 mm and 0.1449 mm, respectively. [Display omitted] |
ArticleNumber | 101864 |
Author | Liu, Weinan Rong, Youmin Shao, Wenjun Lei, Ting Huang, Yu |
Author_xml | – sequence: 1 givenname: Ting surname: Lei fullname: Lei, Ting organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Yu surname: Huang fullname: Huang, Yu organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Wenjun surname: Shao fullname: Shao, Wenjun organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Weinan surname: Liu fullname: Liu, Weinan organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 5 givenname: Youmin surname: Rong fullname: Rong, Youmin email: rym@hust.edu.cn organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China |
BookMark | eNp9kLFOwzAQhi1UJNrCCzBZYk6xnbiJJZaqgoJUiQVmy3HOrdM0DrZDxduTKkwMnU463Xf_3TdDk9a1gNA9JQtK6PKxXnhtjwtGqDg3imV2haa0yEXCeJpP0JTk6TLhRcZv0CyEmhDCMp5O0WaFo9KxVw0-QVPhAOqIo1f6YNsdPkLcuwrbFoe-A49b5b074Z3qsDM47q0-4K5REcItujaqCXD3V-fo8-X5Y_2abN83b-vVNtEpK2LCKqGMKIWhaZllOScsXwpiirJMQbDhyIoDGJExnvG8IlVGDHCVc8qVoGVh0jl6GPd23n31EKKsXe_bIVKyISElTAgxTLFxSnsXggcjO2-Pyv9ISuRZmKzlWZg8C5OjsAEq_kHaRhWtawcftrmMPo0oDK9_W_AyaAuthsp60FFWzl7CfwEEz4dJ |
CitedBy_id | crossref_primary_10_1007_s00170_024_12959_4 crossref_primary_10_3233_JIFS_213082 crossref_primary_10_1109_JSEN_2022_3189681 crossref_primary_10_1016_j_jmapro_2023_08_053 crossref_primary_10_1007_s40194_023_01629_w crossref_primary_10_1016_j_measurement_2024_115376 crossref_primary_10_1016_j_rcim_2024_102840 crossref_primary_10_1016_j_aei_2025_103124 crossref_primary_10_1016_j_compind_2020_103326 crossref_primary_10_1007_s00170_021_08454_9 crossref_primary_10_1007_s00170_024_13942_9 crossref_primary_10_1016_j_optlastec_2024_110669 crossref_primary_10_1016_j_rcim_2021_102183 crossref_primary_10_1016_j_optlaseng_2022_107255 crossref_primary_10_1007_s40194_025_01939_1 crossref_primary_10_1364_JOSAA_445585 crossref_primary_10_3390_met11071135 crossref_primary_10_1007_s00170_021_07601_6 crossref_primary_10_1016_j_rcim_2025_102987 crossref_primary_10_1016_j_jmapro_2024_05_014 crossref_primary_10_1016_j_jmapro_2022_01_017 crossref_primary_10_1080_0951192X_2021_1901319 |
Cites_doi | 10.1016/j.jmatprotec.2012.03.007 10.1007/s10845-009-0267-9 10.1016/j.jmatprotec.2017.04.025 10.1007/s10845-014-0971-y 10.1016/j.jmatprotec.2017.07.005 10.1016/j.optlastec.2017.05.011 10.1109/TIE.2009.2031195 10.1016/j.rcim.2011.06.001 10.1016/j.rcim.2018.08.003 10.1016/j.rcim.2016.05.012 10.1108/IR-04-2016-0120 10.1016/j.optlastec.2007.04.009 10.1007/s00170-016-9481-8 10.1016/j.jmapro.2013.07.002 10.1016/j.rcim.2017.06.004 10.1109/TIM.2013.2283139 10.1109/TIE.2012.2193854 10.1109/JSEN.2017.2730280 10.1179/1362171813Y.0000000180 10.1007/s00170-016-8922-8 10.1016/j.jmatprotec.2016.12.029 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Apr 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Apr 2020 |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/j.rcim.2019.101864 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1879-2537 |
ExternalDocumentID | 10_1016_j_rcim_2019_101864 S0736584518305544 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 7TB 8FD EFKBS FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-2d9af9b9f13b4475027690f8bb3e92073d5eef9425457d0d40fe5a7515a91b8f3 |
IEDL.DBID | .~1 |
ISSN | 0736-5845 |
IngestDate | Fri Jul 25 08:27:33 EDT 2025 Tue Jul 01 02:40:44 EDT 2025 Thu Apr 24 23:10:40 EDT 2025 Fri Feb 23 02:26:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Weld seam tracking Contact-type sensors Real time compensation Online detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-2d9af9b9f13b4475027690f8bb3e92073d5eef9425457d0d40fe5a7515a91b8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2328302999 |
PQPubID | 2045404 |
ParticipantIDs | proquest_journals_2328302999 crossref_primary_10_1016_j_rcim_2019_101864 crossref_citationtrail_10_1016_j_rcim_2019_101864 elsevier_sciencedirect_doi_10_1016_j_rcim_2019_101864 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Robotics and computer-integrated manufacturing |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Xu, Yu, Zhong, Lin, Chen (bib0006) 2012; 212 Huang, Kovacevic (bib0009) 2011; 22 Le, Li, Zhang (bib0012) 2016; 43 Lv, Xu, Li, Yu, Chen (bib0014) 2017; 250 Muhammad (bib0010) 2018; 94 Le, Zhang, Chen (bib0007) 2018; 49 Li, Li, Khyam, Ge (bib0001) 2017; 17 Zhang, Ye, Yang, Jiao (bib0011) 2014; 63 You, Gao, Katayama (bib0005) 2014; 19 Rout, Deepak, Biswal (bib0015) 2019; 56 Liu, Li, Hong, Yue (bib0016) 2017 Chang, Son, Lee, Lee, Kim, Lee, Kim (bib0008) 2012; 28 Qibo Feng, Gao, Kuang, Fei, Li, Ding (bib0018) 2008; 40 Düzcükoğlu, Aydoğdu, Öztürk, Akkuş (bib0023) 2018; 36 Suwanratchatamanee, Member, Matsumoto, Hashimoto (bib0021) 2010; 57 Tactile Seam Tracking Systems, (n.d.). Lü, Zhang, Wu (bib0013) 2017; 88 Xu, Lv, Fang, Du, Zhao, Ye, Chen (bib0002) 2017; 248 . Chen, Lv (bib0004) 2014; 16 Nilsen, Sikström, Christiansson, Ancona (bib0019) 2017; 96 Ding, Huang, Kovacevic (bib0003) 2016; 42 Zhu, Wang, Su, Xu, Yang (bib0017) 2017; 243 Gao, You, Katayama (bib0024) 2012; 59 Zhang, Chen (bib0020) 2017; 28 Chang (10.1016/j.rcim.2019.101864_bib0008) 2012; 28 Nilsen (10.1016/j.rcim.2019.101864_bib0019) 2017; 96 Huang (10.1016/j.rcim.2019.101864_bib0009) 2011; 22 Chen (10.1016/j.rcim.2019.101864_bib0004) 2014; 16 Lü (10.1016/j.rcim.2019.101864_bib0013) 2017; 88 Xu (10.1016/j.rcim.2019.101864_bib0002) 2017; 248 Li (10.1016/j.rcim.2019.101864_bib0001) 2017; 17 Gao (10.1016/j.rcim.2019.101864_bib0024) 2012; 59 Düzcükoğlu (10.1016/j.rcim.2019.101864_bib0023) 2018; 36 Lv (10.1016/j.rcim.2019.101864_bib0014) 2017; 250 Zhu (10.1016/j.rcim.2019.101864_bib0017) 2017; 243 Le (10.1016/j.rcim.2019.101864_bib0007) 2018; 49 Muhammad (10.1016/j.rcim.2019.101864_bib0010) 2018; 94 Suwanratchatamanee (10.1016/j.rcim.2019.101864_bib0021) 2010; 57 Ding (10.1016/j.rcim.2019.101864_bib0003) 2016; 42 Qibo Feng (10.1016/j.rcim.2019.101864_bib0018) 2008; 40 Xu (10.1016/j.rcim.2019.101864_bib0006) 2012; 212 Liu (10.1016/j.rcim.2019.101864_bib0016) 2017 10.1016/j.rcim.2019.101864_bib0022 Zhang (10.1016/j.rcim.2019.101864_bib0011) 2014; 63 Zhang (10.1016/j.rcim.2019.101864_bib0020) 2017; 28 You (10.1016/j.rcim.2019.101864_bib0005) 2014; 19 Le (10.1016/j.rcim.2019.101864_bib0012) 2016; 43 Rout (10.1016/j.rcim.2019.101864_bib0015) 2019; 56 |
References_xml | – volume: 19 start-page: 181 year: 2014 end-page: 201 ident: bib0005 article-title: Review of laser welding monitoring publication-title: Sci. Technol. Weld. Join. – volume: 49 start-page: 263 year: 2018 end-page: 276 ident: bib0007 article-title: Realization of rectangular fillet weld tracking based on rotating arc sensors and analysis of experimental results in gas metal arc welding publication-title: Robot. Comput. Integr. Manuf. – volume: 28 start-page: 207 year: 2017 end-page: 218 ident: bib0020 article-title: Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals publication-title: J. Intell. Manuf. – volume: 17 start-page: 5609 year: 2017 end-page: 5617 ident: bib0001 article-title: Robust welding seam tracking and recognition publication-title: IEEE Sens. J. – reference: Tactile Seam Tracking Systems, (n.d.). – volume: 57 start-page: 1074 year: 2010 end-page: 1087 ident: bib0021 article-title: Robotic tactile sensor system and applications publication-title: IEEE Trans. Ind. Electron. – volume: 59 start-page: 4315 year: 2012 end-page: 4325 ident: bib0024 article-title: Seam tracking monitoring based on adaptive Kalman filter embedded elman neural network during high-power fiber laser welding publication-title: IEEE Trans. Ind. Electron. – volume: 63 start-page: 742 year: 2014 end-page: 753 ident: bib0011 article-title: Weld line detection and tracking via spatial-temporal cascaded hidden Markov publication-title: IEEE Trans. Instrum. Meas. – volume: 88 start-page: 2201 year: 2017 end-page: 2210 ident: bib0013 article-title: The seam position detection and tracking for the mobile welding robot publication-title: Int. J. Adv. Manuf. Technol. – volume: 40 start-page: 252 year: 2008 end-page: 255 ident: bib0018 article-title: A new laser displacement sensor based on triangulation for gauge real-time measurement publication-title: Opt. Laser Technol. – volume: 96 start-page: 107 year: 2017 end-page: 116 ident: bib0019 article-title: Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding publication-title: Opt. Laser Technol. – volume: 22 start-page: 131 year: 2011 end-page: 143 ident: bib0009 article-title: A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures publication-title: J. Intell. Manuf. – volume: 36 start-page: 33 year: 2018 end-page: 48 ident: bib0023 article-title: Design and manufacture of a new two axes welding seam tracking system using laser sensor fuzzy logic control publication-title: Sigma J. Eng. Nat. Sci. – volume: 56 start-page: 12 year: 2019 end-page: 37 ident: bib0015 article-title: Advances in weld seam tracking techniques for robotic welding : a review publication-title: Robot. Comput. Integr. Manuf. – volume: 42 start-page: 103 year: 2016 end-page: 112 ident: bib0003 article-title: An on-line shape-matching weld seam tracking system publication-title: Robot. Comput. Integr. Manuf. – start-page: 17 year: 2017 ident: bib0016 article-title: Linear mathematical model for seam tracking with an arc sensor in P-GMAW processes publication-title: Sensors (Switzerland) – volume: 28 start-page: 1 year: 2012 end-page: 13 ident: bib0008 article-title: A new seam-tracking algorithm through characteristic-point detection for a portable welding robot publication-title: Robot. Comput. Integr. Manuf. – volume: 16 start-page: 109 year: 2014 end-page: 122 ident: bib0004 article-title: Research evolution on intelligentized technologies for arc welding process publication-title: J. Manuf. Process. – reference: . – volume: 243 start-page: 258 year: 2017 end-page: 268 ident: bib0017 article-title: An infrared visual sensing detection approach for swing arc narrow gap weld deviation publication-title: J. Mater. Process. Technol. – volume: 94 start-page: 13 year: 2018 end-page: 29 ident: bib0010 article-title: A robust butt welding seam finding technique for intelligent robotic welding system using active laser vision publication-title: Int. J. Adv. Manuf. Technol. – volume: 43 start-page: 636 year: 2016 end-page: 646 ident: bib0012 article-title: Space curved fillet weld joints tracking by robots based on rotational arc sensors publication-title: Ind. Robot. An. Int. J. – volume: 248 start-page: 18 year: 2017 end-page: 30 ident: bib0002 article-title: Welding seam tracking in robotic gas metal arc welding publication-title: J. Mater. Process. Technol. – volume: 212 start-page: 1654 year: 2012 end-page: 1662 ident: bib0006 article-title: Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor publication-title: J. Mater. Process. Technol. – volume: 250 start-page: 81 year: 2017 end-page: 98 ident: bib0014 article-title: Automated control of welding penetration based on audio sensing technology publication-title: J. Mater. Process. Technol. – volume: 212 start-page: 1654 year: 2012 ident: 10.1016/j.rcim.2019.101864_bib0006 article-title: Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2012.03.007 – volume: 22 start-page: 131 year: 2011 ident: 10.1016/j.rcim.2019.101864_bib0009 article-title: A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures publication-title: J. Intell. Manuf. doi: 10.1007/s10845-009-0267-9 – volume: 36 start-page: 33 year: 2018 ident: 10.1016/j.rcim.2019.101864_bib0023 article-title: Design and manufacture of a new two axes welding seam tracking system using laser sensor fuzzy logic control publication-title: Sigma J. Eng. Nat. Sci. – volume: 248 start-page: 18 year: 2017 ident: 10.1016/j.rcim.2019.101864_bib0002 article-title: Welding seam tracking in robotic gas metal arc welding publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.04.025 – start-page: 17 year: 2017 ident: 10.1016/j.rcim.2019.101864_bib0016 article-title: Linear mathematical model for seam tracking with an arc sensor in P-GMAW processes publication-title: Sensors (Switzerland) – volume: 28 start-page: 207 year: 2017 ident: 10.1016/j.rcim.2019.101864_bib0020 article-title: Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals publication-title: J. Intell. Manuf. doi: 10.1007/s10845-014-0971-y – volume: 250 start-page: 81 year: 2017 ident: 10.1016/j.rcim.2019.101864_bib0014 article-title: Automated control of welding penetration based on audio sensing technology publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.07.005 – volume: 96 start-page: 107 year: 2017 ident: 10.1016/j.rcim.2019.101864_bib0019 article-title: Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2017.05.011 – volume: 57 start-page: 1074 year: 2010 ident: 10.1016/j.rcim.2019.101864_bib0021 article-title: Robotic tactile sensor system and applications publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2009.2031195 – volume: 28 start-page: 1 year: 2012 ident: 10.1016/j.rcim.2019.101864_bib0008 article-title: A new seam-tracking algorithm through characteristic-point detection for a portable welding robot publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2011.06.001 – volume: 56 start-page: 12 year: 2019 ident: 10.1016/j.rcim.2019.101864_bib0015 article-title: Advances in weld seam tracking techniques for robotic welding : a review publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2018.08.003 – volume: 42 start-page: 103 year: 2016 ident: 10.1016/j.rcim.2019.101864_bib0003 article-title: An on-line shape-matching weld seam tracking system publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2016.05.012 – volume: 43 start-page: 636 year: 2016 ident: 10.1016/j.rcim.2019.101864_bib0012 article-title: Space curved fillet weld joints tracking by robots based on rotational arc sensors publication-title: Ind. Robot. An. Int. J. doi: 10.1108/IR-04-2016-0120 – volume: 40 start-page: 252 year: 2008 ident: 10.1016/j.rcim.2019.101864_bib0018 article-title: A new laser displacement sensor based on triangulation for gauge real-time measurement publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2007.04.009 – volume: 94 start-page: 13 year: 2018 ident: 10.1016/j.rcim.2019.101864_bib0010 article-title: A robust butt welding seam finding technique for intelligent robotic welding system using active laser vision publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-9481-8 – volume: 16 start-page: 109 year: 2014 ident: 10.1016/j.rcim.2019.101864_bib0004 article-title: Research evolution on intelligentized technologies for arc welding process publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2013.07.002 – ident: 10.1016/j.rcim.2019.101864_bib0022 – volume: 49 start-page: 263 year: 2018 ident: 10.1016/j.rcim.2019.101864_bib0007 article-title: Realization of rectangular fillet weld tracking based on rotating arc sensors and analysis of experimental results in gas metal arc welding publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2017.06.004 – volume: 63 start-page: 742 year: 2014 ident: 10.1016/j.rcim.2019.101864_bib0011 article-title: Weld line detection and tracking via spatial-temporal cascaded hidden Markov publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2283139 – volume: 59 start-page: 4315 year: 2012 ident: 10.1016/j.rcim.2019.101864_bib0024 article-title: Seam tracking monitoring based on adaptive Kalman filter embedded elman neural network during high-power fiber laser welding publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2193854 – volume: 17 start-page: 5609 year: 2017 ident: 10.1016/j.rcim.2019.101864_bib0001 article-title: Robust welding seam tracking and recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2730280 – volume: 19 start-page: 181 year: 2014 ident: 10.1016/j.rcim.2019.101864_bib0005 article-title: Review of laser welding monitoring publication-title: Sci. Technol. Weld. Join. doi: 10.1179/1362171813Y.0000000180 – volume: 88 start-page: 2201 year: 2017 ident: 10.1016/j.rcim.2019.101864_bib0013 article-title: The seam position detection and tracking for the mobile welding robot publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8922-8 – volume: 243 start-page: 258 year: 2017 ident: 10.1016/j.rcim.2019.101864_bib0017 article-title: An infrared visual sensing detection approach for swing arc narrow gap weld deviation publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.12.029 |
SSID | ssj0002453 |
Score | 2.3807292 |
Snippet | The contact-type displacement and angular sensors were improved and utilized in weld seam trajectory detection. A detection–compensation–tracking system was... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101864 |
SubjectTerms | Algorithms Contact angle Contact-type sensors Deviation Grooves Interpolation Online detection Real time compensation Seam tracking Thick plates Tracking systems Weld seam tracking |
Title | A tactual weld seam tracking method in super narrow gap of thick plates |
URI | https://dx.doi.org/10.1016/j.rcim.2019.101864 https://www.proquest.com/docview/2328302999 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXODAY4AYDJQDN1S2tsnSHqcJGA9NCJi0W5S0CRqMUo1O3Pjt2G3KS4IDp0pREkWOY3-u7M-EHFodmUSxjmfg8j0muPK06GrPBjpVPreBMGWW77A7GLGLMR8vkH5dC4Nplc72Vza9tNZupO2k2c4nk_YtKCe6Tw5K2QGniJygjAnU8uO3zzSPgFVMlDDZw9mucKbK8ZolE6xG92MciLrsN-f0w0yXvud0naw60Eh71bk2yILJGmStbshA3ftskJUv7IKb5KxHC1XWh9BXM00pKPUTLWYqwb_jtGodTScZfZnnsElWsjHSe5XTZ0sxC_6R5lNEoltkdHpy1x94rm-Cl4RBVHhBGisb69j6oUY-P4g8IQa2kdahiQOQRMqNsTG8VsZF2klZxxquBCAbFfs6suE2WcyeM7NDaKxUmAhfay4SpkQYGasDiHFSYUMAPn6T-LXAZOJIxbG3xVTW2WMPEoUsUciyEnKTHH2syStKjT9n8_oe5DfFkGDz_1zXqi9Numf5IgE-It8ZgOLdf267R5YDjLjL3J0WWSxmc7MPsKTQB6XeHZClXv_m6hq_55eD4TvFnuGi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBRwFRnh7YUNQmsetkrCqgvLoAUjfLTmxUKGnUpuLvc04cBEgwsFq2FZ3v8V109x3AmVGRTiTteBof36OcSU_xrvJMoFLpMxNwXVb5DruDJ3ozYqMl6Ne9MLas0vn-yqeX3tqttJ002_l43H5A5bThk6FSdjAo0mVYsexUrAErvevbwfDTIQe0IqPE_Z494HpnqjKvWTK2Del-bBeiLv0tPv3w1GX4udyCDYcbSa_6tG1Y0lkTNuuZDMSZaBPWvxAM7sBVjxSybBEh73qSEtTrN1LMZGJ_kJNqejQZZ2S-yPGSrCRkJM8yJ1NDbCH8K8knFozuwtPlxWN_4LnRCV4SBlHhBWksTaxi44fKUvph8olpsImUCnUcoCRSprWJ0WAp42knpR2jmeQIbmTsq8iEe9DIppneBxJLGSbcV4rxhEoeRtqoANOclJsQsY_fAr8WmEgcr7gdbzERdQHZi7BCFlbIohJyC84_z-QVq8afu1n9DuKbbgh0-3-eO6ofTTjLnAtEkJbyDHHxwT-vPYXVweP9nbi7Ht4ewlpgE_CylOcIGsVsoY8RpRTqxGnhB3yo4r4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tactual+weld+seam+tracking+method+in+super+narrow+gap+of+thick+plates&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Lei%2C+Ting&rft.au=Huang%2C+Yu&rft.au=Shao%2C+Wenjun&rft.au=Liu%2C+Weinan&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=62&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rcim.2019.101864&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon |