Spatial pattern consistency and repeatability of proximal soil sensor data for digital soil mapping

Data from proximal soil sensors can facilitate digital soil mapping at high spatial resolutions. However, their use for predicting static soil properties, such as texture, is affected by spatio‐temporal changes in environmental and measurement conditions. In this research study, seasonal changes in...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of soil science Vol. 74; no. 5
Main Authors Ahrends, Hella Ellen, Simojoki, Asko, Lajunen, Antti
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data from proximal soil sensors can facilitate digital soil mapping at high spatial resolutions. However, their use for predicting static soil properties, such as texture, is affected by spatio‐temporal changes in environmental and measurement conditions. In this research study, seasonal changes in spatial patterns and repeatability of data provided by a platform that simultaneously measures the red (Red) and near infrared (NIR) reflectance, apparent soil electrical conductivity (ECa), temperature, and volumetric moisture content of topsoil (at 3–6 cm depth) were assessed. Test fields are located in Southern Finland with textures dominated by clay and fine sandy till. During single scans, mean relative differences between the data from duplicated measurement points ranged from ~4% to 6% and were the highest for temperature and Red values. The consistency of spatial patterns across seasons (spring and autumn 2021 and 2022) was the highest for ECa values, and the lowest for NIR. ECa and moisture were significant for predicting the clay contents at a cereal grain crop site, whereas temperature was significant at grass ley sites. Errors were generally lower when using spring data compared with autumn data (RMSE ranging from 4.8% to 11.1% for the data from different fields and measurement dates). For the fields, where static soil properties change at small spatial scales, spatially detailed moisture and temperature data support the understanding of seasonal changes in the spatial patterns derived from multi‐sensor data, and the corresponding changes in the performance of calibration models.
AbstractList Data from proximal soil sensors can facilitate digital soil mapping at high spatial resolutions. However, their use for predicting static soil properties, such as texture, is affected by spatio‐temporal changes in environmental and measurement conditions. In this research study, seasonal changes in spatial patterns and repeatability of data provided by a platform that simultaneously measures the red (Red) and near infrared (NIR) reflectance, apparent soil electrical conductivity (ECa), temperature, and volumetric moisture content of topsoil (at 3–6 cm depth) were assessed. Test fields are located in Southern Finland with textures dominated by clay and fine sandy till. During single scans, mean relative differences between the data from duplicated measurement points ranged from ~4% to 6% and were the highest for temperature and Red values. The consistency of spatial patterns across seasons (spring and autumn 2021 and 2022) was the highest for ECa values, and the lowest for NIR. ECa and moisture were significant for predicting the clay contents at a cereal grain crop site, whereas temperature was significant at grass ley sites. Errors were generally lower when using spring data compared with autumn data (RMSE ranging from 4.8% to 11.1% for the data from different fields and measurement dates). For the fields, where static soil properties change at small spatial scales, spatially detailed moisture and temperature data support the understanding of seasonal changes in the spatial patterns derived from multi‐sensor data, and the corresponding changes in the performance of calibration models.
Author Simojoki, Asko
Ahrends, Hella Ellen
Lajunen, Antti
Author_xml – sequence: 1
  givenname: Hella Ellen
  orcidid: 0000-0001-7790-847X
  surname: Ahrends
  fullname: Ahrends, Hella Ellen
  organization: Department of Agricultural Sciences University of Helsinki Helsinki Finland
– sequence: 2
  givenname: Asko
  orcidid: 0000-0003-2397-3553
  surname: Simojoki
  fullname: Simojoki, Asko
  organization: Department of Agricultural Sciences University of Helsinki Helsinki Finland
– sequence: 3
  givenname: Antti
  orcidid: 0000-0002-2175-7833
  surname: Lajunen
  fullname: Lajunen, Antti
  organization: Department of Agricultural Sciences University of Helsinki Helsinki Finland
BookMark eNptkEtrAyEUhaWk0CTtpr9A6KYUJtVRZ5xlCX1BoIu2a3GcO8Ew0akaaP59TR-b0Cvcc8HvyPXM0MR5BwhdUrKguW5hE-OCMk6aEzSlrBJFyWQzOcyCFqQW_AzNYtwQQhltmikyr6NOVg84S4LgsPEu2pjAmT3WrsMBRtBJt3awaY99j8fgP-02O6K3uYGLPuAuI7g_DHZt09_lVo-jdetzdNrrIcLFr87R-8P92_KpWL08Pi_vVoVhpUxFaToiWVvJTpZAQNQ974EbSjlvNWGCs7KBvoJag2hJ3dZaVMy0ZdPyyhjTsTm6_nk3r_ixg5jU1kYDw6Ad-F1UjHDCKkbymaOrI3Tjd8Hl7VQpJRWSE04zRX4oE3yMAXpl8ueS9S4FbQdFiTqkrg6pq-_Us-XmyDKGnFbY_wd_AbHPhxs
CitedBy_id crossref_primary_10_3390_s24051623
crossref_primary_10_1007_s11119_024_10209_x
Cites_doi 10.1016/j.geoderma.2020.114808
10.1080/01621459.2017.1415907
10.23986/afsci.72123
10.21105/joss.01686
10.2136/sssaj2006.0059
10.1016/S0169-7439(03)00051-0
10.1016/j.csda.2013.04.014
10.23986/afsci.5670
10.1007/978-90-481-3585-1_126
10.3997/1873-0604.2008031
10.1590/1809-4430-eng.agric.v39nep126-147/2019
10.18637/jss.v063.i19
10.1016/j.biosystemseng.2006.01.002
10.1016/j.sste.2013.07.003
10.1007/s11119-022-09985-1
10.1111/j.1467-9868.2008.00700.x
10.1007/978-981-10-0415-5_15
10.2307/1936256
10.1016/j.jas.2013.11.027
10.14393/BJ-v32n1a2016-26287
10.1016/j.geoderma.2012.09.007
10.1016/j.scitotenv.2017.07.201
10.18637/jss.v084.i06
10.1190/1.1440226
10.1016/j.compag.2004.11.010
10.1515/intag-2016-0005
10.13031/2013.15873
10.2136/vzj2012.0199
10.3390/soilsystems5030048
10.1371/journal.pone.0187602
10.1016/j.biosystemseng.2013.02.004
10.1002/saj2.20475
10.3390/s17112540
10.32614/RJ-2018-009
10.1016/j.still.2004.10.004
10.1111/j.1365-2389.2009.01199.x
10.2136/sssaj1989.03615995005300020020x
10.1007/s11119-016-9460-y
10.1071/SR15036
10.1198/106186007X179257
10.1016/j.geoderma.2017.10.053
10.1038/s41598-020-73879-3
10.1002/vzj2.20080
10.1016/j.catena.2019.104335
10.13031/2013.28498
10.1016/j.compag.2004.03.002
10.1016/j.geoderma.2016.10.018
10.1214/16-STS576
10.1007/s11119-020-09766-8
10.1007/s11629-012-2630-0
10.1002/vzj2.20228
10.1016/j.geoderma.2022.116103
10.1111/j.1365-2389.2008.01093.x
10.1016/j.geoderma.2014.01.011
10.5194/hess-21-495-2017
10.1016/j.compag.2007.02.010
10.1111/ejss.12790
10.18637/jss.v063.i20
10.1016/j.still.2004.03.022
10.1016/j.envsci.2015.08.012
10.1016/j.compag.2015.03.013
10.2136/sssaj2010.0056
10.1016/j.jhydrol.2015.07.023
10.13031/2013.7002
10.2134/agronj2003.4550
10.1201/9781315175584
10.1175/1520-0450(1975)014<0109:TDOBSA>2.0.CO;2
10.1038/s41467-019-11103-1
10.1111/j.1467-9868.2011.00777.x
10.1016/j.still.2006.03.011
10.1016/j.geodrs.2023.e00610
10.1016/j.still.2020.104604
10.2113/JEEG14.1.15
10.2136/vzj2009.0160
10.1016/j.geodrs.2021.e00359
10.1016/j.geoderma.2020.114253
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QL
7SN
7ST
7T7
7UA
8FD
C1K
F1W
FR3
H96
L.G
P64
SOI
7S9
L.6
DOI 10.1111/ejss.13409
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Bacteriology Abstracts (Microbiology B)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2389
ExternalDocumentID 10_1111_ejss_13409
GeographicLocations Finland
GeographicLocations_xml – name: Finland
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CITATION
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XOL
Y6R
ZZTAW
~02
~IA
~KM
~WT
7QL
7SN
7ST
7T7
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
L.G
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c328t-2cd083b68d82e0e57f4fe4c1144ba0354329ef6e7ae5b07b7a563cb29b46cccd3
ISSN 1351-0754
IngestDate Fri Jul 11 18:22:47 EDT 2025
Fri Jul 25 21:10:36 EDT 2025
Tue Jul 01 04:19:30 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-2cd083b68d82e0e57f4fe4c1144ba0354329ef6e7ae5b07b7a563cb29b46cccd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2397-3553
0000-0001-7790-847X
0000-0002-2175-7833
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejss.13409
PQID 2881584041
PQPubID 2045158
ParticipantIDs proquest_miscellaneous_3040363030
proquest_journals_2881584041
crossref_citationtrail_10_1111_ejss_13409
crossref_primary_10_1111_ejss_13409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle European journal of soil science
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_12_4_1
(e_1_2_12_86_1) 2010; 11
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
(e_1_2_12_5_1) 1986
Molin J. P. (e_1_2_12_52_1) 2013; 70
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_66_1
e_1_2_12_87_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_68_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_81_1
e_1_2_12_28_1
e_1_2_12_49_1
Richardson A. J. (e_1_2_12_65_1) 1977; 43
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_75_1
e_1_2_12_35_1
e_1_2_12_56_1
Guerrero A. (e_1_2_12_25_1) 2021
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_12_1
McBratney A. B. (e_1_2_12_48_1) 2005; 5
e_1_2_12_8_1
e_1_2_12_10_1
R Core Team (e_1_2_12_61_1) 2021
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_71_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_88_1
Zuur A. F. (e_1_2_12_93_1) 2017
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_67_1
e_1_2_12_80_1
e_1_2_12_84_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_9_1
References_xml – volume-title: Beginner's guide to spatial, temporal, and spatial‐temporal ecological data analysis with R‐INLA. Beginner's guide book series
  year: 2017
  ident: e_1_2_12_93_1
– ident: e_1_2_12_19_1
– ident: e_1_2_12_79_1
  doi: 10.1016/j.geoderma.2020.114808
– ident: e_1_2_12_21_1
  doi: 10.1080/01621459.2017.1415907
– ident: e_1_2_12_29_1
  doi: 10.23986/afsci.72123
– ident: e_1_2_12_87_1
  doi: 10.21105/joss.01686
– ident: e_1_2_12_7_1
  doi: 10.2136/sssaj2006.0059
– ident: e_1_2_12_66_1
  doi: 10.1016/S0169-7439(03)00051-0
– ident: e_1_2_12_18_1
– ident: e_1_2_12_46_1
  doi: 10.1016/j.csda.2013.04.014
– ident: e_1_2_12_51_1
  doi: 10.23986/afsci.5670
– ident: e_1_2_12_4_1
  doi: 10.1007/978-90-481-3585-1_126
– ident: e_1_2_12_42_1
  doi: 10.3997/1873-0604.2008031
– ident: e_1_2_12_53_1
  doi: 10.1590/1809-4430-eng.agric.v39nep126-147/2019
– ident: e_1_2_12_40_1
  doi: 10.18637/jss.v063.i19
– ident: e_1_2_12_49_1
  doi: 10.1016/j.biosystemseng.2006.01.002
– ident: e_1_2_12_10_1
  doi: 10.1016/j.sste.2013.07.003
– ident: e_1_2_12_14_1
  doi: 10.1007/s11119-022-09985-1
– ident: e_1_2_12_68_1
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: e_1_2_12_59_1
  doi: 10.1007/978-981-10-0415-5_15
– ident: e_1_2_12_31_1
– ident: e_1_2_12_70_1
– ident: e_1_2_12_30_1
  doi: 10.2307/1936256
– ident: e_1_2_12_47_1
  doi: 10.1016/j.jas.2013.11.027
– ident: e_1_2_12_50_1
  doi: 10.14393/BJ-v32n1a2016-26287
– ident: e_1_2_12_33_1
  doi: 10.1016/j.geoderma.2012.09.007
– ident: e_1_2_12_27_1
  doi: 10.1016/j.scitotenv.2017.07.201
– ident: e_1_2_12_81_1
  doi: 10.18637/jss.v084.i06
– ident: e_1_2_12_67_1
  doi: 10.1190/1.1440226
– ident: e_1_2_12_37_1
– ident: e_1_2_12_78_1
  doi: 10.1016/j.compag.2004.11.010
– ident: e_1_2_12_58_1
  doi: 10.1515/intag-2016-0005
– ident: e_1_2_12_20_1
  doi: 10.13031/2013.15873
– volume: 43
  start-page: 1541
  year: 1977
  ident: e_1_2_12_65_1
  article-title: Distinguishing vegetation from soil background information
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: e_1_2_12_71_1
  doi: 10.2136/vzj2012.0199
– ident: e_1_2_12_72_1
– ident: e_1_2_12_17_1
  doi: 10.3390/soilsystems5030048
– ident: e_1_2_12_63_1
  doi: 10.1371/journal.pone.0187602
– ident: e_1_2_12_36_1
  doi: 10.1016/j.biosystemseng.2013.02.004
– volume-title: R: A language and environment for statistical computing
  year: 2021
  ident: e_1_2_12_61_1
– ident: e_1_2_12_15_1
  doi: 10.1002/saj2.20475
– ident: e_1_2_12_26_1
  doi: 10.3390/s17112540
– start-page: 1
  volume-title: Advances in agronomy
  year: 1986
  ident: e_1_2_12_5_1
– ident: e_1_2_12_57_1
  doi: 10.32614/RJ-2018-009
– ident: e_1_2_12_69_1
  doi: 10.1016/j.still.2004.10.004
– ident: e_1_2_12_34_1
  doi: 10.1111/j.1365-2389.2009.01199.x
– ident: e_1_2_12_64_1
  doi: 10.2136/sssaj1989.03615995005300020020x
– ident: e_1_2_12_75_1
  doi: 10.1007/s11119-016-9460-y
– ident: e_1_2_12_56_1
  doi: 10.1071/SR15036
– ident: e_1_2_12_24_1
  doi: 10.1198/106186007X179257
– ident: e_1_2_12_82_1
  doi: 10.1016/j.geoderma.2017.10.053
– ident: e_1_2_12_38_1
  doi: 10.1038/s41598-020-73879-3
– ident: e_1_2_12_9_1
  doi: 10.1002/vzj2.20080
– ident: e_1_2_12_89_1
  doi: 10.1016/j.catena.2019.104335
– ident: e_1_2_12_77_1
  doi: 10.13031/2013.28498
– ident: e_1_2_12_3_1
  doi: 10.1016/j.compag.2004.03.002
– ident: e_1_2_12_2_1
  doi: 10.1016/j.geoderma.2016.10.018
– ident: e_1_2_12_76_1
  doi: 10.1214/16-STS576
– volume: 5
  start-page: 503
  year: 2005
  ident: e_1_2_12_48_1
  article-title: Obtaining ‘useful’ high‐resolution soil data from proximally‐sensed electrical conductivity/resistivity (PSEC/R) surveys
  publication-title: Precision Agriculture
– ident: e_1_2_12_11_1
  doi: 10.1007/s11119-020-09766-8
– ident: e_1_2_12_39_1
  doi: 10.1007/s11629-012-2630-0
– ident: e_1_2_12_6_1
  doi: 10.1002/vzj2.20228
– ident: e_1_2_12_74_1
  doi: 10.1016/j.geoderma.2022.116103
– ident: e_1_2_12_85_1
– ident: e_1_2_12_35_1
  doi: 10.1111/j.1365-2389.2008.01093.x
– ident: e_1_2_12_22_1
  doi: 10.1016/j.geoderma.2014.01.011
– ident: e_1_2_12_45_1
  doi: 10.5194/hess-21-495-2017
– ident: e_1_2_12_13_1
  doi: 10.1016/j.compag.2007.02.010
– ident: e_1_2_12_43_1
  doi: 10.1111/ejss.12790
– volume: 70
  start-page: 1
  year: 2013
  ident: e_1_2_12_52_1
  article-title: Spatial and temporal variability of soil electrical conductivity related to soil moisture
  publication-title: Acience and Agriculture (Piracicaba, Brazil)
– ident: e_1_2_12_8_1
  doi: 10.18637/jss.v063.i20
– ident: e_1_2_12_84_1
– ident: e_1_2_12_54_1
  doi: 10.1016/j.still.2004.03.022
– ident: e_1_2_12_55_1
  doi: 10.1016/j.envsci.2015.08.012
– ident: e_1_2_12_32_1
  doi: 10.1016/j.compag.2015.03.013
– ident: e_1_2_12_92_1
  doi: 10.2136/sssaj2010.0056
– ident: e_1_2_12_12_1
  doi: 10.1016/j.jhydrol.2015.07.023
– ident: e_1_2_12_83_1
  doi: 10.13031/2013.7002
– ident: e_1_2_12_16_1
  doi: 10.2134/agronj2003.4550
– ident: e_1_2_12_23_1
  doi: 10.1201/9781315175584
– ident: e_1_2_12_28_1
  doi: 10.1175/1520-0450(1975)014<0109:TDOBSA>2.0.CO;2
– ident: e_1_2_12_91_1
  doi: 10.1038/s41467-019-11103-1
– ident: e_1_2_12_41_1
  doi: 10.1111/j.1467-9868.2011.00777.x
– ident: e_1_2_12_60_1
  doi: 10.1016/j.still.2006.03.011
– ident: e_1_2_12_62_1
  doi: 10.1016/j.geodrs.2023.e00610
– ident: e_1_2_12_88_1
  doi: 10.1016/j.still.2020.104604
– volume: 11
  start-page: 3571
  year: 2010
  ident: e_1_2_12_86_1
  article-title: Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_12_80_1
  doi: 10.2113/JEEG14.1.15
– ident: e_1_2_12_44_1
  doi: 10.2136/vzj2009.0160
– ident: e_1_2_12_73_1
  doi: 10.1016/j.geodrs.2021.e00359
– start-page: 1
  volume-title: Advances in agronomy
  year: 2021
  ident: e_1_2_12_25_1
– ident: e_1_2_12_90_1
  doi: 10.1016/j.geoderma.2020.114253
SSID ssj0013199
Score 2.401941
Snippet Data from proximal soil sensors can facilitate digital soil mapping at high spatial resolutions. However, their use for predicting static soil properties, such...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Autumn
Clay
Consistency
Digital mapping
Electrical conductivity
Electrical resistivity
Environmental changes
Finland
Grain crops
grasses
Mapping
Moisture content
Near infrared radiation
Reflectance
Reproducibility
Seasonal variation
Seasonal variations
Seasons
Sensors
Soil conductivity
soil electrical conductivity
Soil mapping
Soil properties
Soil temperature
Spring
Spring (season)
temperature
Temperature data
Temporal variations
texture
Topsoil
Water content
Title Spatial pattern consistency and repeatability of proximal soil sensor data for digital soil mapping
URI https://www.proquest.com/docview/2881584041
https://www.proquest.com/docview/3040363030
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgXOCA-CkKAxnBBU2ZkthxkmMFnSY0hoRaqbfIdpzSsiVVk17463nPdtJWGtPgEkV2ZEV-n57fsz-_j5CPMhRlJMs8kIkWAc8NC3IjTcCzSpWiTHNpT_C_XYrzGf86T-Y76pC9XdKpU_37xnsl_2NVaAO74i3Zf7DsMCg0wDvYF55gYXjeycaoJ4w73mtbJBMJ5XWLZsPblJY3btbgal0lbnuSjqSV5TVeEWmW8IAUttmcIEnUsg3L5QIlRFzntcTKDYu_7tz7KNYN5BzEAJ6flmjrV7UreTJBvZZhLwfQsWqcWva4_dUMlCC52tamr2jQLff3I2I2EK7u6vX2vC1LogBiFrejYHwb0u6Y0xXqXbQT8vFQTG7x_GbVtqcR42G-W9_6M_3L78XZ7OKimE7m0_vkQQx5BUpefPkR746dnODo8F--ni1Sv3YjH0Ywhwu4jUqmT8hjn07QscPGU3LP1M_Io_Fi40uqmOdEe5RQjxK6hxIKKKEHKKFNRXuUUDQudSihiBJa4YtDiev0KHlBZmeT6efzwEtrBJrFWRfEuoTYW4mszGITmiSteGW4huSYKxmyhLM4N5UwqTSJClOVykQwreJccaG1LtlLclQ3tXlFqEglJgqVTHKYHdRnCLWIFARfOs1Vmo3Ip366Cu3rzqP8yVXR5584tYWd2hH5MHy7dtVWbvzquJ_1wgO-LeIsiyCYDnk0Iu-HbvCVeAAma9Ns24LBisUEBG3h69uHeEMe7qB9TI66zda8heCzU-8sYP4AjA6OdQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+pattern+consistency+and+repeatability+of+proximal+soil+sensor+data+for+digital+soil+mapping&rft.jtitle=European+journal+of+soil+science&rft.au=Ahrends%2C+Hella+Ellen&rft.au=Simojoki%2C+Asko&rft.au=Lajunen%2C+Antti&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=74&rft.issue=5&rft_id=info:doi/10.1111%2Fejss.13409&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon