Covalent Organic Framework Nanosheets as Reactive Fillers To Fabricate Free-Standing Polyamide Membranes for Efficient Desalination
Mixed matrix membranes (MMMs) have been more and more broadly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high performance MMMs, however, only little studies about COFs materials in MMMs have been reported where COFs are...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 24; pp. 27777 - 27785 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
17.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.0c06417 |
Cover
Loading…
Abstract | Mixed matrix membranes (MMMs) have been more and more broadly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high performance MMMs, however, only little studies about COFs materials in MMMs have been reported where COFs are all used as non-reactive fillers. Herein, we propose using -NH2 functionalized covalent organic framework nanosheets as reactive fillers (RCON) to fabricate MMMs. RCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine (PIP) through hydrogen bonding prior to interfacial polymerization (IP) process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (~ 24%). RCON were chemically cross-linked to the trimesoyl chloride (TMC) through amide bonding, subsequently elevating the hydrophilicity (~ 35%) and fouling resistance of MMMs. The presence of -NH2 groups elevated the RCON-PA compatibility, ensuring the high RCON loading of 5% in the MMMs without sacrificing salt rejection. Accordingly, the PA-RCON MMMs exhibited a flux of 46.5 L. m-2. h-1. bar-1, which is 6.8 times higher than that of the pristine PA membrane, while with a high rejection rate of 93.5% for Na2SO4. |
---|---|
AbstractList | Mixed matrix membranes (MMMs) have been increasingly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high-performance MMMs; however, only few studies about COF materials in MMMs have been reported where COFs are all used as nonreactive fillers. Herein, we propose using -NH2-functionalized COF nanosheets as reactive fillers (rCON) to fabricate MMMs. rCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine through hydrogen bonding prior to the interfacial polymerization process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (∼24%). rCON was chemically cross-linked to the trimesoyl chloride through amide bonding, subsequently elevating the hydrophilicity (∼35%) and fouling resistance of MMMs. The presence of -NH2 groups elevated the rCON-PA compatibility, ensuring the high rCON loading of 5 wt % in the MMMs without sacrificing salt rejection. Accordingly, the PA-rCON MMMs exhibited a flux of 46.5 L m-2 h-1 bar-1, which is 6.8 times higher than that of the pristine PA membrane, with a high rejection rate of 93.5% for Na2SO4.Mixed matrix membranes (MMMs) have been increasingly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high-performance MMMs; however, only few studies about COF materials in MMMs have been reported where COFs are all used as nonreactive fillers. Herein, we propose using -NH2-functionalized COF nanosheets as reactive fillers (rCON) to fabricate MMMs. rCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine through hydrogen bonding prior to the interfacial polymerization process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (∼24%). rCON was chemically cross-linked to the trimesoyl chloride through amide bonding, subsequently elevating the hydrophilicity (∼35%) and fouling resistance of MMMs. The presence of -NH2 groups elevated the rCON-PA compatibility, ensuring the high rCON loading of 5 wt % in the MMMs without sacrificing salt rejection. Accordingly, the PA-rCON MMMs exhibited a flux of 46.5 L m-2 h-1 bar-1, which is 6.8 times higher than that of the pristine PA membrane, with a high rejection rate of 93.5% for Na2SO4. Mixed matrix membranes (MMMs) have been more and more broadly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high performance MMMs, however, only little studies about COFs materials in MMMs have been reported where COFs are all used as non-reactive fillers. Herein, we propose using -NH2 functionalized covalent organic framework nanosheets as reactive fillers (RCON) to fabricate MMMs. RCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine (PIP) through hydrogen bonding prior to interfacial polymerization (IP) process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (~ 24%). RCON were chemically cross-linked to the trimesoyl chloride (TMC) through amide bonding, subsequently elevating the hydrophilicity (~ 35%) and fouling resistance of MMMs. The presence of -NH2 groups elevated the RCON-PA compatibility, ensuring the high RCON loading of 5% in the MMMs without sacrificing salt rejection. Accordingly, the PA-RCON MMMs exhibited a flux of 46.5 L. m-2. h-1. bar-1, which is 6.8 times higher than that of the pristine PA membrane, while with a high rejection rate of 93.5% for Na2SO4. Mixed matrix membranes (MMMs) have been increasingly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high-performance MMMs; however, only few studies about COF materials in MMMs have been reported where COFs are all used as nonreactive fillers. Herein, we propose using −NH₂-functionalized COF nanosheets as reactive fillers (rCON) to fabricate MMMs. rCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine through hydrogen bonding prior to the interfacial polymerization process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (∼24%). rCON was chemically cross-linked to the trimesoyl chloride through amide bonding, subsequently elevating the hydrophilicity (∼35%) and fouling resistance of MMMs. The presence of −NH₂ groups elevated the rCON–PA compatibility, ensuring the high rCON loading of 5 wt % in the MMMs without sacrificing salt rejection. Accordingly, the PA–rCON MMMs exhibited a flux of 46.5 L m–² h–¹ bar–¹, which is 6.8 times higher than that of the pristine PA membrane, with a high rejection rate of 93.5% for Na₂SO₄. |
Author | Huang, Tong Olson, Mark. A. You, Xinda Azad, Chandra S. Jiang, Zhongyi Rahman, Ata Ur Yuan, Jinqiu Wu, Hong Khan, Niaz Ali |
Author_xml | – sequence: 1 givenname: Niaz Ali surname: Khan fullname: Khan, Niaz Ali organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan – sequence: 2 givenname: Jinqiu surname: Yuan fullname: Yuan, Jinqiu organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China – sequence: 3 givenname: Hong orcidid: 0000-0001-6600-4459 surname: Wu fullname: Wu, Hong organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China – sequence: 4 givenname: Tong surname: Huang fullname: Huang, Tong organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China – sequence: 5 givenname: Xinda surname: You fullname: You, Xinda organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China – sequence: 6 givenname: Ata Ur surname: Rahman fullname: Rahman, Ata Ur organization: Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan – sequence: 7 givenname: Chandra S. surname: Azad fullname: Azad, Chandra S. organization: School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China – sequence: 8 givenname: Mark. A. orcidid: 0000-0003-0398-5063 surname: Olson fullname: Olson, Mark. A. organization: School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States – sequence: 9 givenname: Zhongyi orcidid: 0000-0002-2492-4094 surname: Jiang fullname: Jiang, Zhongyi organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32420726$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1P3DAQxS1ExVe59lj5yCWL7ThOckTLLq3ER9XCOZo4E-rWscH2gjj3H6_pLhwqIXHxWNbvzYzf2yfbzjsk5BNnM84EPwYdYTIzppmSvN4ie7yVsmhEJbZf71Lukv0YfzGmSsGqHbJbCilYLdQe-TP3D2DRJXoVbsEZTZcBJnz04Te9BOfjT8QUKUT6HUEn84B0aazFEOm1p0vog9GQ8mNALH4kcINxt_Sbt095rQHpBU59AIeRjj7QxTgabZ6nnWIEaxwk491H8mEEG_FwUw_IzXJxPf9SnF-dfZ2fnBe6FE0qRFP1mD_Gy4H34yjyUctWwlArWQII3vYVqyQfVa2xVm2lG8GkUKCblqksOyBH6753wd-vMKZuMlGjtXk_v4pdNoqppm0FewfKZNlw3pQZ_bxBV_2EQ3cXzAThqXvxOAOzNaCDjzHg-Ipw1j2H2K1D7DYhZoH8T6BN-udUCmDsW7K_xiqiAA |
CitedBy_id | crossref_primary_10_1021_acsapm_2c01209 crossref_primary_10_1016_j_chphma_2023_08_003 crossref_primary_10_1016_j_memsci_2023_121759 crossref_primary_10_1021_acs_est_2c04736 crossref_primary_10_1016_j_advmem_2022_100032 crossref_primary_10_1016_j_memsci_2022_120540 crossref_primary_10_1021_acsestengg_3c00491 crossref_primary_10_1016_j_memsci_2023_122003 crossref_primary_10_1016_j_memsci_2022_120544 crossref_primary_10_1016_j_cej_2021_132353 crossref_primary_10_1039_D0CS01599G crossref_primary_10_1016_j_memsci_2022_120590 crossref_primary_10_1016_j_cej_2023_145580 crossref_primary_10_1016_j_cej_2024_149742 crossref_primary_10_1016_j_cclet_2021_08_063 crossref_primary_10_1016_j_jece_2023_110082 crossref_primary_10_1016_j_memsci_2020_118754 crossref_primary_10_1021_acsami_1c06891 crossref_primary_10_1016_j_seppur_2021_120233 crossref_primary_10_1016_j_apsusc_2021_152161 crossref_primary_10_1039_D0TA09319J crossref_primary_10_1039_D1TA06439H crossref_primary_10_1016_j_memsci_2022_120818 crossref_primary_10_1021_jacs_3c10832 crossref_primary_10_1016_j_seppur_2021_119046 crossref_primary_10_1039_D3SU00212H crossref_primary_10_1016_j_memsci_2022_120253 crossref_primary_10_1016_j_memsci_2022_120451 crossref_primary_10_1016_j_jtice_2023_105067 crossref_primary_10_1016_j_ccr_2021_213969 crossref_primary_10_2139_ssrn_4007857 crossref_primary_10_1016_j_micromeso_2023_112689 crossref_primary_10_1016_j_seppur_2023_123463 crossref_primary_10_1016_j_cis_2024_103269 crossref_primary_10_1016_j_desal_2022_115753 crossref_primary_10_1039_D1NJ00609F crossref_primary_10_1016_j_seppur_2022_121134 crossref_primary_10_1021_acsami_1c16229 crossref_primary_10_3390_en16165888 crossref_primary_10_1016_j_memsci_2023_121739 crossref_primary_10_1039_D0TA12122C crossref_primary_10_1002_sstr_202100061 crossref_primary_10_1021_acsami_4c14923 crossref_primary_10_1016_j_memsci_2022_120494 crossref_primary_10_1002_app_56658 crossref_primary_10_3390_en14082267 crossref_primary_10_1016_j_jes_2023_06_037 crossref_primary_10_1016_j_cej_2025_161210 crossref_primary_10_1016_j_desal_2025_118797 crossref_primary_10_3390_nano11071651 crossref_primary_10_1016_j_memsci_2021_119944 crossref_primary_10_1016_j_chemosphere_2022_137191 crossref_primary_10_1016_j_mtsust_2022_100177 crossref_primary_10_1039_D1MA00256B crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1016_j_memsci_2022_120799 crossref_primary_10_1016_j_memsci_2022_121123 crossref_primary_10_1016_j_memsci_2023_121783 crossref_primary_10_1016_j_seppur_2024_127590 crossref_primary_10_1016_j_memsci_2023_121863 crossref_primary_10_1016_j_memsci_2024_123149 crossref_primary_10_1021_acsami_1c17086 crossref_primary_10_1016_j_desal_2022_116300 crossref_primary_10_1016_j_seppur_2023_123200 crossref_primary_10_1016_j_cej_2021_132009 crossref_primary_10_1016_j_desal_2024_117834 crossref_primary_10_1016_j_jsamd_2023_100632 crossref_primary_10_1002_advs_202103814 crossref_primary_10_1016_j_seppur_2022_120710 |
Cites_doi | 10.1016/j.apsusc.2014.11.031 10.1002/smll.201601253 10.1021/acs.est.8b02425 10.1016/j.memsci.2010.12.036 10.1016/j.seppur.2017.06.013 10.1039/c2cs35072f 10.1126/science.aaa5058 10.1016/j.memsci.2017.11.057 10.1039/c8ta05687k 10.1039/c9sc03088c 10.1021/acs.langmuir.8b02044 10.1016/j.memsci.2010.11.001 10.1016/j.watres.2015.04.037 10.1002/adma.201705973 10.1080/03602559.2017.1298801 10.1021/jacs.7b06640 10.1039/c4ta03607g 10.1002/smll.201303945 10.1039/c7ta08627j 10.1021/la900938x 10.1039/c7ta01438d 10.1021/acsami.9b01883 10.1021/la9812119 10.1039/c9ta08163a 10.1002/anie.200705710 10.1021/nn4011494 10.1039/c7ta02837g 10.1039/c8ta03673j 10.1002/aic.11197 10.1021/acsami.9b07500 10.1016/j.memsci.2019.117398 10.1002/adfm.201505352 10.1016/j.memsci.2016.09.055 10.1126/science.aar6308 10.1039/c5cc08538a 10.1039/c8cs00919h 10.1016/j.memsci.2019.01.040 10.1016/j.memsci.2018.07.087 10.1002/anie.201712816 10.1021/jp107280m 10.1016/j.memsci.2019.02.064 10.1039/c7ta00501f 10.1039/c5ta03739e 10.1039/c7ew00074j 10.1016/j.memsci.2009.11.021 10.1021/acsami.6b07686 10.1021/cm049154u 10.1016/j.memsci.2014.11.011 10.1016/j.desal.2018.12.016 10.1002/app.29639 10.1016/j.memsci.2019.05.022 10.1016/j.memsci.2016.12.039 10.1039/c9cp05026d 10.1021/am500081e 10.1081/ss-120039343 10.1021/acsami.9b09945 10.1016/j.ecolind.2015.07.019 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.0c06417 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 27785 |
ExternalDocumentID | 32420726 10_1021_acsami_0c06417 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c328t-285be25213d1bff21bf7494ad7643aa219b50541f67ce7695c820426ac8906213 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 11:21:34 EDT 2025 Thu Jul 10 23:44:53 EDT 2025 Thu Jan 02 22:58:14 EST 2025 Tue Jul 01 02:36:12 EDT 2025 Thu Apr 24 23:08:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-285be25213d1bff21bf7494ad7643aa219b50541f67ce7695c820426ac8906213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6600-4459 0000-0003-0398-5063 0000-0002-2492-4094 |
PMID | 32420726 |
PQID | 2404381183 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2440689920 proquest_miscellaneous_2404381183 pubmed_primary_32420726 crossref_primary_10_1021_acsami_0c06417 crossref_citationtrail_10_1021_acsami_0c06417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-17 |
PublicationDateYYYYMMDD | 2020-06-17 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl Mater Interfaces |
PublicationYear | 2020 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1016/j.apsusc.2014.11.031 – ident: ref8/cit8 doi: 10.1002/smll.201601253 – ident: ref16/cit16 doi: 10.1021/acs.est.8b02425 – ident: ref3/cit3 doi: 10.1016/j.memsci.2010.12.036 – ident: ref36/cit36 doi: 10.1016/j.seppur.2017.06.013 – ident: ref40/cit40 doi: 10.1039/c2cs35072f – ident: ref17/cit17 doi: 10.1126/science.aaa5058 – ident: ref35/cit35 doi: 10.1016/j.memsci.2017.11.057 – ident: ref39/cit39 doi: 10.1039/c8ta05687k – ident: ref9/cit9 doi: 10.1039/c9sc03088c – ident: ref28/cit28 doi: 10.1021/acs.langmuir.8b02044 – ident: ref56/cit56 doi: 10.1016/j.memsci.2010.11.001 – ident: ref7/cit7 doi: 10.1016/j.watres.2015.04.037 – ident: ref4/cit4 doi: 10.1002/adma.201705973 – ident: ref18/cit18 doi: 10.1080/03602559.2017.1298801 – ident: ref45/cit45 doi: 10.1021/jacs.7b06640 – ident: ref54/cit54 doi: 10.1039/c4ta03607g – ident: ref31/cit31 doi: 10.1002/smll.201303945 – ident: ref57/cit57 doi: 10.1039/c7ta08627j – ident: ref30/cit30 doi: 10.1021/la900938x – ident: ref49/cit49 doi: 10.1039/c7ta01438d – ident: ref41/cit41 doi: 10.1021/acsami.9b01883 – ident: ref51/cit51 doi: 10.1021/la9812119 – ident: ref10/cit10 doi: 10.1039/c9ta08163a – ident: ref48/cit48 doi: 10.1002/anie.200705710 – ident: ref38/cit38 doi: 10.1021/nn4011494 – ident: ref32/cit32 doi: 10.1039/c7ta02837g – ident: ref14/cit14 doi: 10.1039/c8ta03673j – ident: ref2/cit2 doi: 10.1002/aic.11197 – ident: ref21/cit21 doi: 10.1021/acsami.9b07500 – ident: ref6/cit6 doi: 10.1016/j.memsci.2019.117398 – ident: ref25/cit25 doi: 10.1002/adfm.201505352 – ident: ref46/cit46 doi: 10.1016/j.memsci.2016.09.055 – ident: ref26/cit26 doi: 10.1126/science.aar6308 – ident: ref11/cit11 doi: 10.1039/c5cc08538a – ident: ref43/cit43 doi: 10.1039/c8cs00919h – ident: ref15/cit15 doi: 10.1016/j.memsci.2019.01.040 – ident: ref27/cit27 doi: 10.1016/j.memsci.2018.07.087 – ident: ref44/cit44 doi: 10.1002/anie.201712816 – ident: ref20/cit20 doi: 10.1021/jp107280m – ident: ref37/cit37 doi: 10.1016/j.memsci.2019.02.064 – ident: ref12/cit12 doi: 10.1039/c7ta00501f – ident: ref24/cit24 doi: 10.1039/c5ta03739e – ident: ref42/cit42 doi: 10.1039/c7ew00074j – ident: ref53/cit53 doi: 10.1016/j.memsci.2009.11.021 – ident: ref22/cit22 doi: 10.1021/acsami.6b07686 – ident: ref23/cit23 doi: 10.1021/cm049154u – ident: ref13/cit13 doi: 10.1016/j.memsci.2014.11.011 – ident: ref33/cit33 doi: 10.1016/j.desal.2018.12.016 – ident: ref5/cit5 doi: 10.1002/app.29639 – ident: ref34/cit34 doi: 10.1016/j.memsci.2019.05.022 – ident: ref47/cit47 doi: 10.1016/j.memsci.2016.12.039 – ident: ref52/cit52 doi: 10.1039/c9cp05026d – ident: ref19/cit19 doi: 10.1021/am500081e – ident: ref55/cit55 doi: 10.1081/ss-120039343 – ident: ref50/cit50 doi: 10.1021/acsami.9b09945 – ident: ref1/cit1 doi: 10.1016/j.ecolind.2015.07.019 |
SSID | ssj0063205 |
Score | 2.5469513 |
Snippet | Mixed matrix membranes (MMMs) have been more and more broadly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent... Mixed matrix membranes (MMMs) have been increasingly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 27777 |
SubjectTerms | crosslinking desalination fouling hydrogen bonding hydrophilicity nanosheets organochlorine compounds piperazine polyamides polymerization sodium sulfate surface area trimesoyl chloride |
Title | Covalent Organic Framework Nanosheets as Reactive Fillers To Fabricate Free-Standing Polyamide Membranes for Efficient Desalination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32420726 https://www.proquest.com/docview/2404381183 https://www.proquest.com/docview/2440689920 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7iSQ--H-uLCIKn6CZNm_Yoi2URFPEB3kqSThHUrdjuQa_-cSdpu77wcemhJCQk0_m-aTLfELIXhiKGQAOTWgsmhQlYoiPOQECUREIaFbvk5NOzaHgtT27Cm_f_HV9P8AU_1LZypXD6FsGT-7RxJZ1I_tHgsnO5USD8XUUMyCWLEbA6dcZv3T-jzw-U0kNLOt_oHFVekdDdKLk7GNfmwL5812v8c9YLZK7ll_SoMYhFMgWjJTL7QXVwmbwOSjQvBBvaJGJamnY3tCg627K6Bagrqit6Adq7Q5r6jMGKXpU01cZXFsKXTwDsss2Loefl_TPOJQd6Cg8YgqMLpUiI6bHXqHCjYYirXfqvM4UVcp0eXw2GrK3FwGwg4pqJODQgEOuDnJuiEPhQMpE6V0hpcJt5YpBLSV5EyoKKktAitUD01zZ2Ssg8WCXTo3IE64RiSOcUewIo8gLpYmHA9GOb89yJ46ui6BHW7VFmW6FyVy_jPvMH5oJnzeJm7eL2yP6k_WMj0fFjy91uyzP8itzRCK5GOa4yIb3WGfq339og-cHwVPR7ZK2xl8l4jpb2lYg2_j2XTTIjXOjuyiCpLTJdP41hG_lNbXa8bb8BCOL3Jg |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Framework+Nanosheets+as+Reactive+Fillers+to+Fabricate+Free-Standing+Polyamide+Membranes+for+Efficient+Desalination&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Khan%2C+Niaz+Ali&rft.au=Yuan%2C+Jinqiu&rft.au=Wu%2C+Hong&rft.au=Huang%2C+Tong&rft.date=2020-06-17&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.0c06417&rft_id=info%3Apmid%2F32420726&rft.externalDocID=32420726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |