Covalent Organic Framework Nanosheets as Reactive Fillers To Fabricate Free-Standing Polyamide Membranes for Efficient Desalination

Mixed matrix membranes (MMMs) have been more and more broadly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high performance MMMs, however, only little studies about COFs materials in MMMs have been reported where COFs are...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 24; pp. 27777 - 27785
Main Authors Khan, Niaz Ali, Yuan, Jinqiu, Wu, Hong, Huang, Tong, You, Xinda, Rahman, Ata Ur, Azad, Chandra S., Olson, Mark. A., Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published United States 17.06.2020
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.0c06417

Cover

Loading…
Abstract Mixed matrix membranes (MMMs) have been more and more broadly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high performance MMMs, however, only little studies about COFs materials in MMMs have been reported where COFs are all used as non-reactive fillers. Herein, we propose using -NH2 functionalized covalent organic framework nanosheets as reactive fillers (RCON) to fabricate MMMs. RCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine (PIP) through hydrogen bonding prior to interfacial polymerization (IP) process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (~ 24%). RCON were chemically cross-linked to the trimesoyl chloride (TMC) through amide bonding, subsequently elevating the hydrophilicity (~ 35%) and fouling resistance of MMMs. The presence of -NH2 groups elevated the RCON-PA compatibility, ensuring the high RCON loading of 5% in the MMMs without sacrificing salt rejection. Accordingly, the PA-RCON MMMs exhibited a flux of 46.5 L. m-2. h-1. bar-1, which is 6.8 times higher than that of the pristine PA membrane, while with a high rejection rate of 93.5% for Na2SO4.
AbstractList Mixed matrix membranes (MMMs) have been increasingly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high-performance MMMs; however, only few studies about COF materials in MMMs have been reported where COFs are all used as nonreactive fillers. Herein, we propose using -NH2-functionalized COF nanosheets as reactive fillers (rCON) to fabricate MMMs. rCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine through hydrogen bonding prior to the interfacial polymerization process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (∼24%). rCON was chemically cross-linked to the trimesoyl chloride through amide bonding, subsequently elevating the hydrophilicity (∼35%) and fouling resistance of MMMs. The presence of -NH2 groups elevated the rCON-PA compatibility, ensuring the high rCON loading of 5 wt % in the MMMs without sacrificing salt rejection. Accordingly, the PA-rCON MMMs exhibited a flux of 46.5 L m-2 h-1 bar-1, which is 6.8 times higher than that of the pristine PA membrane, with a high rejection rate of 93.5% for Na2SO4.Mixed matrix membranes (MMMs) have been increasingly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high-performance MMMs; however, only few studies about COF materials in MMMs have been reported where COFs are all used as nonreactive fillers. Herein, we propose using -NH2-functionalized COF nanosheets as reactive fillers (rCON) to fabricate MMMs. rCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine through hydrogen bonding prior to the interfacial polymerization process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (∼24%). rCON was chemically cross-linked to the trimesoyl chloride through amide bonding, subsequently elevating the hydrophilicity (∼35%) and fouling resistance of MMMs. The presence of -NH2 groups elevated the rCON-PA compatibility, ensuring the high rCON loading of 5 wt % in the MMMs without sacrificing salt rejection. Accordingly, the PA-rCON MMMs exhibited a flux of 46.5 L m-2 h-1 bar-1, which is 6.8 times higher than that of the pristine PA membrane, with a high rejection rate of 93.5% for Na2SO4.
Mixed matrix membranes (MMMs) have been more and more broadly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high performance MMMs, however, only little studies about COFs materials in MMMs have been reported where COFs are all used as non-reactive fillers. Herein, we propose using -NH2 functionalized covalent organic framework nanosheets as reactive fillers (RCON) to fabricate MMMs. RCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine (PIP) through hydrogen bonding prior to interfacial polymerization (IP) process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (~ 24%). RCON were chemically cross-linked to the trimesoyl chloride (TMC) through amide bonding, subsequently elevating the hydrophilicity (~ 35%) and fouling resistance of MMMs. The presence of -NH2 groups elevated the RCON-PA compatibility, ensuring the high RCON loading of 5% in the MMMs without sacrificing salt rejection. Accordingly, the PA-RCON MMMs exhibited a flux of 46.5 L. m-2. h-1. bar-1, which is 6.8 times higher than that of the pristine PA membrane, while with a high rejection rate of 93.5% for Na2SO4.
Mixed matrix membranes (MMMs) have been increasingly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent nanofillers to fabricate high-performance MMMs; however, only few studies about COF materials in MMMs have been reported where COFs are all used as nonreactive fillers. Herein, we propose using −NH₂-functionalized COF nanosheets as reactive fillers (rCON) to fabricate MMMs. rCON altered the morphology and chemistry of MMMs by controlling the diffusion rate of piperazine through hydrogen bonding prior to the interfacial polymerization process and inducing the creation of ridges in the MMMs with subsequent increase in surface area (∼24%). rCON was chemically cross-linked to the trimesoyl chloride through amide bonding, subsequently elevating the hydrophilicity (∼35%) and fouling resistance of MMMs. The presence of −NH₂ groups elevated the rCON–PA compatibility, ensuring the high rCON loading of 5 wt % in the MMMs without sacrificing salt rejection. Accordingly, the PA–rCON MMMs exhibited a flux of 46.5 L m–² h–¹ bar–¹, which is 6.8 times higher than that of the pristine PA membrane, with a high rejection rate of 93.5% for Na₂SO₄.
Author Huang, Tong
Olson, Mark. A.
You, Xinda
Azad, Chandra S.
Jiang, Zhongyi
Rahman, Ata Ur
Yuan, Jinqiu
Wu, Hong
Khan, Niaz Ali
Author_xml – sequence: 1
  givenname: Niaz Ali
  surname: Khan
  fullname: Khan, Niaz Ali
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
– sequence: 2
  givenname: Jinqiu
  surname: Yuan
  fullname: Yuan, Jinqiu
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
– sequence: 3
  givenname: Hong
  orcidid: 0000-0001-6600-4459
  surname: Wu
  fullname: Wu, Hong
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
– sequence: 4
  givenname: Tong
  surname: Huang
  fullname: Huang, Tong
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
– sequence: 5
  givenname: Xinda
  surname: You
  fullname: You, Xinda
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
– sequence: 6
  givenname: Ata Ur
  surname: Rahman
  fullname: Rahman, Ata Ur
  organization: Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
– sequence: 7
  givenname: Chandra S.
  surname: Azad
  fullname: Azad, Chandra S.
  organization: School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
– sequence: 8
  givenname: Mark. A.
  orcidid: 0000-0003-0398-5063
  surname: Olson
  fullname: Olson, Mark. A.
  organization: School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
– sequence: 9
  givenname: Zhongyi
  orcidid: 0000-0002-2492-4094
  surname: Jiang
  fullname: Jiang, Zhongyi
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32420726$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1P3DAQxS1ExVe59lj5yCWL7ThOckTLLq3ER9XCOZo4E-rWscH2gjj3H6_pLhwqIXHxWNbvzYzf2yfbzjsk5BNnM84EPwYdYTIzppmSvN4ie7yVsmhEJbZf71Lukv0YfzGmSsGqHbJbCilYLdQe-TP3D2DRJXoVbsEZTZcBJnz04Te9BOfjT8QUKUT6HUEn84B0aazFEOm1p0vog9GQ8mNALH4kcINxt_Sbt095rQHpBU59AIeRjj7QxTgabZ6nnWIEaxwk491H8mEEG_FwUw_IzXJxPf9SnF-dfZ2fnBe6FE0qRFP1mD_Gy4H34yjyUctWwlArWQII3vYVqyQfVa2xVm2lG8GkUKCblqksOyBH6753wd-vMKZuMlGjtXk_v4pdNoqppm0FewfKZNlw3pQZ_bxBV_2EQ3cXzAThqXvxOAOzNaCDjzHg-Ipw1j2H2K1D7DYhZoH8T6BN-udUCmDsW7K_xiqiAA
CitedBy_id crossref_primary_10_1021_acsapm_2c01209
crossref_primary_10_1016_j_chphma_2023_08_003
crossref_primary_10_1016_j_memsci_2023_121759
crossref_primary_10_1021_acs_est_2c04736
crossref_primary_10_1016_j_advmem_2022_100032
crossref_primary_10_1016_j_memsci_2022_120540
crossref_primary_10_1021_acsestengg_3c00491
crossref_primary_10_1016_j_memsci_2023_122003
crossref_primary_10_1016_j_memsci_2022_120544
crossref_primary_10_1016_j_cej_2021_132353
crossref_primary_10_1039_D0CS01599G
crossref_primary_10_1016_j_memsci_2022_120590
crossref_primary_10_1016_j_cej_2023_145580
crossref_primary_10_1016_j_cej_2024_149742
crossref_primary_10_1016_j_cclet_2021_08_063
crossref_primary_10_1016_j_jece_2023_110082
crossref_primary_10_1016_j_memsci_2020_118754
crossref_primary_10_1021_acsami_1c06891
crossref_primary_10_1016_j_seppur_2021_120233
crossref_primary_10_1016_j_apsusc_2021_152161
crossref_primary_10_1039_D0TA09319J
crossref_primary_10_1039_D1TA06439H
crossref_primary_10_1016_j_memsci_2022_120818
crossref_primary_10_1021_jacs_3c10832
crossref_primary_10_1016_j_seppur_2021_119046
crossref_primary_10_1039_D3SU00212H
crossref_primary_10_1016_j_memsci_2022_120253
crossref_primary_10_1016_j_memsci_2022_120451
crossref_primary_10_1016_j_jtice_2023_105067
crossref_primary_10_1016_j_ccr_2021_213969
crossref_primary_10_2139_ssrn_4007857
crossref_primary_10_1016_j_micromeso_2023_112689
crossref_primary_10_1016_j_seppur_2023_123463
crossref_primary_10_1016_j_cis_2024_103269
crossref_primary_10_1016_j_desal_2022_115753
crossref_primary_10_1039_D1NJ00609F
crossref_primary_10_1016_j_seppur_2022_121134
crossref_primary_10_1021_acsami_1c16229
crossref_primary_10_3390_en16165888
crossref_primary_10_1016_j_memsci_2023_121739
crossref_primary_10_1039_D0TA12122C
crossref_primary_10_1002_sstr_202100061
crossref_primary_10_1021_acsami_4c14923
crossref_primary_10_1016_j_memsci_2022_120494
crossref_primary_10_1002_app_56658
crossref_primary_10_3390_en14082267
crossref_primary_10_1016_j_jes_2023_06_037
crossref_primary_10_1016_j_cej_2025_161210
crossref_primary_10_1016_j_desal_2025_118797
crossref_primary_10_3390_nano11071651
crossref_primary_10_1016_j_memsci_2021_119944
crossref_primary_10_1016_j_chemosphere_2022_137191
crossref_primary_10_1016_j_mtsust_2022_100177
crossref_primary_10_1039_D1MA00256B
crossref_primary_10_1016_j_mattod_2022_02_001
crossref_primary_10_1016_j_memsci_2022_120799
crossref_primary_10_1016_j_memsci_2022_121123
crossref_primary_10_1016_j_memsci_2023_121783
crossref_primary_10_1016_j_seppur_2024_127590
crossref_primary_10_1016_j_memsci_2023_121863
crossref_primary_10_1016_j_memsci_2024_123149
crossref_primary_10_1021_acsami_1c17086
crossref_primary_10_1016_j_desal_2022_116300
crossref_primary_10_1016_j_seppur_2023_123200
crossref_primary_10_1016_j_cej_2021_132009
crossref_primary_10_1016_j_desal_2024_117834
crossref_primary_10_1016_j_jsamd_2023_100632
crossref_primary_10_1002_advs_202103814
crossref_primary_10_1016_j_seppur_2022_120710
Cites_doi 10.1016/j.apsusc.2014.11.031
10.1002/smll.201601253
10.1021/acs.est.8b02425
10.1016/j.memsci.2010.12.036
10.1016/j.seppur.2017.06.013
10.1039/c2cs35072f
10.1126/science.aaa5058
10.1016/j.memsci.2017.11.057
10.1039/c8ta05687k
10.1039/c9sc03088c
10.1021/acs.langmuir.8b02044
10.1016/j.memsci.2010.11.001
10.1016/j.watres.2015.04.037
10.1002/adma.201705973
10.1080/03602559.2017.1298801
10.1021/jacs.7b06640
10.1039/c4ta03607g
10.1002/smll.201303945
10.1039/c7ta08627j
10.1021/la900938x
10.1039/c7ta01438d
10.1021/acsami.9b01883
10.1021/la9812119
10.1039/c9ta08163a
10.1002/anie.200705710
10.1021/nn4011494
10.1039/c7ta02837g
10.1039/c8ta03673j
10.1002/aic.11197
10.1021/acsami.9b07500
10.1016/j.memsci.2019.117398
10.1002/adfm.201505352
10.1016/j.memsci.2016.09.055
10.1126/science.aar6308
10.1039/c5cc08538a
10.1039/c8cs00919h
10.1016/j.memsci.2019.01.040
10.1016/j.memsci.2018.07.087
10.1002/anie.201712816
10.1021/jp107280m
10.1016/j.memsci.2019.02.064
10.1039/c7ta00501f
10.1039/c5ta03739e
10.1039/c7ew00074j
10.1016/j.memsci.2009.11.021
10.1021/acsami.6b07686
10.1021/cm049154u
10.1016/j.memsci.2014.11.011
10.1016/j.desal.2018.12.016
10.1002/app.29639
10.1016/j.memsci.2019.05.022
10.1016/j.memsci.2016.12.039
10.1039/c9cp05026d
10.1021/am500081e
10.1081/ss-120039343
10.1021/acsami.9b09945
10.1016/j.ecolind.2015.07.019
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.0c06417
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 27785
ExternalDocumentID 32420726
10_1021_acsami_0c06417
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c328t-285be25213d1bff21bf7494ad7643aa219b50541f67ce7695c820426ac8906213
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 11:21:34 EDT 2025
Thu Jul 10 23:44:53 EDT 2025
Thu Jan 02 22:58:14 EST 2025
Tue Jul 01 02:36:12 EDT 2025
Thu Apr 24 23:08:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-285be25213d1bff21bf7494ad7643aa219b50541f67ce7695c820426ac8906213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6600-4459
0000-0003-0398-5063
0000-0002-2492-4094
PMID 32420726
PQID 2404381183
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2440689920
proquest_miscellaneous_2404381183
pubmed_primary_32420726
crossref_primary_10_1021_acsami_0c06417
crossref_citationtrail_10_1021_acsami_0c06417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-17
PublicationDateYYYYMMDD 2020-06-17
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2020
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1016/j.apsusc.2014.11.031
– ident: ref8/cit8
  doi: 10.1002/smll.201601253
– ident: ref16/cit16
  doi: 10.1021/acs.est.8b02425
– ident: ref3/cit3
  doi: 10.1016/j.memsci.2010.12.036
– ident: ref36/cit36
  doi: 10.1016/j.seppur.2017.06.013
– ident: ref40/cit40
  doi: 10.1039/c2cs35072f
– ident: ref17/cit17
  doi: 10.1126/science.aaa5058
– ident: ref35/cit35
  doi: 10.1016/j.memsci.2017.11.057
– ident: ref39/cit39
  doi: 10.1039/c8ta05687k
– ident: ref9/cit9
  doi: 10.1039/c9sc03088c
– ident: ref28/cit28
  doi: 10.1021/acs.langmuir.8b02044
– ident: ref56/cit56
  doi: 10.1016/j.memsci.2010.11.001
– ident: ref7/cit7
  doi: 10.1016/j.watres.2015.04.037
– ident: ref4/cit4
  doi: 10.1002/adma.201705973
– ident: ref18/cit18
  doi: 10.1080/03602559.2017.1298801
– ident: ref45/cit45
  doi: 10.1021/jacs.7b06640
– ident: ref54/cit54
  doi: 10.1039/c4ta03607g
– ident: ref31/cit31
  doi: 10.1002/smll.201303945
– ident: ref57/cit57
  doi: 10.1039/c7ta08627j
– ident: ref30/cit30
  doi: 10.1021/la900938x
– ident: ref49/cit49
  doi: 10.1039/c7ta01438d
– ident: ref41/cit41
  doi: 10.1021/acsami.9b01883
– ident: ref51/cit51
  doi: 10.1021/la9812119
– ident: ref10/cit10
  doi: 10.1039/c9ta08163a
– ident: ref48/cit48
  doi: 10.1002/anie.200705710
– ident: ref38/cit38
  doi: 10.1021/nn4011494
– ident: ref32/cit32
  doi: 10.1039/c7ta02837g
– ident: ref14/cit14
  doi: 10.1039/c8ta03673j
– ident: ref2/cit2
  doi: 10.1002/aic.11197
– ident: ref21/cit21
  doi: 10.1021/acsami.9b07500
– ident: ref6/cit6
  doi: 10.1016/j.memsci.2019.117398
– ident: ref25/cit25
  doi: 10.1002/adfm.201505352
– ident: ref46/cit46
  doi: 10.1016/j.memsci.2016.09.055
– ident: ref26/cit26
  doi: 10.1126/science.aar6308
– ident: ref11/cit11
  doi: 10.1039/c5cc08538a
– ident: ref43/cit43
  doi: 10.1039/c8cs00919h
– ident: ref15/cit15
  doi: 10.1016/j.memsci.2019.01.040
– ident: ref27/cit27
  doi: 10.1016/j.memsci.2018.07.087
– ident: ref44/cit44
  doi: 10.1002/anie.201712816
– ident: ref20/cit20
  doi: 10.1021/jp107280m
– ident: ref37/cit37
  doi: 10.1016/j.memsci.2019.02.064
– ident: ref12/cit12
  doi: 10.1039/c7ta00501f
– ident: ref24/cit24
  doi: 10.1039/c5ta03739e
– ident: ref42/cit42
  doi: 10.1039/c7ew00074j
– ident: ref53/cit53
  doi: 10.1016/j.memsci.2009.11.021
– ident: ref22/cit22
  doi: 10.1021/acsami.6b07686
– ident: ref23/cit23
  doi: 10.1021/cm049154u
– ident: ref13/cit13
  doi: 10.1016/j.memsci.2014.11.011
– ident: ref33/cit33
  doi: 10.1016/j.desal.2018.12.016
– ident: ref5/cit5
  doi: 10.1002/app.29639
– ident: ref34/cit34
  doi: 10.1016/j.memsci.2019.05.022
– ident: ref47/cit47
  doi: 10.1016/j.memsci.2016.12.039
– ident: ref52/cit52
  doi: 10.1039/c9cp05026d
– ident: ref19/cit19
  doi: 10.1021/am500081e
– ident: ref55/cit55
  doi: 10.1081/ss-120039343
– ident: ref50/cit50
  doi: 10.1021/acsami.9b09945
– ident: ref1/cit1
  doi: 10.1016/j.ecolind.2015.07.019
SSID ssj0063205
Score 2.5469513
Snippet Mixed matrix membranes (MMMs) have been more and more broadly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent...
Mixed matrix membranes (MMMs) have been increasingly utilized in membrane processes. Covalent organic frameworks (COFs) hold great promise as emergent...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 27777
SubjectTerms crosslinking
desalination
fouling
hydrogen bonding
hydrophilicity
nanosheets
organochlorine compounds
piperazine
polyamides
polymerization
sodium sulfate
surface area
trimesoyl chloride
Title Covalent Organic Framework Nanosheets as Reactive Fillers To Fabricate Free-Standing Polyamide Membranes for Efficient Desalination
URI https://www.ncbi.nlm.nih.gov/pubmed/32420726
https://www.proquest.com/docview/2404381183
https://www.proquest.com/docview/2440689920
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7iSQ--H-uLCIKn6CZNm_Yoi2URFPEB3kqSThHUrdjuQa_-cSdpu77wcemhJCQk0_m-aTLfELIXhiKGQAOTWgsmhQlYoiPOQECUREIaFbvk5NOzaHgtT27Cm_f_HV9P8AU_1LZypXD6FsGT-7RxJZ1I_tHgsnO5USD8XUUMyCWLEbA6dcZv3T-jzw-U0kNLOt_oHFVekdDdKLk7GNfmwL5812v8c9YLZK7ll_SoMYhFMgWjJTL7QXVwmbwOSjQvBBvaJGJamnY3tCg627K6Bagrqit6Adq7Q5r6jMGKXpU01cZXFsKXTwDsss2Loefl_TPOJQd6Cg8YgqMLpUiI6bHXqHCjYYirXfqvM4UVcp0eXw2GrK3FwGwg4pqJODQgEOuDnJuiEPhQMpE6V0hpcJt5YpBLSV5EyoKKktAitUD01zZ2Ssg8WCXTo3IE64RiSOcUewIo8gLpYmHA9GOb89yJ46ui6BHW7VFmW6FyVy_jPvMH5oJnzeJm7eL2yP6k_WMj0fFjy91uyzP8itzRCK5GOa4yIb3WGfq339og-cHwVPR7ZK2xl8l4jpb2lYg2_j2XTTIjXOjuyiCpLTJdP41hG_lNbXa8bb8BCOL3Jg
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Framework+Nanosheets+as+Reactive+Fillers+to+Fabricate+Free-Standing+Polyamide+Membranes+for+Efficient+Desalination&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Khan%2C+Niaz+Ali&rft.au=Yuan%2C+Jinqiu&rft.au=Wu%2C+Hong&rft.au=Huang%2C+Tong&rft.date=2020-06-17&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.0c06417&rft_id=info%3Apmid%2F32420726&rft.externalDocID=32420726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon