An improved grey wolf optimizer for solving engineering problems
[Display omitted] •Proposing an improved Grey Wolf Optimizer (I-GWO) for solving engineering problems.•Introducing a new search strategy named dimension learning-based hunting (DLH).•DLH is to enhance balance between local and global search and maintain diversity.•Performance of I-GWO is evaluated o...
Saved in:
Published in | Expert systems with applications Vol. 166; p. 113917 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.03.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Proposing an improved Grey Wolf Optimizer (I-GWO) for solving engineering problems.•Introducing a new search strategy named dimension learning-based hunting (DLH).•DLH is to enhance balance between local and global search and maintain diversity.•Performance of I-GWO is evaluated on the CEC2018 and three engineering problems.•I-GWO algorithm is very competitive and superior to the compared algorithms.
In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global optimization and engineering design problems. This improvement is proposed to alleviate the lack of population diversity, the imbalance between the exploitation and exploration, and premature convergence of the GWO algorithm. The I-GWO algorithm benefits from a new movement strategy named dimension learning-based hunting (DLH) search strategy inherited from the individual hunting behavior of wolves in nature. DLH uses a different approach to construct a neighborhood for each wolf in which the neighboring information can be shared between wolves. This dimension learning used in the DLH search strategy enhances the balance between local and global search and maintains diversity. The performance of the proposed I-GWO algorithm is evaluated on the CEC 2018 benchmark suite and four engineering problems. In all experiments, I-GWO is compared with six other state-of-the-art metaheuristics. The results are also analyzed by Friedman and MAE statistical tests. The experimental results and statistical tests demonstrate that the I-GWO algorithm is very competitive and often superior compared to the algorithms used in the experiments. The results of the proposed algorithm on the engineering design problems demonstrate its efficiency and applicability. |
---|---|
AbstractList | [Display omitted]
•Proposing an improved Grey Wolf Optimizer (I-GWO) for solving engineering problems.•Introducing a new search strategy named dimension learning-based hunting (DLH).•DLH is to enhance balance between local and global search and maintain diversity.•Performance of I-GWO is evaluated on the CEC2018 and three engineering problems.•I-GWO algorithm is very competitive and superior to the compared algorithms.
In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global optimization and engineering design problems. This improvement is proposed to alleviate the lack of population diversity, the imbalance between the exploitation and exploration, and premature convergence of the GWO algorithm. The I-GWO algorithm benefits from a new movement strategy named dimension learning-based hunting (DLH) search strategy inherited from the individual hunting behavior of wolves in nature. DLH uses a different approach to construct a neighborhood for each wolf in which the neighboring information can be shared between wolves. This dimension learning used in the DLH search strategy enhances the balance between local and global search and maintains diversity. The performance of the proposed I-GWO algorithm is evaluated on the CEC 2018 benchmark suite and four engineering problems. In all experiments, I-GWO is compared with six other state-of-the-art metaheuristics. The results are also analyzed by Friedman and MAE statistical tests. The experimental results and statistical tests demonstrate that the I-GWO algorithm is very competitive and often superior compared to the algorithms used in the experiments. The results of the proposed algorithm on the engineering design problems demonstrate its efficiency and applicability. In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global optimization and engineering design problems. This improvement is proposed to alleviate the lack of population diversity, the imbalance between the exploitation and exploration, and premature convergence of the GWO algorithm. The I-GWO algorithm benefits from a new movement strategy named dimension learning-based hunting (DLH) search strategy inherited from the individual hunting behavior of wolves in nature. DLH uses a different approach to construct a neighborhood for each wolf in which the neighboring information can be shared between wolves. This dimension learning used in the DLH search strategy enhances the balance between local and global search and maintains diversity. The performance of the proposed I-GWO algorithm is evaluated on the CEC 2018 benchmark suite and four engineering problems. In all experiments, I-GWO is compared with six other state-of-the-art metaheuristics. The results are also analyzed by Friedman and MAE statistical tests. The experimental results and statistical tests demonstrate that the I-GWO algorithm is very competitive and often superior compared to the algorithms used in the experiments. The results of the proposed algorithm on the engineering design problems demonstrate its efficiency and applicability. |
ArticleNumber | 113917 |
Author | Nadimi-Shahraki, Mohammad H. Taghian, Shokooh Mirjalili, Seyedali |
Author_xml | – sequence: 1 givenname: Mohammad H. surname: Nadimi-Shahraki fullname: Nadimi-Shahraki, Mohammad H. email: nadimi@iaun.ac.ir organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran – sequence: 2 givenname: Shokooh orcidid: 0000-0002-8872-8455 surname: Taghian fullname: Taghian, Shokooh organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran – sequence: 3 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Australia |
BookMark | eNp9kD1rwzAQhkVpoUnaP9DJ0NmpJMuWBB0aQr8g0KWdhS2fgowtpZKTkP762rhTh0x3HO9zxz1zdOm8A4TuCF4STIqHZgnxWC4ppsOAZJLwCzQjgmdpwWV2iWZY5jxlhLNrNI-xwZhwjPkMPa1cYrtd8Aeok22AU3L0rUn8rred_YGQGB-S6NuDddsE3NY6gDD2A1K10MUbdGXKNsLtX12gr5fnz_Vbuvl4fV-vNqnOqOhTmgtTa1mYjBQCM1pnpSBYU1rl2mAQUFWSsxL4kJFakJLkVSEM45lgBBjJFuh-2jsc_t5D7FXj98ENJxVlAmPMpMyHFJ1SOvgYAxi1C7Yrw0kRrEZTqlGjKTWaUpOpARL_IG37srfe9aG07Xn0cUJheP1gIaioLTgNtQ2ge1V7ew7_BSVZhbU |
CitedBy_id | crossref_primary_10_1007_s00500_021_06498_3 crossref_primary_10_3390_pr9122276 crossref_primary_10_1038_s41598_024_67197_1 crossref_primary_10_1088_1742_6596_2312_1_012063 crossref_primary_10_3390_biomimetics9050292 crossref_primary_10_1007_s11063_023_11146_y crossref_primary_10_1007_s42235_024_00493_8 crossref_primary_10_1038_s41598_024_72109_4 crossref_primary_10_1155_2021_9085617 crossref_primary_10_3390_aerospace10030208 crossref_primary_10_3390_cryst15030264 crossref_primary_10_1016_j_eswa_2022_118267 crossref_primary_10_1007_s40866_023_00181_2 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1016_j_cjche_2021_11_022 crossref_primary_10_3390_w16060859 crossref_primary_10_3390_bioengineering11030254 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_1007_s42235_024_00539_x crossref_primary_10_1016_j_asoc_2022_109730 crossref_primary_10_1016_j_engappai_2023_106490 crossref_primary_10_1016_j_renene_2022_07_016 crossref_primary_10_1007_s10586_024_04448_w crossref_primary_10_1016_j_ins_2024_120924 crossref_primary_10_1016_j_inpa_2023_11_003 crossref_primary_10_3390_w15030437 crossref_primary_10_1016_j_asoc_2024_112688 crossref_primary_10_1007_s13369_020_05151_9 crossref_primary_10_1371_journal_pone_0280006 crossref_primary_10_3390_math11194200 crossref_primary_10_1016_j_engappai_2023_107230 crossref_primary_10_1080_0305215X_2024_2378352 crossref_primary_10_1007_s00170_023_12905_w crossref_primary_10_1080_00207217_2024_2408797 crossref_primary_10_1177_10775463241288053 crossref_primary_10_1007_s12065_025_01021_1 crossref_primary_10_1007_s13369_024_09589_z crossref_primary_10_1016_j_apm_2020_12_016 crossref_primary_10_1109_ACCESS_2024_3350269 crossref_primary_10_48084_etasr_7204 crossref_primary_10_1038_s41598_024_80648_z crossref_primary_10_1049_rpg2_13115 crossref_primary_10_1016_j_envsoft_2023_105914 crossref_primary_10_1016_j_isatra_2025_02_030 crossref_primary_10_1109_ACCESS_2024_3425710 crossref_primary_10_1007_s10489_024_05540_9 crossref_primary_10_1016_j_eswa_2022_119211 crossref_primary_10_1080_08839514_2023_2166232 crossref_primary_10_1038_s41598_024_63188_4 crossref_primary_10_1016_j_energy_2021_123011 crossref_primary_10_3390_electronics10232975 crossref_primary_10_1016_j_optlastec_2024_111294 crossref_primary_10_1080_17509653_2024_2381742 crossref_primary_10_3390_math10111929 crossref_primary_10_1109_LGRS_2024_3449898 crossref_primary_10_1615_TelecomRadEng_2023043935 crossref_primary_10_3390_w16141964 crossref_primary_10_1109_TCSII_2023_3332825 crossref_primary_10_1016_j_measurement_2021_110272 crossref_primary_10_1016_j_rico_2024_100487 crossref_primary_10_1049_rpg2_13004 crossref_primary_10_1016_j_engappai_2022_105088 crossref_primary_10_1007_s42235_023_00387_1 crossref_primary_10_1007_s00521_022_07369_0 crossref_primary_10_1016_j_measurement_2025_116917 crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_1007_s10973_020_10539_8 crossref_primary_10_1007_s11276_024_03874_3 crossref_primary_10_34133_space_0068 crossref_primary_10_1016_j_asoc_2024_112305 crossref_primary_10_1016_j_engappai_2023_106121 crossref_primary_10_1016_j_rser_2023_113192 crossref_primary_10_1038_s41598_023_30442_0 crossref_primary_10_1007_s00500_023_09153_1 crossref_primary_10_1016_j_oceaneng_2023_114912 crossref_primary_10_1061__ASCE_CF_1943_5509_0001753 crossref_primary_10_1002_nsg_12296 crossref_primary_10_1038_s41598_024_83836_z crossref_primary_10_1080_12265934_2022_2044890 crossref_primary_10_32604_cmc_2023_038787 crossref_primary_10_3390_en16062860 crossref_primary_10_3390_math10213938 crossref_primary_10_3390_biomimetics9040205 crossref_primary_10_1016_j_eswa_2023_119672 crossref_primary_10_3233_JIFS_213206 crossref_primary_10_3390_sym14051021 crossref_primary_10_1016_j_matcom_2022_05_015 crossref_primary_10_1007_s40430_023_04156_3 crossref_primary_10_3390_biomimetics9090552 crossref_primary_10_3390_chemengineering7050082 crossref_primary_10_1016_j_eswa_2023_121870 crossref_primary_10_1016_j_measen_2024_101250 crossref_primary_10_3390_w17010094 crossref_primary_10_1109_TIM_2022_3146948 crossref_primary_10_1016_j_anucene_2021_108545 crossref_primary_10_1016_j_bbe_2023_01_002 crossref_primary_10_1016_j_apm_2024_03_001 crossref_primary_10_1016_j_cma_2024_117251 crossref_primary_10_3390_a15090317 crossref_primary_10_1016_j_apenergy_2024_125047 crossref_primary_10_1016_j_eswa_2022_119269 crossref_primary_10_1016_j_knosys_2021_107297 crossref_primary_10_1016_j_engappai_2021_104558 crossref_primary_10_32604_cmes_2022_019198 crossref_primary_10_3390_electronics13010068 crossref_primary_10_3390_su15086905 crossref_primary_10_1007_s10973_020_10538_9 crossref_primary_10_1016_j_jksuci_2023_101757 crossref_primary_10_3390_su14063267 crossref_primary_10_1049_ell2_13249 crossref_primary_10_1093_ce_zkad066 crossref_primary_10_1016_j_envres_2022_114228 crossref_primary_10_1007_s11831_022_09773_0 crossref_primary_10_1007_s00521_021_06747_4 crossref_primary_10_1016_j_eswa_2025_126425 crossref_primary_10_1088_1361_665X_acb2a0 crossref_primary_10_3390_math10234617 crossref_primary_10_1061_JAEEEZ_ASENG_4824 crossref_primary_10_1016_j_jocs_2024_102323 crossref_primary_10_3390_app14209610 crossref_primary_10_1016_j_asoc_2022_109791 crossref_primary_10_1049_cth2_12277 crossref_primary_10_3934_mbe_2023924 crossref_primary_10_1002_2050_7038_13163 crossref_primary_10_1007_s00704_021_03771_1 crossref_primary_10_1016_j_simpat_2025_103093 crossref_primary_10_61186_NMCE_2311_1036 crossref_primary_10_1016_j_knosys_2022_108225 crossref_primary_10_1016_j_knosys_2023_110940 crossref_primary_10_3390_biomimetics9100647 crossref_primary_10_3390_biomimetics9110677 crossref_primary_10_1371_journal_pone_0288071 crossref_primary_10_1108_RPJ_04_2023_0136 crossref_primary_10_1016_j_epsr_2025_111462 crossref_primary_10_1109_TIM_2025_3547095 crossref_primary_10_3390_app14020556 crossref_primary_10_1016_j_swevo_2024_101807 crossref_primary_10_1007_s00521_024_09497_1 crossref_primary_10_1007_s10115_025_02340_6 crossref_primary_10_1080_10589759_2024_2402887 crossref_primary_10_1007_s00170_024_14513_8 crossref_primary_10_1007_s00521_024_10346_4 crossref_primary_10_1007_s00500_024_09935_1 crossref_primary_10_1016_j_eswa_2023_120771 crossref_primary_10_1016_j_oceaneng_2022_112359 crossref_primary_10_1109_ACCESS_2022_3178739 crossref_primary_10_1016_j_epsr_2022_107796 crossref_primary_10_1016_j_engstruct_2024_118340 crossref_primary_10_3390_electronics13101842 crossref_primary_10_4018_IJSIR_315636 crossref_primary_10_1007_s00521_023_09202_8 crossref_primary_10_1177_0309524X241247230 crossref_primary_10_3390_math10224350 crossref_primary_10_4018_IJSIR_310063 crossref_primary_10_1155_2022_9752003 crossref_primary_10_1016_j_knosys_2024_111907 crossref_primary_10_3390_app11114795 crossref_primary_10_3390_biomimetics9100595 crossref_primary_10_1016_j_compeleceng_2025_110119 crossref_primary_10_1007_s00202_023_02108_7 crossref_primary_10_1016_j_engfailanal_2022_106829 crossref_primary_10_1016_j_asoc_2023_110959 crossref_primary_10_2166_wst_2022_356 crossref_primary_10_1038_s41598_024_81125_3 crossref_primary_10_30932_1992_3252_2021_19_6_7 crossref_primary_10_1007_s12145_022_00873_w crossref_primary_10_1016_j_chemer_2024_126207 crossref_primary_10_1155_2021_2298215 crossref_primary_10_7717_peerj_cs_882 crossref_primary_10_1155_2023_6678942 crossref_primary_10_3390_biomimetics8020132 crossref_primary_10_1038_s41598_022_10496_2 crossref_primary_10_3390_math9182230 crossref_primary_10_7717_peerj_cs_1661 crossref_primary_10_1007_s40515_025_00569_w crossref_primary_10_1016_j_cma_2022_114616 crossref_primary_10_1016_j_ins_2023_03_138 crossref_primary_10_3390_s22051826 crossref_primary_10_1049_elp2_12135 crossref_primary_10_5812_jjnpp_142058 crossref_primary_10_1007_s42235_022_00185_1 crossref_primary_10_1016_j_ptlrs_2021_12_004 crossref_primary_10_1109_JSEN_2024_3356579 crossref_primary_10_3390_su14042305 crossref_primary_10_1016_j_bbe_2023_04_003 crossref_primary_10_3390_app14114603 crossref_primary_10_1016_j_enconman_2022_116338 crossref_primary_10_1007_s10479_022_04713_4 crossref_primary_10_1016_j_iot_2024_101365 crossref_primary_10_1016_j_jics_2021_100287 crossref_primary_10_3390_sym17010050 crossref_primary_10_1038_s41598_024_70462_y crossref_primary_10_3389_feart_2022_1029420 crossref_primary_10_1016_j_compbiomed_2022_105563 crossref_primary_10_1016_j_measurement_2024_115022 crossref_primary_10_1016_j_swevo_2024_101694 crossref_primary_10_1007_s13721_024_00489_8 crossref_primary_10_1371_journal_pone_0275094 crossref_primary_10_1007_s11227_023_05617_1 crossref_primary_10_1049_stg2_12198 crossref_primary_10_1016_j_renene_2024_122052 crossref_primary_10_1142_S0218001422590108 crossref_primary_10_1155_2024_8185044 crossref_primary_10_1002_dac_5468 crossref_primary_10_3390_app142412065 crossref_primary_10_3390_s23041867 crossref_primary_10_1007_s12652_022_03898_7 crossref_primary_10_1007_s12145_022_00894_5 crossref_primary_10_1016_j_enconman_2022_116221 crossref_primary_10_3390_s23073714 crossref_primary_10_1007_s12555_020_0931_6 crossref_primary_10_3390_math9030291 crossref_primary_10_1007_s11071_024_09800_8 crossref_primary_10_3390_su151813284 crossref_primary_10_1016_j_dajour_2023_100175 crossref_primary_10_1109_TSMC_2025_3535783 crossref_primary_10_1016_j_eswa_2021_116432 crossref_primary_10_1007_s11227_024_06116_7 crossref_primary_10_1002_ente_202400996 crossref_primary_10_1016_j_asoc_2024_111614 crossref_primary_10_1016_j_enpol_2024_114391 crossref_primary_10_1038_s41598_023_39408_8 crossref_primary_10_3390_electronics12092042 crossref_primary_10_3390_math11071745 crossref_primary_10_1016_j_jobe_2024_109408 crossref_primary_10_1007_s00521_022_07775_4 crossref_primary_10_1016_j_jocs_2022_101805 crossref_primary_10_1088_1361_6501_accf29 crossref_primary_10_1007_s10586_024_04721_y crossref_primary_10_1111_exsy_13458 crossref_primary_10_1007_s11600_023_01028_1 crossref_primary_10_1007_s41939_024_00413_7 crossref_primary_10_3390_pr10010062 crossref_primary_10_1016_j_fuel_2022_123348 crossref_primary_10_1080_02286203_2021_1983937 crossref_primary_10_1002_aic_18115 crossref_primary_10_1016_j_aej_2022_08_013 crossref_primary_10_1080_02331934_2022_2069024 crossref_primary_10_1109_LGRS_2022_3171340 crossref_primary_10_1016_j_knosys_2023_110580 crossref_primary_10_1109_ACCESS_2023_3268544 crossref_primary_10_1007_s10973_020_10546_9 crossref_primary_10_3390_agriculture15040442 crossref_primary_10_1016_j_est_2022_105830 crossref_primary_10_1007_s00366_021_01471_y crossref_primary_10_1016_j_jobe_2024_110566 crossref_primary_10_1016_j_advengsoft_2024_103696 crossref_primary_10_1007_s00521_022_07512_x crossref_primary_10_1007_s00521_022_07303_4 crossref_primary_10_1007_s13369_024_09702_2 crossref_primary_10_3390_su13126703 crossref_primary_10_1007_s00521_022_07391_2 crossref_primary_10_1007_s10462_023_10416_4 crossref_primary_10_1155_2021_9564583 crossref_primary_10_1007_s12065_024_00922_x crossref_primary_10_1016_j_eswa_2021_115690 crossref_primary_10_1016_j_istruc_2024_108138 crossref_primary_10_1016_j_knosys_2025_113169 crossref_primary_10_3390_aerospace12020101 crossref_primary_10_1016_j_compag_2024_109167 crossref_primary_10_1016_j_asej_2025_103342 crossref_primary_10_3390_math10142535 crossref_primary_10_1007_s11224_024_02411_4 crossref_primary_10_1007_s12065_021_00687_7 crossref_primary_10_1016_j_advengsoft_2024_103665 crossref_primary_10_1007_s00357_024_09468_0 crossref_primary_10_1038_s41598_024_55040_6 crossref_primary_10_1109_ACCESS_2023_3292792 crossref_primary_10_1007_s11227_022_04821_9 crossref_primary_10_3390_math12152343 crossref_primary_10_1007_s10462_023_10658_2 crossref_primary_10_1016_j_memori_2022_100021 crossref_primary_10_1016_j_eswa_2024_123958 crossref_primary_10_1016_j_fuel_2024_133849 crossref_primary_10_1007_s00521_022_08058_8 crossref_primary_10_1016_j_compbiomed_2022_106214 crossref_primary_10_1016_j_heliyon_2024_e35958 crossref_primary_10_1371_journal_pone_0280512 crossref_primary_10_1016_j_matcom_2023_04_020 crossref_primary_10_1109_ACCESS_2024_3427812 crossref_primary_10_1016_j_energy_2021_122367 crossref_primary_10_1007_s10479_024_06052_y crossref_primary_10_1007_s10586_024_04425_3 crossref_primary_10_1016_j_asoc_2020_106761 crossref_primary_10_1049_rpg2_12359 crossref_primary_10_1038_s41598_024_60821_0 crossref_primary_10_1016_j_ijhydene_2022_03_113 crossref_primary_10_1016_j_jestch_2023_101551 crossref_primary_10_1109_ACCESS_2022_3218056 crossref_primary_10_3390_a14090269 crossref_primary_10_3390_su13126963 crossref_primary_10_1007_s00366_021_01494_5 crossref_primary_10_1016_j_oceaneng_2023_114440 crossref_primary_10_1177_00368504211063258 crossref_primary_10_3390_math11153312 crossref_primary_10_1007_s11227_022_04930_5 crossref_primary_10_1016_j_est_2023_109234 crossref_primary_10_1007_s00500_023_07928_0 crossref_primary_10_1016_j_knosys_2023_110554 crossref_primary_10_1631_FITEE_2100580 crossref_primary_10_1016_j_procs_2021_08_148 crossref_primary_10_1016_j_treng_2023_100164 crossref_primary_10_1016_j_energy_2024_132352 crossref_primary_10_3390_make5030061 crossref_primary_10_1016_j_knosys_2023_111108 crossref_primary_10_1007_s11042_024_19727_2 crossref_primary_10_1080_02286203_2024_2414951 crossref_primary_10_1109_ACCESS_2022_3155484 crossref_primary_10_3934_mbe_2023592 crossref_primary_10_1017_S0263574723000231 crossref_primary_10_1016_j_engappai_2023_105958 crossref_primary_10_1088_2040_8986_adb596 crossref_primary_10_1142_S0219622021500176 crossref_primary_10_1016_j_eswa_2021_116001 crossref_primary_10_1016_j_ceramint_2025_01_177 crossref_primary_10_1007_s00371_023_02993_w crossref_primary_10_1007_s12665_023_11222_5 crossref_primary_10_1016_j_compgeo_2023_105814 crossref_primary_10_1016_j_asoc_2023_110319 crossref_primary_10_1109_ACCESS_2023_3240576 crossref_primary_10_1007_s00500_023_09332_0 crossref_primary_10_1007_s10973_020_10545_w crossref_primary_10_1016_j_eswa_2023_120186 crossref_primary_10_1016_j_fuel_2023_130351 crossref_primary_10_17798_bitlisfen_1317696 crossref_primary_10_1007_s10668_023_03131_1 crossref_primary_10_3390_electronics11050831 crossref_primary_10_1109_ACCESS_2022_3203999 crossref_primary_10_3390_s22176420 crossref_primary_10_3390_en16031355 crossref_primary_10_1007_s11227_021_04015_9 crossref_primary_10_3390_sym13122388 crossref_primary_10_1007_s11042_022_14268_y crossref_primary_10_1016_j_asoc_2023_110561 crossref_primary_10_1016_j_compbiomed_2023_106768 crossref_primary_10_1017_aer_2024_159 crossref_primary_10_1007_s10586_024_04628_8 crossref_primary_10_1007_s00500_024_09878_7 crossref_primary_10_1007_s11277_024_10970_2 crossref_primary_10_1007_s11042_023_16116_z crossref_primary_10_1109_ACCESS_2023_3263584 crossref_primary_10_1093_jcde_qwae001 crossref_primary_10_1016_j_eswa_2024_123871 crossref_primary_10_1016_j_oregeorev_2025_106458 crossref_primary_10_1016_j_mtcomm_2025_112069 crossref_primary_10_1016_j_autcon_2022_104310 crossref_primary_10_1007_s00607_022_01079_0 crossref_primary_10_1016_j_egyr_2024_05_011 crossref_primary_10_1016_j_apacoust_2024_110341 crossref_primary_10_1016_j_fraope_2024_100183 crossref_primary_10_1007_s12559_023_10180_1 crossref_primary_10_1007_s10489_024_05537_4 crossref_primary_10_1016_j_asoc_2023_110573 crossref_primary_10_1038_s41598_022_13516_3 crossref_primary_10_1016_j_eswa_2023_122349 crossref_primary_10_1016_j_ijhydene_2024_09_027 crossref_primary_10_1007_s10489_021_02795_4 crossref_primary_10_1007_s42979_024_02674_y crossref_primary_10_1109_ACCESS_2023_3264563 crossref_primary_10_1049_ell2_12882 crossref_primary_10_1016_j_oceaneng_2021_110121 crossref_primary_10_1038_s41598_024_81100_y crossref_primary_10_1016_j_aej_2023_12_050 crossref_primary_10_1007_s13369_021_06513_7 crossref_primary_10_1016_j_engappai_2024_109127 crossref_primary_10_1002_oca_3101 crossref_primary_10_1016_j_aei_2024_102504 crossref_primary_10_2174_2212797616666230505151008 crossref_primary_10_1016_j_knosys_2021_107552 crossref_primary_10_3390_su15076261 crossref_primary_10_3390_su15119017 crossref_primary_10_1007_s00521_021_06885_9 crossref_primary_10_1016_j_eswa_2022_116971 crossref_primary_10_3934_mbe_2022364 crossref_primary_10_1108_COMPEL_07_2021_0231 crossref_primary_10_1007_s00521_023_09014_w crossref_primary_10_3390_app14062236 crossref_primary_10_48084_etasr_4978 crossref_primary_10_3390_su152014693 crossref_primary_10_12677_MOS_2023_124311 crossref_primary_10_3389_fbioe_2022_1018895 crossref_primary_10_1016_j_eswa_2023_121141 crossref_primary_10_1080_15325008_2022_2143939 crossref_primary_10_3390_s23020755 crossref_primary_10_1007_s11042_024_18579_0 crossref_primary_10_1007_s42979_022_01333_4 crossref_primary_10_1016_j_nucengdes_2023_112865 crossref_primary_10_1016_j_eswa_2024_124865 crossref_primary_10_1007_s10462_024_10821_3 crossref_primary_10_1016_j_est_2025_115630 crossref_primary_10_1016_j_jocs_2021_101368 crossref_primary_10_1109_ACCESS_2021_3073480 crossref_primary_10_1007_s11227_022_04996_1 crossref_primary_10_1016_j_apm_2022_11_016 crossref_primary_10_1016_j_knosys_2021_106751 crossref_primary_10_1016_j_eswa_2022_118500 crossref_primary_10_1038_s41598_024_62403_6 crossref_primary_10_3390_a14110314 crossref_primary_10_3390_app13126871 crossref_primary_10_1109_JIOT_2024_3459918 crossref_primary_10_1016_j_asoc_2023_110236 crossref_primary_10_1016_j_polymertesting_2023_108267 crossref_primary_10_3390_computers12020035 crossref_primary_10_1007_s42979_023_02008_4 crossref_primary_10_1016_j_chaos_2024_114869 crossref_primary_10_1007_s13369_022_06579_x crossref_primary_10_1038_s41598_025_91801_7 crossref_primary_10_1016_j_cma_2024_116964 crossref_primary_10_1007_s10489_021_02776_7 crossref_primary_10_3390_drones8120722 crossref_primary_10_1371_journal_pone_0303094 crossref_primary_10_1007_s12667_024_00697_1 crossref_primary_10_3390_en14113029 crossref_primary_10_1016_j_asoc_2023_110252 crossref_primary_10_3390_su14052937 crossref_primary_10_1016_j_bspc_2021_103401 crossref_primary_10_1109_TIM_2024_3363783 crossref_primary_10_3390_su14095554 crossref_primary_10_1007_s13042_024_02216_1 crossref_primary_10_1109_ACCESS_2022_3183627 crossref_primary_10_1007_s11227_022_04801_z crossref_primary_10_1155_2021_8487997 crossref_primary_10_1007_s00521_022_07854_6 crossref_primary_10_1016_j_jksuci_2021_12_018 crossref_primary_10_1016_j_knosys_2023_110297 crossref_primary_10_1002_2050_7038_12999 crossref_primary_10_1016_j_egyr_2022_09_069 crossref_primary_10_1155_2022_3714475 crossref_primary_10_1016_j_seta_2022_102388 crossref_primary_10_1080_15325008_2024_2329329 crossref_primary_10_1155_2021_5491017 crossref_primary_10_1016_j_mtcomm_2024_108832 crossref_primary_10_1016_j_renene_2024_122238 crossref_primary_10_1155_2021_5556941 crossref_primary_10_1007_s10462_023_10494_4 crossref_primary_10_1108_WJE_01_2023_0006 crossref_primary_10_1002_cpe_7209 crossref_primary_10_1007_s40996_022_00931_9 crossref_primary_10_1016_j_knosys_2023_111134 crossref_primary_10_1016_j_knosys_2023_111257 crossref_primary_10_32604_cmc_2023_043239 crossref_primary_10_1177_14759217221138464 crossref_primary_10_1007_s12065_024_00909_8 crossref_primary_10_1155_2022_1511479 crossref_primary_10_1016_j_jhydrol_2022_128995 crossref_primary_10_7240_jeps_894178 crossref_primary_10_1016_j_matcom_2023_06_021 crossref_primary_10_3390_app132212290 crossref_primary_10_3390_fractalfract6020080 crossref_primary_10_1007_s12065_024_00996_7 crossref_primary_10_1021_acs_jcim_3c01876 crossref_primary_10_1016_j_eswa_2022_116895 crossref_primary_10_3390_en14185631 crossref_primary_10_1063_5_0077939 crossref_primary_10_1364_OE_537427 crossref_primary_10_3390_biomimetics9070399 crossref_primary_10_1186_s40537_024_00917_6 crossref_primary_10_3390_math12010113 crossref_primary_10_1016_j_energy_2021_120211 crossref_primary_10_3934_mbe_2023373 crossref_primary_10_1177_1369433221994341 crossref_primary_10_3390_s24175732 crossref_primary_10_1007_s40747_021_00346_5 crossref_primary_10_1016_j_eswa_2022_117629 crossref_primary_10_1016_j_jrtpm_2020_100231 crossref_primary_10_1038_s41598_021_01018_7 crossref_primary_10_1007_s10586_024_04602_4 crossref_primary_10_1007_s11227_023_05413_x crossref_primary_10_1177_09544054231221963 crossref_primary_10_1111_exsy_12843 crossref_primary_10_1007_s00500_025_10445_x crossref_primary_10_1155_2024_2054173 crossref_primary_10_1007_s40435_024_01482_9 crossref_primary_10_3390_pr12040783 crossref_primary_10_3390_math11102259 crossref_primary_10_1016_j_ultras_2024_107301 crossref_primary_10_3390_electronics13142839 crossref_primary_10_1007_s00500_023_08039_6 crossref_primary_10_1177_09544062241307888 crossref_primary_10_1016_j_compeleceng_2024_109991 crossref_primary_10_1007_s40808_024_02207_9 crossref_primary_10_1016_j_jfranklin_2023_07_002 crossref_primary_10_1016_j_apm_2023_08_043 crossref_primary_10_1109_ACCESS_2021_3066180 crossref_primary_10_1016_j_epsr_2023_109346 crossref_primary_10_1021_acsomega_4c04888 crossref_primary_10_3390_rs15153812 crossref_primary_10_1109_ACCESS_2021_3059665 crossref_primary_10_1016_j_cie_2024_110568 crossref_primary_10_1016_j_eswa_2024_125863 crossref_primary_10_18698_1812_3368_2022_1_39_56 crossref_primary_10_1364_OE_503978 crossref_primary_10_1016_j_cma_2023_116664 crossref_primary_10_1016_j_asoc_2024_112295 crossref_primary_10_1371_journal_pone_0276943 crossref_primary_10_1016_j_eswa_2023_120904 crossref_primary_10_1186_s41601_021_00219_6 crossref_primary_10_3390_app13031239 crossref_primary_10_1109_TITS_2023_3257484 crossref_primary_10_1016_j_compag_2023_108173 crossref_primary_10_1038_s41598_025_87455_0 crossref_primary_10_1007_s40430_025_05458_4 crossref_primary_10_1016_j_jenvman_2024_120682 crossref_primary_10_1016_j_scs_2022_104209 crossref_primary_10_2139_ssrn_4615955 crossref_primary_10_1007_s41965_025_00186_z crossref_primary_10_1007_s10586_024_04455_x crossref_primary_10_1016_j_psep_2024_03_082 crossref_primary_10_1088_1742_6596_2527_1_012050 crossref_primary_10_1007_s11540_024_09755_8 crossref_primary_10_1111_exsy_13715 crossref_primary_10_1109_JSEN_2022_3212785 crossref_primary_10_3390_fi14120347 crossref_primary_10_1109_ACCESS_2022_3177218 crossref_primary_10_1016_j_trd_2022_103433 crossref_primary_10_1007_s10489_021_03155_y crossref_primary_10_1016_j_adhoc_2023_103308 crossref_primary_10_29130_dubited_1150453 crossref_primary_10_1109_TCE_2023_3319039 crossref_primary_10_1155_2022_9593103 crossref_primary_10_1080_23302674_2022_2121623 crossref_primary_10_1088_1361_6501_ad3b2e crossref_primary_10_3934_era_2024093 crossref_primary_10_1007_s11269_023_03478_0 crossref_primary_10_3390_electronics10243167 crossref_primary_10_1007_s12145_023_00963_3 crossref_primary_10_1016_j_patter_2023_100777 crossref_primary_10_1088_1402_4896_ad8486 crossref_primary_10_1007_s12652_022_04347_1 crossref_primary_10_1007_s00521_023_08984_1 crossref_primary_10_1155_2023_3427385 crossref_primary_10_1631_FITEE_2200237 crossref_primary_10_3390_s22186843 crossref_primary_10_1016_j_cma_2024_117429 crossref_primary_10_1016_j_ipm_2021_102854 crossref_primary_10_3390_en17051267 crossref_primary_10_1016_j_knosys_2022_108659 crossref_primary_10_1016_j_asoc_2022_109925 crossref_primary_10_1109_ACCESS_2023_3295242 crossref_primary_10_1007_s40314_022_01813_6 crossref_primary_10_1016_j_renene_2021_05_058 crossref_primary_10_3390_biomimetics10010031 crossref_primary_10_1016_j_energy_2022_124363 crossref_primary_10_1016_j_apenergy_2024_122624 crossref_primary_10_1007_s00500_024_09869_8 crossref_primary_10_1016_j_energy_2023_129811 crossref_primary_10_1088_1361_6501_ad73f3 crossref_primary_10_1007_s10878_024_01189_9 crossref_primary_10_1016_j_cscm_2024_e03650 crossref_primary_10_1016_j_ipm_2024_104038 crossref_primary_10_1007_s42979_024_03489_7 crossref_primary_10_1016_j_cma_2024_117411 crossref_primary_10_32604_cmc_2023_039227 crossref_primary_10_1002_eng2_12857 crossref_primary_10_1016_j_eswa_2023_121917 crossref_primary_10_1016_j_est_2025_115925 crossref_primary_10_1080_21642583_2023_2249021 crossref_primary_10_1016_j_jrmge_2023_06_018 crossref_primary_10_1016_j_suscom_2023_100916 crossref_primary_10_1016_j_suscom_2023_100918 crossref_primary_10_1016_j_istruc_2023_02_008 crossref_primary_10_1007_s11269_022_03183_4 crossref_primary_10_1016_j_asej_2024_102797 crossref_primary_10_3390_pr12091816 crossref_primary_10_1093_jcde_qwac094 crossref_primary_10_1016_j_knosys_2021_107467 crossref_primary_10_1016_j_ijpe_2024_109182 crossref_primary_10_3390_math12182870 crossref_primary_10_1016_j_engfracmech_2024_109951 crossref_primary_10_1016_j_measurement_2022_112387 crossref_primary_10_2139_ssrn_3936333 crossref_primary_10_1371_journal_pone_0277900 crossref_primary_10_1016_j_est_2024_112139 crossref_primary_10_1007_s11665_024_10282_3 crossref_primary_10_1109_JIOT_2023_3315286 crossref_primary_10_3390_math11143064 crossref_primary_10_1016_j_fuel_2022_127249 crossref_primary_10_12677_fin_2025_151010 crossref_primary_10_1038_s41598_023_49754_2 crossref_primary_10_1007_s00521_021_06050_2 crossref_primary_10_1007_s00521_022_06906_1 crossref_primary_10_3390_su151511510 crossref_primary_10_3390_math11183861 crossref_primary_10_1109_ACCESS_2021_3072336 crossref_primary_10_3390_su15129512 crossref_primary_10_1007_s11042_024_20121_1 crossref_primary_10_1002_adc2_213 crossref_primary_10_1038_s41598_022_18001_5 crossref_primary_10_1007_s11227_024_06727_0 crossref_primary_10_3390_axioms12080767 crossref_primary_10_1007_s11042_023_15146_x crossref_primary_10_3233_JIFS_224382 crossref_primary_10_1002_mma_7187 crossref_primary_10_1007_s11227_025_07106_z crossref_primary_10_1016_j_energy_2025_134605 crossref_primary_10_1016_j_compeleceng_2023_108893 crossref_primary_10_1016_j_rineng_2025_104241 crossref_primary_10_1007_s10825_024_02204_2 crossref_primary_10_1007_s41939_024_00453_z crossref_primary_10_59782_sidr_v3i1_140 crossref_primary_10_1016_j_ijleo_2022_170470 crossref_primary_10_1038_s41598_023_43013_0 crossref_primary_10_1109_ACCESS_2023_3289819 crossref_primary_10_3390_e23121637 crossref_primary_10_1016_j_cscm_2024_e03869 crossref_primary_10_3390_sym13020244 |
Cites_doi | 10.1644/06-MAMM-A-119R1.1 10.1016/j.epsr.2016.09.025 10.1016/j.soildyn.2015.04.004 10.1016/j.swevo.2019.04.008 10.1016/j.swevo.2011.02.002 10.1016/j.asoc.2020.106761 10.1016/j.compstruc.2015.03.014 10.1016/j.knosys.2018.05.009 10.1109/ACCESS.2019.2934994 10.1016/j.eswa.2017.06.009 10.1016/j.eswa.2018.08.051 10.1016/j.eswa.2018.04.012 10.1016/j.compstruc.2012.09.003 10.1007/s00707-009-0270-4 10.1038/scientificamerican0792-66 10.1016/j.engappai.2017.10.024 10.1016/j.swevo.2018.10.006 10.1109/ACCESS.2019.2917803 10.1016/j.knosys.2017.11.015 10.5121/acij.2019.10501 10.1016/j.advengsoft.2005.04.005 10.1111/itor.12001 10.1016/j.eswa.2018.09.015 10.1016/j.eswa.2019.113125 10.1287/ijoc.2.1.4 10.1016/j.future.2019.07.015 10.1016/j.ins.2019.05.038 10.1016/j.knosys.2019.02.010 10.1109/ACCESS.2019.2921793 10.1109/TEVC.2005.857610 10.1007/978-3-319-13572-4_1 10.1007/s10973-019-09059-x 10.1016/j.knosys.2018.08.030 10.1023/A:1008202821328 10.1016/j.energy.2016.05.105 10.1109/ICCIC.2015.7435714 10.1080/15325008.2015.1041625 10.1016/j.apenergy.2017.12.115 10.1016/j.future.2019.02.028 10.1109/IDAP.2018.8620828 10.1016/j.physa.2019.122637 10.1109/TNNLS.2016.2634548 10.1007/s00521-017-3272-5 10.1016/j.eswa.2016.02.042 10.1016/j.asoc.2015.03.041 10.1007/978-3-540-87527-7 10.1002/9780470496916 10.1109/AEECT.2015.7360576 10.1287/ijoc.1.3.190 10.1007/s00034-019-01065-6 10.1007/s10489-014-0645-7 10.1016/j.advengsoft.2016.01.008 10.1109/MHS.1995.494215 10.1016/j.jestch.2017.11.001 10.1016/j.ins.2009.03.004 10.1016/j.knosys.2016.01.002 10.5120/ijca2016911667 10.1016/j.jestch.2016.07.004 10.1016/j.eswa.2012.04.036 10.1007/s00521-014-1806-7 10.1115/1.2919393 10.1016/j.jocs.2018.06.008 10.1016/j.asoc.2019.105583 10.1016/j.asoc.2018.11.047 10.1007/s10898-007-9149-x 10.1080/0952813X.2015.1020519 10.1016/j.asoc.2017.06.044 10.1016/j.compstruc.2016.03.001 10.1080/15325008.2015.1061620 10.1016/S1672-6529(09)60240-7 10.1155/2016/7950348 10.1007/s00521-016-2817-3 10.1016/j.knosys.2018.08.003 10.1016/j.ijepes.2018.01.024 10.1016/S0166-3615(99)00046-9 10.1108/HFF-12-2018-0758 10.11648/j.ajsea.20140302.11 10.1016/j.ijepes.2016.04.034 10.1016/j.cnsns.2012.05.010 10.1016/j.advengsoft.2013.12.007 10.1016/j.ins.2012.08.023 10.1007/s00521-015-1962-4 10.1016/j.apenergy.2018.02.070 10.1016/j.swevo.2017.08.002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Mar 15, 2021 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Mar 15, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2020.113917 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2020_113917 S0957417420307107 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-258fdc96f3168042d3a810c22b5cf0e8ebb974ae7c969c81a15b68f473841e413 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 08:27:07 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Tue Jul 01 04:05:49 EDT 2025 Fri Feb 23 02:47:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Engineering optimization problems Swarm intelligence algorithm Metaheuristic Improved grey wolf optimizer Grey wolf optimizer Algorithm Artificial intelligence Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-258fdc96f3168042d3a810c22b5cf0e8ebb974ae7c969c81a15b68f473841e413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8872-8455 0000-0002-1443-9458 |
PQID | 2480004995 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2480004995 crossref_primary_10_1016_j_eswa_2020_113917 crossref_citationtrail_10_1016_j_eswa_2020_113917 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-15 |
PublicationDateYYYYMMDD | 2021-03-15 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0155) 2019; 101 Glover (b0135) 1990; 2 Tu, Chen, Liu (b0435) 2019; 7 Fard, Monfaredi, Nadimi-Shahraki (bib477) 2014; 3 Mirjalili, Mirjalili, Lewis (b0300) 2014; 69 Mirjalili (b0290) 2015; 43 Derrac, García, Molina, Herrera (b0055) 2011; 1 Koza, J. R. (1997). Genetic programming. Saxena, Kumar, Mirjalili (b0365) 2020; 145 Li, Shahrajabian, Bagherzadeh, Jadidi, Karimipour, Tlili (b0230) 2020; 537 Dashti, Rahmani (bib478) 2016; 28 Eberhart, Russell, & Kennedy, James. (1995). A new optimizer using particle swarm theory. In Paper presented at the MHS'95. Proceedings of the sixth international symposium on micro machine and human science. Kaveh, Khayatazad (b0215) 2012; 112 Thaher, Thaer, Heidari, Ali Asghar, Mafarja, Majdi, Dong, Jin Song, & Mirjalili, Seyedali. (2020). Binary harris hawks optimizer for high-dimensional, low sample size feature selection. In Evolutionary machine learning techniques (pp. 251–272): Springer. Zang, Zhang, Hapeshi (b0470) 2010; 7 Radosavljević, Klimenta, Jevtić, Arsić (b0345) 2015; 43 Erol, Eksin (b0090) 2006; 37 Long, Jiao, Liang, Tang (b0245) 2018; 68 Lu, Gao, Yi (b0255) 2018; 107 Holland (b0185) 1992; 267 Kannan, Kramer (b0200) 1994; 116 Guha, Roy, Banerjee (b0140) 2016; 19 Mohamed, Mohamed, El-Gaafary, Hemeida (b0310) 2017; 142 Mafarja, Majdi, Aljarah, Ibrahim, Faris, Hossam, Hammouri, Abdelaziz I, Ala’M, Al-Zoubi, & Mirjalili, Seyedali. (2019). Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Systems with Applications, 117, 267–286. Kamboj (b0195) 2016; 27 Emary, Eid, Zawbaa, Hossam M, Grosan, Crina, & Hassenian, Abul Ella. (2015). Feature subset selection approach by gray-wolf optimization. In Paper presented at the Afro-European conference for industrial advancement. Storn, Price (b0395) 1997; 11 Faris, Aljarah, Al-Betar, Mirjalili (b0100) 2018; 30 Meng, Pan, Kong (b0285) 2018; 141 Mohamed, Hadi, Jambi (b0315) 2019; 50 Arjenaki, Nadimi-Shahraki, Nourafza (b0010) 2015; 6 Lourenço, Martin, Stützle (b0250) 2003 Fister Jr, Iztok, Yang, Xin-She, Fister, Iztok, Brest, Janez, & Fister, Dušan. (2013). A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186, 1-7. Song, Wang, Lu (b0380) 2018; 215 Hatamlou (b0160) 2013; 222 Taradeh, Mafarja, Heidari, Faris, Aljarah, Mirjalili, Fujita (b0425) 2019; 497 Muthukaruppan, Er (b0325) 2012; 39 El-Fergany, Hasanien (b0070) 2015; 43 Elaziz, Mirjalili (b0075) 2019; 172 He, Bagherzadeh, Shahrajabian, Karimipour, Jadidi, Bach (b0165) 2020; 139 Long, Jiao, Liang, Cai, Xu (b0240) 2019; 7 Mittal, Nitin, Singh, Urvinder, & Sohi, Balwinder Singh. (2016). Modified grey wolf optimizer for global engineering optimization. Applied Computational Intelligence and Soft Computing. Taghian, Nadimi-Shahraki (b0405) 2019; 8 Nadimi-Shahraki, Taghian, Mirjalili, Faris (bib476) 2020 Gaidhane, Nigam (b0120) 2018; 27 Hasançebi, Azad (b0150) 2015; 154 Zamani, Nadimi-Shahraki (b0460) 2016; 14 Shen, Chen, Yu, Kang, Zhang, Li, Liu (b0370) 2016; 96 Sulaiman, Mustaffa, Mohamed, Aliman (b0400) 2015; 32 Taghian, S., Nadimi-Shahraki, M.H., & Zamani, H. (2018). Comparative analysis of transfer function-based binary metaheuristic algorithms for feature selection. In 2018 IEEE International Conference on Artificial Intelligence and Data Processing (IDAP),1-6. Gandomi, Alavi (b0125) 2012; 17 Song, Tang, Zhao, Zhang, Li, Huang, Cai (b0385) 2015; 75 Emary, Zawbaa, Grosan (b0080) 2017; 29 Liang, Qin, Suganthan, Baskar (b0235) 2006; 10 Zhao, Wang, Zhang (b0475) 2019; 163 Chen, Xu, Mei, Ding, Li (b0040) 2018; 212 Fard, Monfaredi, Nadimi-Shahraki (b0095) 2014; 4 Awad, N. H., Ali, M. Z., Suganthan, P. N., Liang, J. J., & Qu, B. Y. (2017). Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Karaboga, Basturk (b0205) 2007; 39 Wu, Bagherzadeh, D’Orazio, Habibollahi, Karimipour, Goodarzi, Bach (b0450) 2019; 535 He, Bagherzadeh, Tahmasebi, Abdollahi, Bahrami, Moradi, Bach (b0170) 2019 Faris, Hossam, Mafarja, Majdi M, Heidari, Ali Asghar, Aljarah, Ibrahim, Ala’M, Al-Zoubi, Mirjalili, Seyedali, & Fujita, Hamido. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge-Based Systems, 154, 43–67. Jayabarathi, Raghunathan, Adarsh, Suganthan (b0190) 2016; 111 Malik, Mahmad Raphiyoddin S, Mohideen, E Rasul, & Ali, Layak. (2015). Weighted distance grey wolf optimizer for global optimization problems. In Paper presented at the 2015 IEEE international conference on computational intelligence and computing research (ICCIC). Rashedi, Nezamabadi-Pour, Saryazdi (b0350) 2009; 179 Glover (b0130) 1989; 1 Taghian, S., & Nadimi-Shahraki, M.H. (2019b). Binary sine cosine algorithms for feature selection from medical data. arXiv preprint arXiv:1911.07805. Panwar, Reddy, Verma, Panigrahi, Kumar (b0335) 2018; 38 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0175) 2019; 97 Sörensen (b0390) 2015; 22 Alomoush, Alsewari, Alamri, Aloufi, Zamli (b0005) 2019; 7 Attia, Sehiemy, Ragab, Hasanien (b0025) 2018; 99 Coello, Carlos A Coello. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113x127. Talbi, E.-G. (2009). Metaheuristics: from design to implementation (Vol. 74): John Wiley & Sons. Del Ser, Javier, Osaba, Eneko, Molina, Daniel, Yang, Xin-She, Salcedo-Sanz, Sancho, Camacho, David, . . . Herrera, Francisco. (2019). Bio-inspired computation: Where we stand and what's next. Swarm and Evolutionary Computation, 48, 220–250. Zamani, Nadimi-Shahraki, Gandomi (b0455) 2019; 85 Nuaekaew, Artrit, Pholdee, Bureerat (b0330) 2017; 87 Tu, Chen, Liu (b0440) 2019; 76 Dorigo, Marco, Birattari, Mauro, Blum, Christian, Clerc, Maurice, Stützle, Thomas, & Winfield, Alan. (2008). Ant colony optimization and swarm intelligence. In 6th International Conference, ANTS 2008, Brussels, Belgium, September 22–24, 2008, Proceedings (Vol. 5217): Springer. Arora, Anand (b0015) 2019; 116 Askarzadeh (b0020) 2016; 169 Katarya, Verma (b0210) 2018; 30 Banaie-Dezfouli, M., Nadimi-Shahraki, M.H., & Zamani, H. (2018). A novel tour planning model using big data. In 2018 IEEE International Conference on Artificial Intelligence and Data Processing (IDAP),1-6. Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b0270) 2018; 161 Singh, Singh (b0375) 2017; 20 Zamani, Nadimi-Shahraki (b0465) 2016; 151 Rechenberg (b0355) 1973; 104 Mirjalili, Lewis (b0295) 2016; 95 Saremi, Mirjalili, Mirjalili (b0360) 2015; 26 Faris, H., Aljarah, I., & Alqatawna, J.F. (2015). Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 1-5. MacNulty, Mech, Smith (b0260) 2007; 88 Venkataraman, Kumar, Shakeel (b0445) 2020; 39 Pradhan, Roy, Pal (b0340) 2016; 83 Gunasundari, Janakiraman, Meenambal (b0145) 2016; 56 Heidari, Pahlavani (b0180) 2017; 60 Kaveh, Talatahari (b0220) 2010; 213 Zhao (10.1016/j.eswa.2020.113917_b0475) 2019; 163 He (10.1016/j.eswa.2020.113917_b0170) 2019 MacNulty (10.1016/j.eswa.2020.113917_b0260) 2007; 88 Jayabarathi (10.1016/j.eswa.2020.113917_b0190) 2016; 111 Rechenberg (10.1016/j.eswa.2020.113917_b0355) 1973; 104 Fard (10.1016/j.eswa.2020.113917_bib477) 2014; 3 Katarya (10.1016/j.eswa.2020.113917_b0210) 2018; 30 Heidari (10.1016/j.eswa.2020.113917_b0175) 2019; 97 Taradeh (10.1016/j.eswa.2020.113917_b0425) 2019; 497 Chen (10.1016/j.eswa.2020.113917_b0040) 2018; 212 Nadimi-Shahraki (10.1016/j.eswa.2020.113917_bib476) 2020 Rashedi (10.1016/j.eswa.2020.113917_b0350) 2009; 179 Erol (10.1016/j.eswa.2020.113917_b0090) 2006; 37 Arora (10.1016/j.eswa.2020.113917_b0015) 2019; 116 10.1016/j.eswa.2020.113917_b0045 Holland (10.1016/j.eswa.2020.113917_b0185) 1992; 267 10.1016/j.eswa.2020.113917_b0085 Singh (10.1016/j.eswa.2020.113917_b0375) 2017; 20 Radosavljević (10.1016/j.eswa.2020.113917_b0345) 2015; 43 Long (10.1016/j.eswa.2020.113917_b0245) 2018; 68 Meng (10.1016/j.eswa.2020.113917_b0285) 2018; 141 Song (10.1016/j.eswa.2020.113917_b0385) 2015; 75 Dashti (10.1016/j.eswa.2020.113917_bib478) 2016; 28 10.1016/j.eswa.2020.113917_b0115 Liang (10.1016/j.eswa.2020.113917_b0235) 2006; 10 Shen (10.1016/j.eswa.2020.113917_b0370) 2016; 96 Tu (10.1016/j.eswa.2020.113917_b0440) 2019; 76 Sulaiman (10.1016/j.eswa.2020.113917_b0400) 2015; 32 Glover (10.1016/j.eswa.2020.113917_b0135) 1990; 2 Long (10.1016/j.eswa.2020.113917_b0240) 2019; 7 Derrac (10.1016/j.eswa.2020.113917_b0055) 2011; 1 Nuaekaew (10.1016/j.eswa.2020.113917_b0330) 2017; 87 El-Fergany (10.1016/j.eswa.2020.113917_b0070) 2015; 43 10.1016/j.eswa.2020.113917_b0430 10.1016/j.eswa.2020.113917_b0035 Taghian (10.1016/j.eswa.2020.113917_b0405) 2019; 8 10.1016/j.eswa.2020.113917_b0110 10.1016/j.eswa.2020.113917_b0275 10.1016/j.eswa.2020.113917_b0030 Mirjalili (10.1016/j.eswa.2020.113917_b0300) 2014; 69 Zamani (10.1016/j.eswa.2020.113917_b0465) 2016; 151 Attia (10.1016/j.eswa.2020.113917_b0025) 2018; 99 Song (10.1016/j.eswa.2020.113917_b0380) 2018; 215 Alomoush (10.1016/j.eswa.2020.113917_b0005) 2019; 7 Gunasundari (10.1016/j.eswa.2020.113917_b0145) 2016; 56 Saxena (10.1016/j.eswa.2020.113917_b0365) 2020; 145 Elaziz (10.1016/j.eswa.2020.113917_b0075) 2019; 172 Lu (10.1016/j.eswa.2020.113917_b0255) 2018; 107 10.1016/j.eswa.2020.113917_b0305 10.1016/j.eswa.2020.113917_b0225 10.1016/j.eswa.2020.113917_b0105 Askarzadeh (10.1016/j.eswa.2020.113917_b0020) 2016; 169 Panwar (10.1016/j.eswa.2020.113917_b0335) 2018; 38 Gaidhane (10.1016/j.eswa.2020.113917_b0120) 2018; 27 Wu (10.1016/j.eswa.2020.113917_b0450) 2019; 535 Storn (10.1016/j.eswa.2020.113917_b0395) 1997; 11 10.1016/j.eswa.2020.113917_b0060 Mafarja (10.1016/j.eswa.2020.113917_b0270) 2018; 161 Muthukaruppan (10.1016/j.eswa.2020.113917_b0325) 2012; 39 Kamboj (10.1016/j.eswa.2020.113917_b0195) 2016; 27 Pradhan (10.1016/j.eswa.2020.113917_b0340) 2016; 83 Kaveh (10.1016/j.eswa.2020.113917_b0215) 2012; 112 Saremi (10.1016/j.eswa.2020.113917_b0360) 2015; 26 Tu (10.1016/j.eswa.2020.113917_b0435) 2019; 7 10.1016/j.eswa.2020.113917_b0265 10.1016/j.eswa.2020.113917_b0420 Zamani (10.1016/j.eswa.2020.113917_b0455) 2019; 85 10.1016/j.eswa.2020.113917_b0065 Mirjalili (10.1016/j.eswa.2020.113917_b0290) 2015; 43 Hasançebi (10.1016/j.eswa.2020.113917_b0150) 2015; 154 Hashim (10.1016/j.eswa.2020.113917_b0155) 2019; 101 Mirjalili (10.1016/j.eswa.2020.113917_b0295) 2016; 95 Heidari (10.1016/j.eswa.2020.113917_b0180) 2017; 60 Faris (10.1016/j.eswa.2020.113917_b0100) 2018; 30 Karaboga (10.1016/j.eswa.2020.113917_b0205) 2007; 39 Mohamed (10.1016/j.eswa.2020.113917_b0310) 2017; 142 10.1016/j.eswa.2020.113917_b0415 Guha (10.1016/j.eswa.2020.113917_b0140) 2016; 19 Kaveh (10.1016/j.eswa.2020.113917_b0220) 2010; 213 Kannan (10.1016/j.eswa.2020.113917_b0200) 1994; 116 Fard (10.1016/j.eswa.2020.113917_b0095) 2014; 4 Zamani (10.1016/j.eswa.2020.113917_b0460) 2016; 14 10.1016/j.eswa.2020.113917_b0050 Gandomi (10.1016/j.eswa.2020.113917_b0125) 2012; 17 He (10.1016/j.eswa.2020.113917_b0165) 2020; 139 Li (10.1016/j.eswa.2020.113917_b0230) 2020; 537 Hatamlou (10.1016/j.eswa.2020.113917_b0160) 2013; 222 Arjenaki (10.1016/j.eswa.2020.113917_b0010) 2015; 6 Lourenço (10.1016/j.eswa.2020.113917_b0250) 2003 Emary (10.1016/j.eswa.2020.113917_b0080) 2017; 29 Venkataraman (10.1016/j.eswa.2020.113917_b0445) 2020; 39 10.1016/j.eswa.2020.113917_b0410 Glover (10.1016/j.eswa.2020.113917_b0130) 1989; 1 Sörensen (10.1016/j.eswa.2020.113917_b0390) 2015; 22 Mohamed (10.1016/j.eswa.2020.113917_b0315) 2019; 50 Zang (10.1016/j.eswa.2020.113917_b0470) 2010; 7 |
References_xml | – volume: 139 start-page: 2801 year: 2020 end-page: 2810 ident: b0165 article-title: Controlled elitist multi-objective genetic algorithm joined with neural network to study the effects of nano-clay percentage on cell size and polymer foams density of PVC/clay nanocomposites publication-title: Journal of Thermal Analysis and Calorimetry – volume: 43 start-page: 1958 year: 2015 end-page: 1970 ident: b0345 article-title: Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm publication-title: Electric Power Components and Systems – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: b0200 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design – volume: 7 start-page: 113810 year: 2019 end-page: 113825 ident: b0240 article-title: A random opposition-based learning grey wolf optimizer publication-title: IEEE Access – volume: 535 year: 2019 ident: b0450 article-title: Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and thermal properties such as pressure drop and heat transfer coefficient for non-Newtonian binary fluids publication-title: Physica A: Statistical Mechanics and its Applications – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: b0090 article-title: A new optimization method: Big bang–big crunch publication-title: Advances in Engineering Software – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b0205 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: Journal of GLOBAL Optimization – volume: 76 start-page: 16 year: 2019 end-page: 30 ident: b0440 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Applied Soft Computing – reference: Taghian, S., & Nadimi-Shahraki, M.H. (2019b). Binary sine cosine algorithms for feature selection from medical data. arXiv preprint arXiv:1911.07805. – volume: 99 start-page: 331 year: 2018 end-page: 343 ident: b0025 article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm publication-title: International Journal of Electrical Power & Energy Systems – year: 2019 ident: b0170 article-title: A new method of black-box fuzzy system identification optimized by genetic algorithm and its application to predict mixture thermal properties publication-title: International Journal of Numerical Methods for Heat & Fluid Flow – volume: 213 start-page: 267 year: 2010 end-page: 289 ident: b0220 article-title: A novel heuristic optimization method: Charged system search publication-title: Acta Mechanica – reference: Koza, J. R. (1997). Genetic programming. – reference: Mittal, Nitin, Singh, Urvinder, & Sohi, Balwinder Singh. (2016). Modified grey wolf optimizer for global engineering optimization. Applied Computational Intelligence and Soft Computing. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0350 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences – reference: Talbi, E.-G. (2009). Metaheuristics: from design to implementation (Vol. 74): John Wiley & Sons. – volume: 111 start-page: 630 year: 2016 end-page: 641 ident: b0190 article-title: Economic dispatch using hybrid grey wolf optimizer publication-title: Energy – reference: Thaher, Thaer, Heidari, Ali Asghar, Mafarja, Majdi, Dong, Jin Song, & Mirjalili, Seyedali. (2020). Binary harris hawks optimizer for high-dimensional, low sample size feature selection. In Evolutionary machine learning techniques (pp. 251–272): Springer. – reference: Malik, Mahmad Raphiyoddin S, Mohideen, E Rasul, & Ali, Layak. (2015). Weighted distance grey wolf optimizer for global optimization problems. In Paper presented at the 2015 IEEE international conference on computational intelligence and computing research (ICCIC). – volume: 96 start-page: 61 year: 2016 end-page: 75 ident: b0370 article-title: Evolving support vector machines using fruit fly optimization for medical data classification publication-title: Knowledge-Based Systems – reference: Coello, Carlos A Coello. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113x127. – volume: 26 start-page: 1257 year: 2015 end-page: 1263 ident: b0360 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Computing and Applications – volume: 215 start-page: 643 year: 2018 end-page: 658 ident: b0380 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Applied Energy – volume: 22 start-page: 3 year: 2015 end-page: 18 ident: b0390 article-title: Metaheuristics—the metaphor exposed publication-title: International Transactions in Operational Research – reference: Eberhart, Russell, & Kennedy, James. (1995). A new optimizer using particle swarm theory. In Paper presented at the MHS'95. Proceedings of the sixth international symposium on micro machine and human science. – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: b0235 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Transactions on Evolutionary Computation – reference: Del Ser, Javier, Osaba, Eneko, Molina, Daniel, Yang, Xin-She, Salcedo-Sanz, Sancho, Camacho, David, . . . Herrera, Francisco. (2019). Bio-inspired computation: Where we stand and what's next. Swarm and Evolutionary Computation, 48, 220–250. – volume: 27 start-page: 284 year: 2018 end-page: 302 ident: b0120 article-title: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems publication-title: Journal of Computational Science – volume: 107 start-page: 89 year: 2018 end-page: 114 ident: b0255 article-title: Grey wolf optimizer with cellular topological structure publication-title: Expert Systems with Applications – volume: 154 start-page: 1 year: 2015 end-page: 16 ident: b0150 article-title: Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization publication-title: Computers & Structures – volume: 6 start-page: 93 year: 2015 end-page: 97 ident: b0010 article-title: A low cost model for diagnosing coronary artery disease based on effective features publication-title: International Journal of Electronics Communication and Computer Engineering – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0395 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b0155 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems – volume: 32 start-page: 286 year: 2015 end-page: 292 ident: b0400 article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem publication-title: Applied Soft Computing – volume: 112 start-page: 283 year: 2012 end-page: 294 ident: b0215 article-title: A new meta-heuristic method: Ray optimization publication-title: Computers & structures – reference: Taghian, S., Nadimi-Shahraki, M.H., & Zamani, H. (2018). Comparative analysis of transfer function-based binary metaheuristic algorithms for feature selection. In 2018 IEEE International Conference on Artificial Intelligence and Data Processing (IDAP),1-6. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b0175 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future generation computer systems – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0295 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – reference: Awad, N. H., Ali, M. Z., Suganthan, P. N., Liang, J. J., & Qu, B. Y. (2017). Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. – reference: Faris, Hossam, Mafarja, Majdi M, Heidari, Ali Asghar, Aljarah, Ibrahim, Ala’M, Al-Zoubi, Mirjalili, Seyedali, & Fujita, Hamido. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge-Based Systems, 154, 43–67. – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b0125 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation – reference: Fister Jr, Iztok, Yang, Xin-She, Fister, Iztok, Brest, Janez, & Fister, Dušan. (2013). A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186, 1-7. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0300 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 20 start-page: 1586 year: 2017 end-page: 1601 ident: b0375 article-title: A novel hybrid GWO-SCA approach for optimization problems publication-title: Engineering Science and Technology, an International Journal – volume: 222 start-page: 175 year: 2013 end-page: 184 ident: b0160 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Information sciences – volume: 163 start-page: 283 year: 2019 end-page: 304 ident: b0475 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem publication-title: Knowledge-Based Systems – volume: 7 start-page: 68764 year: 2019 end-page: 68785 ident: b0005 article-title: Hybrid harmony search algorithm with grey wolf optimizer and modified opposition-based learning publication-title: IEEE Access – volume: 212 start-page: 1578 year: 2018 end-page: 1588 ident: b0040 article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation publication-title: Applied Energy – volume: 87 start-page: 79 year: 2017 end-page: 89 ident: b0330 article-title: Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer publication-title: Expert Systems with Applications – volume: 4 start-page: 989 year: 2014 end-page: 998 ident: b0095 article-title: An area-optimized chip of ant colony algorithm design in hardware platform using the address-based method publication-title: International Journal of Electrical and Computer Engineering – volume: 1 start-page: 190 year: 1989 end-page: 206 ident: b0130 article-title: Tabu search—part I publication-title: ORSA Journal on computing – volume: 39 start-page: 11657 year: 2012 end-page: 11665 ident: b0325 article-title: A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease publication-title: Expert Systems with Applications – volume: 116 start-page: 147 year: 2019 end-page: 160 ident: b0015 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Systems with Applications – volume: 27 start-page: 1643 year: 2016 end-page: 1655 ident: b0195 article-title: A novel hybrid PSO–GWO approach for unit commitment problem publication-title: Neural Computing and Applications – volume: 68 start-page: 63 year: 2018 end-page: 80 ident: b0245 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Engineering Applications of Artificial Intelligence – reference: Faris, H., Aljarah, I., & Alqatawna, J.F. (2015). Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 1-5. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b0055 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – volume: 83 start-page: 325 year: 2016 end-page: 334 ident: b0340 article-title: Grey wolf optimization applied to economic load dispatch problems publication-title: Internatioal Journal of Electrical Power & Energy Systems – volume: 7 start-page: S232 year: 2010 end-page: S237 ident: b0470 article-title: A review of nature-inspired algorithms publication-title: Journal of Bionic Engineering – volume: 28 start-page: 97 year: 2016 end-page: 112 ident: bib478 article-title: Dynamic VMs placement for energy efficiency by PSO in cloud computing publication-title: Journal of Experimental & Theoretical Artificial Intelligence – reference: Mafarja, Majdi, Aljarah, Ibrahim, Faris, Hossam, Hammouri, Abdelaziz I, Ala’M, Al-Zoubi, & Mirjalili, Seyedali. (2019). Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Systems with Applications, 117, 267–286. – volume: 60 start-page: 115 year: 2017 end-page: 134 ident: b0180 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Applied Soft Computing – reference: Banaie-Dezfouli, M., Nadimi-Shahraki, M.H., & Zamani, H. (2018). A novel tour planning model using big data. In 2018 IEEE International Conference on Artificial Intelligence and Data Processing (IDAP),1-6. – volume: 172 start-page: 42 year: 2019 end-page: 63 ident: b0075 article-title: A hyper-heuristic for improving the initial population of whale optimization algorithm publication-title: Knowledge-Based Systems – volume: 2 start-page: 4 year: 1990 end-page: 32 ident: b0135 article-title: Tabu search—part II publication-title: ORSA Journal on computing – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: b0270 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Systems – start-page: 320 year: 2003 end-page: 353 ident: b0250 article-title: Iterated local search – volume: 50 year: 2019 ident: b0315 article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization publication-title: Swarm and Evolutionary Computation – volume: 151 start-page: 40 year: 2016 end-page: 44 ident: b0465 article-title: Swarm intelligence approach for breast cancer diagnosis publication-title: International Journal of Computer Applications – volume: 142 start-page: 190 year: 2017 end-page: 206 ident: b0310 article-title: Optimal power flow using moth swarm algorithm publication-title: Electric Power Systems Research – volume: 39 start-page: 961 year: 2020 end-page: 976 ident: b0445 article-title: Ant lion optimized bufferless routing in the design of low power application specific network on chip publication-title: Circuits, Systems, and Signal Processing – volume: 19 start-page: 1693 year: 2016 end-page: 1713 ident: b0140 article-title: Load frequency control of large scale power system using quasi-oppositional grey wolf optimization algorithm publication-title: Engineering Science and Technology, an International Journal – volume: 3 start-page: 12 year: 2014 end-page: 20 ident: bib477 article-title: Application methods of ant colony algorithm publication-title: American Journal of Software Engineering and Applications – volume: 43 start-page: 1548 year: 2015 end-page: 1559 ident: b0070 article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms publication-title: Electric Power Components and Systems – volume: 30 start-page: 413 year: 2018 end-page: 435 ident: b0100 article-title: Grey wolf optimizer: A review of recent variants and applications publication-title: Neural Computing and Applications – volume: 141 start-page: 92 year: 2018 end-page: 112 ident: b0285 article-title: Parameters with adaptive learning mechanism (PALM) for the enhancement of differential evolution publication-title: Knowledge-Based Systems – volume: 85 year: 2019 ident: b0455 article-title: CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems publication-title: Applied Soft Computing – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b0185 publication-title: Genetic algorithms. – volume: 88 start-page: 595 year: 2007 end-page: 605 ident: b0260 article-title: A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf publication-title: Journal of Mammalogy – volume: 14 start-page: 1243 year: 2016 end-page: 1247 ident: b0460 article-title: Feature selection based on whale optimization algorithm for diseases diagnosis publication-title: International Journal of Computer Science and Information Security – volume: 38 start-page: 251 year: 2018 end-page: 266 ident: b0335 article-title: Binary grey wolf optimizer for large scale unit commitment problem publication-title: Swarm and Evolutionary Computation – volume: 104 start-page: 15 year: 1973 end-page: 16 ident: b0355 article-title: Evolution Strategy: Optimization of Technical systems by means of biological evolution publication-title: Fromman-Holzboog, Stuttgart – volume: 8 start-page: 168 year: 2019 end-page: 172 ident: b0405 article-title: A Binary metaheuristic algorithm for wrapper feature selection publication-title: International Journal of Computer Science Engineering (IJCSE) – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: b0020 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures – volume: 145 year: 2020 ident: b0365 article-title: A harmonic estimator design with evolutionary operators equipped grey wolf optimizer publication-title: Expert Systems with Applications – volume: 497 start-page: 219 year: 2019 end-page: 239 ident: b0425 article-title: An evolutionary gravitational search-based feature selection publication-title: Information Sciences – volume: 75 start-page: 147 year: 2015 end-page: 157 ident: b0385 article-title: Grey wolf optimizer for parameter estimation in surface waves publication-title: Soil Dynamics and Earthquake Engineering – volume: 29 start-page: 681 year: 2017 end-page: 694 ident: b0080 article-title: Experienced gray wolf optimization through reinforcement learning and neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 7 start-page: 78012 year: 2019 end-page: 78028 ident: b0435 article-title: Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection publication-title: IEEE Access – volume: 30 start-page: 1679 year: 2018 end-page: 1687 ident: b0210 article-title: Recommender system with grey wolf optimizer and FCM publication-title: Neural Computing and Applications – volume: 43 start-page: 150 year: 2015 end-page: 161 ident: b0290 article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons publication-title: Applied Intelligence – year: 2020 ident: bib476 article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems publication-title: Applied Soft Computing – volume: 56 start-page: 28 year: 2016 end-page: 47 ident: b0145 article-title: Velocity bounded boolean particle swarm optimization for improved feature selection in liver and kidney disease diagnosis publication-title: Expert Systems with Applications – reference: Emary, Eid, Zawbaa, Hossam M, Grosan, Crina, & Hassenian, Abul Ella. (2015). Feature subset selection approach by gray-wolf optimization. In Paper presented at the Afro-European conference for industrial advancement. – volume: 537 year: 2020 ident: b0230 article-title: Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via suitable experiments as a function of MMT content publication-title: Physica A: Statistical Mechanics and its Applications – reference: Dorigo, Marco, Birattari, Mauro, Blum, Christian, Clerc, Maurice, Stützle, Thomas, & Winfield, Alan. (2008). Ant colony optimization and swarm intelligence. In 6th International Conference, ANTS 2008, Brussels, Belgium, September 22–24, 2008, Proceedings (Vol. 5217): Springer. – volume: 88 start-page: 595 issue: 3 year: 2007 ident: 10.1016/j.eswa.2020.113917_b0260 article-title: A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf publication-title: Journal of Mammalogy doi: 10.1644/06-MAMM-A-119R1.1 – volume: 142 start-page: 190 year: 2017 ident: 10.1016/j.eswa.2020.113917_b0310 article-title: Optimal power flow using moth swarm algorithm publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2016.09.025 – volume: 75 start-page: 147 year: 2015 ident: 10.1016/j.eswa.2020.113917_b0385 article-title: Grey wolf optimizer for parameter estimation in surface waves publication-title: Soil Dynamics and Earthquake Engineering doi: 10.1016/j.soildyn.2015.04.004 – ident: 10.1016/j.eswa.2020.113917_b0050 doi: 10.1016/j.swevo.2019.04.008 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.eswa.2020.113917_b0055 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – year: 2020 ident: 10.1016/j.eswa.2020.113917_bib476 article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106761 – volume: 154 start-page: 1 year: 2015 ident: 10.1016/j.eswa.2020.113917_b0150 article-title: Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization publication-title: Computers & Structures doi: 10.1016/j.compstruc.2015.03.014 – ident: 10.1016/j.eswa.2020.113917_b0110 doi: 10.1016/j.knosys.2018.05.009 – volume: 7 start-page: 113810 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0240 article-title: A random opposition-based learning grey wolf optimizer publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2934994 – volume: 87 start-page: 79 year: 2017 ident: 10.1016/j.eswa.2020.113917_b0330 article-title: Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.06.009 – volume: 116 start-page: 147 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0015 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.051 – volume: 107 start-page: 89 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0255 article-title: Grey wolf optimizer with cellular topological structure publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.04.012 – volume: 112 start-page: 283 year: 2012 ident: 10.1016/j.eswa.2020.113917_b0215 article-title: A new meta-heuristic method: Ray optimization publication-title: Computers & structures doi: 10.1016/j.compstruc.2012.09.003 – volume: 213 start-page: 267 issue: 3–4 year: 2010 ident: 10.1016/j.eswa.2020.113917_b0220 article-title: A novel heuristic optimization method: Charged system search publication-title: Acta Mechanica doi: 10.1007/s00707-009-0270-4 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.eswa.2020.113917_b0185 publication-title: Genetic algorithms. Scientific american doi: 10.1038/scientificamerican0792-66 – volume: 68 start-page: 63 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0245 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.10.024 – volume: 50 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0315 article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.10.006 – ident: 10.1016/j.eswa.2020.113917_b0035 – volume: 7 start-page: 68764 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0005 article-title: Hybrid harmony search algorithm with grey wolf optimizer and modified opposition-based learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917803 – volume: 141 start-page: 92 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0285 article-title: Parameters with adaptive learning mechanism (PALM) for the enhancement of differential evolution publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.11.015 – ident: 10.1016/j.eswa.2020.113917_b0410 doi: 10.5121/acij.2019.10501 – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 10.1016/j.eswa.2020.113917_b0090 article-title: A new optimization method: Big bang–big crunch publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2005.04.005 – volume: 14 start-page: 1243 issue: 9 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0460 article-title: Feature selection based on whale optimization algorithm for diseases diagnosis publication-title: International Journal of Computer Science and Information Security – volume: 22 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.eswa.2020.113917_b0390 article-title: Metaheuristics—the metaphor exposed publication-title: International Transactions in Operational Research doi: 10.1111/itor.12001 – ident: 10.1016/j.eswa.2020.113917_b0265 doi: 10.1016/j.eswa.2018.09.015 – volume: 145 year: 2020 ident: 10.1016/j.eswa.2020.113917_b0365 article-title: A harmonic estimator design with evolutionary operators equipped grey wolf optimizer publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113125 – volume: 2 start-page: 4 issue: 1 year: 1990 ident: 10.1016/j.eswa.2020.113917_b0135 article-title: Tabu search—part II publication-title: ORSA Journal on computing doi: 10.1287/ijoc.2.1.4 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0155 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.07.015 – volume: 497 start-page: 219 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0425 article-title: An evolutionary gravitational search-based feature selection publication-title: Information Sciences doi: 10.1016/j.ins.2019.05.038 – volume: 172 start-page: 42 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0075 article-title: A hyper-heuristic for improving the initial population of whale optimization algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.02.010 – volume: 7 start-page: 78012 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0435 article-title: Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921793 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.eswa.2020.113917_b0235 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.857610 – ident: 10.1016/j.eswa.2020.113917_b0085 doi: 10.1007/978-3-319-13572-4_1 – volume: 139 start-page: 2801 issue: 4 year: 2020 ident: 10.1016/j.eswa.2020.113917_b0165 article-title: Controlled elitist multi-objective genetic algorithm joined with neural network to study the effects of nano-clay percentage on cell size and polymer foams density of PVC/clay nanocomposites publication-title: Journal of Thermal Analysis and Calorimetry doi: 10.1007/s10973-019-09059-x – volume: 163 start-page: 283 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0475 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.08.030 – volume: 104 start-page: 15 year: 1973 ident: 10.1016/j.eswa.2020.113917_b0355 article-title: Evolution Strategy: Optimization of Technical systems by means of biological evolution publication-title: Fromman-Holzboog, Stuttgart – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.eswa.2020.113917_b0395 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – ident: 10.1016/j.eswa.2020.113917_b0030 – volume: 111 start-page: 630 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0190 article-title: Economic dispatch using hybrid grey wolf optimizer publication-title: Energy doi: 10.1016/j.energy.2016.05.105 – ident: 10.1016/j.eswa.2020.113917_b0275 doi: 10.1109/ICCIC.2015.7435714 – volume: 43 start-page: 1548 issue: 13 year: 2015 ident: 10.1016/j.eswa.2020.113917_b0070 article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2015.1041625 – volume: 212 start-page: 1578 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0040 article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.12.115 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0175 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future generation computer systems doi: 10.1016/j.future.2019.02.028 – ident: 10.1016/j.eswa.2020.113917_b0115 – ident: 10.1016/j.eswa.2020.113917_b0415 doi: 10.1109/IDAP.2018.8620828 – volume: 537 year: 2020 ident: 10.1016/j.eswa.2020.113917_b0230 article-title: Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via suitable experiments as a function of MMT content publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2019.122637 – volume: 29 start-page: 681 issue: 3 year: 2017 ident: 10.1016/j.eswa.2020.113917_b0080 article-title: Experienced gray wolf optimization through reinforcement learning and neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2634548 – volume: 30 start-page: 413 issue: 2 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0100 article-title: Grey wolf optimizer: A review of recent variants and applications publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-3272-5 – volume: 56 start-page: 28 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0145 article-title: Velocity bounded boolean particle swarm optimization for improved feature selection in liver and kidney disease diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.02.042 – volume: 32 start-page: 286 year: 2015 ident: 10.1016/j.eswa.2020.113917_b0400 article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.03.041 – ident: 10.1016/j.eswa.2020.113917_b0060 doi: 10.1007/978-3-540-87527-7 – ident: 10.1016/j.eswa.2020.113917_b0420 doi: 10.1002/9780470496916 – ident: 10.1016/j.eswa.2020.113917_b0105 doi: 10.1109/AEECT.2015.7360576 – volume: 1 start-page: 190 issue: 3 year: 1989 ident: 10.1016/j.eswa.2020.113917_b0130 article-title: Tabu search—part I publication-title: ORSA Journal on computing doi: 10.1287/ijoc.1.3.190 – volume: 39 start-page: 961 issue: 2 year: 2020 ident: 10.1016/j.eswa.2020.113917_b0445 article-title: Ant lion optimized bufferless routing in the design of low power application specific network on chip publication-title: Circuits, Systems, and Signal Processing doi: 10.1007/s00034-019-01065-6 – volume: 43 start-page: 150 issue: 1 year: 2015 ident: 10.1016/j.eswa.2020.113917_b0290 article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons publication-title: Applied Intelligence doi: 10.1007/s10489-014-0645-7 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0295 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – ident: 10.1016/j.eswa.2020.113917_b0065 doi: 10.1109/MHS.1995.494215 – volume: 20 start-page: 1586 issue: 6 year: 2017 ident: 10.1016/j.eswa.2020.113917_b0375 article-title: A novel hybrid GWO-SCA approach for optimization problems publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2017.11.001 – ident: 10.1016/j.eswa.2020.113917_b0430 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2020.113917_b0350 article-title: GSA: A gravitational search algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2009.03.004 – volume: 4 start-page: 989 issue: 6 year: 2014 ident: 10.1016/j.eswa.2020.113917_b0095 article-title: An area-optimized chip of ant colony algorithm design in hardware platform using the address-based method publication-title: International Journal of Electrical and Computer Engineering – volume: 96 start-page: 61 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0370 article-title: Evolving support vector machines using fruit fly optimization for medical data classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2016.01.002 – volume: 535 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0450 publication-title: Physica A: Statistical Mechanics and its Applications – volume: 151 start-page: 40 issue: 1 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0465 article-title: Swarm intelligence approach for breast cancer diagnosis publication-title: International Journal of Computer Applications doi: 10.5120/ijca2016911667 – volume: 19 start-page: 1693 issue: 4 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0140 article-title: Load frequency control of large scale power system using quasi-oppositional grey wolf optimization algorithm publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2016.07.004 – volume: 39 start-page: 11657 issue: 14 year: 2012 ident: 10.1016/j.eswa.2020.113917_b0325 article-title: A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.04.036 – volume: 26 start-page: 1257 issue: 5 year: 2015 ident: 10.1016/j.eswa.2020.113917_b0360 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1806-7 – ident: 10.1016/j.eswa.2020.113917_b0225 – volume: 116 start-page: 405 issue: 2 year: 1994 ident: 10.1016/j.eswa.2020.113917_b0200 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design doi: 10.1115/1.2919393 – volume: 27 start-page: 284 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0120 article-title: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2018.06.008 – volume: 85 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0455 article-title: CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105583 – volume: 76 start-page: 16 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0440 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.11.047 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.eswa.2020.113917_b0205 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: Journal of GLOBAL Optimization doi: 10.1007/s10898-007-9149-x – start-page: 320 year: 2003 ident: 10.1016/j.eswa.2020.113917_b0250 – volume: 28 start-page: 97 year: 2016 ident: 10.1016/j.eswa.2020.113917_bib478 article-title: Dynamic VMs placement for energy efficiency by PSO in cloud computing publication-title: Journal of Experimental & Theoretical Artificial Intelligence doi: 10.1080/0952813X.2015.1020519 – volume: 60 start-page: 115 year: 2017 ident: 10.1016/j.eswa.2020.113917_b0180 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.06.044 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0020 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2016.03.001 – volume: 43 start-page: 1958 issue: 17 year: 2015 ident: 10.1016/j.eswa.2020.113917_b0345 article-title: Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2015.1061620 – volume: 7 start-page: S232 issue: 4 year: 2010 ident: 10.1016/j.eswa.2020.113917_b0470 article-title: A review of nature-inspired algorithms publication-title: Journal of Bionic Engineering doi: 10.1016/S1672-6529(09)60240-7 – volume: 6 start-page: 93 issue: 1 year: 2015 ident: 10.1016/j.eswa.2020.113917_b0010 article-title: A low cost model for diagnosing coronary artery disease based on effective features publication-title: International Journal of Electronics Communication and Computer Engineering – ident: 10.1016/j.eswa.2020.113917_b0305 doi: 10.1155/2016/7950348 – volume: 30 start-page: 1679 issue: 5 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0210 article-title: Recommender system with grey wolf optimizer and FCM publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2817-3 – volume: 161 start-page: 185 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0270 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.08.003 – volume: 99 start-page: 331 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0025 article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2018.01.024 – volume: 8 start-page: 168 issue: 5 year: 2019 ident: 10.1016/j.eswa.2020.113917_b0405 article-title: A Binary metaheuristic algorithm for wrapper feature selection publication-title: International Journal of Computer Science Engineering (IJCSE) – ident: 10.1016/j.eswa.2020.113917_b0045 doi: 10.1016/S0166-3615(99)00046-9 – year: 2019 ident: 10.1016/j.eswa.2020.113917_b0170 article-title: A new method of black-box fuzzy system identification optimized by genetic algorithm and its application to predict mixture thermal properties publication-title: International Journal of Numerical Methods for Heat & Fluid Flow doi: 10.1108/HFF-12-2018-0758 – volume: 3 start-page: 12 issue: 2 year: 2014 ident: 10.1016/j.eswa.2020.113917_bib477 article-title: Application methods of ant colony algorithm publication-title: American Journal of Software Engineering and Applications doi: 10.11648/j.ajsea.20140302.11 – volume: 83 start-page: 325 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0340 article-title: Grey wolf optimization applied to economic load dispatch problems publication-title: Internatioal Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2016.04.034 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.eswa.2020.113917_b0125 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2012.05.010 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2020.113917_b0300 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 222 start-page: 175 year: 2013 ident: 10.1016/j.eswa.2020.113917_b0160 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Information sciences doi: 10.1016/j.ins.2012.08.023 – volume: 27 start-page: 1643 issue: 6 year: 2016 ident: 10.1016/j.eswa.2020.113917_b0195 article-title: A novel hybrid PSO–GWO approach for unit commitment problem publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1962-4 – volume: 215 start-page: 643 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0380 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.02.070 – volume: 38 start-page: 251 year: 2018 ident: 10.1016/j.eswa.2020.113917_b0335 article-title: Binary grey wolf optimizer for large scale unit commitment problem publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.08.002 |
SSID | ssj0017007 |
Score | 2.7258575 |
Snippet | [Display omitted]
•Proposing an improved Grey Wolf Optimizer (I-GWO) for solving engineering problems.•Introducing a new search strategy named dimension... In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global optimization and engineering design problems. This improvement is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113917 |
SubjectTerms | Algorithm Algorithms Artificial intelligence Design engineering Design optimization Engineering optimization problems Global optimization Grey wolf optimizer Hunting Improved grey wolf optimizer Machine learning Metaheuristic Optimization Search methods Statistical tests Strategy Swarm intelligence algorithm |
Title | An improved grey wolf optimizer for solving engineering problems |
URI | https://dx.doi.org/10.1016/j.eswa.2020.113917 https://www.proquest.com/docview/2480004995 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4LU7nyMGbxC1tsqY3x3BMxV10sFto0gQqsxtuMvTg3-5Lm04U2cFreSnl1_fxe-F9IHRhgcLrMImIskYRxjUlKkw1CXUggC9HVMWud_hh1B2O2d2ET2qoX_XCuLJK7_tLn154a_-k7dFsz7Os_QjkAMIhpHZOT2nRUc5Y5LT86nNd5uHGz0XlvL2IOGnfOFPWeJnFys0eCorVJnGxtOzP4PTLTRexZ7CHdjxpxL3yu_ZRzeQHaLdayIC9fR6i616Os-KWwKQYEul3vJpNLZ6BW3jJPkASGCoGZXOXCNh8TyLEfq3M4giNBzdP_SHxKxKIDgOxJAEXNtVx17r9U2B_aZgI2tFBoLi2HSOMUpAwJCYCmVgLmlCuusKyKBSMGghgx6iez3JzgrABKscBR6AslrkDzMTMcqOpomlqeQPRChup_fxwt8ZiKqtCsWfp8JQOT1ni2UCX6zPzcnrGRmleQS5_6IAE977xXLP6P9Jb4EIGTJT5HD_952vP0HbgClhc8R5vovry9c2cAwNZqlahYi201bu9H46-AGNv2cU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHvTitxFF7cGbmdCtZd1NQiSowEVIuDVr1yYzOIhgiB78233dOo3GcPC6vC7L2_v4vea990Po0gCEV0EcetJo6VGmiCeDRHmB8jng5ZDIyM4OD4at3pjeT9ikgjrlLIxtq3Sxv4jpebR2TxpOm415mjYeARxAOoTSztopsRPlGxTc19IYXH989XnY_XNhsXAv9Ky4m5wpmrz0YmWXD_k5t0mUs5b9mZ1-xek8-XR30bZDjbhdfNgequhsH-2UjAzYOegBumlnOM2vCXSCoZJ-w6vZ1OAZxIXn9B0kAaJisDZ7i4D19ypC7HhlFodo3L0ddXqe40jwVODzpeczbhIVtYwloAIHTIKYk6byfcmUaWqupYSKIdYhyESKk5gw2eKGhgGnREMGO0LVbJbpY4Q1YDkGigTMYqg9QHVEDdOKSJIkhtUQKXUjlFsgbnkspqLsFHsSVp_C6lMU-qyhq68z82J9xlppVqpc_DACAfF97bl6-X-Ec8GF8CkvCjp28s_XXqDN3mjQF_274cMp2vJtN4vt5GN1VF2-vOozgCNLeZ6b2yd_odtT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+grey+wolf+optimizer+for+solving+engineering+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Nadimi-Shahraki%2C+Mohammad+H&rft.au=Taghian%2C+Shokooh&rft.au=Mirjalili%2C+Seyedali&rft.date=2021-03-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=166&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.113917&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |