An improved grey wolf optimizer for solving engineering problems

[Display omitted] •Proposing an improved Grey Wolf Optimizer (I-GWO) for solving engineering problems.•Introducing a new search strategy named dimension learning-based hunting (DLH).•DLH is to enhance balance between local and global search and maintain diversity.•Performance of I-GWO is evaluated o...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 166; p. 113917
Main Authors Nadimi-Shahraki, Mohammad H., Taghian, Shokooh, Mirjalili, Seyedali
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.03.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Proposing an improved Grey Wolf Optimizer (I-GWO) for solving engineering problems.•Introducing a new search strategy named dimension learning-based hunting (DLH).•DLH is to enhance balance between local and global search and maintain diversity.•Performance of I-GWO is evaluated on the CEC2018 and three engineering problems.•I-GWO algorithm is very competitive and superior to the compared algorithms. In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global optimization and engineering design problems. This improvement is proposed to alleviate the lack of population diversity, the imbalance between the exploitation and exploration, and premature convergence of the GWO algorithm. The I-GWO algorithm benefits from a new movement strategy named dimension learning-based hunting (DLH) search strategy inherited from the individual hunting behavior of wolves in nature. DLH uses a different approach to construct a neighborhood for each wolf in which the neighboring information can be shared between wolves. This dimension learning used in the DLH search strategy enhances the balance between local and global search and maintains diversity. The performance of the proposed I-GWO algorithm is evaluated on the CEC 2018 benchmark suite and four engineering problems. In all experiments, I-GWO is compared with six other state-of-the-art metaheuristics. The results are also analyzed by Friedman and MAE statistical tests. The experimental results and statistical tests demonstrate that the I-GWO algorithm is very competitive and often superior compared to the algorithms used in the experiments. The results of the proposed algorithm on the engineering design problems demonstrate its efficiency and applicability.
AbstractList [Display omitted] •Proposing an improved Grey Wolf Optimizer (I-GWO) for solving engineering problems.•Introducing a new search strategy named dimension learning-based hunting (DLH).•DLH is to enhance balance between local and global search and maintain diversity.•Performance of I-GWO is evaluated on the CEC2018 and three engineering problems.•I-GWO algorithm is very competitive and superior to the compared algorithms. In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global optimization and engineering design problems. This improvement is proposed to alleviate the lack of population diversity, the imbalance between the exploitation and exploration, and premature convergence of the GWO algorithm. The I-GWO algorithm benefits from a new movement strategy named dimension learning-based hunting (DLH) search strategy inherited from the individual hunting behavior of wolves in nature. DLH uses a different approach to construct a neighborhood for each wolf in which the neighboring information can be shared between wolves. This dimension learning used in the DLH search strategy enhances the balance between local and global search and maintains diversity. The performance of the proposed I-GWO algorithm is evaluated on the CEC 2018 benchmark suite and four engineering problems. In all experiments, I-GWO is compared with six other state-of-the-art metaheuristics. The results are also analyzed by Friedman and MAE statistical tests. The experimental results and statistical tests demonstrate that the I-GWO algorithm is very competitive and often superior compared to the algorithms used in the experiments. The results of the proposed algorithm on the engineering design problems demonstrate its efficiency and applicability.
In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global optimization and engineering design problems. This improvement is proposed to alleviate the lack of population diversity, the imbalance between the exploitation and exploration, and premature convergence of the GWO algorithm. The I-GWO algorithm benefits from a new movement strategy named dimension learning-based hunting (DLH) search strategy inherited from the individual hunting behavior of wolves in nature. DLH uses a different approach to construct a neighborhood for each wolf in which the neighboring information can be shared between wolves. This dimension learning used in the DLH search strategy enhances the balance between local and global search and maintains diversity. The performance of the proposed I-GWO algorithm is evaluated on the CEC 2018 benchmark suite and four engineering problems. In all experiments, I-GWO is compared with six other state-of-the-art metaheuristics. The results are also analyzed by Friedman and MAE statistical tests. The experimental results and statistical tests demonstrate that the I-GWO algorithm is very competitive and often superior compared to the algorithms used in the experiments. The results of the proposed algorithm on the engineering design problems demonstrate its efficiency and applicability.
ArticleNumber 113917
Author Nadimi-Shahraki, Mohammad H.
Taghian, Shokooh
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Mohammad H.
  surname: Nadimi-Shahraki
  fullname: Nadimi-Shahraki, Mohammad H.
  email: nadimi@iaun.ac.ir
  organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
– sequence: 2
  givenname: Shokooh
  orcidid: 0000-0002-8872-8455
  surname: Taghian
  fullname: Taghian, Shokooh
  organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
– sequence: 3
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Australia
BookMark eNp9kD1rwzAQhkVpoUnaP9DJ0NmpJMuWBB0aQr8g0KWdhS2fgowtpZKTkP762rhTh0x3HO9zxz1zdOm8A4TuCF4STIqHZgnxWC4ppsOAZJLwCzQjgmdpwWV2iWZY5jxlhLNrNI-xwZhwjPkMPa1cYrtd8Aeok22AU3L0rUn8rred_YGQGB-S6NuDddsE3NY6gDD2A1K10MUbdGXKNsLtX12gr5fnz_Vbuvl4fV-vNqnOqOhTmgtTa1mYjBQCM1pnpSBYU1rl2mAQUFWSsxL4kJFakJLkVSEM45lgBBjJFuh-2jsc_t5D7FXj98ENJxVlAmPMpMyHFJ1SOvgYAxi1C7Yrw0kRrEZTqlGjKTWaUpOpARL_IG37srfe9aG07Xn0cUJheP1gIaioLTgNtQ2ge1V7ew7_BSVZhbU
CitedBy_id crossref_primary_10_1007_s00500_021_06498_3
crossref_primary_10_3390_pr9122276
crossref_primary_10_1038_s41598_024_67197_1
crossref_primary_10_1088_1742_6596_2312_1_012063
crossref_primary_10_3390_biomimetics9050292
crossref_primary_10_1007_s11063_023_11146_y
crossref_primary_10_1007_s42235_024_00493_8
crossref_primary_10_1038_s41598_024_72109_4
crossref_primary_10_1155_2021_9085617
crossref_primary_10_3390_aerospace10030208
crossref_primary_10_3390_cryst15030264
crossref_primary_10_1016_j_eswa_2022_118267
crossref_primary_10_1007_s40866_023_00181_2
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1016_j_cjche_2021_11_022
crossref_primary_10_3390_w16060859
crossref_primary_10_3390_bioengineering11030254
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_1007_s42235_024_00539_x
crossref_primary_10_1016_j_asoc_2022_109730
crossref_primary_10_1016_j_engappai_2023_106490
crossref_primary_10_1016_j_renene_2022_07_016
crossref_primary_10_1007_s10586_024_04448_w
crossref_primary_10_1016_j_ins_2024_120924
crossref_primary_10_1016_j_inpa_2023_11_003
crossref_primary_10_3390_w15030437
crossref_primary_10_1016_j_asoc_2024_112688
crossref_primary_10_1007_s13369_020_05151_9
crossref_primary_10_1371_journal_pone_0280006
crossref_primary_10_3390_math11194200
crossref_primary_10_1016_j_engappai_2023_107230
crossref_primary_10_1080_0305215X_2024_2378352
crossref_primary_10_1007_s00170_023_12905_w
crossref_primary_10_1080_00207217_2024_2408797
crossref_primary_10_1177_10775463241288053
crossref_primary_10_1007_s12065_025_01021_1
crossref_primary_10_1007_s13369_024_09589_z
crossref_primary_10_1016_j_apm_2020_12_016
crossref_primary_10_1109_ACCESS_2024_3350269
crossref_primary_10_48084_etasr_7204
crossref_primary_10_1038_s41598_024_80648_z
crossref_primary_10_1049_rpg2_13115
crossref_primary_10_1016_j_envsoft_2023_105914
crossref_primary_10_1016_j_isatra_2025_02_030
crossref_primary_10_1109_ACCESS_2024_3425710
crossref_primary_10_1007_s10489_024_05540_9
crossref_primary_10_1016_j_eswa_2022_119211
crossref_primary_10_1080_08839514_2023_2166232
crossref_primary_10_1038_s41598_024_63188_4
crossref_primary_10_1016_j_energy_2021_123011
crossref_primary_10_3390_electronics10232975
crossref_primary_10_1016_j_optlastec_2024_111294
crossref_primary_10_1080_17509653_2024_2381742
crossref_primary_10_3390_math10111929
crossref_primary_10_1109_LGRS_2024_3449898
crossref_primary_10_1615_TelecomRadEng_2023043935
crossref_primary_10_3390_w16141964
crossref_primary_10_1109_TCSII_2023_3332825
crossref_primary_10_1016_j_measurement_2021_110272
crossref_primary_10_1016_j_rico_2024_100487
crossref_primary_10_1049_rpg2_13004
crossref_primary_10_1016_j_engappai_2022_105088
crossref_primary_10_1007_s42235_023_00387_1
crossref_primary_10_1007_s00521_022_07369_0
crossref_primary_10_1016_j_measurement_2025_116917
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_1007_s10973_020_10539_8
crossref_primary_10_1007_s11276_024_03874_3
crossref_primary_10_34133_space_0068
crossref_primary_10_1016_j_asoc_2024_112305
crossref_primary_10_1016_j_engappai_2023_106121
crossref_primary_10_1016_j_rser_2023_113192
crossref_primary_10_1038_s41598_023_30442_0
crossref_primary_10_1007_s00500_023_09153_1
crossref_primary_10_1016_j_oceaneng_2023_114912
crossref_primary_10_1061__ASCE_CF_1943_5509_0001753
crossref_primary_10_1002_nsg_12296
crossref_primary_10_1038_s41598_024_83836_z
crossref_primary_10_1080_12265934_2022_2044890
crossref_primary_10_32604_cmc_2023_038787
crossref_primary_10_3390_en16062860
crossref_primary_10_3390_math10213938
crossref_primary_10_3390_biomimetics9040205
crossref_primary_10_1016_j_eswa_2023_119672
crossref_primary_10_3233_JIFS_213206
crossref_primary_10_3390_sym14051021
crossref_primary_10_1016_j_matcom_2022_05_015
crossref_primary_10_1007_s40430_023_04156_3
crossref_primary_10_3390_biomimetics9090552
crossref_primary_10_3390_chemengineering7050082
crossref_primary_10_1016_j_eswa_2023_121870
crossref_primary_10_1016_j_measen_2024_101250
crossref_primary_10_3390_w17010094
crossref_primary_10_1109_TIM_2022_3146948
crossref_primary_10_1016_j_anucene_2021_108545
crossref_primary_10_1016_j_bbe_2023_01_002
crossref_primary_10_1016_j_apm_2024_03_001
crossref_primary_10_1016_j_cma_2024_117251
crossref_primary_10_3390_a15090317
crossref_primary_10_1016_j_apenergy_2024_125047
crossref_primary_10_1016_j_eswa_2022_119269
crossref_primary_10_1016_j_knosys_2021_107297
crossref_primary_10_1016_j_engappai_2021_104558
crossref_primary_10_32604_cmes_2022_019198
crossref_primary_10_3390_electronics13010068
crossref_primary_10_3390_su15086905
crossref_primary_10_1007_s10973_020_10538_9
crossref_primary_10_1016_j_jksuci_2023_101757
crossref_primary_10_3390_su14063267
crossref_primary_10_1049_ell2_13249
crossref_primary_10_1093_ce_zkad066
crossref_primary_10_1016_j_envres_2022_114228
crossref_primary_10_1007_s11831_022_09773_0
crossref_primary_10_1007_s00521_021_06747_4
crossref_primary_10_1016_j_eswa_2025_126425
crossref_primary_10_1088_1361_665X_acb2a0
crossref_primary_10_3390_math10234617
crossref_primary_10_1061_JAEEEZ_ASENG_4824
crossref_primary_10_1016_j_jocs_2024_102323
crossref_primary_10_3390_app14209610
crossref_primary_10_1016_j_asoc_2022_109791
crossref_primary_10_1049_cth2_12277
crossref_primary_10_3934_mbe_2023924
crossref_primary_10_1002_2050_7038_13163
crossref_primary_10_1007_s00704_021_03771_1
crossref_primary_10_1016_j_simpat_2025_103093
crossref_primary_10_61186_NMCE_2311_1036
crossref_primary_10_1016_j_knosys_2022_108225
crossref_primary_10_1016_j_knosys_2023_110940
crossref_primary_10_3390_biomimetics9100647
crossref_primary_10_3390_biomimetics9110677
crossref_primary_10_1371_journal_pone_0288071
crossref_primary_10_1108_RPJ_04_2023_0136
crossref_primary_10_1016_j_epsr_2025_111462
crossref_primary_10_1109_TIM_2025_3547095
crossref_primary_10_3390_app14020556
crossref_primary_10_1016_j_swevo_2024_101807
crossref_primary_10_1007_s00521_024_09497_1
crossref_primary_10_1007_s10115_025_02340_6
crossref_primary_10_1080_10589759_2024_2402887
crossref_primary_10_1007_s00170_024_14513_8
crossref_primary_10_1007_s00521_024_10346_4
crossref_primary_10_1007_s00500_024_09935_1
crossref_primary_10_1016_j_eswa_2023_120771
crossref_primary_10_1016_j_oceaneng_2022_112359
crossref_primary_10_1109_ACCESS_2022_3178739
crossref_primary_10_1016_j_epsr_2022_107796
crossref_primary_10_1016_j_engstruct_2024_118340
crossref_primary_10_3390_electronics13101842
crossref_primary_10_4018_IJSIR_315636
crossref_primary_10_1007_s00521_023_09202_8
crossref_primary_10_1177_0309524X241247230
crossref_primary_10_3390_math10224350
crossref_primary_10_4018_IJSIR_310063
crossref_primary_10_1155_2022_9752003
crossref_primary_10_1016_j_knosys_2024_111907
crossref_primary_10_3390_app11114795
crossref_primary_10_3390_biomimetics9100595
crossref_primary_10_1016_j_compeleceng_2025_110119
crossref_primary_10_1007_s00202_023_02108_7
crossref_primary_10_1016_j_engfailanal_2022_106829
crossref_primary_10_1016_j_asoc_2023_110959
crossref_primary_10_2166_wst_2022_356
crossref_primary_10_1038_s41598_024_81125_3
crossref_primary_10_30932_1992_3252_2021_19_6_7
crossref_primary_10_1007_s12145_022_00873_w
crossref_primary_10_1016_j_chemer_2024_126207
crossref_primary_10_1155_2021_2298215
crossref_primary_10_7717_peerj_cs_882
crossref_primary_10_1155_2023_6678942
crossref_primary_10_3390_biomimetics8020132
crossref_primary_10_1038_s41598_022_10496_2
crossref_primary_10_3390_math9182230
crossref_primary_10_7717_peerj_cs_1661
crossref_primary_10_1007_s40515_025_00569_w
crossref_primary_10_1016_j_cma_2022_114616
crossref_primary_10_1016_j_ins_2023_03_138
crossref_primary_10_3390_s22051826
crossref_primary_10_1049_elp2_12135
crossref_primary_10_5812_jjnpp_142058
crossref_primary_10_1007_s42235_022_00185_1
crossref_primary_10_1016_j_ptlrs_2021_12_004
crossref_primary_10_1109_JSEN_2024_3356579
crossref_primary_10_3390_su14042305
crossref_primary_10_1016_j_bbe_2023_04_003
crossref_primary_10_3390_app14114603
crossref_primary_10_1016_j_enconman_2022_116338
crossref_primary_10_1007_s10479_022_04713_4
crossref_primary_10_1016_j_iot_2024_101365
crossref_primary_10_1016_j_jics_2021_100287
crossref_primary_10_3390_sym17010050
crossref_primary_10_1038_s41598_024_70462_y
crossref_primary_10_3389_feart_2022_1029420
crossref_primary_10_1016_j_compbiomed_2022_105563
crossref_primary_10_1016_j_measurement_2024_115022
crossref_primary_10_1016_j_swevo_2024_101694
crossref_primary_10_1007_s13721_024_00489_8
crossref_primary_10_1371_journal_pone_0275094
crossref_primary_10_1007_s11227_023_05617_1
crossref_primary_10_1049_stg2_12198
crossref_primary_10_1016_j_renene_2024_122052
crossref_primary_10_1142_S0218001422590108
crossref_primary_10_1155_2024_8185044
crossref_primary_10_1002_dac_5468
crossref_primary_10_3390_app142412065
crossref_primary_10_3390_s23041867
crossref_primary_10_1007_s12652_022_03898_7
crossref_primary_10_1007_s12145_022_00894_5
crossref_primary_10_1016_j_enconman_2022_116221
crossref_primary_10_3390_s23073714
crossref_primary_10_1007_s12555_020_0931_6
crossref_primary_10_3390_math9030291
crossref_primary_10_1007_s11071_024_09800_8
crossref_primary_10_3390_su151813284
crossref_primary_10_1016_j_dajour_2023_100175
crossref_primary_10_1109_TSMC_2025_3535783
crossref_primary_10_1016_j_eswa_2021_116432
crossref_primary_10_1007_s11227_024_06116_7
crossref_primary_10_1002_ente_202400996
crossref_primary_10_1016_j_asoc_2024_111614
crossref_primary_10_1016_j_enpol_2024_114391
crossref_primary_10_1038_s41598_023_39408_8
crossref_primary_10_3390_electronics12092042
crossref_primary_10_3390_math11071745
crossref_primary_10_1016_j_jobe_2024_109408
crossref_primary_10_1007_s00521_022_07775_4
crossref_primary_10_1016_j_jocs_2022_101805
crossref_primary_10_1088_1361_6501_accf29
crossref_primary_10_1007_s10586_024_04721_y
crossref_primary_10_1111_exsy_13458
crossref_primary_10_1007_s11600_023_01028_1
crossref_primary_10_1007_s41939_024_00413_7
crossref_primary_10_3390_pr10010062
crossref_primary_10_1016_j_fuel_2022_123348
crossref_primary_10_1080_02286203_2021_1983937
crossref_primary_10_1002_aic_18115
crossref_primary_10_1016_j_aej_2022_08_013
crossref_primary_10_1080_02331934_2022_2069024
crossref_primary_10_1109_LGRS_2022_3171340
crossref_primary_10_1016_j_knosys_2023_110580
crossref_primary_10_1109_ACCESS_2023_3268544
crossref_primary_10_1007_s10973_020_10546_9
crossref_primary_10_3390_agriculture15040442
crossref_primary_10_1016_j_est_2022_105830
crossref_primary_10_1007_s00366_021_01471_y
crossref_primary_10_1016_j_jobe_2024_110566
crossref_primary_10_1016_j_advengsoft_2024_103696
crossref_primary_10_1007_s00521_022_07512_x
crossref_primary_10_1007_s00521_022_07303_4
crossref_primary_10_1007_s13369_024_09702_2
crossref_primary_10_3390_su13126703
crossref_primary_10_1007_s00521_022_07391_2
crossref_primary_10_1007_s10462_023_10416_4
crossref_primary_10_1155_2021_9564583
crossref_primary_10_1007_s12065_024_00922_x
crossref_primary_10_1016_j_eswa_2021_115690
crossref_primary_10_1016_j_istruc_2024_108138
crossref_primary_10_1016_j_knosys_2025_113169
crossref_primary_10_3390_aerospace12020101
crossref_primary_10_1016_j_compag_2024_109167
crossref_primary_10_1016_j_asej_2025_103342
crossref_primary_10_3390_math10142535
crossref_primary_10_1007_s11224_024_02411_4
crossref_primary_10_1007_s12065_021_00687_7
crossref_primary_10_1016_j_advengsoft_2024_103665
crossref_primary_10_1007_s00357_024_09468_0
crossref_primary_10_1038_s41598_024_55040_6
crossref_primary_10_1109_ACCESS_2023_3292792
crossref_primary_10_1007_s11227_022_04821_9
crossref_primary_10_3390_math12152343
crossref_primary_10_1007_s10462_023_10658_2
crossref_primary_10_1016_j_memori_2022_100021
crossref_primary_10_1016_j_eswa_2024_123958
crossref_primary_10_1016_j_fuel_2024_133849
crossref_primary_10_1007_s00521_022_08058_8
crossref_primary_10_1016_j_compbiomed_2022_106214
crossref_primary_10_1016_j_heliyon_2024_e35958
crossref_primary_10_1371_journal_pone_0280512
crossref_primary_10_1016_j_matcom_2023_04_020
crossref_primary_10_1109_ACCESS_2024_3427812
crossref_primary_10_1016_j_energy_2021_122367
crossref_primary_10_1007_s10479_024_06052_y
crossref_primary_10_1007_s10586_024_04425_3
crossref_primary_10_1016_j_asoc_2020_106761
crossref_primary_10_1049_rpg2_12359
crossref_primary_10_1038_s41598_024_60821_0
crossref_primary_10_1016_j_ijhydene_2022_03_113
crossref_primary_10_1016_j_jestch_2023_101551
crossref_primary_10_1109_ACCESS_2022_3218056
crossref_primary_10_3390_a14090269
crossref_primary_10_3390_su13126963
crossref_primary_10_1007_s00366_021_01494_5
crossref_primary_10_1016_j_oceaneng_2023_114440
crossref_primary_10_1177_00368504211063258
crossref_primary_10_3390_math11153312
crossref_primary_10_1007_s11227_022_04930_5
crossref_primary_10_1016_j_est_2023_109234
crossref_primary_10_1007_s00500_023_07928_0
crossref_primary_10_1016_j_knosys_2023_110554
crossref_primary_10_1631_FITEE_2100580
crossref_primary_10_1016_j_procs_2021_08_148
crossref_primary_10_1016_j_treng_2023_100164
crossref_primary_10_1016_j_energy_2024_132352
crossref_primary_10_3390_make5030061
crossref_primary_10_1016_j_knosys_2023_111108
crossref_primary_10_1007_s11042_024_19727_2
crossref_primary_10_1080_02286203_2024_2414951
crossref_primary_10_1109_ACCESS_2022_3155484
crossref_primary_10_3934_mbe_2023592
crossref_primary_10_1017_S0263574723000231
crossref_primary_10_1016_j_engappai_2023_105958
crossref_primary_10_1088_2040_8986_adb596
crossref_primary_10_1142_S0219622021500176
crossref_primary_10_1016_j_eswa_2021_116001
crossref_primary_10_1016_j_ceramint_2025_01_177
crossref_primary_10_1007_s00371_023_02993_w
crossref_primary_10_1007_s12665_023_11222_5
crossref_primary_10_1016_j_compgeo_2023_105814
crossref_primary_10_1016_j_asoc_2023_110319
crossref_primary_10_1109_ACCESS_2023_3240576
crossref_primary_10_1007_s00500_023_09332_0
crossref_primary_10_1007_s10973_020_10545_w
crossref_primary_10_1016_j_eswa_2023_120186
crossref_primary_10_1016_j_fuel_2023_130351
crossref_primary_10_17798_bitlisfen_1317696
crossref_primary_10_1007_s10668_023_03131_1
crossref_primary_10_3390_electronics11050831
crossref_primary_10_1109_ACCESS_2022_3203999
crossref_primary_10_3390_s22176420
crossref_primary_10_3390_en16031355
crossref_primary_10_1007_s11227_021_04015_9
crossref_primary_10_3390_sym13122388
crossref_primary_10_1007_s11042_022_14268_y
crossref_primary_10_1016_j_asoc_2023_110561
crossref_primary_10_1016_j_compbiomed_2023_106768
crossref_primary_10_1017_aer_2024_159
crossref_primary_10_1007_s10586_024_04628_8
crossref_primary_10_1007_s00500_024_09878_7
crossref_primary_10_1007_s11277_024_10970_2
crossref_primary_10_1007_s11042_023_16116_z
crossref_primary_10_1109_ACCESS_2023_3263584
crossref_primary_10_1093_jcde_qwae001
crossref_primary_10_1016_j_eswa_2024_123871
crossref_primary_10_1016_j_oregeorev_2025_106458
crossref_primary_10_1016_j_mtcomm_2025_112069
crossref_primary_10_1016_j_autcon_2022_104310
crossref_primary_10_1007_s00607_022_01079_0
crossref_primary_10_1016_j_egyr_2024_05_011
crossref_primary_10_1016_j_apacoust_2024_110341
crossref_primary_10_1016_j_fraope_2024_100183
crossref_primary_10_1007_s12559_023_10180_1
crossref_primary_10_1007_s10489_024_05537_4
crossref_primary_10_1016_j_asoc_2023_110573
crossref_primary_10_1038_s41598_022_13516_3
crossref_primary_10_1016_j_eswa_2023_122349
crossref_primary_10_1016_j_ijhydene_2024_09_027
crossref_primary_10_1007_s10489_021_02795_4
crossref_primary_10_1007_s42979_024_02674_y
crossref_primary_10_1109_ACCESS_2023_3264563
crossref_primary_10_1049_ell2_12882
crossref_primary_10_1016_j_oceaneng_2021_110121
crossref_primary_10_1038_s41598_024_81100_y
crossref_primary_10_1016_j_aej_2023_12_050
crossref_primary_10_1007_s13369_021_06513_7
crossref_primary_10_1016_j_engappai_2024_109127
crossref_primary_10_1002_oca_3101
crossref_primary_10_1016_j_aei_2024_102504
crossref_primary_10_2174_2212797616666230505151008
crossref_primary_10_1016_j_knosys_2021_107552
crossref_primary_10_3390_su15076261
crossref_primary_10_3390_su15119017
crossref_primary_10_1007_s00521_021_06885_9
crossref_primary_10_1016_j_eswa_2022_116971
crossref_primary_10_3934_mbe_2022364
crossref_primary_10_1108_COMPEL_07_2021_0231
crossref_primary_10_1007_s00521_023_09014_w
crossref_primary_10_3390_app14062236
crossref_primary_10_48084_etasr_4978
crossref_primary_10_3390_su152014693
crossref_primary_10_12677_MOS_2023_124311
crossref_primary_10_3389_fbioe_2022_1018895
crossref_primary_10_1016_j_eswa_2023_121141
crossref_primary_10_1080_15325008_2022_2143939
crossref_primary_10_3390_s23020755
crossref_primary_10_1007_s11042_024_18579_0
crossref_primary_10_1007_s42979_022_01333_4
crossref_primary_10_1016_j_nucengdes_2023_112865
crossref_primary_10_1016_j_eswa_2024_124865
crossref_primary_10_1007_s10462_024_10821_3
crossref_primary_10_1016_j_est_2025_115630
crossref_primary_10_1016_j_jocs_2021_101368
crossref_primary_10_1109_ACCESS_2021_3073480
crossref_primary_10_1007_s11227_022_04996_1
crossref_primary_10_1016_j_apm_2022_11_016
crossref_primary_10_1016_j_knosys_2021_106751
crossref_primary_10_1016_j_eswa_2022_118500
crossref_primary_10_1038_s41598_024_62403_6
crossref_primary_10_3390_a14110314
crossref_primary_10_3390_app13126871
crossref_primary_10_1109_JIOT_2024_3459918
crossref_primary_10_1016_j_asoc_2023_110236
crossref_primary_10_1016_j_polymertesting_2023_108267
crossref_primary_10_3390_computers12020035
crossref_primary_10_1007_s42979_023_02008_4
crossref_primary_10_1016_j_chaos_2024_114869
crossref_primary_10_1007_s13369_022_06579_x
crossref_primary_10_1038_s41598_025_91801_7
crossref_primary_10_1016_j_cma_2024_116964
crossref_primary_10_1007_s10489_021_02776_7
crossref_primary_10_3390_drones8120722
crossref_primary_10_1371_journal_pone_0303094
crossref_primary_10_1007_s12667_024_00697_1
crossref_primary_10_3390_en14113029
crossref_primary_10_1016_j_asoc_2023_110252
crossref_primary_10_3390_su14052937
crossref_primary_10_1016_j_bspc_2021_103401
crossref_primary_10_1109_TIM_2024_3363783
crossref_primary_10_3390_su14095554
crossref_primary_10_1007_s13042_024_02216_1
crossref_primary_10_1109_ACCESS_2022_3183627
crossref_primary_10_1007_s11227_022_04801_z
crossref_primary_10_1155_2021_8487997
crossref_primary_10_1007_s00521_022_07854_6
crossref_primary_10_1016_j_jksuci_2021_12_018
crossref_primary_10_1016_j_knosys_2023_110297
crossref_primary_10_1002_2050_7038_12999
crossref_primary_10_1016_j_egyr_2022_09_069
crossref_primary_10_1155_2022_3714475
crossref_primary_10_1016_j_seta_2022_102388
crossref_primary_10_1080_15325008_2024_2329329
crossref_primary_10_1155_2021_5491017
crossref_primary_10_1016_j_mtcomm_2024_108832
crossref_primary_10_1016_j_renene_2024_122238
crossref_primary_10_1155_2021_5556941
crossref_primary_10_1007_s10462_023_10494_4
crossref_primary_10_1108_WJE_01_2023_0006
crossref_primary_10_1002_cpe_7209
crossref_primary_10_1007_s40996_022_00931_9
crossref_primary_10_1016_j_knosys_2023_111134
crossref_primary_10_1016_j_knosys_2023_111257
crossref_primary_10_32604_cmc_2023_043239
crossref_primary_10_1177_14759217221138464
crossref_primary_10_1007_s12065_024_00909_8
crossref_primary_10_1155_2022_1511479
crossref_primary_10_1016_j_jhydrol_2022_128995
crossref_primary_10_7240_jeps_894178
crossref_primary_10_1016_j_matcom_2023_06_021
crossref_primary_10_3390_app132212290
crossref_primary_10_3390_fractalfract6020080
crossref_primary_10_1007_s12065_024_00996_7
crossref_primary_10_1021_acs_jcim_3c01876
crossref_primary_10_1016_j_eswa_2022_116895
crossref_primary_10_3390_en14185631
crossref_primary_10_1063_5_0077939
crossref_primary_10_1364_OE_537427
crossref_primary_10_3390_biomimetics9070399
crossref_primary_10_1186_s40537_024_00917_6
crossref_primary_10_3390_math12010113
crossref_primary_10_1016_j_energy_2021_120211
crossref_primary_10_3934_mbe_2023373
crossref_primary_10_1177_1369433221994341
crossref_primary_10_3390_s24175732
crossref_primary_10_1007_s40747_021_00346_5
crossref_primary_10_1016_j_eswa_2022_117629
crossref_primary_10_1016_j_jrtpm_2020_100231
crossref_primary_10_1038_s41598_021_01018_7
crossref_primary_10_1007_s10586_024_04602_4
crossref_primary_10_1007_s11227_023_05413_x
crossref_primary_10_1177_09544054231221963
crossref_primary_10_1111_exsy_12843
crossref_primary_10_1007_s00500_025_10445_x
crossref_primary_10_1155_2024_2054173
crossref_primary_10_1007_s40435_024_01482_9
crossref_primary_10_3390_pr12040783
crossref_primary_10_3390_math11102259
crossref_primary_10_1016_j_ultras_2024_107301
crossref_primary_10_3390_electronics13142839
crossref_primary_10_1007_s00500_023_08039_6
crossref_primary_10_1177_09544062241307888
crossref_primary_10_1016_j_compeleceng_2024_109991
crossref_primary_10_1007_s40808_024_02207_9
crossref_primary_10_1016_j_jfranklin_2023_07_002
crossref_primary_10_1016_j_apm_2023_08_043
crossref_primary_10_1109_ACCESS_2021_3066180
crossref_primary_10_1016_j_epsr_2023_109346
crossref_primary_10_1021_acsomega_4c04888
crossref_primary_10_3390_rs15153812
crossref_primary_10_1109_ACCESS_2021_3059665
crossref_primary_10_1016_j_cie_2024_110568
crossref_primary_10_1016_j_eswa_2024_125863
crossref_primary_10_18698_1812_3368_2022_1_39_56
crossref_primary_10_1364_OE_503978
crossref_primary_10_1016_j_cma_2023_116664
crossref_primary_10_1016_j_asoc_2024_112295
crossref_primary_10_1371_journal_pone_0276943
crossref_primary_10_1016_j_eswa_2023_120904
crossref_primary_10_1186_s41601_021_00219_6
crossref_primary_10_3390_app13031239
crossref_primary_10_1109_TITS_2023_3257484
crossref_primary_10_1016_j_compag_2023_108173
crossref_primary_10_1038_s41598_025_87455_0
crossref_primary_10_1007_s40430_025_05458_4
crossref_primary_10_1016_j_jenvman_2024_120682
crossref_primary_10_1016_j_scs_2022_104209
crossref_primary_10_2139_ssrn_4615955
crossref_primary_10_1007_s41965_025_00186_z
crossref_primary_10_1007_s10586_024_04455_x
crossref_primary_10_1016_j_psep_2024_03_082
crossref_primary_10_1088_1742_6596_2527_1_012050
crossref_primary_10_1007_s11540_024_09755_8
crossref_primary_10_1111_exsy_13715
crossref_primary_10_1109_JSEN_2022_3212785
crossref_primary_10_3390_fi14120347
crossref_primary_10_1109_ACCESS_2022_3177218
crossref_primary_10_1016_j_trd_2022_103433
crossref_primary_10_1007_s10489_021_03155_y
crossref_primary_10_1016_j_adhoc_2023_103308
crossref_primary_10_29130_dubited_1150453
crossref_primary_10_1109_TCE_2023_3319039
crossref_primary_10_1155_2022_9593103
crossref_primary_10_1080_23302674_2022_2121623
crossref_primary_10_1088_1361_6501_ad3b2e
crossref_primary_10_3934_era_2024093
crossref_primary_10_1007_s11269_023_03478_0
crossref_primary_10_3390_electronics10243167
crossref_primary_10_1007_s12145_023_00963_3
crossref_primary_10_1016_j_patter_2023_100777
crossref_primary_10_1088_1402_4896_ad8486
crossref_primary_10_1007_s12652_022_04347_1
crossref_primary_10_1007_s00521_023_08984_1
crossref_primary_10_1155_2023_3427385
crossref_primary_10_1631_FITEE_2200237
crossref_primary_10_3390_s22186843
crossref_primary_10_1016_j_cma_2024_117429
crossref_primary_10_1016_j_ipm_2021_102854
crossref_primary_10_3390_en17051267
crossref_primary_10_1016_j_knosys_2022_108659
crossref_primary_10_1016_j_asoc_2022_109925
crossref_primary_10_1109_ACCESS_2023_3295242
crossref_primary_10_1007_s40314_022_01813_6
crossref_primary_10_1016_j_renene_2021_05_058
crossref_primary_10_3390_biomimetics10010031
crossref_primary_10_1016_j_energy_2022_124363
crossref_primary_10_1016_j_apenergy_2024_122624
crossref_primary_10_1007_s00500_024_09869_8
crossref_primary_10_1016_j_energy_2023_129811
crossref_primary_10_1088_1361_6501_ad73f3
crossref_primary_10_1007_s10878_024_01189_9
crossref_primary_10_1016_j_cscm_2024_e03650
crossref_primary_10_1016_j_ipm_2024_104038
crossref_primary_10_1007_s42979_024_03489_7
crossref_primary_10_1016_j_cma_2024_117411
crossref_primary_10_32604_cmc_2023_039227
crossref_primary_10_1002_eng2_12857
crossref_primary_10_1016_j_eswa_2023_121917
crossref_primary_10_1016_j_est_2025_115925
crossref_primary_10_1080_21642583_2023_2249021
crossref_primary_10_1016_j_jrmge_2023_06_018
crossref_primary_10_1016_j_suscom_2023_100916
crossref_primary_10_1016_j_suscom_2023_100918
crossref_primary_10_1016_j_istruc_2023_02_008
crossref_primary_10_1007_s11269_022_03183_4
crossref_primary_10_1016_j_asej_2024_102797
crossref_primary_10_3390_pr12091816
crossref_primary_10_1093_jcde_qwac094
crossref_primary_10_1016_j_knosys_2021_107467
crossref_primary_10_1016_j_ijpe_2024_109182
crossref_primary_10_3390_math12182870
crossref_primary_10_1016_j_engfracmech_2024_109951
crossref_primary_10_1016_j_measurement_2022_112387
crossref_primary_10_2139_ssrn_3936333
crossref_primary_10_1371_journal_pone_0277900
crossref_primary_10_1016_j_est_2024_112139
crossref_primary_10_1007_s11665_024_10282_3
crossref_primary_10_1109_JIOT_2023_3315286
crossref_primary_10_3390_math11143064
crossref_primary_10_1016_j_fuel_2022_127249
crossref_primary_10_12677_fin_2025_151010
crossref_primary_10_1038_s41598_023_49754_2
crossref_primary_10_1007_s00521_021_06050_2
crossref_primary_10_1007_s00521_022_06906_1
crossref_primary_10_3390_su151511510
crossref_primary_10_3390_math11183861
crossref_primary_10_1109_ACCESS_2021_3072336
crossref_primary_10_3390_su15129512
crossref_primary_10_1007_s11042_024_20121_1
crossref_primary_10_1002_adc2_213
crossref_primary_10_1038_s41598_022_18001_5
crossref_primary_10_1007_s11227_024_06727_0
crossref_primary_10_3390_axioms12080767
crossref_primary_10_1007_s11042_023_15146_x
crossref_primary_10_3233_JIFS_224382
crossref_primary_10_1002_mma_7187
crossref_primary_10_1007_s11227_025_07106_z
crossref_primary_10_1016_j_energy_2025_134605
crossref_primary_10_1016_j_compeleceng_2023_108893
crossref_primary_10_1016_j_rineng_2025_104241
crossref_primary_10_1007_s10825_024_02204_2
crossref_primary_10_1007_s41939_024_00453_z
crossref_primary_10_59782_sidr_v3i1_140
crossref_primary_10_1016_j_ijleo_2022_170470
crossref_primary_10_1038_s41598_023_43013_0
crossref_primary_10_1109_ACCESS_2023_3289819
crossref_primary_10_3390_e23121637
crossref_primary_10_1016_j_cscm_2024_e03869
crossref_primary_10_3390_sym13020244
Cites_doi 10.1644/06-MAMM-A-119R1.1
10.1016/j.epsr.2016.09.025
10.1016/j.soildyn.2015.04.004
10.1016/j.swevo.2019.04.008
10.1016/j.swevo.2011.02.002
10.1016/j.asoc.2020.106761
10.1016/j.compstruc.2015.03.014
10.1016/j.knosys.2018.05.009
10.1109/ACCESS.2019.2934994
10.1016/j.eswa.2017.06.009
10.1016/j.eswa.2018.08.051
10.1016/j.eswa.2018.04.012
10.1016/j.compstruc.2012.09.003
10.1007/s00707-009-0270-4
10.1038/scientificamerican0792-66
10.1016/j.engappai.2017.10.024
10.1016/j.swevo.2018.10.006
10.1109/ACCESS.2019.2917803
10.1016/j.knosys.2017.11.015
10.5121/acij.2019.10501
10.1016/j.advengsoft.2005.04.005
10.1111/itor.12001
10.1016/j.eswa.2018.09.015
10.1016/j.eswa.2019.113125
10.1287/ijoc.2.1.4
10.1016/j.future.2019.07.015
10.1016/j.ins.2019.05.038
10.1016/j.knosys.2019.02.010
10.1109/ACCESS.2019.2921793
10.1109/TEVC.2005.857610
10.1007/978-3-319-13572-4_1
10.1007/s10973-019-09059-x
10.1016/j.knosys.2018.08.030
10.1023/A:1008202821328
10.1016/j.energy.2016.05.105
10.1109/ICCIC.2015.7435714
10.1080/15325008.2015.1041625
10.1016/j.apenergy.2017.12.115
10.1016/j.future.2019.02.028
10.1109/IDAP.2018.8620828
10.1016/j.physa.2019.122637
10.1109/TNNLS.2016.2634548
10.1007/s00521-017-3272-5
10.1016/j.eswa.2016.02.042
10.1016/j.asoc.2015.03.041
10.1007/978-3-540-87527-7
10.1002/9780470496916
10.1109/AEECT.2015.7360576
10.1287/ijoc.1.3.190
10.1007/s00034-019-01065-6
10.1007/s10489-014-0645-7
10.1016/j.advengsoft.2016.01.008
10.1109/MHS.1995.494215
10.1016/j.jestch.2017.11.001
10.1016/j.ins.2009.03.004
10.1016/j.knosys.2016.01.002
10.5120/ijca2016911667
10.1016/j.jestch.2016.07.004
10.1016/j.eswa.2012.04.036
10.1007/s00521-014-1806-7
10.1115/1.2919393
10.1016/j.jocs.2018.06.008
10.1016/j.asoc.2019.105583
10.1016/j.asoc.2018.11.047
10.1007/s10898-007-9149-x
10.1080/0952813X.2015.1020519
10.1016/j.asoc.2017.06.044
10.1016/j.compstruc.2016.03.001
10.1080/15325008.2015.1061620
10.1016/S1672-6529(09)60240-7
10.1155/2016/7950348
10.1007/s00521-016-2817-3
10.1016/j.knosys.2018.08.003
10.1016/j.ijepes.2018.01.024
10.1016/S0166-3615(99)00046-9
10.1108/HFF-12-2018-0758
10.11648/j.ajsea.20140302.11
10.1016/j.ijepes.2016.04.034
10.1016/j.cnsns.2012.05.010
10.1016/j.advengsoft.2013.12.007
10.1016/j.ins.2012.08.023
10.1007/s00521-015-1962-4
10.1016/j.apenergy.2018.02.070
10.1016/j.swevo.2017.08.002
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Mar 15, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113917
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113917
S0957417420307107
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-258fdc96f3168042d3a810c22b5cf0e8ebb974ae7c969c81a15b68f473841e413
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 08:27:07 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Tue Jul 01 04:05:49 EDT 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Engineering optimization problems
Swarm intelligence algorithm
Metaheuristic
Improved grey wolf optimizer
Grey wolf optimizer
Algorithm
Artificial intelligence
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-258fdc96f3168042d3a810c22b5cf0e8ebb974ae7c969c81a15b68f473841e413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8872-8455
0000-0002-1443-9458
PQID 2480004995
PQPubID 2045477
ParticipantIDs proquest_journals_2480004995
crossref_primary_10_1016_j_eswa_2020_113917
crossref_citationtrail_10_1016_j_eswa_2020_113917
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0155) 2019; 101
Glover (b0135) 1990; 2
Tu, Chen, Liu (b0435) 2019; 7
Fard, Monfaredi, Nadimi-Shahraki (bib477) 2014; 3
Mirjalili, Mirjalili, Lewis (b0300) 2014; 69
Mirjalili (b0290) 2015; 43
Derrac, García, Molina, Herrera (b0055) 2011; 1
Koza, J. R. (1997). Genetic programming.
Saxena, Kumar, Mirjalili (b0365) 2020; 145
Li, Shahrajabian, Bagherzadeh, Jadidi, Karimipour, Tlili (b0230) 2020; 537
Dashti, Rahmani (bib478) 2016; 28
Eberhart, Russell, & Kennedy, James. (1995). A new optimizer using particle swarm theory. In Paper presented at the MHS'95. Proceedings of the sixth international symposium on micro machine and human science.
Kaveh, Khayatazad (b0215) 2012; 112
Thaher, Thaer, Heidari, Ali Asghar, Mafarja, Majdi, Dong, Jin Song, & Mirjalili, Seyedali. (2020). Binary harris hawks optimizer for high-dimensional, low sample size feature selection. In Evolutionary machine learning techniques (pp. 251–272): Springer.
Zang, Zhang, Hapeshi (b0470) 2010; 7
Radosavljević, Klimenta, Jevtić, Arsić (b0345) 2015; 43
Erol, Eksin (b0090) 2006; 37
Long, Jiao, Liang, Tang (b0245) 2018; 68
Lu, Gao, Yi (b0255) 2018; 107
Holland (b0185) 1992; 267
Kannan, Kramer (b0200) 1994; 116
Guha, Roy, Banerjee (b0140) 2016; 19
Mohamed, Mohamed, El-Gaafary, Hemeida (b0310) 2017; 142
Mafarja, Majdi, Aljarah, Ibrahim, Faris, Hossam, Hammouri, Abdelaziz I, Ala’M, Al-Zoubi, & Mirjalili, Seyedali. (2019). Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Systems with Applications, 117, 267–286.
Kamboj (b0195) 2016; 27
Emary, Eid, Zawbaa, Hossam M, Grosan, Crina, & Hassenian, Abul Ella. (2015). Feature subset selection approach by gray-wolf optimization. In Paper presented at the Afro-European conference for industrial advancement.
Storn, Price (b0395) 1997; 11
Faris, Aljarah, Al-Betar, Mirjalili (b0100) 2018; 30
Meng, Pan, Kong (b0285) 2018; 141
Mohamed, Hadi, Jambi (b0315) 2019; 50
Arjenaki, Nadimi-Shahraki, Nourafza (b0010) 2015; 6
Lourenço, Martin, Stützle (b0250) 2003
Fister Jr, Iztok, Yang, Xin-She, Fister, Iztok, Brest, Janez, & Fister, Dušan. (2013). A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186, 1-7.
Song, Wang, Lu (b0380) 2018; 215
Hatamlou (b0160) 2013; 222
Taradeh, Mafarja, Heidari, Faris, Aljarah, Mirjalili, Fujita (b0425) 2019; 497
Muthukaruppan, Er (b0325) 2012; 39
El-Fergany, Hasanien (b0070) 2015; 43
Elaziz, Mirjalili (b0075) 2019; 172
He, Bagherzadeh, Shahrajabian, Karimipour, Jadidi, Bach (b0165) 2020; 139
Long, Jiao, Liang, Cai, Xu (b0240) 2019; 7
Mittal, Nitin, Singh, Urvinder, & Sohi, Balwinder Singh. (2016). Modified grey wolf optimizer for global engineering optimization. Applied Computational Intelligence and Soft Computing.
Taghian, Nadimi-Shahraki (b0405) 2019; 8
Nadimi-Shahraki, Taghian, Mirjalili, Faris (bib476) 2020
Gaidhane, Nigam (b0120) 2018; 27
Hasançebi, Azad (b0150) 2015; 154
Zamani, Nadimi-Shahraki (b0460) 2016; 14
Shen, Chen, Yu, Kang, Zhang, Li, Liu (b0370) 2016; 96
Sulaiman, Mustaffa, Mohamed, Aliman (b0400) 2015; 32
Taghian, S., Nadimi-Shahraki, M.H., & Zamani, H. (2018). Comparative analysis of transfer function-based binary metaheuristic algorithms for feature selection. In 2018 IEEE International Conference on Artificial Intelligence and Data Processing (IDAP),1-6.
Gandomi, Alavi (b0125) 2012; 17
Song, Tang, Zhao, Zhang, Li, Huang, Cai (b0385) 2015; 75
Emary, Zawbaa, Grosan (b0080) 2017; 29
Liang, Qin, Suganthan, Baskar (b0235) 2006; 10
Zhao, Wang, Zhang (b0475) 2019; 163
Chen, Xu, Mei, Ding, Li (b0040) 2018; 212
Fard, Monfaredi, Nadimi-Shahraki (b0095) 2014; 4
Awad, N. H., Ali, M. Z., Suganthan, P. N., Liang, J. J., & Qu, B. Y. (2017). Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization.
Karaboga, Basturk (b0205) 2007; 39
Wu, Bagherzadeh, D’Orazio, Habibollahi, Karimipour, Goodarzi, Bach (b0450) 2019; 535
He, Bagherzadeh, Tahmasebi, Abdollahi, Bahrami, Moradi, Bach (b0170) 2019
Faris, Hossam, Mafarja, Majdi M, Heidari, Ali Asghar, Aljarah, Ibrahim, Ala’M, Al-Zoubi, Mirjalili, Seyedali, & Fujita, Hamido. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge-Based Systems, 154, 43–67.
Jayabarathi, Raghunathan, Adarsh, Suganthan (b0190) 2016; 111
Malik, Mahmad Raphiyoddin S, Mohideen, E Rasul, & Ali, Layak. (2015). Weighted distance grey wolf optimizer for global optimization problems. In Paper presented at the 2015 IEEE international conference on computational intelligence and computing research (ICCIC).
Rashedi, Nezamabadi-Pour, Saryazdi (b0350) 2009; 179
Glover (b0130) 1989; 1
Taghian, S., & Nadimi-Shahraki, M.H. (2019b). Binary sine cosine algorithms for feature selection from medical data. arXiv preprint arXiv:1911.07805.
Panwar, Reddy, Verma, Panigrahi, Kumar (b0335) 2018; 38
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0175) 2019; 97
Sörensen (b0390) 2015; 22
Alomoush, Alsewari, Alamri, Aloufi, Zamli (b0005) 2019; 7
Attia, Sehiemy, Ragab, Hasanien (b0025) 2018; 99
Coello, Carlos A Coello. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113x127.
Talbi, E.-G. (2009). Metaheuristics: from design to implementation (Vol. 74): John Wiley & Sons.
Del Ser, Javier, Osaba, Eneko, Molina, Daniel, Yang, Xin-She, Salcedo-Sanz, Sancho, Camacho, David, . . . Herrera, Francisco. (2019). Bio-inspired computation: Where we stand and what's next. Swarm and Evolutionary Computation, 48, 220–250.
Zamani, Nadimi-Shahraki, Gandomi (b0455) 2019; 85
Nuaekaew, Artrit, Pholdee, Bureerat (b0330) 2017; 87
Tu, Chen, Liu (b0440) 2019; 76
Dorigo, Marco, Birattari, Mauro, Blum, Christian, Clerc, Maurice, Stützle, Thomas, & Winfield, Alan. (2008). Ant colony optimization and swarm intelligence. In 6th International Conference, ANTS 2008, Brussels, Belgium, September 22–24, 2008, Proceedings (Vol. 5217): Springer.
Arora, Anand (b0015) 2019; 116
Askarzadeh (b0020) 2016; 169
Katarya, Verma (b0210) 2018; 30
Banaie-Dezfouli, M., Nadimi-Shahraki, M.H., & Zamani, H. (2018). A novel tour planning model using big data. In 2018 IEEE International Conference on Artificial Intelligence and Data Processing (IDAP),1-6.
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b0270) 2018; 161
Singh, Singh (b0375) 2017; 20
Zamani, Nadimi-Shahraki (b0465) 2016; 151
Rechenberg (b0355) 1973; 104
Mirjalili, Lewis (b0295) 2016; 95
Saremi, Mirjalili, Mirjalili (b0360) 2015; 26
Faris, H., Aljarah, I., & Alqatawna, J.F. (2015). Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 1-5.
MacNulty, Mech, Smith (b0260) 2007; 88
Venkataraman, Kumar, Shakeel (b0445) 2020; 39
Pradhan, Roy, Pal (b0340) 2016; 83
Gunasundari, Janakiraman, Meenambal (b0145) 2016; 56
Heidari, Pahlavani (b0180) 2017; 60
Kaveh, Talatahari (b0220) 2010; 213
Zhao (10.1016/j.eswa.2020.113917_b0475) 2019; 163
He (10.1016/j.eswa.2020.113917_b0170) 2019
MacNulty (10.1016/j.eswa.2020.113917_b0260) 2007; 88
Jayabarathi (10.1016/j.eswa.2020.113917_b0190) 2016; 111
Rechenberg (10.1016/j.eswa.2020.113917_b0355) 1973; 104
Fard (10.1016/j.eswa.2020.113917_bib477) 2014; 3
Katarya (10.1016/j.eswa.2020.113917_b0210) 2018; 30
Heidari (10.1016/j.eswa.2020.113917_b0175) 2019; 97
Taradeh (10.1016/j.eswa.2020.113917_b0425) 2019; 497
Chen (10.1016/j.eswa.2020.113917_b0040) 2018; 212
Nadimi-Shahraki (10.1016/j.eswa.2020.113917_bib476) 2020
Rashedi (10.1016/j.eswa.2020.113917_b0350) 2009; 179
Erol (10.1016/j.eswa.2020.113917_b0090) 2006; 37
Arora (10.1016/j.eswa.2020.113917_b0015) 2019; 116
10.1016/j.eswa.2020.113917_b0045
Holland (10.1016/j.eswa.2020.113917_b0185) 1992; 267
10.1016/j.eswa.2020.113917_b0085
Singh (10.1016/j.eswa.2020.113917_b0375) 2017; 20
Radosavljević (10.1016/j.eswa.2020.113917_b0345) 2015; 43
Long (10.1016/j.eswa.2020.113917_b0245) 2018; 68
Meng (10.1016/j.eswa.2020.113917_b0285) 2018; 141
Song (10.1016/j.eswa.2020.113917_b0385) 2015; 75
Dashti (10.1016/j.eswa.2020.113917_bib478) 2016; 28
10.1016/j.eswa.2020.113917_b0115
Liang (10.1016/j.eswa.2020.113917_b0235) 2006; 10
Shen (10.1016/j.eswa.2020.113917_b0370) 2016; 96
Tu (10.1016/j.eswa.2020.113917_b0440) 2019; 76
Sulaiman (10.1016/j.eswa.2020.113917_b0400) 2015; 32
Glover (10.1016/j.eswa.2020.113917_b0135) 1990; 2
Long (10.1016/j.eswa.2020.113917_b0240) 2019; 7
Derrac (10.1016/j.eswa.2020.113917_b0055) 2011; 1
Nuaekaew (10.1016/j.eswa.2020.113917_b0330) 2017; 87
El-Fergany (10.1016/j.eswa.2020.113917_b0070) 2015; 43
10.1016/j.eswa.2020.113917_b0430
10.1016/j.eswa.2020.113917_b0035
Taghian (10.1016/j.eswa.2020.113917_b0405) 2019; 8
10.1016/j.eswa.2020.113917_b0110
10.1016/j.eswa.2020.113917_b0275
10.1016/j.eswa.2020.113917_b0030
Mirjalili (10.1016/j.eswa.2020.113917_b0300) 2014; 69
Zamani (10.1016/j.eswa.2020.113917_b0465) 2016; 151
Attia (10.1016/j.eswa.2020.113917_b0025) 2018; 99
Song (10.1016/j.eswa.2020.113917_b0380) 2018; 215
Alomoush (10.1016/j.eswa.2020.113917_b0005) 2019; 7
Gunasundari (10.1016/j.eswa.2020.113917_b0145) 2016; 56
Saxena (10.1016/j.eswa.2020.113917_b0365) 2020; 145
Elaziz (10.1016/j.eswa.2020.113917_b0075) 2019; 172
Lu (10.1016/j.eswa.2020.113917_b0255) 2018; 107
10.1016/j.eswa.2020.113917_b0305
10.1016/j.eswa.2020.113917_b0225
10.1016/j.eswa.2020.113917_b0105
Askarzadeh (10.1016/j.eswa.2020.113917_b0020) 2016; 169
Panwar (10.1016/j.eswa.2020.113917_b0335) 2018; 38
Gaidhane (10.1016/j.eswa.2020.113917_b0120) 2018; 27
Wu (10.1016/j.eswa.2020.113917_b0450) 2019; 535
Storn (10.1016/j.eswa.2020.113917_b0395) 1997; 11
10.1016/j.eswa.2020.113917_b0060
Mafarja (10.1016/j.eswa.2020.113917_b0270) 2018; 161
Muthukaruppan (10.1016/j.eswa.2020.113917_b0325) 2012; 39
Kamboj (10.1016/j.eswa.2020.113917_b0195) 2016; 27
Pradhan (10.1016/j.eswa.2020.113917_b0340) 2016; 83
Kaveh (10.1016/j.eswa.2020.113917_b0215) 2012; 112
Saremi (10.1016/j.eswa.2020.113917_b0360) 2015; 26
Tu (10.1016/j.eswa.2020.113917_b0435) 2019; 7
10.1016/j.eswa.2020.113917_b0265
10.1016/j.eswa.2020.113917_b0420
Zamani (10.1016/j.eswa.2020.113917_b0455) 2019; 85
10.1016/j.eswa.2020.113917_b0065
Mirjalili (10.1016/j.eswa.2020.113917_b0290) 2015; 43
Hasançebi (10.1016/j.eswa.2020.113917_b0150) 2015; 154
Hashim (10.1016/j.eswa.2020.113917_b0155) 2019; 101
Mirjalili (10.1016/j.eswa.2020.113917_b0295) 2016; 95
Heidari (10.1016/j.eswa.2020.113917_b0180) 2017; 60
Faris (10.1016/j.eswa.2020.113917_b0100) 2018; 30
Karaboga (10.1016/j.eswa.2020.113917_b0205) 2007; 39
Mohamed (10.1016/j.eswa.2020.113917_b0310) 2017; 142
10.1016/j.eswa.2020.113917_b0415
Guha (10.1016/j.eswa.2020.113917_b0140) 2016; 19
Kaveh (10.1016/j.eswa.2020.113917_b0220) 2010; 213
Kannan (10.1016/j.eswa.2020.113917_b0200) 1994; 116
Fard (10.1016/j.eswa.2020.113917_b0095) 2014; 4
Zamani (10.1016/j.eswa.2020.113917_b0460) 2016; 14
10.1016/j.eswa.2020.113917_b0050
Gandomi (10.1016/j.eswa.2020.113917_b0125) 2012; 17
He (10.1016/j.eswa.2020.113917_b0165) 2020; 139
Li (10.1016/j.eswa.2020.113917_b0230) 2020; 537
Hatamlou (10.1016/j.eswa.2020.113917_b0160) 2013; 222
Arjenaki (10.1016/j.eswa.2020.113917_b0010) 2015; 6
Lourenço (10.1016/j.eswa.2020.113917_b0250) 2003
Emary (10.1016/j.eswa.2020.113917_b0080) 2017; 29
Venkataraman (10.1016/j.eswa.2020.113917_b0445) 2020; 39
10.1016/j.eswa.2020.113917_b0410
Glover (10.1016/j.eswa.2020.113917_b0130) 1989; 1
Sörensen (10.1016/j.eswa.2020.113917_b0390) 2015; 22
Mohamed (10.1016/j.eswa.2020.113917_b0315) 2019; 50
Zang (10.1016/j.eswa.2020.113917_b0470) 2010; 7
References_xml – volume: 139
  start-page: 2801
  year: 2020
  end-page: 2810
  ident: b0165
  article-title: Controlled elitist multi-objective genetic algorithm joined with neural network to study the effects of nano-clay percentage on cell size and polymer foams density of PVC/clay nanocomposites
  publication-title: Journal of Thermal Analysis and Calorimetry
– volume: 43
  start-page: 1958
  year: 2015
  end-page: 1970
  ident: b0345
  article-title: Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm
  publication-title: Electric Power Components and Systems
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: b0200
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
– volume: 7
  start-page: 113810
  year: 2019
  end-page: 113825
  ident: b0240
  article-title: A random opposition-based learning grey wolf optimizer
  publication-title: IEEE Access
– volume: 535
  year: 2019
  ident: b0450
  article-title: Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and thermal properties such as pressure drop and heat transfer coefficient for non-Newtonian binary fluids
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: b0090
  article-title: A new optimization method: Big bang–big crunch
  publication-title: Advances in Engineering Software
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b0205
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of GLOBAL Optimization
– volume: 76
  start-page: 16
  year: 2019
  end-page: 30
  ident: b0440
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Applied Soft Computing
– reference: Taghian, S., & Nadimi-Shahraki, M.H. (2019b). Binary sine cosine algorithms for feature selection from medical data. arXiv preprint arXiv:1911.07805.
– volume: 99
  start-page: 331
  year: 2018
  end-page: 343
  ident: b0025
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
– year: 2019
  ident: b0170
  article-title: A new method of black-box fuzzy system identification optimized by genetic algorithm and its application to predict mixture thermal properties
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
– volume: 213
  start-page: 267
  year: 2010
  end-page: 289
  ident: b0220
  article-title: A novel heuristic optimization method: Charged system search
  publication-title: Acta Mechanica
– reference: Koza, J. R. (1997). Genetic programming.
– reference: Mittal, Nitin, Singh, Urvinder, & Sohi, Balwinder Singh. (2016). Modified grey wolf optimizer for global engineering optimization. Applied Computational Intelligence and Soft Computing.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0350
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
– reference: Talbi, E.-G. (2009). Metaheuristics: from design to implementation (Vol. 74): John Wiley & Sons.
– volume: 111
  start-page: 630
  year: 2016
  end-page: 641
  ident: b0190
  article-title: Economic dispatch using hybrid grey wolf optimizer
  publication-title: Energy
– reference: Thaher, Thaer, Heidari, Ali Asghar, Mafarja, Majdi, Dong, Jin Song, & Mirjalili, Seyedali. (2020). Binary harris hawks optimizer for high-dimensional, low sample size feature selection. In Evolutionary machine learning techniques (pp. 251–272): Springer.
– reference: Malik, Mahmad Raphiyoddin S, Mohideen, E Rasul, & Ali, Layak. (2015). Weighted distance grey wolf optimizer for global optimization problems. In Paper presented at the 2015 IEEE international conference on computational intelligence and computing research (ICCIC).
– volume: 96
  start-page: 61
  year: 2016
  end-page: 75
  ident: b0370
  article-title: Evolving support vector machines using fruit fly optimization for medical data classification
  publication-title: Knowledge-Based Systems
– reference: Coello, Carlos A Coello. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113x127.
– volume: 26
  start-page: 1257
  year: 2015
  end-page: 1263
  ident: b0360
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Computing and Applications
– volume: 215
  start-page: 643
  year: 2018
  end-page: 658
  ident: b0380
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Applied Energy
– volume: 22
  start-page: 3
  year: 2015
  end-page: 18
  ident: b0390
  article-title: Metaheuristics—the metaphor exposed
  publication-title: International Transactions in Operational Research
– reference: Eberhart, Russell, & Kennedy, James. (1995). A new optimizer using particle swarm theory. In Paper presented at the MHS'95. Proceedings of the sixth international symposium on micro machine and human science.
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: b0235
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Del Ser, Javier, Osaba, Eneko, Molina, Daniel, Yang, Xin-She, Salcedo-Sanz, Sancho, Camacho, David, . . . Herrera, Francisco. (2019). Bio-inspired computation: Where we stand and what's next. Swarm and Evolutionary Computation, 48, 220–250.
– volume: 27
  start-page: 284
  year: 2018
  end-page: 302
  ident: b0120
  article-title: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems
  publication-title: Journal of Computational Science
– volume: 107
  start-page: 89
  year: 2018
  end-page: 114
  ident: b0255
  article-title: Grey wolf optimizer with cellular topological structure
  publication-title: Expert Systems with Applications
– volume: 154
  start-page: 1
  year: 2015
  end-page: 16
  ident: b0150
  article-title: Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization
  publication-title: Computers & Structures
– volume: 6
  start-page: 93
  year: 2015
  end-page: 97
  ident: b0010
  article-title: A low cost model for diagnosing coronary artery disease based on effective features
  publication-title: International Journal of Electronics Communication and Computer Engineering
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0395
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b0155
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
– volume: 32
  start-page: 286
  year: 2015
  end-page: 292
  ident: b0400
  article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem
  publication-title: Applied Soft Computing
– volume: 112
  start-page: 283
  year: 2012
  end-page: 294
  ident: b0215
  article-title: A new meta-heuristic method: Ray optimization
  publication-title: Computers & structures
– reference: Taghian, S., Nadimi-Shahraki, M.H., & Zamani, H. (2018). Comparative analysis of transfer function-based binary metaheuristic algorithms for feature selection. In 2018 IEEE International Conference on Artificial Intelligence and Data Processing (IDAP),1-6.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b0175
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future generation computer systems
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0295
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– reference: Awad, N. H., Ali, M. Z., Suganthan, P. N., Liang, J. J., & Qu, B. Y. (2017). Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization.
– reference: Faris, Hossam, Mafarja, Majdi M, Heidari, Ali Asghar, Aljarah, Ibrahim, Ala’M, Al-Zoubi, Mirjalili, Seyedali, & Fujita, Hamido. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge-Based Systems, 154, 43–67.
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: b0125
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– reference: Fister Jr, Iztok, Yang, Xin-She, Fister, Iztok, Brest, Janez, & Fister, Dušan. (2013). A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186, 1-7.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0300
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 20
  start-page: 1586
  year: 2017
  end-page: 1601
  ident: b0375
  article-title: A novel hybrid GWO-SCA approach for optimization problems
  publication-title: Engineering Science and Technology, an International Journal
– volume: 222
  start-page: 175
  year: 2013
  end-page: 184
  ident: b0160
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Information sciences
– volume: 163
  start-page: 283
  year: 2019
  end-page: 304
  ident: b0475
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowledge-Based Systems
– volume: 7
  start-page: 68764
  year: 2019
  end-page: 68785
  ident: b0005
  article-title: Hybrid harmony search algorithm with grey wolf optimizer and modified opposition-based learning
  publication-title: IEEE Access
– volume: 212
  start-page: 1578
  year: 2018
  end-page: 1588
  ident: b0040
  article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
  publication-title: Applied Energy
– volume: 87
  start-page: 79
  year: 2017
  end-page: 89
  ident: b0330
  article-title: Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer
  publication-title: Expert Systems with Applications
– volume: 4
  start-page: 989
  year: 2014
  end-page: 998
  ident: b0095
  article-title: An area-optimized chip of ant colony algorithm design in hardware platform using the address-based method
  publication-title: International Journal of Electrical and Computer Engineering
– volume: 1
  start-page: 190
  year: 1989
  end-page: 206
  ident: b0130
  article-title: Tabu search—part I
  publication-title: ORSA Journal on computing
– volume: 39
  start-page: 11657
  year: 2012
  end-page: 11665
  ident: b0325
  article-title: A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease
  publication-title: Expert Systems with Applications
– volume: 116
  start-page: 147
  year: 2019
  end-page: 160
  ident: b0015
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 1643
  year: 2016
  end-page: 1655
  ident: b0195
  article-title: A novel hybrid PSO–GWO approach for unit commitment problem
  publication-title: Neural Computing and Applications
– volume: 68
  start-page: 63
  year: 2018
  end-page: 80
  ident: b0245
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Faris, H., Aljarah, I., & Alqatawna, J.F. (2015). Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 1-5.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0055
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 83
  start-page: 325
  year: 2016
  end-page: 334
  ident: b0340
  article-title: Grey wolf optimization applied to economic load dispatch problems
  publication-title: Internatioal Journal of Electrical Power & Energy Systems
– volume: 7
  start-page: S232
  year: 2010
  end-page: S237
  ident: b0470
  article-title: A review of nature-inspired algorithms
  publication-title: Journal of Bionic Engineering
– volume: 28
  start-page: 97
  year: 2016
  end-page: 112
  ident: bib478
  article-title: Dynamic VMs placement for energy efficiency by PSO in cloud computing
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
– reference: Mafarja, Majdi, Aljarah, Ibrahim, Faris, Hossam, Hammouri, Abdelaziz I, Ala’M, Al-Zoubi, & Mirjalili, Seyedali. (2019). Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Systems with Applications, 117, 267–286.
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: b0180
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Applied Soft Computing
– reference: Banaie-Dezfouli, M., Nadimi-Shahraki, M.H., & Zamani, H. (2018). A novel tour planning model using big data. In 2018 IEEE International Conference on Artificial Intelligence and Data Processing (IDAP),1-6.
– volume: 172
  start-page: 42
  year: 2019
  end-page: 63
  ident: b0075
  article-title: A hyper-heuristic for improving the initial population of whale optimization algorithm
  publication-title: Knowledge-Based Systems
– volume: 2
  start-page: 4
  year: 1990
  end-page: 32
  ident: b0135
  article-title: Tabu search—part II
  publication-title: ORSA Journal on computing
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: b0270
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
– start-page: 320
  year: 2003
  end-page: 353
  ident: b0250
  article-title: Iterated local search
– volume: 50
  year: 2019
  ident: b0315
  article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 151
  start-page: 40
  year: 2016
  end-page: 44
  ident: b0465
  article-title: Swarm intelligence approach for breast cancer diagnosis
  publication-title: International Journal of Computer Applications
– volume: 142
  start-page: 190
  year: 2017
  end-page: 206
  ident: b0310
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electric Power Systems Research
– volume: 39
  start-page: 961
  year: 2020
  end-page: 976
  ident: b0445
  article-title: Ant lion optimized bufferless routing in the design of low power application specific network on chip
  publication-title: Circuits, Systems, and Signal Processing
– volume: 19
  start-page: 1693
  year: 2016
  end-page: 1713
  ident: b0140
  article-title: Load frequency control of large scale power system using quasi-oppositional grey wolf optimization algorithm
  publication-title: Engineering Science and Technology, an International Journal
– volume: 3
  start-page: 12
  year: 2014
  end-page: 20
  ident: bib477
  article-title: Application methods of ant colony algorithm
  publication-title: American Journal of Software Engineering and Applications
– volume: 43
  start-page: 1548
  year: 2015
  end-page: 1559
  ident: b0070
  article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms
  publication-title: Electric Power Components and Systems
– volume: 30
  start-page: 413
  year: 2018
  end-page: 435
  ident: b0100
  article-title: Grey wolf optimizer: A review of recent variants and applications
  publication-title: Neural Computing and Applications
– volume: 141
  start-page: 92
  year: 2018
  end-page: 112
  ident: b0285
  article-title: Parameters with adaptive learning mechanism (PALM) for the enhancement of differential evolution
  publication-title: Knowledge-Based Systems
– volume: 85
  year: 2019
  ident: b0455
  article-title: CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems
  publication-title: Applied Soft Computing
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b0185
  publication-title: Genetic algorithms.
– volume: 88
  start-page: 595
  year: 2007
  end-page: 605
  ident: b0260
  article-title: A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf
  publication-title: Journal of Mammalogy
– volume: 14
  start-page: 1243
  year: 2016
  end-page: 1247
  ident: b0460
  article-title: Feature selection based on whale optimization algorithm for diseases diagnosis
  publication-title: International Journal of Computer Science and Information Security
– volume: 38
  start-page: 251
  year: 2018
  end-page: 266
  ident: b0335
  article-title: Binary grey wolf optimizer for large scale unit commitment problem
  publication-title: Swarm and Evolutionary Computation
– volume: 104
  start-page: 15
  year: 1973
  end-page: 16
  ident: b0355
  article-title: Evolution Strategy: Optimization of Technical systems by means of biological evolution
  publication-title: Fromman-Holzboog, Stuttgart
– volume: 8
  start-page: 168
  year: 2019
  end-page: 172
  ident: b0405
  article-title: A Binary metaheuristic algorithm for wrapper feature selection
  publication-title: International Journal of Computer Science Engineering (IJCSE)
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0020
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
– volume: 145
  year: 2020
  ident: b0365
  article-title: A harmonic estimator design with evolutionary operators equipped grey wolf optimizer
  publication-title: Expert Systems with Applications
– volume: 497
  start-page: 219
  year: 2019
  end-page: 239
  ident: b0425
  article-title: An evolutionary gravitational search-based feature selection
  publication-title: Information Sciences
– volume: 75
  start-page: 147
  year: 2015
  end-page: 157
  ident: b0385
  article-title: Grey wolf optimizer for parameter estimation in surface waves
  publication-title: Soil Dynamics and Earthquake Engineering
– volume: 29
  start-page: 681
  year: 2017
  end-page: 694
  ident: b0080
  article-title: Experienced gray wolf optimization through reinforcement learning and neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 7
  start-page: 78012
  year: 2019
  end-page: 78028
  ident: b0435
  article-title: Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection
  publication-title: IEEE Access
– volume: 30
  start-page: 1679
  year: 2018
  end-page: 1687
  ident: b0210
  article-title: Recommender system with grey wolf optimizer and FCM
  publication-title: Neural Computing and Applications
– volume: 43
  start-page: 150
  year: 2015
  end-page: 161
  ident: b0290
  article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons
  publication-title: Applied Intelligence
– year: 2020
  ident: bib476
  article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems
  publication-title: Applied Soft Computing
– volume: 56
  start-page: 28
  year: 2016
  end-page: 47
  ident: b0145
  article-title: Velocity bounded boolean particle swarm optimization for improved feature selection in liver and kidney disease diagnosis
  publication-title: Expert Systems with Applications
– reference: Emary, Eid, Zawbaa, Hossam M, Grosan, Crina, & Hassenian, Abul Ella. (2015). Feature subset selection approach by gray-wolf optimization. In Paper presented at the Afro-European conference for industrial advancement.
– volume: 537
  year: 2020
  ident: b0230
  article-title: Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via suitable experiments as a function of MMT content
  publication-title: Physica A: Statistical Mechanics and its Applications
– reference: Dorigo, Marco, Birattari, Mauro, Blum, Christian, Clerc, Maurice, Stützle, Thomas, & Winfield, Alan. (2008). Ant colony optimization and swarm intelligence. In 6th International Conference, ANTS 2008, Brussels, Belgium, September 22–24, 2008, Proceedings (Vol. 5217): Springer.
– volume: 88
  start-page: 595
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2020.113917_b0260
  article-title: A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf
  publication-title: Journal of Mammalogy
  doi: 10.1644/06-MAMM-A-119R1.1
– volume: 142
  start-page: 190
  year: 2017
  ident: 10.1016/j.eswa.2020.113917_b0310
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2016.09.025
– volume: 75
  start-page: 147
  year: 2015
  ident: 10.1016/j.eswa.2020.113917_b0385
  article-title: Grey wolf optimizer for parameter estimation in surface waves
  publication-title: Soil Dynamics and Earthquake Engineering
  doi: 10.1016/j.soildyn.2015.04.004
– ident: 10.1016/j.eswa.2020.113917_b0050
  doi: 10.1016/j.swevo.2019.04.008
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2020.113917_b0055
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– year: 2020
  ident: 10.1016/j.eswa.2020.113917_bib476
  article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106761
– volume: 154
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2020.113917_b0150
  article-title: Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2015.03.014
– ident: 10.1016/j.eswa.2020.113917_b0110
  doi: 10.1016/j.knosys.2018.05.009
– volume: 7
  start-page: 113810
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0240
  article-title: A random opposition-based learning grey wolf optimizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934994
– volume: 87
  start-page: 79
  year: 2017
  ident: 10.1016/j.eswa.2020.113917_b0330
  article-title: Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.06.009
– volume: 116
  start-page: 147
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0015
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.051
– volume: 107
  start-page: 89
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0255
  article-title: Grey wolf optimizer with cellular topological structure
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.04.012
– volume: 112
  start-page: 283
  year: 2012
  ident: 10.1016/j.eswa.2020.113917_b0215
  article-title: A new meta-heuristic method: Ray optimization
  publication-title: Computers & structures
  doi: 10.1016/j.compstruc.2012.09.003
– volume: 213
  start-page: 267
  issue: 3–4
  year: 2010
  ident: 10.1016/j.eswa.2020.113917_b0220
  article-title: A novel heuristic optimization method: Charged system search
  publication-title: Acta Mechanica
  doi: 10.1007/s00707-009-0270-4
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.eswa.2020.113917_b0185
  publication-title: Genetic algorithms. Scientific american
  doi: 10.1038/scientificamerican0792-66
– volume: 68
  start-page: 63
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0245
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.10.024
– volume: 50
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0315
  article-title: Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.10.006
– ident: 10.1016/j.eswa.2020.113917_b0035
– volume: 7
  start-page: 68764
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0005
  article-title: Hybrid harmony search algorithm with grey wolf optimizer and modified opposition-based learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917803
– volume: 141
  start-page: 92
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0285
  article-title: Parameters with adaptive learning mechanism (PALM) for the enhancement of differential evolution
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.11.015
– ident: 10.1016/j.eswa.2020.113917_b0410
  doi: 10.5121/acij.2019.10501
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2020.113917_b0090
  article-title: A new optimization method: Big bang–big crunch
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 14
  start-page: 1243
  issue: 9
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0460
  article-title: Feature selection based on whale optimization algorithm for diseases diagnosis
  publication-title: International Journal of Computer Science and Information Security
– volume: 22
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2020.113917_b0390
  article-title: Metaheuristics—the metaphor exposed
  publication-title: International Transactions in Operational Research
  doi: 10.1111/itor.12001
– ident: 10.1016/j.eswa.2020.113917_b0265
  doi: 10.1016/j.eswa.2018.09.015
– volume: 145
  year: 2020
  ident: 10.1016/j.eswa.2020.113917_b0365
  article-title: A harmonic estimator design with evolutionary operators equipped grey wolf optimizer
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113125
– volume: 2
  start-page: 4
  issue: 1
  year: 1990
  ident: 10.1016/j.eswa.2020.113917_b0135
  article-title: Tabu search—part II
  publication-title: ORSA Journal on computing
  doi: 10.1287/ijoc.2.1.4
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0155
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.07.015
– volume: 497
  start-page: 219
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0425
  article-title: An evolutionary gravitational search-based feature selection
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.05.038
– volume: 172
  start-page: 42
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0075
  article-title: A hyper-heuristic for improving the initial population of whale optimization algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.02.010
– volume: 7
  start-page: 78012
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0435
  article-title: Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921793
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2020.113917_b0235
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857610
– ident: 10.1016/j.eswa.2020.113917_b0085
  doi: 10.1007/978-3-319-13572-4_1
– volume: 139
  start-page: 2801
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2020.113917_b0165
  article-title: Controlled elitist multi-objective genetic algorithm joined with neural network to study the effects of nano-clay percentage on cell size and polymer foams density of PVC/clay nanocomposites
  publication-title: Journal of Thermal Analysis and Calorimetry
  doi: 10.1007/s10973-019-09059-x
– volume: 163
  start-page: 283
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0475
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.08.030
– volume: 104
  start-page: 15
  year: 1973
  ident: 10.1016/j.eswa.2020.113917_b0355
  article-title: Evolution Strategy: Optimization of Technical systems by means of biological evolution
  publication-title: Fromman-Holzboog, Stuttgart
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2020.113917_b0395
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– ident: 10.1016/j.eswa.2020.113917_b0030
– volume: 111
  start-page: 630
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0190
  article-title: Economic dispatch using hybrid grey wolf optimizer
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.105
– ident: 10.1016/j.eswa.2020.113917_b0275
  doi: 10.1109/ICCIC.2015.7435714
– volume: 43
  start-page: 1548
  issue: 13
  year: 2015
  ident: 10.1016/j.eswa.2020.113917_b0070
  article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms
  publication-title: Electric Power Components and Systems
  doi: 10.1080/15325008.2015.1041625
– volume: 212
  start-page: 1578
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0040
  article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.12.115
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0175
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future generation computer systems
  doi: 10.1016/j.future.2019.02.028
– ident: 10.1016/j.eswa.2020.113917_b0115
– ident: 10.1016/j.eswa.2020.113917_b0415
  doi: 10.1109/IDAP.2018.8620828
– volume: 537
  year: 2020
  ident: 10.1016/j.eswa.2020.113917_b0230
  article-title: Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via suitable experiments as a function of MMT content
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2019.122637
– volume: 29
  start-page: 681
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2020.113917_b0080
  article-title: Experienced gray wolf optimization through reinforcement learning and neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2634548
– volume: 30
  start-page: 413
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0100
  article-title: Grey wolf optimizer: A review of recent variants and applications
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-3272-5
– volume: 56
  start-page: 28
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0145
  article-title: Velocity bounded boolean particle swarm optimization for improved feature selection in liver and kidney disease diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.02.042
– volume: 32
  start-page: 286
  year: 2015
  ident: 10.1016/j.eswa.2020.113917_b0400
  article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.03.041
– ident: 10.1016/j.eswa.2020.113917_b0060
  doi: 10.1007/978-3-540-87527-7
– ident: 10.1016/j.eswa.2020.113917_b0420
  doi: 10.1002/9780470496916
– ident: 10.1016/j.eswa.2020.113917_b0105
  doi: 10.1109/AEECT.2015.7360576
– volume: 1
  start-page: 190
  issue: 3
  year: 1989
  ident: 10.1016/j.eswa.2020.113917_b0130
  article-title: Tabu search—part I
  publication-title: ORSA Journal on computing
  doi: 10.1287/ijoc.1.3.190
– volume: 39
  start-page: 961
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2020.113917_b0445
  article-title: Ant lion optimized bufferless routing in the design of low power application specific network on chip
  publication-title: Circuits, Systems, and Signal Processing
  doi: 10.1007/s00034-019-01065-6
– volume: 43
  start-page: 150
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2020.113917_b0290
  article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-014-0645-7
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0295
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 10.1016/j.eswa.2020.113917_b0065
  doi: 10.1109/MHS.1995.494215
– volume: 20
  start-page: 1586
  issue: 6
  year: 2017
  ident: 10.1016/j.eswa.2020.113917_b0375
  article-title: A novel hybrid GWO-SCA approach for optimization problems
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2017.11.001
– ident: 10.1016/j.eswa.2020.113917_b0430
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2020.113917_b0350
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 4
  start-page: 989
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2020.113917_b0095
  article-title: An area-optimized chip of ant colony algorithm design in hardware platform using the address-based method
  publication-title: International Journal of Electrical and Computer Engineering
– volume: 96
  start-page: 61
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0370
  article-title: Evolving support vector machines using fruit fly optimization for medical data classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.01.002
– volume: 535
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0450
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 151
  start-page: 40
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0465
  article-title: Swarm intelligence approach for breast cancer diagnosis
  publication-title: International Journal of Computer Applications
  doi: 10.5120/ijca2016911667
– volume: 19
  start-page: 1693
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0140
  article-title: Load frequency control of large scale power system using quasi-oppositional grey wolf optimization algorithm
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2016.07.004
– volume: 39
  start-page: 11657
  issue: 14
  year: 2012
  ident: 10.1016/j.eswa.2020.113917_b0325
  article-title: A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.04.036
– volume: 26
  start-page: 1257
  issue: 5
  year: 2015
  ident: 10.1016/j.eswa.2020.113917_b0360
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1806-7
– ident: 10.1016/j.eswa.2020.113917_b0225
– volume: 116
  start-page: 405
  issue: 2
  year: 1994
  ident: 10.1016/j.eswa.2020.113917_b0200
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
  doi: 10.1115/1.2919393
– volume: 27
  start-page: 284
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0120
  article-title: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2018.06.008
– volume: 85
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0455
  article-title: CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105583
– volume: 76
  start-page: 16
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0440
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.11.047
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2020.113917_b0205
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of GLOBAL Optimization
  doi: 10.1007/s10898-007-9149-x
– start-page: 320
  year: 2003
  ident: 10.1016/j.eswa.2020.113917_b0250
– volume: 28
  start-page: 97
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_bib478
  article-title: Dynamic VMs placement for energy efficiency by PSO in cloud computing
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
  doi: 10.1080/0952813X.2015.1020519
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.eswa.2020.113917_b0180
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.06.044
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0020
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 43
  start-page: 1958
  issue: 17
  year: 2015
  ident: 10.1016/j.eswa.2020.113917_b0345
  article-title: Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm
  publication-title: Electric Power Components and Systems
  doi: 10.1080/15325008.2015.1061620
– volume: 7
  start-page: S232
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2020.113917_b0470
  article-title: A review of nature-inspired algorithms
  publication-title: Journal of Bionic Engineering
  doi: 10.1016/S1672-6529(09)60240-7
– volume: 6
  start-page: 93
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2020.113917_b0010
  article-title: A low cost model for diagnosing coronary artery disease based on effective features
  publication-title: International Journal of Electronics Communication and Computer Engineering
– ident: 10.1016/j.eswa.2020.113917_b0305
  doi: 10.1155/2016/7950348
– volume: 30
  start-page: 1679
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0210
  article-title: Recommender system with grey wolf optimizer and FCM
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2817-3
– volume: 161
  start-page: 185
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0270
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.08.003
– volume: 99
  start-page: 331
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0025
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2018.01.024
– volume: 8
  start-page: 168
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0405
  article-title: A Binary metaheuristic algorithm for wrapper feature selection
  publication-title: International Journal of Computer Science Engineering (IJCSE)
– ident: 10.1016/j.eswa.2020.113917_b0045
  doi: 10.1016/S0166-3615(99)00046-9
– year: 2019
  ident: 10.1016/j.eswa.2020.113917_b0170
  article-title: A new method of black-box fuzzy system identification optimized by genetic algorithm and its application to predict mixture thermal properties
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
  doi: 10.1108/HFF-12-2018-0758
– volume: 3
  start-page: 12
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2020.113917_bib477
  article-title: Application methods of ant colony algorithm
  publication-title: American Journal of Software Engineering and Applications
  doi: 10.11648/j.ajsea.20140302.11
– volume: 83
  start-page: 325
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0340
  article-title: Grey wolf optimization applied to economic load dispatch problems
  publication-title: Internatioal Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2016.04.034
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2020.113917_b0125
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2020.113917_b0300
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 222
  start-page: 175
  year: 2013
  ident: 10.1016/j.eswa.2020.113917_b0160
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Information sciences
  doi: 10.1016/j.ins.2012.08.023
– volume: 27
  start-page: 1643
  issue: 6
  year: 2016
  ident: 10.1016/j.eswa.2020.113917_b0195
  article-title: A novel hybrid PSO–GWO approach for unit commitment problem
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1962-4
– volume: 215
  start-page: 643
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0380
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.02.070
– volume: 38
  start-page: 251
  year: 2018
  ident: 10.1016/j.eswa.2020.113917_b0335
  article-title: Binary grey wolf optimizer for large scale unit commitment problem
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.08.002
SSID ssj0017007
Score 2.7258575
Snippet [Display omitted] •Proposing an improved Grey Wolf Optimizer (I-GWO) for solving engineering problems.•Introducing a new search strategy named dimension...
In this article, an Improved Grey Wolf Optimizer (I-GWO) is proposed for solving global optimization and engineering design problems. This improvement is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113917
SubjectTerms Algorithm
Algorithms
Artificial intelligence
Design engineering
Design optimization
Engineering optimization problems
Global optimization
Grey wolf optimizer
Hunting
Improved grey wolf optimizer
Machine learning
Metaheuristic
Optimization
Search methods
Statistical tests
Strategy
Swarm intelligence algorithm
Title An improved grey wolf optimizer for solving engineering problems
URI https://dx.doi.org/10.1016/j.eswa.2020.113917
https://www.proquest.com/docview/2480004995
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4LU7nyMGbxC1tsqY3x3BMxV10sFto0gQqsxtuMvTg3-5Lm04U2cFreSnl1_fxe-F9IHRhgcLrMImIskYRxjUlKkw1CXUggC9HVMWud_hh1B2O2d2ET2qoX_XCuLJK7_tLn154a_-k7dFsz7Os_QjkAMIhpHZOT2nRUc5Y5LT86nNd5uHGz0XlvL2IOGnfOFPWeJnFys0eCorVJnGxtOzP4PTLTRexZ7CHdjxpxL3yu_ZRzeQHaLdayIC9fR6i616Os-KWwKQYEul3vJpNLZ6BW3jJPkASGCoGZXOXCNh8TyLEfq3M4giNBzdP_SHxKxKIDgOxJAEXNtVx17r9U2B_aZgI2tFBoLi2HSOMUpAwJCYCmVgLmlCuusKyKBSMGghgx6iez3JzgrABKscBR6AslrkDzMTMcqOpomlqeQPRChup_fxwt8ZiKqtCsWfp8JQOT1ni2UCX6zPzcnrGRmleQS5_6IAE977xXLP6P9Jb4EIGTJT5HD_952vP0HbgClhc8R5vovry9c2cAwNZqlahYi201bu9H46-AGNv2cU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHvTitxFF7cGbmdCtZd1NQiSowEVIuDVr1yYzOIhgiB78233dOo3GcPC6vC7L2_v4vea990Po0gCEV0EcetJo6VGmiCeDRHmB8jng5ZDIyM4OD4at3pjeT9ikgjrlLIxtq3Sxv4jpebR2TxpOm415mjYeARxAOoTSztopsRPlGxTc19IYXH989XnY_XNhsXAv9Ky4m5wpmrz0YmWXD_k5t0mUs5b9mZ1-xek8-XR30bZDjbhdfNgequhsH-2UjAzYOegBumlnOM2vCXSCoZJ-w6vZ1OAZxIXn9B0kAaJisDZ7i4D19ypC7HhlFodo3L0ddXqe40jwVODzpeczbhIVtYwloAIHTIKYk6byfcmUaWqupYSKIdYhyESKk5gw2eKGhgGnREMGO0LVbJbpY4Q1YDkGigTMYqg9QHVEDdOKSJIkhtUQKXUjlFsgbnkspqLsFHsSVp_C6lMU-qyhq68z82J9xlppVqpc_DACAfF97bl6-X-Ec8GF8CkvCjp28s_XXqDN3mjQF_274cMp2vJtN4vt5GN1VF2-vOozgCNLeZ6b2yd_odtT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+grey+wolf+optimizer+for+solving+engineering+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Nadimi-Shahraki%2C+Mohammad+H&rft.au=Taghian%2C+Shokooh&rft.au=Mirjalili%2C+Seyedali&rft.date=2021-03-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=166&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.113917&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon