Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy

A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe3O4 magnetic nanoparticles on...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetism and magnetic materials Vol. 427; pp. 34 - 40
Main Authors Huang, Ya-Shu, Lu, Yu-Jen, Chen, Jyh-Ping
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0304-8853
1873-4766
DOI10.1016/j.jmmm.2016.10.042

Cover

Loading…
Abstract A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe3O4 magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through π-π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which ~60% of DOX was released at pH 5.4 and ~10% was released at pH 7.4. In contrast, ~90% CPT-11 was released at pH 5.4 and ~70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy. •mGO was prepared by chemical co-precipitation of Fe3O4 MNP on GO nano-platelets.•mGO was further modified by chitosan and mPEG-NHS to synthesize mGOC-PEG.•mGOC-PEG showed higher drug loading of doxorubicin (DOX) than irinotecan.•mGOC-PEG showed pH-responsive controlled release of chemotherapy drugs.•Magnetic targeting enhanced cytotoxicity of mGOC-PEG/DOX toward U87 cancer cells.
AbstractList A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe3O4 magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through π-π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which ~60% of DOX was released at pH 5.4 and ~10% was released at pH 7.4. In contrast, ~90% CPT-11 was released at pH 5.4 and ~70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy. •mGO was prepared by chemical co-precipitation of Fe3O4 MNP on GO nano-platelets.•mGO was further modified by chitosan and mPEG-NHS to synthesize mGOC-PEG.•mGOC-PEG showed higher drug loading of doxorubicin (DOX) than irinotecan.•mGOC-PEG showed pH-responsive controlled release of chemotherapy drugs.•Magnetic targeting enhanced cytotoxicity of mGOC-PEG/DOX toward U87 cancer cells.
A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe3O4 magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through Π-Π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which ~60% of DOX was released at pH 5.4 and ~10% was released at pH 7.4. In contrast, ~90% CPT-11 was released at pH 5.4 and ~70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy.
Author Huang, Ya-Shu
Lu, Yu-Jen
Chen, Jyh-Ping
Author_xml – sequence: 1
  givenname: Ya-Shu
  surname: Huang
  fullname: Huang, Ya-Shu
  organization: Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC
– sequence: 2
  givenname: Yu-Jen
  surname: Lu
  fullname: Lu, Yu-Jen
  organization: Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC
– sequence: 3
  givenname: Jyh-Ping
  surname: Chen
  fullname: Chen, Jyh-Ping
  email: jpchen@mail.cgu.edu.tw
  organization: Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC
BookMark eNp9kE1LAzEQhoNUsFb_gKeA563JJrvNghcpfkHFi55DmkzaLN1NTdJi_71Z2pOHnmZ4mWeGea7RqPc9IHRHyZQSWj-007brummZ-xxMCS8v0JiKGSv4rK5HaEwY4YUQFbtC1zG2hBDKRT1Gyw-16iE5jVdBbdfQA_a_zgBWESusVQgOArY-4KTCChIYbGDj9hAO2Fus19D5tIbMHrAJu1XErs9YrzN1ym_QpVWbCLenOkHfL89f87di8fn6Pn9aFJqVIhW0UsQ2M6UbxVlFhK4rahswuqm1aoBTagmptV1yK7ipVGMEAbYsleXaWkvZBN0f926D_9lBTLL1u9Dnk5I2bMYJE9UwVR6ndPAxBrByG1ynwkFSIgeXspWDSzm4HLLsMkPiH6RdUsn5PgXlNufRxyMK-fV9limjdpD9GBdAJ2m8O4f_AVKsk4k
CitedBy_id crossref_primary_10_1002_ppsc_202000185
crossref_primary_10_1016_j_jddst_2019_101189
crossref_primary_10_1007_s10904_020_01679_3
crossref_primary_10_1016_j_heliyon_2023_e16971
crossref_primary_10_3390_pharmaceutics15051545
crossref_primary_10_1016_j_apsb_2021_03_023
crossref_primary_10_1039_C8NR09537J
crossref_primary_10_3390_pharmaceutics11060294
crossref_primary_10_1016_j_ijbiomac_2024_138194
crossref_primary_10_2147_IJN_S249712
crossref_primary_10_1016_j_drudis_2019_01_022
crossref_primary_10_3390_ma11020324
crossref_primary_10_3390_ma12050828
crossref_primary_10_1002_adfm_201802830
crossref_primary_10_1016_j_colsurfb_2019_110596
crossref_primary_10_1016_j_jmmm_2018_11_019
crossref_primary_10_1080_00914037_2021_1925276
crossref_primary_10_52319_j_nanoscitec_2023_26
crossref_primary_10_1007_s10965_022_03286_x
crossref_primary_10_1016_j_bmc_2021_116493
crossref_primary_10_1021_acsomega_3c09608
crossref_primary_10_3390_molecules23020500
crossref_primary_10_1016_j_ijbiomac_2024_129401
crossref_primary_10_1007_s10876_019_01599_4
crossref_primary_10_1016_j_ejps_2022_106207
crossref_primary_10_1007_s12668_024_01489_8
crossref_primary_10_1016_j_isci_2021_103629
crossref_primary_10_1007_s13404_023_00339_x
crossref_primary_10_1002_wer_1346
crossref_primary_10_1021_acsabm_1c01311
crossref_primary_10_3390_pharmaceutics16111451
crossref_primary_10_1002_slct_202200670
crossref_primary_10_46239_ejbcs_1038373
crossref_primary_10_3390_ijms21197111
crossref_primary_10_1016_j_bioadv_2022_212764
crossref_primary_10_1007_s10934_018_0660_x
crossref_primary_10_1371_journal_pone_0200760
crossref_primary_10_3390_nano10091846
crossref_primary_10_4103_abr_abr_221_24
crossref_primary_10_1016_j_jddst_2023_105140
crossref_primary_10_3390_nano7110388
crossref_primary_10_1021_acsanm_8b02076
crossref_primary_10_1016_j_cmpb_2020_105545
crossref_primary_10_1039_D2BM00420H
crossref_primary_10_1002_jbm_b_35326
crossref_primary_10_1016_j_carbon_2018_07_069
crossref_primary_10_1016_j_matchemphys_2018_03_015
crossref_primary_10_1039_D0TB00064G
crossref_primary_10_1002_slct_202103913
crossref_primary_10_1016_j_matpr_2021_01_314
crossref_primary_10_1080_10408347_2020_1808442
crossref_primary_10_1088_2053_1591_ab0831
crossref_primary_10_1002_mco2_643
crossref_primary_10_1016_j_msec_2018_07_060
crossref_primary_10_3390_pr6040033
crossref_primary_10_1080_26896583_2020_1812335
crossref_primary_10_1016_j_jconrel_2018_07_034
crossref_primary_10_3390_ph12020076
crossref_primary_10_3390_gels9120953
crossref_primary_10_1007_s10965_020_02215_0
crossref_primary_10_1007_s11164_018_3527_5
crossref_primary_10_1016_j_cclet_2020_09_003
crossref_primary_10_1098_rsfs_2017_0057
crossref_primary_10_1007_s42452_019_0287_9
crossref_primary_10_1080_03639045_2017_1386194
crossref_primary_10_1002_mco2_118
crossref_primary_10_1016_j_abb_2021_108940
crossref_primary_10_1016_j_ultrasmedbio_2022_02_015
crossref_primary_10_1080_1061186X_2021_1886301
crossref_primary_10_1155_2017_6702890
crossref_primary_10_3390_nano8040193
crossref_primary_10_1002_cjce_24850
crossref_primary_10_1002_slct_202204337
Cites_doi 10.1016/j.tibtech.2011.03.001
10.1016/S0142-9612(01)00267-8
10.1016/j.addr.2011.09.006
10.1007/s12274-008-8021-8
10.1016/j.addr.2003.10.038
10.1016/j.jmmm.2004.05.022
10.1007/s10059-011-0051-5
10.1016/j.colsurfb.2011.08.001
10.2217/nnm.15.188
10.1016/j.ejpb.2005.12.006
10.1021/nn700040t
10.2217/nnm.10.158
10.1016/S1369-7021(11)70161-4
10.1248/bpb.19.1347
10.1039/c3tb21526a
10.1016/j.jconrel.2014.07.059
10.1158/1535-7163.MCT-05-0107
10.1056/NEJM199809243391307
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright Elsevier BV Apr 1, 2017
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 1, 2017
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jmmm.2016.10.042
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-4766
EndPage 40
ExternalDocumentID 10_1016_j_jmmm_2016_10_042
S030488531632515X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29K
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
FGOYB
G-2
HMV
HZ~
NDZJH
R2-
SEW
SMS
SPG
SSH
WUQ
XXG
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c328t-15a0f97ac9a43508c651f9edc96ca9e411f006cfb4f84d5a9d80e3b2af4cfff13
IEDL.DBID .~1
ISSN 0304-8853
IngestDate Fri Jul 25 08:20:15 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Tue Jul 01 01:55:32 EDT 2025
Fri Feb 23 02:27:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Irinotecan
Drug delivery
Magnetic graphene oxide
Doxorubicin
Magnetic nanoparticles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-15a0f97ac9a43508c651f9edc96ca9e411f006cfb4f84d5a9d80e3b2af4cfff13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1937403851
PQPubID 2045450
PageCount 7
ParticipantIDs proquest_journals_1937403851
crossref_primary_10_1016_j_jmmm_2016_10_042
crossref_citationtrail_10_1016_j_jmmm_2016_10_042
elsevier_sciencedirect_doi_10_1016_j_jmmm_2016_10_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
2017-04-00
20170401
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of magnetism and magnetic materials
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Bae, Chung, Park (bib3) 2011; 31
Lu, Wei, Ma, Yang, Chen (bib15) 2012; 89
Gunawan, Lim, Marquis, Amal (bib21) 2014; 2
Feng, Liu (bib9) 2011; 6
Ikegami, Matsuzaki, Al Rashid, Ceryak, Zhang, Bouscarel (bib7) 2006; 5
Lee, Choi, Webster, Kim, Khang (bib19) 2015; 10
Alexis, Pridgen, Langer, Farokhzad (bib1) 2010
Schleich, Po, Jacobs, Ucakar, Gallez, Danhier, Préat (bib5) 2014; 194
Singal, Iliskovic (bib6) 1998; 339
Simoes, Moreira, Fonseca, Düzgüneş, de Lima (bib13) 2004; 56
Upreti, Jyoti, Sethi (bib2) 2013; 2
Cole, Yang, David (bib4) 2011; 29
Liu, Robinson, Tabakman, Yang, Dai (bib8) 2011; 14
Corbo, Molinaro, Parodi, Toledano Furman, Salvatore, Tasciotti (bib20) 2016; 11
Sun, Liu, Welsher, Robinson, Goodwin, Zaric, Dai (bib11) 2008; 1
Zhang, Kohler, Zhang (bib18) 2002; 23
Liu, Sun, Nakayama-Ratchford, Dai (bib10) 2007; 1
Felber, Dufresne, Leroux (bib12) 2012; 64
Jiang, Yang, Yang, Horng, Hung, Chen, Hong (bib14) 2004; 283
Maestrelli, Garcia-Fuentes, Mura, Alonso (bib16) 2006; 63
Yuda, Maruyama, Iwatsuru (bib17) 1996; 19
Bae (10.1016/j.jmmm.2016.10.042_bib3) 2011; 31
Feng (10.1016/j.jmmm.2016.10.042_bib9) 2011; 6
Alexis (10.1016/j.jmmm.2016.10.042_bib1) 2010
Zhang (10.1016/j.jmmm.2016.10.042_bib18) 2002; 23
Maestrelli (10.1016/j.jmmm.2016.10.042_bib16) 2006; 63
Upreti (10.1016/j.jmmm.2016.10.042_bib2) 2013; 2
Cole (10.1016/j.jmmm.2016.10.042_bib4) 2011; 29
Ikegami (10.1016/j.jmmm.2016.10.042_bib7) 2006; 5
Lu (10.1016/j.jmmm.2016.10.042_bib15) 2012; 89
Liu (10.1016/j.jmmm.2016.10.042_bib8) 2011; 14
Singal (10.1016/j.jmmm.2016.10.042_bib6) 1998; 339
Corbo (10.1016/j.jmmm.2016.10.042_bib20) 2016; 11
Sun (10.1016/j.jmmm.2016.10.042_bib11) 2008; 1
Felber (10.1016/j.jmmm.2016.10.042_bib12) 2012; 64
Lee (10.1016/j.jmmm.2016.10.042_bib19) 2015; 10
Simoes (10.1016/j.jmmm.2016.10.042_bib13) 2004; 56
Jiang (10.1016/j.jmmm.2016.10.042_bib14) 2004; 283
Schleich (10.1016/j.jmmm.2016.10.042_bib5) 2014; 194
Yuda (10.1016/j.jmmm.2016.10.042_bib17) 1996; 19
Liu (10.1016/j.jmmm.2016.10.042_bib10) 2007; 1
Gunawan (10.1016/j.jmmm.2016.10.042_bib21) 2014; 2
References_xml – volume: 10
  start-page: 97
  year: 2015
  end-page: 113
  ident: bib19
  article-title: Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity
  publication-title: Int. J. Nanomed.
– volume: 14
  start-page: 316
  year: 2011
  end-page: 323
  ident: bib8
  article-title: Carbon materials for drug delivery & cancer therapy
  publication-title: Mater. Today
– volume: 2
  start-page: 2060
  year: 2014
  end-page: 2083
  ident: bib21
  article-title: Nanoparticle-protein corona complexes govern the biological fates and functions of nanoparticles
  publication-title: J. Mater. Chem. B
– volume: 194
  start-page: 82
  year: 2014
  end-page: 91
  ident: bib5
  article-title: Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy
  publication-title: J. Control. Release
– volume: 339
  start-page: 900
  year: 1998
  end-page: 905
  ident: bib6
  article-title: Doxorubicin-induced cardiomyopathy
  publication-title: N. Engl. J. Med.
– volume: 1
  start-page: 203
  year: 2008
  end-page: 212
  ident: bib11
  article-title: Nano-graphene oxide for cellular imaging and drug delivery
  publication-title: Nano Res.
– volume: 31
  start-page: 295
  year: 2011
  end-page: 302
  ident: bib3
  article-title: Nanomaterials for cancer therapy and imaging
  publication-title: Mol. Cells
– volume: 283
  start-page: 210
  year: 2004
  end-page: 214
  ident: bib14
  article-title: Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible
  publication-title: J. Magn. Magn. Mater.
– volume: 89
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib15
  article-title: Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes
  publication-title: Colloids Surf. B Biointerfaces
– volume: 29
  start-page: 323
  year: 2011
  end-page: 332
  ident: bib4
  article-title: Cancer theranostics: the rise of targeted magnetic nanoparticles
  publication-title: Trends Biotechnol.
– volume: 11
  start-page: 81
  year: 2016
  end-page: 100
  ident: bib20
  article-title: The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery
  publication-title: Nanomedicine
– start-page: 55
  year: 2010
  end-page: 86
  ident: bib1
  article-title: Nanoparticle technologies for cancer therapy
  publication-title: Drug Delivery
– volume: 1
  start-page: 50
  year: 2007
  end-page: 56
  ident: bib10
  article-title: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery
  publication-title: ACS Nano
– volume: 5
  start-page: 68
  year: 2006
  end-page: 79
  ident: bib7
  article-title: Enhancement of DNA topoisomerase I inhibitor–induced apoptosis by ursodeoxycholic acid
  publication-title: Mol. Cancer Ther.
– volume: 23
  start-page: 1553
  year: 2002
  end-page: 1561
  ident: bib18
  article-title: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake
  publication-title: Biomaterials
– volume: 2
  start-page: 309
  year: 2013
  ident: bib2
  article-title: Tumor microenvironment and nanotherapeutics, Translational
  publication-title: Cancer Res.
– volume: 64
  start-page: 979
  year: 2012
  end-page: 992
  ident: bib12
  article-title: pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates
  publication-title: Adv. Drug Deliv. Rev.
– volume: 56
  start-page: 947
  year: 2004
  end-page: 965
  ident: bib13
  article-title: On the formulation of pH-sensitive liposomes with long circulation times
  publication-title: Adv. Drug Deliv. Rev.
– volume: 19
  start-page: 1347
  year: 1996
  end-page: 1351
  ident: bib17
  article-title: Prolongation of liposome circulation time by various derivatives of polyethyleneglycols
  publication-title: Biol. Pharm. Bull.
– volume: 6
  start-page: 317
  year: 2011
  end-page: 324
  ident: bib9
  article-title: Graphene in biomedicine: opportunities and challenges
  publication-title: Nanomedicine
– volume: 63
  start-page: 79
  year: 2006
  end-page: 86
  ident: bib16
  article-title: A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 29
  start-page: 323
  year: 2011
  ident: 10.1016/j.jmmm.2016.10.042_bib4
  article-title: Cancer theranostics: the rise of targeted magnetic nanoparticles
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2011.03.001
– volume: 23
  start-page: 1553
  year: 2002
  ident: 10.1016/j.jmmm.2016.10.042_bib18
  article-title: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00267-8
– start-page: 55
  year: 2010
  ident: 10.1016/j.jmmm.2016.10.042_bib1
  article-title: Nanoparticle technologies for cancer therapy
– volume: 64
  start-page: 979
  year: 2012
  ident: 10.1016/j.jmmm.2016.10.042_bib12
  article-title: pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.09.006
– volume: 1
  start-page: 203
  year: 2008
  ident: 10.1016/j.jmmm.2016.10.042_bib11
  article-title: Nano-graphene oxide for cellular imaging and drug delivery
  publication-title: Nano Res.
  doi: 10.1007/s12274-008-8021-8
– volume: 56
  start-page: 947
  year: 2004
  ident: 10.1016/j.jmmm.2016.10.042_bib13
  article-title: On the formulation of pH-sensitive liposomes with long circulation times
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2003.10.038
– volume: 283
  start-page: 210
  year: 2004
  ident: 10.1016/j.jmmm.2016.10.042_bib14
  article-title: Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.05.022
– volume: 31
  start-page: 295
  year: 2011
  ident: 10.1016/j.jmmm.2016.10.042_bib3
  article-title: Nanomaterials for cancer therapy and imaging
  publication-title: Mol. Cells
  doi: 10.1007/s10059-011-0051-5
– volume: 89
  start-page: 1
  year: 2012
  ident: 10.1016/j.jmmm.2016.10.042_bib15
  article-title: Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2011.08.001
– volume: 11
  start-page: 81
  year: 2016
  ident: 10.1016/j.jmmm.2016.10.042_bib20
  article-title: The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery
  publication-title: Nanomedicine
  doi: 10.2217/nnm.15.188
– volume: 63
  start-page: 79
  year: 2006
  ident: 10.1016/j.jmmm.2016.10.042_bib16
  article-title: A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2005.12.006
– volume: 1
  start-page: 50
  year: 2007
  ident: 10.1016/j.jmmm.2016.10.042_bib10
  article-title: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery
  publication-title: ACS Nano
  doi: 10.1021/nn700040t
– volume: 2
  start-page: 309
  year: 2013
  ident: 10.1016/j.jmmm.2016.10.042_bib2
  article-title: Tumor microenvironment and nanotherapeutics, Translational
  publication-title: Cancer Res.
– volume: 6
  start-page: 317
  year: 2011
  ident: 10.1016/j.jmmm.2016.10.042_bib9
  article-title: Graphene in biomedicine: opportunities and challenges
  publication-title: Nanomedicine
  doi: 10.2217/nnm.10.158
– volume: 14
  start-page: 316
  year: 2011
  ident: 10.1016/j.jmmm.2016.10.042_bib8
  article-title: Carbon materials for drug delivery & cancer therapy
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70161-4
– volume: 19
  start-page: 1347
  year: 1996
  ident: 10.1016/j.jmmm.2016.10.042_bib17
  article-title: Prolongation of liposome circulation time by various derivatives of polyethyleneglycols
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.19.1347
– volume: 2
  start-page: 2060
  year: 2014
  ident: 10.1016/j.jmmm.2016.10.042_bib21
  article-title: Nanoparticle-protein corona complexes govern the biological fates and functions of nanoparticles
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb21526a
– volume: 194
  start-page: 82
  year: 2014
  ident: 10.1016/j.jmmm.2016.10.042_bib5
  article-title: Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.07.059
– volume: 10
  start-page: 97
  year: 2015
  ident: 10.1016/j.jmmm.2016.10.042_bib19
  article-title: Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity
  publication-title: Int. J. Nanomed.
– volume: 5
  start-page: 68
  year: 2006
  ident: 10.1016/j.jmmm.2016.10.042_bib7
  article-title: Enhancement of DNA topoisomerase I inhibitor–induced apoptosis by ursodeoxycholic acid
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-05-0107
– volume: 339
  start-page: 900
  year: 1998
  ident: 10.1016/j.jmmm.2016.10.042_bib6
  article-title: Doxorubicin-induced cardiomyopathy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199809243391307
SSID ssj0001486
ssib019626450
Score 2.4692357
Snippet A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 34
SubjectTerms Cancer
Chemical compounds
Chemical precipitation
Chemotherapy
Chitosan
Circulation
Controlled release
Cytotoxicity
Doxorubicin
Drug delivery
Drug delivery systems
Drugs
Graphene
In vitro methods and tests
Irinotecan
Iron oxides
Magnesium oxide
Magnetic graphene oxide
Magnetic nanoparticles
MPEG encoders
Platelets (materials)
Polyethylene glycol
Polyethylenes
Toxicity
Video compression
Title Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy
URI https://dx.doi.org/10.1016/j.jmmm.2016.10.042
https://www.proquest.com/docview/1937403851
Volume 427
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jIngRf-J0jhy8SbemTdL2OIZjKu6ig91KkiZjY-tkm-Au_u2-tKmi4A5eQ14p7yXf-yDfew-hG8V8JWMKF0lr6VFOiSe0Zl7MIuP7QpHQFGqLIR-M6MOYjWuoV9XCWFmlw_4S0wu0disd583O63TaebaPejFkG2AUkKTZ2Faw08ie8vbHt8wD6H75XulTz-52hTOlxmu2WNhqdMLbVuFFg7-S0y-YLnJP_wgdOtKIu-V_HaOazk_QfiHeVOtTJJ_EJLfFiLhoPw3ohZfv00xjscYCK7GyU-kwsFNc6r51hjM9t4KMLV4aDGFbuDqsLc5Wb5M1nuZgBq4Ai3L9DI36dy-9gedmJ3gqDOKNR5jwTRIJlQggRH6sOCMm0ZlKuBKJpoRAKLgykpqYZkwkWezrUAbCUGWMIeE5qufLXF8gDAgUC57phBgGdmHCiRAR8EbOhZSBbCBSOS1VrrG4nW8xTysF2Sy1jk6to-0aOLqBbr9sXsu2Gjt3syoW6Y_DkQLu77RrVoFL3dVcp8BYI2rfQ8nlPz97hQ4Cm9wL_U4T1TerN30N1GQjW8XZa6G97v3jYPgJpnjj9w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQiPvFtDt6kbtMm2fYooqyvvaiwt5Ckiay4XdkHuP_eSZsKCnrwGjqhzCTffJBvZgBODY-NzhheJGt1xASjkbKWRxnvuDhWhqauUlv0RPeZ3fZ5fwEum1oYL6sM2F9jeoXWYaUdvNl-Hwzaj_5RL8Nsg4wCkzTvL8KS707FW7B0cXPX7X0BMjL--skyZpE3CLUztczrdTj0BelUnHuRF0t-y08_kLpKP9frsBZ4I7mof20DFmy5CcuVftNMtkA_qJfS1yOSqgM1AhgZfQwKS9SEKGLU2A-mI0hQSS39tgUp7JvXZMzJyBGM3DCUYs1JMZ69TMigRDP0BlrU69vwfH31dNmNwviEyKRJNo0oV7HLO8rkCjlRnBnBqcttYXJhVG4ZpRgNYZxmLmMFV3mRxTbViXLMOOdougOtclTaXSAIQpkShc2p42iX5oIq1UHqKITSOtF7QBunSRN6i_sRF2-yEZG9Su9o6R3t19DRe3D2ZfNed9b482vexEJ-Ox8Sof9Pu8MmcDLczolE0tph_kmU7v9z2xNY6T493Mv7m97dAawmPtdXcp5DaE3HM3uETGWqj8NJ_AR9Juao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+graphene+oxide+as+a+carrier+for+targeted+delivery+of+chemotherapy+drugs+in+cancer+therapy&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Huang%2C+Ya-Shu&rft.au=Lu%2C+Yu-Jen&rft.au=Chen%2C+Jyh-Ping&rft.date=2017-04-01&rft.issn=0304-8853&rft.volume=427&rft.spage=34&rft.epage=40&rft_id=info:doi/10.1016%2Fj.jmmm.2016.10.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmmm_2016_10_042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon