Experimental investigation of the effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene

•Effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene.•Rapid compression machine experiments.•Ignition enhanced by additive ozone.•Active radicals and thermal effects in ozone assisted ignition. Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 304; p. 121474
Main Authors Zheng, Dong, Xiong, Peng-fei
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.11.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene.•Rapid compression machine experiments.•Ignition enhanced by additive ozone.•Active radicals and thermal effects in ozone assisted ignition. Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In this study auto-ignition behaviors of pyrolysis gas of kerosene assisted by O3 are experimental investigated in a rapid compression machine. The ignition delay times of pyrolysis gas varying with additive O3 concentration from 0 to 1200 ppm have been measured at the conditions of TC = 877.7–917.2 K, PC = 3.3–4.4 MPa, φ = 1.0 and 0.5. The measured results show that with about 1195 ppm ozone the ignition delay time effectively decreases by a factor of about 5 at TC = 877.7 K, PC = 3.3 MPa and φ = 1.0. The ignition delay time exponentially decreases with the increasing of O3 concentration. Integrating the optimized USC-II mechanism with O3 sub-mechanism, the ignition delay times assisted by O3 are calculated at wider temperature regimes. The results demonstrate that the auto-ignition enhancement by O3 at low temperature regime is more significant as compared to the high temperature regime. Further analysis reveals that with O3 addition a peak of heat release appears at the initial time, leading to a temperature jump. Meanwhile the active species concentrations increase. At low temperature regime the temperature jump and active species concentrations increase considerably, so auto-ignition enhancement by O3 is more significant. Kinetic analysis found that the presence of O3 molecules rapidly activates the chain reaction paths O3 → O → HCO → HO2 → OH → H2O. During the chain reaction paths, vital radicals O, HCO, HO2 and OH are greatly generated, and a considerable amount of heat is released. By both active radicals and thermal effects, the auto-ignition of pyrolysis gas of kerosene has been enhanced.
AbstractList •Effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene.•Rapid compression machine experiments.•Ignition enhanced by additive ozone.•Active radicals and thermal effects in ozone assisted ignition. Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In this study auto-ignition behaviors of pyrolysis gas of kerosene assisted by O3 are experimental investigated in a rapid compression machine. The ignition delay times of pyrolysis gas varying with additive O3 concentration from 0 to 1200 ppm have been measured at the conditions of TC = 877.7–917.2 K, PC = 3.3–4.4 MPa, φ = 1.0 and 0.5. The measured results show that with about 1195 ppm ozone the ignition delay time effectively decreases by a factor of about 5 at TC = 877.7 K, PC = 3.3 MPa and φ = 1.0. The ignition delay time exponentially decreases with the increasing of O3 concentration. Integrating the optimized USC-II mechanism with O3 sub-mechanism, the ignition delay times assisted by O3 are calculated at wider temperature regimes. The results demonstrate that the auto-ignition enhancement by O3 at low temperature regime is more significant as compared to the high temperature regime. Further analysis reveals that with O3 addition a peak of heat release appears at the initial time, leading to a temperature jump. Meanwhile the active species concentrations increase. At low temperature regime the temperature jump and active species concentrations increase considerably, so auto-ignition enhancement by O3 is more significant. Kinetic analysis found that the presence of O3 molecules rapidly activates the chain reaction paths O3 → O → HCO → HO2 → OH → H2O. During the chain reaction paths, vital radicals O, HCO, HO2 and OH are greatly generated, and a considerable amount of heat is released. By both active radicals and thermal effects, the auto-ignition of pyrolysis gas of kerosene has been enhanced.
Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In this study auto-ignition behaviors of pyrolysis gas of kerosene assisted by O3 are experimental investigated in a rapid compression machine. The ignition delay times of pyrolysis gas varying with additive O3 concentration from 0 to 1200 ppm have been measured at the conditions of TC = 877.7–917.2 K, PC = 3.3–4.4 MPa, φ = 1.0 and 0.5. The measured results show that with about 1195 ppm ozone the ignition delay time effectively decreases by a factor of about 5 at TC = 877.7 K, PC = 3.3 MPa and φ = 1.0. The ignition delay time exponentially decreases with the increasing of O3 concentration. Integrating the optimized USC-II mechanism with O3 sub-mechanism, the ignition delay times assisted by O3 are calculated at wider temperature regimes. The results demonstrate that the auto-ignition enhancement by O3 at low temperature regime is more significant as compared to the high temperature regime. Further analysis reveals that with O3 addition a peak of heat release appears at the initial time, leading to a temperature jump. Meanwhile the active species concentrations increase. At low temperature regime the temperature jump and active species concentrations increase considerably, so auto-ignition enhancement by O3 is more significant. Kinetic analysis found that the presence of O3 molecules rapidly activates the chain reaction paths O3 → O → HCO → HO2 → OH → H2O. During the chain reaction paths, vital radicals O, HCO, HO2 and OH are greatly generated, and a considerable amount of heat is released. By both active radicals and thermal effects, the auto-ignition of pyrolysis gas of kerosene has been enhanced.
ArticleNumber 121474
Author Zheng, Dong
Xiong, Peng-fei
Author_xml – sequence: 1
  givenname: Dong
  surname: Zheng
  fullname: Zheng, Dong
  email: zhengd11@yeah.net
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
– sequence: 2
  givenname: Peng-fei
  surname: Xiong
  fullname: Xiong, Peng-fei
  organization: China Aerodynamics Research and Development Center, Mianyang 621000, PR China
BookMark eNp9kMtOwzAQRS0EEm3hB1hFYp0SP_KS2KCqPKRKbGBtOc64dQh2sN2K8vU4LSsWXVnjuXdm7pmic2MNIHSDsznOcHHXzdUW-jnJCJ5jglnJztAEVyVNS5zTczTJoioltMCXaOp9l2VZWeVsgvTyewCnP8EE0Sfa7MAHvRZBW5NYlYQNJKAUyDBW9iduTWJHbINN9drog66Bjdhp6_yoGfbO9nuvfbIWh48PcNaDgSt0oUTv4frvnaH3x-Xb4jldvT69LB5WqaSkCmm8HTPBVCGhVTWrGaNVSUAVrBE1sLamTUXzvMSykDWTDWlVURLaiFLVbYOBztDtce7g7Nc2xuGd3ToTV3KSVzE3q2kVVeSokvE670DxIVIQbs9xxkekvOMjUj4i5Uek0VT9M0kdDqyCE7o_bb0_WiFG32lw3EsNJobULtLlrdWn7L8xhJWU
CitedBy_id crossref_primary_10_1016_j_fuel_2023_130282
crossref_primary_10_1016_j_ijhydene_2022_03_166
crossref_primary_10_1115_1_4062193
crossref_primary_10_1016_j_actaastro_2023_08_031
crossref_primary_10_1016_j_csite_2023_103620
crossref_primary_10_1016_j_combustflame_2023_113176
crossref_primary_10_1016_j_combustflame_2023_112926
crossref_primary_10_1016_j_rser_2025_115411
crossref_primary_10_1016_j_combustflame_2023_112814
crossref_primary_10_1016_j_fuel_2021_122792
Cites_doi 10.1016/j.ijhydene.2019.04.003
10.1021/ef200550m
10.1016/j.fuel.2014.07.084
10.1016/j.proci.2004.08.253
10.1016/j.combustflame.2015.07.028
10.1080/00102209808924148
10.1016/j.proci.2014.05.060
10.1016/j.energy.2019.116598
10.1021/acs.energyfuels.7b02389
10.1016/0360-1285(89)90008-7
10.1016/j.proci.2020.06.122
10.1016/j.energy.2018.04.096
10.1016/j.fuel.2020.119688
10.1016/j.ast.2020.106414
10.1016/j.applthermaleng.2015.12.013
10.1016/j.energy.2020.119271
10.2514/1.14991
10.1016/j.fuel.2019.03.101
10.1016/j.combustflame.2005.10.019
10.1016/j.energy.2020.117060
10.2514/2.5879
10.2514/2.5818
10.1016/j.fuel.2019.116809
10.1016/j.proci.2016.08.035
10.1016/j.combustflame.2010.02.005
10.1080/00102202.2012.739223
10.1016/j.combustflame.2017.01.021
10.1016/j.combustflame.2015.01.017
10.1016/j.combustflame.2011.06.017
10.1016/j.combustflame.2010.07.006
10.1016/j.combustflame.2007.04.014
10.1016/j.pecs.2014.12.002
10.1016/j.applthermaleng.2014.04.046
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Nov 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 15, 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2021.121474
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2021_121474
S0016236121013533
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFRAH
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c328t-14714a4f6cedf949443872ef64ba9e4d93b835571c6c94cb2df6723ba7f9db1e3
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Wed Aug 13 04:19:28 EDT 2025
Wed Aug 27 16:38:19 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Sat Aug 30 17:14:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Ozone assisted ignition
Ignition delay time
Rapid compression machine
Plasma assisted combustion
Pyrolysis gas
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-14714a4f6cedf949443872ef64ba9e4d93b835571c6c94cb2df6723ba7f9db1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2580074938
PQPubID 2045474
ParticipantIDs proquest_journals_2580074938
crossref_primary_10_1016_j_fuel_2021_121474
crossref_citationtrail_10_1016_j_fuel_2021_121474
elsevier_sciencedirect_doi_10_1016_j_fuel_2021_121474
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Choubey, Devarajan, Huang, Mehar, Tiwari, Pandey (b0015) 2019; 44
Nishida, Tachibana (b0125) 2006; 22
Xiong, Zheng, Tan, Tian, Le (b0030) 2021; 109
Ju, Sun (b0055) 2015; 48
Merola, Marchitto, Tornatore, Valentino, Irimescu (b0065) 2014; 69
Wang, Yang, Li, Li, Sun, Aldén (b0110) 2012; 159
Mittal, Sung (b0165) 2007; 150
Golovitchev, Chomiak (b0085) 1998; 135
Gong, Yu, Wang, Liu, Huang, Si (b0140) 2018; 153
Ben-Yakar, Hanson (b0020) 2001; 17
Zheng, Xiong, Zhong (b0150) 2021
Cheng (b0005) 1989; 15
Kobashi, Wang, Shibata, Ogawa, Naganuma (b0145) 2019; 249
Keum, Idicheria, Najt, Kuo (b0095) 2017; 36
Tian, Yang, Le, Zhong, Tian (b0040) 2017; 179
Mathur, Gruber, Jackson, Donbar, Donaldson, Jackson (b0035) 2001; 17
Wang, Hou, Zhang, Tang, Chang, Bao (b0010) 2021; 216
Ju, Sun (b0060) 2015; 162
Zhang, Chen, Feng, Zheng (b0155) 2021; 288
Reuter, Ombrello (b0115) 2021; 38
Contino, Masurier, Foucher, Lucchini, D’Errico, Dagaut (b0130) 2014; 137
Zhong, Zheng (b0180) 2012; 185
Gao, Zhang, Adusumilli, Seitzman, Sun, Ombrello (b0080) 2015; 162
Masurier, Foucher, Dayma, Dagaut (b0135) 2015; 35
Mittal, Sung (b0160) 2006; 145
Huang, Zhao, Zhang (b0045) 2020; 264
Gong, Yi, Wang, Huang, Liu (b0070) 2020; 192
Ji, Lan, Lian, Xu, Wang, Cheng (b0090) 2017; 31
Halter, Higelin, Dagaut (b0105) 2011; 25
Li, Li, Wang, Jiao, Liao (b0025) 2020; 195
Kee R.J, Rupley F.M, Meeks E, CHEMKIN-III, Sandia National Laboratories Livermore, CA, 94551–0969.
Do, Im, Cappelli, Mungal (b0050) 2010; 157
Ombrello, Won, Ju, Williams (b0100) 2010; 157
Yamada, Yoshii, Tezaki (b0120) 2005; 30
Yu, He, Ding, Zhao, Zhang (b0075) 2016; 98
H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm, May 2007.
Ju (10.1016/j.fuel.2021.121474_b0055) 2015; 48
Mittal (10.1016/j.fuel.2021.121474_b0160) 2006; 145
Contino (10.1016/j.fuel.2021.121474_b0130) 2014; 137
Do (10.1016/j.fuel.2021.121474_b0050) 2010; 157
Wang (10.1016/j.fuel.2021.121474_b0010) 2021; 216
Xiong (10.1016/j.fuel.2021.121474_b0030) 2021; 109
Ju (10.1016/j.fuel.2021.121474_b0060) 2015; 162
Keum (10.1016/j.fuel.2021.121474_b0095) 2017; 36
Choubey (10.1016/j.fuel.2021.121474_b0015) 2019; 44
Golovitchev (10.1016/j.fuel.2021.121474_b0085) 1998; 135
10.1016/j.fuel.2021.121474_b0175
Wang (10.1016/j.fuel.2021.121474_b0110) 2012; 159
Li (10.1016/j.fuel.2021.121474_b0025) 2020; 195
Halter (10.1016/j.fuel.2021.121474_b0105) 2011; 25
Ben-Yakar (10.1016/j.fuel.2021.121474_b0020) 2001; 17
Zhang (10.1016/j.fuel.2021.121474_b0155) 2021; 288
10.1016/j.fuel.2021.121474_b0170
Gao (10.1016/j.fuel.2021.121474_b0080) 2015; 162
Reuter (10.1016/j.fuel.2021.121474_b0115) 2021; 38
Zheng (10.1016/j.fuel.2021.121474_b0150) 2021
Kobashi (10.1016/j.fuel.2021.121474_b0145) 2019; 249
Mathur (10.1016/j.fuel.2021.121474_b0035) 2001; 17
Merola (10.1016/j.fuel.2021.121474_b0065) 2014; 69
Ombrello (10.1016/j.fuel.2021.121474_b0100) 2010; 157
Mittal (10.1016/j.fuel.2021.121474_b0165) 2007; 150
Cheng (10.1016/j.fuel.2021.121474_b0005) 1989; 15
Gong (10.1016/j.fuel.2021.121474_b0140) 2018; 153
Zhong (10.1016/j.fuel.2021.121474_b0180) 2012; 185
Tian (10.1016/j.fuel.2021.121474_b0040) 2017; 179
Ji (10.1016/j.fuel.2021.121474_b0090) 2017; 31
Yamada (10.1016/j.fuel.2021.121474_b0120) 2005; 30
Huang (10.1016/j.fuel.2021.121474_b0045) 2020; 264
Masurier (10.1016/j.fuel.2021.121474_b0135) 2015; 35
Yu (10.1016/j.fuel.2021.121474_b0075) 2016; 98
Nishida (10.1016/j.fuel.2021.121474_b0125) 2006; 22
Gong (10.1016/j.fuel.2021.121474_b0070) 2020; 192
References_xml – volume: 17
  start-page: 1305
  year: 2001
  end-page: 1312
  ident: b0035
  article-title: Supersonic combustion experiments with a cavity-based fuel injector
  publication-title: J Propul Power
– volume: 157
  start-page: 2298
  year: 2010
  end-page: 2305
  ident: b0050
  article-title: Plasma assisted flame ignition of supersonic flows over a flat wall
  publication-title: Combust Flame
– volume: 35
  start-page: 3125
  year: 2015
  end-page: 3132
  ident: b0135
  article-title: Investigation of iso-octane combustion in a homogeneous charge compression ignition engine seeded by ozone, nitric oxide and nitrogen dioxide
  publication-title: Proc Combust Inst
– volume: 162
  start-page: 529
  year: 2015
  end-page: 532
  ident: b0060
  article-title: Plasma assisted combustion: Progress, challenges, and opportunities
  publication-title: Combust Flame
– volume: 69
  start-page: 177
  year: 2014
  end-page: 187
  ident: b0065
  article-title: Optical characterization of combustion processes in a DISI engine equipped with plasma-assisted ignition system
  publication-title: Appl Therm Eng
– volume: 145
  start-page: 160
  year: 2006
  end-page: 180
  ident: b0160
  article-title: Aerodynamics inside a rapid compression machine
  publication-title: Combust Flame
– volume: 157
  start-page: 1906
  year: 2010
  end-page: 1915
  ident: b0100
  article-title: Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3
  publication-title: Combust Flame
– volume: 36
  start-page: 4129
  year: 2017
  end-page: 4136
  ident: b0095
  article-title: A skeletal iso-octane reaction mechanism for low temperature plasma ignition with ozone surrogate
  publication-title: Proc Combust Inst
– volume: 15
  start-page: 183
  year: 1989
  end-page: 202
  ident: b0005
  article-title: Hypersonic propulsion
  publication-title: Prog Energy Combust Sci
– volume: 159
  start-page: 120
  year: 2012
  end-page: 129
  ident: b0110
  article-title: Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations
  publication-title: Combust Flame
– volume: 25
  start-page: 2909
  year: 2011
  end-page: 2916
  ident: b0105
  article-title: Experimental and detailed kinetic modeling study of the effect of ozone on the combustion of methane
  publication-title: Energy Fuels
– volume: 109
  year: 2021
  ident: b0030
  article-title: Experimental study of ignition and combustion characteristics of ethylene in cavity-based supersonic combustor at low stagnation temperature and pressure
  publication-title: Aerosp Sci Technol
– volume: 264
  year: 2020
  ident: b0045
  article-title: Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen
  publication-title: Fuel
– volume: 98
  start-page: 265
  year: 2016
  end-page: 270
  ident: b0075
  article-title: Research on the impacts of air temperature on the evolution of nanosecond pulse discharge products
  publication-title: Appl Therm Eng
– volume: 48
  start-page: 21
  year: 2015
  end-page: 83
  ident: b0055
  article-title: Plasma assisted combustion: Dynamics and chemistry
  publication-title: Prog Energy Combust Sci
– volume: 17
  start-page: 869
  year: 2001
  end-page: 877
  ident: b0020
  article-title: Cavity flame-holders for ignition and flame stabilization in scramjets: An overview
  publication-title: J Propul Power
– volume: 44
  start-page: 13895
  year: 2019
  end-page: 13909
  ident: b0015
  article-title: Recent advances in cavity-based scramjet engine- a brief review
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 2397
  year: 2021
  end-page: 2407
  ident: b0115
  article-title: Flame enhancement of ethylene/methane mixtures by ozone addition
  publication-title: Proc Combust Inst
– volume: 249
  start-page: 154
  year: 2019
  end-page: 160
  ident: b0145
  article-title: Ignition control in a gasoline compression ignition engine with ozone addition combined with a two-stage direct-injection strategy
  publication-title: Fuel
– volume: 185
  start-page: 627
  year: 2012
  end-page: 644
  ident: b0180
  article-title: Chemical kinetic mechanism of a three-component fuel composed of iso-octane/n-heptane/ethanol
  publication-title: Combust Sci Technol
– volume: 192
  year: 2020
  ident: b0070
  article-title: Numerical modeling of plasma-assisted combustion effects on firing and intermediates in the combustion process of methanol–air mixtures
  publication-title: Energy
– volume: 153
  start-page: 1028
  year: 2018
  end-page: 1037
  ident: b0140
  article-title: Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine
  publication-title: Energy
– volume: 150
  start-page: 355
  year: 2007
  end-page: 368
  ident: b0165
  article-title: Autoignition of toluene and benzene at elevated pressures in a rapid compression machine
  publication-title: Combust Flame
– reference: Kee R.J, Rupley F.M, Meeks E, CHEMKIN-III, Sandia National Laboratories Livermore, CA, 94551–0969.
– reference: H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm, May 2007.
– volume: 30
  start-page: 2773
  year: 2005
  end-page: 2780
  ident: b0120
  article-title: Chemical mechanistic analysis of additive effects in homogeneous charge compression ignition of dimethyl ether
  publication-title: Proc Combust Inst
– volume: 216
  year: 2021
  ident: b0010
  article-title: Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis
  publication-title: Energy
– volume: 195
  year: 2020
  ident: b0025
  article-title: Study of low-temperature ignition characteristics in a supersonic combustor
  publication-title: Energy
– volume: 22
  start-page: 151
  year: 2006
  end-page: 157
  ident: b0125
  article-title: Homogeneous charge compression ignition of natural gas/air mixture with ozone addition
  publication-title: J Propul Power
– volume: 288
  start-page: 119688
  year: 2021
  ident: b0155
  article-title: Experimental investigation of auto-ignition of ethylene-nitrous oxide propellants in rapid compression machine
  publication-title: Fuel
– volume: 162
  start-page: 3914
  year: 2015
  end-page: 3924
  ident: b0080
  article-title: The effect of ozone addition on laminar flame speed
  publication-title: Combust Flame
– volume: 137
  start-page: 179
  year: 2014
  end-page: 184
  ident: b0130
  article-title: CFD simulations using the TDAC method to model iso-octane combustion for a large range of ozone seeding and temperature conditions in a single cylinder HCCI engine
  publication-title: Fuel
– start-page: 1
  year: 2021
  end-page: 8
  ident: b0150
  article-title: Experimental study of ignition behaviors of pyrolysis gas of kerosene-based endothermic hydrocarbon fuel
  publication-title: Int J Energy Res
– volume: 31
  start-page: 14191
  year: 2017
  end-page: 14200
  ident: b0090
  article-title: Influence of ozone on ignition and combustion performance of a lean methane/air mixture
  publication-title: Energy Fuels
– volume: 179
  start-page: 74
  year: 2017
  end-page: 85
  ident: b0040
  article-title: Investigation of combustion process of a kerosene fueled combustor with air throttling
  publication-title: Combust Flame
– volume: 135
  start-page: 31
  year: 1998
  end-page: 47
  ident: b0085
  article-title: Evaluation of ignition improvers for methane autoignition
  publication-title: Combust Sci Technol
– volume: 44
  start-page: 13895
  year: 2019
  ident: 10.1016/j.fuel.2021.121474_b0015
  article-title: Recent advances in cavity-based scramjet engine- a brief review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.003
– volume: 25
  start-page: 2909
  year: 2011
  ident: 10.1016/j.fuel.2021.121474_b0105
  article-title: Experimental and detailed kinetic modeling study of the effect of ozone on the combustion of methane
  publication-title: Energy Fuels
  doi: 10.1021/ef200550m
– volume: 137
  start-page: 179
  year: 2014
  ident: 10.1016/j.fuel.2021.121474_b0130
  article-title: CFD simulations using the TDAC method to model iso-octane combustion for a large range of ozone seeding and temperature conditions in a single cylinder HCCI engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.07.084
– volume: 30
  start-page: 2773
  year: 2005
  ident: 10.1016/j.fuel.2021.121474_b0120
  article-title: Chemical mechanistic analysis of additive effects in homogeneous charge compression ignition of dimethyl ether
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2004.08.253
– volume: 162
  start-page: 3914
  year: 2015
  ident: 10.1016/j.fuel.2021.121474_b0080
  article-title: The effect of ozone addition on laminar flame speed
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2015.07.028
– volume: 135
  start-page: 31
  year: 1998
  ident: 10.1016/j.fuel.2021.121474_b0085
  article-title: Evaluation of ignition improvers for methane autoignition
  publication-title: Combust Sci Technol
  doi: 10.1080/00102209808924148
– volume: 35
  start-page: 3125
  year: 2015
  ident: 10.1016/j.fuel.2021.121474_b0135
  article-title: Investigation of iso-octane combustion in a homogeneous charge compression ignition engine seeded by ozone, nitric oxide and nitrogen dioxide
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2014.05.060
– volume: 192
  year: 2020
  ident: 10.1016/j.fuel.2021.121474_b0070
  article-title: Numerical modeling of plasma-assisted combustion effects on firing and intermediates in the combustion process of methanol–air mixtures
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116598
– ident: 10.1016/j.fuel.2021.121474_b0170
– volume: 31
  start-page: 14191
  year: 2017
  ident: 10.1016/j.fuel.2021.121474_b0090
  article-title: Influence of ozone on ignition and combustion performance of a lean methane/air mixture
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b02389
– volume: 15
  start-page: 183
  year: 1989
  ident: 10.1016/j.fuel.2021.121474_b0005
  article-title: Hypersonic propulsion
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/0360-1285(89)90008-7
– volume: 38
  start-page: 2397
  issue: 2
  year: 2021
  ident: 10.1016/j.fuel.2021.121474_b0115
  article-title: Flame enhancement of ethylene/methane mixtures by ozone addition
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2020.06.122
– volume: 153
  start-page: 1028
  year: 2018
  ident: 10.1016/j.fuel.2021.121474_b0140
  article-title: Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.096
– volume: 288
  start-page: 119688
  year: 2021
  ident: 10.1016/j.fuel.2021.121474_b0155
  article-title: Experimental investigation of auto-ignition of ethylene-nitrous oxide propellants in rapid compression machine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119688
– volume: 109
  year: 2021
  ident: 10.1016/j.fuel.2021.121474_b0030
  article-title: Experimental study of ignition and combustion characteristics of ethylene in cavity-based supersonic combustor at low stagnation temperature and pressure
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2020.106414
– volume: 98
  start-page: 265
  year: 2016
  ident: 10.1016/j.fuel.2021.121474_b0075
  article-title: Research on the impacts of air temperature on the evolution of nanosecond pulse discharge products
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.12.013
– volume: 216
  year: 2021
  ident: 10.1016/j.fuel.2021.121474_b0010
  article-title: Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119271
– volume: 22
  start-page: 151
  year: 2006
  ident: 10.1016/j.fuel.2021.121474_b0125
  article-title: Homogeneous charge compression ignition of natural gas/air mixture with ozone addition
  publication-title: J Propul Power
  doi: 10.2514/1.14991
– volume: 249
  start-page: 154
  year: 2019
  ident: 10.1016/j.fuel.2021.121474_b0145
  article-title: Ignition control in a gasoline compression ignition engine with ozone addition combined with a two-stage direct-injection strategy
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.03.101
– volume: 145
  start-page: 160
  year: 2006
  ident: 10.1016/j.fuel.2021.121474_b0160
  article-title: Aerodynamics inside a rapid compression machine
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2005.10.019
– volume: 195
  year: 2020
  ident: 10.1016/j.fuel.2021.121474_b0025
  article-title: Study of low-temperature ignition characteristics in a supersonic combustor
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117060
– volume: 17
  start-page: 1305
  year: 2001
  ident: 10.1016/j.fuel.2021.121474_b0035
  article-title: Supersonic combustion experiments with a cavity-based fuel injector
  publication-title: J Propul Power
  doi: 10.2514/2.5879
– volume: 17
  start-page: 869
  issue: 4
  year: 2001
  ident: 10.1016/j.fuel.2021.121474_b0020
  article-title: Cavity flame-holders for ignition and flame stabilization in scramjets: An overview
  publication-title: J Propul Power
  doi: 10.2514/2.5818
– ident: 10.1016/j.fuel.2021.121474_b0175
– volume: 264
  year: 2020
  ident: 10.1016/j.fuel.2021.121474_b0045
  article-title: Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116809
– volume: 36
  start-page: 4129
  year: 2017
  ident: 10.1016/j.fuel.2021.121474_b0095
  article-title: A skeletal iso-octane reaction mechanism for low temperature plasma ignition with ozone surrogate
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2016.08.035
– volume: 157
  start-page: 1906
  issue: 10
  year: 2010
  ident: 10.1016/j.fuel.2021.121474_b0100
  article-title: Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2010.02.005
– volume: 185
  start-page: 627
  year: 2012
  ident: 10.1016/j.fuel.2021.121474_b0180
  article-title: Chemical kinetic mechanism of a three-component fuel composed of iso-octane/n-heptane/ethanol
  publication-title: Combust Sci Technol
  doi: 10.1080/00102202.2012.739223
– volume: 179
  start-page: 74
  year: 2017
  ident: 10.1016/j.fuel.2021.121474_b0040
  article-title: Investigation of combustion process of a kerosene fueled combustor with air throttling
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2017.01.021
– volume: 162
  start-page: 529
  issue: 3
  year: 2015
  ident: 10.1016/j.fuel.2021.121474_b0060
  article-title: Plasma assisted combustion: Progress, challenges, and opportunities
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2015.01.017
– volume: 159
  start-page: 120
  year: 2012
  ident: 10.1016/j.fuel.2021.121474_b0110
  article-title: Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2011.06.017
– volume: 157
  start-page: 2298
  year: 2010
  ident: 10.1016/j.fuel.2021.121474_b0050
  article-title: Plasma assisted flame ignition of supersonic flows over a flat wall
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2010.07.006
– volume: 150
  start-page: 355
  year: 2007
  ident: 10.1016/j.fuel.2021.121474_b0165
  article-title: Autoignition of toluene and benzene at elevated pressures in a rapid compression machine
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2007.04.014
– volume: 48
  start-page: 21
  year: 2015
  ident: 10.1016/j.fuel.2021.121474_b0055
  article-title: Plasma assisted combustion: Dynamics and chemistry
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2014.12.002
– volume: 69
  start-page: 177
  year: 2014
  ident: 10.1016/j.fuel.2021.121474_b0065
  article-title: Optical characterization of combustion processes in a DISI engine equipped with plasma-assisted ignition system
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.04.046
– start-page: 1
  year: 2021
  ident: 10.1016/j.fuel.2021.121474_b0150
  article-title: Experimental study of ignition behaviors of pyrolysis gas of kerosene-based endothermic hydrocarbon fuel
  publication-title: Int J Energy Res
SSID ssj0007854
Score 2.4191256
Snippet •Effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene.•Rapid compression machine experiments.•Ignition enhanced by additive ozone.•Active...
Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In this study auto-ignition behaviors of pyrolysis gas of kerosene assisted...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121474
SubjectTerms Compression
Delay time
Heat transfer
High temperature
Ignition
Ignition delay time
Kerosene
Low temperature
Ozone
Ozone assisted ignition
Plasma assisted combustion
Pyrolysis
Pyrolysis gas
Radicals
Rapid compression machine
Spontaneous combustion
Temperature effects
Title Experimental investigation of the effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene
URI https://dx.doi.org/10.1016/j.fuel.2021.121474
https://www.proquest.com/docview/2580074938
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5KQMbMuBHbGdEqKiA6ESlblYeNgqgpoJ2gIHfzl3iUECiA1vs2NHlzr47J3ffEXIsec5dIhOqXewp7ERGU8XgyigQdyFMmuH3jruB6g_lzSgedchlmwuDYZVB9zc6vdbWoecscPNsUpaY48sUQofAoQWLNyDip5QaV_npxzzMQ5u4QWJmiuLokDjTxHj5mcPfD5whyILU8i_j9EtN17bnap2sBacxumjo2iAdN94kq9-gBLdI2fsG1R-Vc_SMahxVPgI3L2pCN7BVvVdjF8GddDataFkHEEGrTdl_xTGTt5eqhiuJHtK648kBzaAZt8nwqnd_2aehjALNBTdTCi_GZCq9ApZ6EIuUwmjuvJJZmjhZJCIDNyzWLFd5IvOMF15pLrJU-6TImBM7ZGkMZO2SSCrhc3ZeeO0dSJOlTpjCOV-4WOdg_buEtfyzecAYx1IXz7YNJnu0yHOLPLcNz7vk5GvOpEHYWDg6bsVif6wTCyZg4byDVoY27NJXy2ODLlQizN4_H7tPVjgewBmjnB2QpenLzB2ClzLNjupleESWL65v-4NPfh7ndA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB0tUAAF4hQ3LqBCAXzETgoKxKGFZalAojM5bBRAmxW7KwQFP8UPMs4BCxIUSHTxmdGMPR4nM28ANgVLmAlF6CnjWw93IvUiSfEpkCjulAdR7L53tC9k80qcXfvXDXirY2GcW2Wl-0udXmjrqma34uZuN8tcjC-VDjoELy0ueUOdwbplnp_w3tbbPz1CIW8xdnJ8edj0qtQCXsJZ0Pco6mQRCSvxNRZJFYIHihkrRRyFRqQhj9E08RVNZBKKJGaplYrxOFI2TGNqOM47AmMC1YVLm7Dz-ulXogK_hH6m0nPkVZE6pVOZHRj3v4NRh-oglPjpNPx2LhSH3ck0TFVWKjkoGTEDDdOZhckh7MI5yI6HcgOQ7BOuI--Q3BK0K0npK-JK-UveMQRbokE_97LCYwlLNUZAz_XpPj_mBT4KuY2KinuDNKMqnoerf2HuAox2kKxFIEJym9C91CprcPnQyPAgNcamxlcJmhtLQGv-6aQCNXe5NR507b12px3PteO5Lnm-BNsfY7olpMevvf1aLPrLwtR45vw6brWWoa7UQk8zP3A2W8iD5T9OuwHjzcv2uT4_vWitwIRrKSMjV2G0_zgwa2gi9eP1YkkSuPnvPfAOMAAjgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+the+effect+of+ozone+on+auto-ignition+behaviors+of+pyrolysis+gas+of+kerosene&rft.jtitle=Fuel+%28Guildford%29&rft.au=Zheng%2C+Dong&rft.au=Xiong%2C+Peng-fei&rft.date=2021-11-15&rft.issn=0016-2361&rft.volume=304&rft.spage=121474&rft_id=info:doi/10.1016%2Fj.fuel.2021.121474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2021_121474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon