Experimental investigation of the effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene
•Effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene.•Rapid compression machine experiments.•Ignition enhanced by additive ozone.•Active radicals and thermal effects in ozone assisted ignition. Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In...
Saved in:
Published in | Fuel (Guildford) Vol. 304; p. 121474 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene.•Rapid compression machine experiments.•Ignition enhanced by additive ozone.•Active radicals and thermal effects in ozone assisted ignition.
Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In this study auto-ignition behaviors of pyrolysis gas of kerosene assisted by O3 are experimental investigated in a rapid compression machine. The ignition delay times of pyrolysis gas varying with additive O3 concentration from 0 to 1200 ppm have been measured at the conditions of TC = 877.7–917.2 K, PC = 3.3–4.4 MPa, φ = 1.0 and 0.5. The measured results show that with about 1195 ppm ozone the ignition delay time effectively decreases by a factor of about 5 at TC = 877.7 K, PC = 3.3 MPa and φ = 1.0. The ignition delay time exponentially decreases with the increasing of O3 concentration. Integrating the optimized USC-II mechanism with O3 sub-mechanism, the ignition delay times assisted by O3 are calculated at wider temperature regimes. The results demonstrate that the auto-ignition enhancement by O3 at low temperature regime is more significant as compared to the high temperature regime. Further analysis reveals that with O3 addition a peak of heat release appears at the initial time, leading to a temperature jump. Meanwhile the active species concentrations increase. At low temperature regime the temperature jump and active species concentrations increase considerably, so auto-ignition enhancement by O3 is more significant. Kinetic analysis found that the presence of O3 molecules rapidly activates the chain reaction paths O3 → O → HCO → HO2 → OH → H2O. During the chain reaction paths, vital radicals O, HCO, HO2 and OH are greatly generated, and a considerable amount of heat is released. By both active radicals and thermal effects, the auto-ignition of pyrolysis gas of kerosene has been enhanced. |
---|---|
AbstractList | •Effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene.•Rapid compression machine experiments.•Ignition enhanced by additive ozone.•Active radicals and thermal effects in ozone assisted ignition.
Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In this study auto-ignition behaviors of pyrolysis gas of kerosene assisted by O3 are experimental investigated in a rapid compression machine. The ignition delay times of pyrolysis gas varying with additive O3 concentration from 0 to 1200 ppm have been measured at the conditions of TC = 877.7–917.2 K, PC = 3.3–4.4 MPa, φ = 1.0 and 0.5. The measured results show that with about 1195 ppm ozone the ignition delay time effectively decreases by a factor of about 5 at TC = 877.7 K, PC = 3.3 MPa and φ = 1.0. The ignition delay time exponentially decreases with the increasing of O3 concentration. Integrating the optimized USC-II mechanism with O3 sub-mechanism, the ignition delay times assisted by O3 are calculated at wider temperature regimes. The results demonstrate that the auto-ignition enhancement by O3 at low temperature regime is more significant as compared to the high temperature regime. Further analysis reveals that with O3 addition a peak of heat release appears at the initial time, leading to a temperature jump. Meanwhile the active species concentrations increase. At low temperature regime the temperature jump and active species concentrations increase considerably, so auto-ignition enhancement by O3 is more significant. Kinetic analysis found that the presence of O3 molecules rapidly activates the chain reaction paths O3 → O → HCO → HO2 → OH → H2O. During the chain reaction paths, vital radicals O, HCO, HO2 and OH are greatly generated, and a considerable amount of heat is released. By both active radicals and thermal effects, the auto-ignition of pyrolysis gas of kerosene has been enhanced. Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In this study auto-ignition behaviors of pyrolysis gas of kerosene assisted by O3 are experimental investigated in a rapid compression machine. The ignition delay times of pyrolysis gas varying with additive O3 concentration from 0 to 1200 ppm have been measured at the conditions of TC = 877.7–917.2 K, PC = 3.3–4.4 MPa, φ = 1.0 and 0.5. The measured results show that with about 1195 ppm ozone the ignition delay time effectively decreases by a factor of about 5 at TC = 877.7 K, PC = 3.3 MPa and φ = 1.0. The ignition delay time exponentially decreases with the increasing of O3 concentration. Integrating the optimized USC-II mechanism with O3 sub-mechanism, the ignition delay times assisted by O3 are calculated at wider temperature regimes. The results demonstrate that the auto-ignition enhancement by O3 at low temperature regime is more significant as compared to the high temperature regime. Further analysis reveals that with O3 addition a peak of heat release appears at the initial time, leading to a temperature jump. Meanwhile the active species concentrations increase. At low temperature regime the temperature jump and active species concentrations increase considerably, so auto-ignition enhancement by O3 is more significant. Kinetic analysis found that the presence of O3 molecules rapidly activates the chain reaction paths O3 → O → HCO → HO2 → OH → H2O. During the chain reaction paths, vital radicals O, HCO, HO2 and OH are greatly generated, and a considerable amount of heat is released. By both active radicals and thermal effects, the auto-ignition of pyrolysis gas of kerosene has been enhanced. |
ArticleNumber | 121474 |
Author | Zheng, Dong Xiong, Peng-fei |
Author_xml | – sequence: 1 givenname: Dong surname: Zheng fullname: Zheng, Dong email: zhengd11@yeah.net organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, PR China – sequence: 2 givenname: Peng-fei surname: Xiong fullname: Xiong, Peng-fei organization: China Aerodynamics Research and Development Center, Mianyang 621000, PR China |
BookMark | eNp9kMtOwzAQRS0EEm3hB1hFYp0SP_KS2KCqPKRKbGBtOc64dQh2sN2K8vU4LSsWXVnjuXdm7pmic2MNIHSDsznOcHHXzdUW-jnJCJ5jglnJztAEVyVNS5zTczTJoioltMCXaOp9l2VZWeVsgvTyewCnP8EE0Sfa7MAHvRZBW5NYlYQNJKAUyDBW9iduTWJHbINN9drog66Bjdhp6_yoGfbO9nuvfbIWh48PcNaDgSt0oUTv4frvnaH3x-Xb4jldvT69LB5WqaSkCmm8HTPBVCGhVTWrGaNVSUAVrBE1sLamTUXzvMSykDWTDWlVURLaiFLVbYOBztDtce7g7Nc2xuGd3ToTV3KSVzE3q2kVVeSokvE670DxIVIQbs9xxkekvOMjUj4i5Uek0VT9M0kdDqyCE7o_bb0_WiFG32lw3EsNJobULtLlrdWn7L8xhJWU |
CitedBy_id | crossref_primary_10_1016_j_fuel_2023_130282 crossref_primary_10_1016_j_ijhydene_2022_03_166 crossref_primary_10_1115_1_4062193 crossref_primary_10_1016_j_actaastro_2023_08_031 crossref_primary_10_1016_j_csite_2023_103620 crossref_primary_10_1016_j_combustflame_2023_113176 crossref_primary_10_1016_j_combustflame_2023_112926 crossref_primary_10_1016_j_rser_2025_115411 crossref_primary_10_1016_j_combustflame_2023_112814 crossref_primary_10_1016_j_fuel_2021_122792 |
Cites_doi | 10.1016/j.ijhydene.2019.04.003 10.1021/ef200550m 10.1016/j.fuel.2014.07.084 10.1016/j.proci.2004.08.253 10.1016/j.combustflame.2015.07.028 10.1080/00102209808924148 10.1016/j.proci.2014.05.060 10.1016/j.energy.2019.116598 10.1021/acs.energyfuels.7b02389 10.1016/0360-1285(89)90008-7 10.1016/j.proci.2020.06.122 10.1016/j.energy.2018.04.096 10.1016/j.fuel.2020.119688 10.1016/j.ast.2020.106414 10.1016/j.applthermaleng.2015.12.013 10.1016/j.energy.2020.119271 10.2514/1.14991 10.1016/j.fuel.2019.03.101 10.1016/j.combustflame.2005.10.019 10.1016/j.energy.2020.117060 10.2514/2.5879 10.2514/2.5818 10.1016/j.fuel.2019.116809 10.1016/j.proci.2016.08.035 10.1016/j.combustflame.2010.02.005 10.1080/00102202.2012.739223 10.1016/j.combustflame.2017.01.021 10.1016/j.combustflame.2015.01.017 10.1016/j.combustflame.2011.06.017 10.1016/j.combustflame.2010.07.006 10.1016/j.combustflame.2007.04.014 10.1016/j.pecs.2014.12.002 10.1016/j.applthermaleng.2014.04.046 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Nov 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Nov 15, 2021 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1016/j.fuel.2021.121474 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7153 |
ExternalDocumentID | 10_1016_j_fuel_2021_121474 S0016236121013533 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACIWK ACNCT ACPRK ACRLP ACVFH ADBBV ADCNI ADECG ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFPUW AFRAH AFTJW AFXIZ AFZHZ AGCQF AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AAYXX ABDEX ABEFU ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c328t-14714a4f6cedf949443872ef64ba9e4d93b835571c6c94cb2df6723ba7f9db1e3 |
IEDL.DBID | .~1 |
ISSN | 0016-2361 |
IngestDate | Wed Aug 13 04:19:28 EDT 2025 Wed Aug 27 16:38:19 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Sat Aug 30 17:14:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ozone assisted ignition Ignition delay time Rapid compression machine Plasma assisted combustion Pyrolysis gas |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-14714a4f6cedf949443872ef64ba9e4d93b835571c6c94cb2df6723ba7f9db1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2580074938 |
PQPubID | 2045474 |
ParticipantIDs | proquest_journals_2580074938 crossref_primary_10_1016_j_fuel_2021_121474 crossref_citationtrail_10_1016_j_fuel_2021_121474 elsevier_sciencedirect_doi_10_1016_j_fuel_2021_121474 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Fuel (Guildford) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Choubey, Devarajan, Huang, Mehar, Tiwari, Pandey (b0015) 2019; 44 Nishida, Tachibana (b0125) 2006; 22 Xiong, Zheng, Tan, Tian, Le (b0030) 2021; 109 Ju, Sun (b0055) 2015; 48 Merola, Marchitto, Tornatore, Valentino, Irimescu (b0065) 2014; 69 Wang, Yang, Li, Li, Sun, Aldén (b0110) 2012; 159 Mittal, Sung (b0165) 2007; 150 Golovitchev, Chomiak (b0085) 1998; 135 Gong, Yu, Wang, Liu, Huang, Si (b0140) 2018; 153 Ben-Yakar, Hanson (b0020) 2001; 17 Zheng, Xiong, Zhong (b0150) 2021 Cheng (b0005) 1989; 15 Kobashi, Wang, Shibata, Ogawa, Naganuma (b0145) 2019; 249 Keum, Idicheria, Najt, Kuo (b0095) 2017; 36 Tian, Yang, Le, Zhong, Tian (b0040) 2017; 179 Mathur, Gruber, Jackson, Donbar, Donaldson, Jackson (b0035) 2001; 17 Wang, Hou, Zhang, Tang, Chang, Bao (b0010) 2021; 216 Ju, Sun (b0060) 2015; 162 Zhang, Chen, Feng, Zheng (b0155) 2021; 288 Reuter, Ombrello (b0115) 2021; 38 Contino, Masurier, Foucher, Lucchini, D’Errico, Dagaut (b0130) 2014; 137 Zhong, Zheng (b0180) 2012; 185 Gao, Zhang, Adusumilli, Seitzman, Sun, Ombrello (b0080) 2015; 162 Masurier, Foucher, Dayma, Dagaut (b0135) 2015; 35 Mittal, Sung (b0160) 2006; 145 Huang, Zhao, Zhang (b0045) 2020; 264 Gong, Yi, Wang, Huang, Liu (b0070) 2020; 192 Ji, Lan, Lian, Xu, Wang, Cheng (b0090) 2017; 31 Halter, Higelin, Dagaut (b0105) 2011; 25 Li, Li, Wang, Jiao, Liao (b0025) 2020; 195 Kee R.J, Rupley F.M, Meeks E, CHEMKIN-III, Sandia National Laboratories Livermore, CA, 94551–0969. Do, Im, Cappelli, Mungal (b0050) 2010; 157 Ombrello, Won, Ju, Williams (b0100) 2010; 157 Yamada, Yoshii, Tezaki (b0120) 2005; 30 Yu, He, Ding, Zhao, Zhang (b0075) 2016; 98 H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm, May 2007. Ju (10.1016/j.fuel.2021.121474_b0055) 2015; 48 Mittal (10.1016/j.fuel.2021.121474_b0160) 2006; 145 Contino (10.1016/j.fuel.2021.121474_b0130) 2014; 137 Do (10.1016/j.fuel.2021.121474_b0050) 2010; 157 Wang (10.1016/j.fuel.2021.121474_b0010) 2021; 216 Xiong (10.1016/j.fuel.2021.121474_b0030) 2021; 109 Ju (10.1016/j.fuel.2021.121474_b0060) 2015; 162 Keum (10.1016/j.fuel.2021.121474_b0095) 2017; 36 Choubey (10.1016/j.fuel.2021.121474_b0015) 2019; 44 Golovitchev (10.1016/j.fuel.2021.121474_b0085) 1998; 135 10.1016/j.fuel.2021.121474_b0175 Wang (10.1016/j.fuel.2021.121474_b0110) 2012; 159 Li (10.1016/j.fuel.2021.121474_b0025) 2020; 195 Halter (10.1016/j.fuel.2021.121474_b0105) 2011; 25 Ben-Yakar (10.1016/j.fuel.2021.121474_b0020) 2001; 17 Zhang (10.1016/j.fuel.2021.121474_b0155) 2021; 288 10.1016/j.fuel.2021.121474_b0170 Gao (10.1016/j.fuel.2021.121474_b0080) 2015; 162 Reuter (10.1016/j.fuel.2021.121474_b0115) 2021; 38 Zheng (10.1016/j.fuel.2021.121474_b0150) 2021 Kobashi (10.1016/j.fuel.2021.121474_b0145) 2019; 249 Mathur (10.1016/j.fuel.2021.121474_b0035) 2001; 17 Merola (10.1016/j.fuel.2021.121474_b0065) 2014; 69 Ombrello (10.1016/j.fuel.2021.121474_b0100) 2010; 157 Mittal (10.1016/j.fuel.2021.121474_b0165) 2007; 150 Cheng (10.1016/j.fuel.2021.121474_b0005) 1989; 15 Gong (10.1016/j.fuel.2021.121474_b0140) 2018; 153 Zhong (10.1016/j.fuel.2021.121474_b0180) 2012; 185 Tian (10.1016/j.fuel.2021.121474_b0040) 2017; 179 Ji (10.1016/j.fuel.2021.121474_b0090) 2017; 31 Yamada (10.1016/j.fuel.2021.121474_b0120) 2005; 30 Huang (10.1016/j.fuel.2021.121474_b0045) 2020; 264 Masurier (10.1016/j.fuel.2021.121474_b0135) 2015; 35 Yu (10.1016/j.fuel.2021.121474_b0075) 2016; 98 Nishida (10.1016/j.fuel.2021.121474_b0125) 2006; 22 Gong (10.1016/j.fuel.2021.121474_b0070) 2020; 192 |
References_xml | – volume: 17 start-page: 1305 year: 2001 end-page: 1312 ident: b0035 article-title: Supersonic combustion experiments with a cavity-based fuel injector publication-title: J Propul Power – volume: 157 start-page: 2298 year: 2010 end-page: 2305 ident: b0050 article-title: Plasma assisted flame ignition of supersonic flows over a flat wall publication-title: Combust Flame – volume: 35 start-page: 3125 year: 2015 end-page: 3132 ident: b0135 article-title: Investigation of iso-octane combustion in a homogeneous charge compression ignition engine seeded by ozone, nitric oxide and nitrogen dioxide publication-title: Proc Combust Inst – volume: 162 start-page: 529 year: 2015 end-page: 532 ident: b0060 article-title: Plasma assisted combustion: Progress, challenges, and opportunities publication-title: Combust Flame – volume: 69 start-page: 177 year: 2014 end-page: 187 ident: b0065 article-title: Optical characterization of combustion processes in a DISI engine equipped with plasma-assisted ignition system publication-title: Appl Therm Eng – volume: 145 start-page: 160 year: 2006 end-page: 180 ident: b0160 article-title: Aerodynamics inside a rapid compression machine publication-title: Combust Flame – volume: 157 start-page: 1906 year: 2010 end-page: 1915 ident: b0100 article-title: Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3 publication-title: Combust Flame – volume: 36 start-page: 4129 year: 2017 end-page: 4136 ident: b0095 article-title: A skeletal iso-octane reaction mechanism for low temperature plasma ignition with ozone surrogate publication-title: Proc Combust Inst – volume: 15 start-page: 183 year: 1989 end-page: 202 ident: b0005 article-title: Hypersonic propulsion publication-title: Prog Energy Combust Sci – volume: 159 start-page: 120 year: 2012 end-page: 129 ident: b0110 article-title: Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations publication-title: Combust Flame – volume: 25 start-page: 2909 year: 2011 end-page: 2916 ident: b0105 article-title: Experimental and detailed kinetic modeling study of the effect of ozone on the combustion of methane publication-title: Energy Fuels – volume: 109 year: 2021 ident: b0030 article-title: Experimental study of ignition and combustion characteristics of ethylene in cavity-based supersonic combustor at low stagnation temperature and pressure publication-title: Aerosp Sci Technol – volume: 264 year: 2020 ident: b0045 article-title: Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen publication-title: Fuel – volume: 98 start-page: 265 year: 2016 end-page: 270 ident: b0075 article-title: Research on the impacts of air temperature on the evolution of nanosecond pulse discharge products publication-title: Appl Therm Eng – volume: 48 start-page: 21 year: 2015 end-page: 83 ident: b0055 article-title: Plasma assisted combustion: Dynamics and chemistry publication-title: Prog Energy Combust Sci – volume: 17 start-page: 869 year: 2001 end-page: 877 ident: b0020 article-title: Cavity flame-holders for ignition and flame stabilization in scramjets: An overview publication-title: J Propul Power – volume: 44 start-page: 13895 year: 2019 end-page: 13909 ident: b0015 article-title: Recent advances in cavity-based scramjet engine- a brief review publication-title: Int J Hydrogen Energy – volume: 38 start-page: 2397 year: 2021 end-page: 2407 ident: b0115 article-title: Flame enhancement of ethylene/methane mixtures by ozone addition publication-title: Proc Combust Inst – volume: 249 start-page: 154 year: 2019 end-page: 160 ident: b0145 article-title: Ignition control in a gasoline compression ignition engine with ozone addition combined with a two-stage direct-injection strategy publication-title: Fuel – volume: 185 start-page: 627 year: 2012 end-page: 644 ident: b0180 article-title: Chemical kinetic mechanism of a three-component fuel composed of iso-octane/n-heptane/ethanol publication-title: Combust Sci Technol – volume: 192 year: 2020 ident: b0070 article-title: Numerical modeling of plasma-assisted combustion effects on firing and intermediates in the combustion process of methanol–air mixtures publication-title: Energy – volume: 153 start-page: 1028 year: 2018 end-page: 1037 ident: b0140 article-title: Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine publication-title: Energy – volume: 150 start-page: 355 year: 2007 end-page: 368 ident: b0165 article-title: Autoignition of toluene and benzene at elevated pressures in a rapid compression machine publication-title: Combust Flame – reference: Kee R.J, Rupley F.M, Meeks E, CHEMKIN-III, Sandia National Laboratories Livermore, CA, 94551–0969. – reference: H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm, May 2007. – volume: 30 start-page: 2773 year: 2005 end-page: 2780 ident: b0120 article-title: Chemical mechanistic analysis of additive effects in homogeneous charge compression ignition of dimethyl ether publication-title: Proc Combust Inst – volume: 216 year: 2021 ident: b0010 article-title: Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis publication-title: Energy – volume: 195 year: 2020 ident: b0025 article-title: Study of low-temperature ignition characteristics in a supersonic combustor publication-title: Energy – volume: 22 start-page: 151 year: 2006 end-page: 157 ident: b0125 article-title: Homogeneous charge compression ignition of natural gas/air mixture with ozone addition publication-title: J Propul Power – volume: 288 start-page: 119688 year: 2021 ident: b0155 article-title: Experimental investigation of auto-ignition of ethylene-nitrous oxide propellants in rapid compression machine publication-title: Fuel – volume: 162 start-page: 3914 year: 2015 end-page: 3924 ident: b0080 article-title: The effect of ozone addition on laminar flame speed publication-title: Combust Flame – volume: 137 start-page: 179 year: 2014 end-page: 184 ident: b0130 article-title: CFD simulations using the TDAC method to model iso-octane combustion for a large range of ozone seeding and temperature conditions in a single cylinder HCCI engine publication-title: Fuel – start-page: 1 year: 2021 end-page: 8 ident: b0150 article-title: Experimental study of ignition behaviors of pyrolysis gas of kerosene-based endothermic hydrocarbon fuel publication-title: Int J Energy Res – volume: 31 start-page: 14191 year: 2017 end-page: 14200 ident: b0090 article-title: Influence of ozone on ignition and combustion performance of a lean methane/air mixture publication-title: Energy Fuels – volume: 179 start-page: 74 year: 2017 end-page: 85 ident: b0040 article-title: Investigation of combustion process of a kerosene fueled combustor with air throttling publication-title: Combust Flame – volume: 135 start-page: 31 year: 1998 end-page: 47 ident: b0085 article-title: Evaluation of ignition improvers for methane autoignition publication-title: Combust Sci Technol – volume: 44 start-page: 13895 year: 2019 ident: 10.1016/j.fuel.2021.121474_b0015 article-title: Recent advances in cavity-based scramjet engine- a brief review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.003 – volume: 25 start-page: 2909 year: 2011 ident: 10.1016/j.fuel.2021.121474_b0105 article-title: Experimental and detailed kinetic modeling study of the effect of ozone on the combustion of methane publication-title: Energy Fuels doi: 10.1021/ef200550m – volume: 137 start-page: 179 year: 2014 ident: 10.1016/j.fuel.2021.121474_b0130 article-title: CFD simulations using the TDAC method to model iso-octane combustion for a large range of ozone seeding and temperature conditions in a single cylinder HCCI engine publication-title: Fuel doi: 10.1016/j.fuel.2014.07.084 – volume: 30 start-page: 2773 year: 2005 ident: 10.1016/j.fuel.2021.121474_b0120 article-title: Chemical mechanistic analysis of additive effects in homogeneous charge compression ignition of dimethyl ether publication-title: Proc Combust Inst doi: 10.1016/j.proci.2004.08.253 – volume: 162 start-page: 3914 year: 2015 ident: 10.1016/j.fuel.2021.121474_b0080 article-title: The effect of ozone addition on laminar flame speed publication-title: Combust Flame doi: 10.1016/j.combustflame.2015.07.028 – volume: 135 start-page: 31 year: 1998 ident: 10.1016/j.fuel.2021.121474_b0085 article-title: Evaluation of ignition improvers for methane autoignition publication-title: Combust Sci Technol doi: 10.1080/00102209808924148 – volume: 35 start-page: 3125 year: 2015 ident: 10.1016/j.fuel.2021.121474_b0135 article-title: Investigation of iso-octane combustion in a homogeneous charge compression ignition engine seeded by ozone, nitric oxide and nitrogen dioxide publication-title: Proc Combust Inst doi: 10.1016/j.proci.2014.05.060 – volume: 192 year: 2020 ident: 10.1016/j.fuel.2021.121474_b0070 article-title: Numerical modeling of plasma-assisted combustion effects on firing and intermediates in the combustion process of methanol–air mixtures publication-title: Energy doi: 10.1016/j.energy.2019.116598 – ident: 10.1016/j.fuel.2021.121474_b0170 – volume: 31 start-page: 14191 year: 2017 ident: 10.1016/j.fuel.2021.121474_b0090 article-title: Influence of ozone on ignition and combustion performance of a lean methane/air mixture publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b02389 – volume: 15 start-page: 183 year: 1989 ident: 10.1016/j.fuel.2021.121474_b0005 article-title: Hypersonic propulsion publication-title: Prog Energy Combust Sci doi: 10.1016/0360-1285(89)90008-7 – volume: 38 start-page: 2397 issue: 2 year: 2021 ident: 10.1016/j.fuel.2021.121474_b0115 article-title: Flame enhancement of ethylene/methane mixtures by ozone addition publication-title: Proc Combust Inst doi: 10.1016/j.proci.2020.06.122 – volume: 153 start-page: 1028 year: 2018 ident: 10.1016/j.fuel.2021.121474_b0140 article-title: Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine publication-title: Energy doi: 10.1016/j.energy.2018.04.096 – volume: 288 start-page: 119688 year: 2021 ident: 10.1016/j.fuel.2021.121474_b0155 article-title: Experimental investigation of auto-ignition of ethylene-nitrous oxide propellants in rapid compression machine publication-title: Fuel doi: 10.1016/j.fuel.2020.119688 – volume: 109 year: 2021 ident: 10.1016/j.fuel.2021.121474_b0030 article-title: Experimental study of ignition and combustion characteristics of ethylene in cavity-based supersonic combustor at low stagnation temperature and pressure publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2020.106414 – volume: 98 start-page: 265 year: 2016 ident: 10.1016/j.fuel.2021.121474_b0075 article-title: Research on the impacts of air temperature on the evolution of nanosecond pulse discharge products publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.12.013 – volume: 216 year: 2021 ident: 10.1016/j.fuel.2021.121474_b0010 article-title: Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis publication-title: Energy doi: 10.1016/j.energy.2020.119271 – volume: 22 start-page: 151 year: 2006 ident: 10.1016/j.fuel.2021.121474_b0125 article-title: Homogeneous charge compression ignition of natural gas/air mixture with ozone addition publication-title: J Propul Power doi: 10.2514/1.14991 – volume: 249 start-page: 154 year: 2019 ident: 10.1016/j.fuel.2021.121474_b0145 article-title: Ignition control in a gasoline compression ignition engine with ozone addition combined with a two-stage direct-injection strategy publication-title: Fuel doi: 10.1016/j.fuel.2019.03.101 – volume: 145 start-page: 160 year: 2006 ident: 10.1016/j.fuel.2021.121474_b0160 article-title: Aerodynamics inside a rapid compression machine publication-title: Combust Flame doi: 10.1016/j.combustflame.2005.10.019 – volume: 195 year: 2020 ident: 10.1016/j.fuel.2021.121474_b0025 article-title: Study of low-temperature ignition characteristics in a supersonic combustor publication-title: Energy doi: 10.1016/j.energy.2020.117060 – volume: 17 start-page: 1305 year: 2001 ident: 10.1016/j.fuel.2021.121474_b0035 article-title: Supersonic combustion experiments with a cavity-based fuel injector publication-title: J Propul Power doi: 10.2514/2.5879 – volume: 17 start-page: 869 issue: 4 year: 2001 ident: 10.1016/j.fuel.2021.121474_b0020 article-title: Cavity flame-holders for ignition and flame stabilization in scramjets: An overview publication-title: J Propul Power doi: 10.2514/2.5818 – ident: 10.1016/j.fuel.2021.121474_b0175 – volume: 264 year: 2020 ident: 10.1016/j.fuel.2021.121474_b0045 article-title: Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen publication-title: Fuel doi: 10.1016/j.fuel.2019.116809 – volume: 36 start-page: 4129 year: 2017 ident: 10.1016/j.fuel.2021.121474_b0095 article-title: A skeletal iso-octane reaction mechanism for low temperature plasma ignition with ozone surrogate publication-title: Proc Combust Inst doi: 10.1016/j.proci.2016.08.035 – volume: 157 start-page: 1906 issue: 10 year: 2010 ident: 10.1016/j.fuel.2021.121474_b0100 article-title: Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3 publication-title: Combust Flame doi: 10.1016/j.combustflame.2010.02.005 – volume: 185 start-page: 627 year: 2012 ident: 10.1016/j.fuel.2021.121474_b0180 article-title: Chemical kinetic mechanism of a three-component fuel composed of iso-octane/n-heptane/ethanol publication-title: Combust Sci Technol doi: 10.1080/00102202.2012.739223 – volume: 179 start-page: 74 year: 2017 ident: 10.1016/j.fuel.2021.121474_b0040 article-title: Investigation of combustion process of a kerosene fueled combustor with air throttling publication-title: Combust Flame doi: 10.1016/j.combustflame.2017.01.021 – volume: 162 start-page: 529 issue: 3 year: 2015 ident: 10.1016/j.fuel.2021.121474_b0060 article-title: Plasma assisted combustion: Progress, challenges, and opportunities publication-title: Combust Flame doi: 10.1016/j.combustflame.2015.01.017 – volume: 159 start-page: 120 year: 2012 ident: 10.1016/j.fuel.2021.121474_b0110 article-title: Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations publication-title: Combust Flame doi: 10.1016/j.combustflame.2011.06.017 – volume: 157 start-page: 2298 year: 2010 ident: 10.1016/j.fuel.2021.121474_b0050 article-title: Plasma assisted flame ignition of supersonic flows over a flat wall publication-title: Combust Flame doi: 10.1016/j.combustflame.2010.07.006 – volume: 150 start-page: 355 year: 2007 ident: 10.1016/j.fuel.2021.121474_b0165 article-title: Autoignition of toluene and benzene at elevated pressures in a rapid compression machine publication-title: Combust Flame doi: 10.1016/j.combustflame.2007.04.014 – volume: 48 start-page: 21 year: 2015 ident: 10.1016/j.fuel.2021.121474_b0055 article-title: Plasma assisted combustion: Dynamics and chemistry publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2014.12.002 – volume: 69 start-page: 177 year: 2014 ident: 10.1016/j.fuel.2021.121474_b0065 article-title: Optical characterization of combustion processes in a DISI engine equipped with plasma-assisted ignition system publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.04.046 – start-page: 1 year: 2021 ident: 10.1016/j.fuel.2021.121474_b0150 article-title: Experimental study of ignition behaviors of pyrolysis gas of kerosene-based endothermic hydrocarbon fuel publication-title: Int J Energy Res |
SSID | ssj0007854 |
Score | 2.4191256 |
Snippet | •Effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene.•Rapid compression machine experiments.•Ignition enhanced by additive ozone.•Active... Additive ozone as a promising aiding can enhance ignition and combustion behaviors. In this study auto-ignition behaviors of pyrolysis gas of kerosene assisted... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121474 |
SubjectTerms | Compression Delay time Heat transfer High temperature Ignition Ignition delay time Kerosene Low temperature Ozone Ozone assisted ignition Plasma assisted combustion Pyrolysis Pyrolysis gas Radicals Rapid compression machine Spontaneous combustion Temperature effects |
Title | Experimental investigation of the effect of ozone on auto-ignition behaviors of pyrolysis gas of kerosene |
URI | https://dx.doi.org/10.1016/j.fuel.2021.121474 https://www.proquest.com/docview/2580074938 |
Volume | 304 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5KQMbMuBHbGdEqKiA6ESlblYeNgqgpoJ2gIHfzl3iUECiA1vs2NHlzr47J3ffEXIsec5dIhOqXewp7ERGU8XgyigQdyFMmuH3jruB6g_lzSgedchlmwuDYZVB9zc6vdbWoecscPNsUpaY48sUQofAoQWLNyDip5QaV_npxzzMQ5u4QWJmiuLokDjTxHj5mcPfD5whyILU8i_j9EtN17bnap2sBacxumjo2iAdN94kq9-gBLdI2fsG1R-Vc_SMahxVPgI3L2pCN7BVvVdjF8GddDataFkHEEGrTdl_xTGTt5eqhiuJHtK648kBzaAZt8nwqnd_2aehjALNBTdTCi_GZCq9ApZ6EIuUwmjuvJJZmjhZJCIDNyzWLFd5IvOMF15pLrJU-6TImBM7ZGkMZO2SSCrhc3ZeeO0dSJOlTpjCOV-4WOdg_buEtfyzecAYx1IXz7YNJnu0yHOLPLcNz7vk5GvOpEHYWDg6bsVif6wTCyZg4byDVoY27NJXy2ODLlQizN4_H7tPVjgewBmjnB2QpenLzB2ClzLNjupleESWL65v-4NPfh7ndA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB0tUAAF4hQ3LqBCAXzETgoKxKGFZalAojM5bBRAmxW7KwQFP8UPMs4BCxIUSHTxmdGMPR4nM28ANgVLmAlF6CnjWw93IvUiSfEpkCjulAdR7L53tC9k80qcXfvXDXirY2GcW2Wl-0udXmjrqma34uZuN8tcjC-VDjoELy0ueUOdwbplnp_w3tbbPz1CIW8xdnJ8edj0qtQCXsJZ0Pco6mQRCSvxNRZJFYIHihkrRRyFRqQhj9E08RVNZBKKJGaplYrxOFI2TGNqOM47AmMC1YVLm7Dz-ulXogK_hH6m0nPkVZE6pVOZHRj3v4NRh-oglPjpNPx2LhSH3ck0TFVWKjkoGTEDDdOZhckh7MI5yI6HcgOQ7BOuI--Q3BK0K0npK-JK-UveMQRbokE_97LCYwlLNUZAz_XpPj_mBT4KuY2KinuDNKMqnoerf2HuAox2kKxFIEJym9C91CprcPnQyPAgNcamxlcJmhtLQGv-6aQCNXe5NR507b12px3PteO5Lnm-BNsfY7olpMevvf1aLPrLwtR45vw6brWWoa7UQk8zP3A2W8iD5T9OuwHjzcv2uT4_vWitwIRrKSMjV2G0_zgwa2gi9eP1YkkSuPnvPfAOMAAjgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+the+effect+of+ozone+on+auto-ignition+behaviors+of+pyrolysis+gas+of+kerosene&rft.jtitle=Fuel+%28Guildford%29&rft.au=Zheng%2C+Dong&rft.au=Xiong%2C+Peng-fei&rft.date=2021-11-15&rft.issn=0016-2361&rft.volume=304&rft.spage=121474&rft_id=info:doi/10.1016%2Fj.fuel.2021.121474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2021_121474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |