Meta-Prototypical Learning for Domain-Agnostic Few-Shot Recognition

Few-shot learning (FSL) aims to classify novel images based on a few labeled samples with the help of meta-knowledge. Most previous works address this problem based on the hypothesis that the training set and testing set are from the same domain, which is not realistic for some real-world applicatio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 11; pp. 6990 - 6996
Main Authors Wang, Rui-Qi, Zhang, Xu-Yao, Liu, Cheng-Lin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2021.3083650

Cover

Loading…
Abstract Few-shot learning (FSL) aims to classify novel images based on a few labeled samples with the help of meta-knowledge. Most previous works address this problem based on the hypothesis that the training set and testing set are from the same domain, which is not realistic for some real-world applications. Thus, we extend FSL to domain-agnostic few-shot recognition, where the domain of the testing task is unknown. In domain-agnostic few-shot recognition, the model is optimized on data from one domain and evaluated on tasks from different domains. Previous methods for FSL mostly focus on learning general features or adapting to few-shot tasks effectively. They suffer from inappropriate features or complex adaptation in domain-agnostic few-shot recognition. In this brief, we propose meta-prototypical learning to address this problem. In particular, a meta-encoder is optimized to learn the general features. Different from the traditional prototypical learning, the meta encoder can effectively adapt to few-shot tasks from different domains by the traces of the few labeled examples. Experiments on many datasets demonstrate that meta-prototypical learning performs competitively on traditional few-shot tasks, and on few-shot tasks from different domains, meta-prototypical learning outperforms related methods.
AbstractList Few-shot learning (FSL) aims to classify novel images based on a few labeled samples with the help of meta-knowledge. Most previous works address this problem based on the hypothesis that the training set and testing set are from the same domain, which is not realistic for some real-world applications. Thus, we extend FSL to domain-agnostic few-shot recognition, where the domain of the testing task is unknown. In domain-agnostic few-shot recognition, the model is optimized on data from one domain and evaluated on tasks from different domains. Previous methods for FSL mostly focus on learning general features or adapting to few-shot tasks effectively. They suffer from inappropriate features or complex adaptation in domain-agnostic few-shot recognition. In this brief, we propose meta-prototypical learning to address this problem. In particular, a meta-encoder is optimized to learn the general features. Different from the traditional prototypical learning, the meta encoder can effectively adapt to few-shot tasks from different domains by the traces of the few labeled examples. Experiments on many datasets demonstrate that meta-prototypical learning performs competitively on traditional few-shot tasks, and on few-shot tasks from different domains, meta-prototypical learning outperforms related methods.
Few-shot learning (FSL) aims to classify novel images based on a few labeled samples with the help of meta-knowledge. Most previous works address this problem based on the hypothesis that the training set and testing set are from the same domain, which is not realistic for some real-world applications. Thus, we extend FSL to domain-agnostic few-shot recognition, where the domain of the testing task is unknown. In domain-agnostic few-shot recognition, the model is optimized on data from one domain and evaluated on tasks from different domains. Previous methods for FSL mostly focus on learning general features or adapting to few-shot tasks effectively. They suffer from inappropriate features or complex adaptation in domain-agnostic few-shot recognition. In this brief, we propose meta-prototypical learning to address this problem. In particular, a meta-encoder is optimized to learn the general features. Different from the traditional prototypical learning, the meta encoder can effectively adapt to few-shot tasks from different domains by the traces of the few labeled examples. Experiments on many datasets demonstrate that meta-prototypical learning performs competitively on traditional few-shot tasks, and on few-shot tasks from different domains, meta-prototypical learning outperforms related methods.Few-shot learning (FSL) aims to classify novel images based on a few labeled samples with the help of meta-knowledge. Most previous works address this problem based on the hypothesis that the training set and testing set are from the same domain, which is not realistic for some real-world applications. Thus, we extend FSL to domain-agnostic few-shot recognition, where the domain of the testing task is unknown. In domain-agnostic few-shot recognition, the model is optimized on data from one domain and evaluated on tasks from different domains. Previous methods for FSL mostly focus on learning general features or adapting to few-shot tasks effectively. They suffer from inappropriate features or complex adaptation in domain-agnostic few-shot recognition. In this brief, we propose meta-prototypical learning to address this problem. In particular, a meta-encoder is optimized to learn the general features. Different from the traditional prototypical learning, the meta encoder can effectively adapt to few-shot tasks from different domains by the traces of the few labeled examples. Experiments on many datasets demonstrate that meta-prototypical learning performs competitively on traditional few-shot tasks, and on few-shot tasks from different domains, meta-prototypical learning outperforms related methods.
Author Liu, Cheng-Lin
Wang, Rui-Qi
Zhang, Xu-Yao
Author_xml – sequence: 1
  givenname: Rui-Qi
  orcidid: 0000-0001-8763-8573
  surname: Wang
  fullname: Wang, Rui-Qi
  email: ruiqi.wang@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Xu-Yao
  orcidid: 0000-0001-9260-188X
  surname: Zhang
  fullname: Zhang, Xu-Yao
  email: xyz@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Cheng-Lin
  orcidid: 0000-0002-6743-4175
  surname: Liu
  fullname: Liu, Cheng-Lin
  email: liucl@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kMtOAjEUhhujEUVfQDeTuHEz2MvQy9KgqAmi8ZK4a-pwijVDi22J4e0dhLBwYTeni-87Of9_iHZ98IDQCcE9QrC6eBmPR889iinpMSwZ7-MddEAJpyVlUu5u_-Ktg45T-sTt47jPK7WPOqzCSnAiD9DgHrIpH2PIIS_nrjZNMQITvfPTwoZYXIWZcb68nPqQsquLIXyXzx8hF09Qh6l32QV_hPasaRIcb2YXvQ6vXwa35ejh5m5wOSprRmUuSVVJawl-x5QLwenEWqDCgsJtIGGoIfBuGJMCzIT0zQQzUqtJxRWVygrDWRedr_fOY_haQMp65lINTWM8hEXStM8UJaRN2aJnf9DPsIi-vU5TQRVnXKiqpeSaqmNIKYLVtctmFSlH4xpNsF51rX-71quu9abrVqV_1Hl0MxOX_0una8kBwFZQVSUkE-wH37uJAw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TIM_2024_3522624
crossref_primary_10_1109_TNNLS_2023_3262351
crossref_primary_10_1109_TNNLS_2023_3263176
crossref_primary_10_1109_TNNLS_2022_3165575
crossref_primary_10_1109_TSG_2024_3390441
crossref_primary_10_1109_TGRS_2024_3445935
crossref_primary_10_1007_s13042_024_02175_7
crossref_primary_10_1109_TIM_2023_3285994
crossref_primary_10_1109_TNNLS_2024_3379172
crossref_primary_10_1109_TNNLS_2023_3238729
crossref_primary_10_1007_s11042_024_19316_3
crossref_primary_10_1109_TNNLS_2022_3233553
crossref_primary_10_1109_TNNLS_2024_3383039
crossref_primary_10_1109_TNNLS_2024_3355774
crossref_primary_10_1109_TNNLS_2023_3243903
crossref_primary_10_1007_s10489_024_05440_y
crossref_primary_10_1109_TCSVT_2023_3292519
crossref_primary_10_1109_TNNLS_2024_3359657
crossref_primary_10_1109_TMM_2024_3387743
crossref_primary_10_1016_j_neucom_2024_129031
crossref_primary_10_1109_TNNLS_2023_3335859
crossref_primary_10_1109_TCSVT_2022_3175923
crossref_primary_10_1007_s10489_025_06239_1
crossref_primary_10_1109_TNNLS_2023_3241919
Cites_doi 10.1109/CVPR.2009.5206848
10.1016/S0925-2312(98)00030-7
10.1109/5.726791
10.1109/CVPR.2018.00131
10.1162/neco.1992.4.1.131
10.1109/TNNLS.2018.2888757
10.5555/2999134.2999257
10.1109/CVPR.2016.90
10.1109/CVPR.2000.855856
10.1109/IJCNN.1992.287172
10.1109/CVPR.2018.00459
10.1109/CVPR.2018.00366
10.1109/TNNLS.2018.2874657
10.1007/s13398-014-0173-7.2
10.1109/TNNLS.2017.2712793
10.1109/IJCNN.1991.155621
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3083650
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 6996
ExternalDocumentID 10_1109_TNNLS_2021_3083650
9447837
Genre orig-research
GrantInformation_xml – fundername: Youth Innovation Promotion Association of CAS
  grantid: 2019141
  funderid: 10.13039/501100002367
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62076236; 61721004
  funderid: 10.13039/501100001809
– fundername: Key Research Program of Frontier Sciences of CAS
  grantid: ZDBS-LY-7004
  funderid: 10.13039/501100002367
– fundername: National Key Research and Development Program
  grantid: 2018AAA0100400
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-1448ff10b0267762dffe27fe901107a2a1eba3387ead15ad031c9d469289f7a63
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 03:05:33 EDT 2025
Sun Jun 29 15:40:21 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Tue Jul 01 00:27:39 EDT 2025
Wed Aug 27 02:14:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-1448ff10b0267762dffe27fe901107a2a1eba3387ead15ad031c9d469289f7a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6743-4175
0000-0001-8763-8573
0000-0001-9260-188X
PMID 34097618
PQID 2729636794
PQPubID 85436
PageCount 7
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2021_3083650
crossref_primary_10_1109_TNNLS_2021_3083650
ieee_primary_9447837
proquest_miscellaneous_2539211605
proquest_journals_2729636794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref37
Lake (ref8)
ref31
ref30
ref33
Ba (ref39); 5
ref1
Ha (ref29)
ref17
ref38
Snell (ref14)
ref18
Puzanov (ref20) 2018
Munkhdalai (ref12)
Triantafillou (ref19)
Bengio (ref26)
Thrun (ref21) 2012
Schmidhuber (ref22) 1987
Krizhevsky (ref34) 2009
Koch (ref9)
Paszke (ref36)
Xiao (ref35) 2017
Finn (ref16)
ref24
Andrychowicz (ref27)
ref23
ref25
Simonyan (ref2)
Nichol (ref32) 2018
ref7
Vinyals (ref10)
ref4
ref3
ref6
ref5
Edwards (ref28)
Ravi (ref15)
Santoro (ref11)
References_xml – ident: ref37
  doi: 10.1109/CVPR.2009.5206848
– start-page: 6
  volume-title: Proc. Preprints Conf. Optimality Artif. Biol. Neural Netw.
  ident: ref26
  article-title: On the optimization of a synaptic learning rule
– volume-title: arXiv:1808.01527
  year: 2018
  ident: ref20
  article-title: Deep reinforcement one-shot learning for artificially intelligent classification systems
– start-page: 2554
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref12
  article-title: Meta networks
– ident: ref30
  doi: 10.1016/S0925-2312(98)00030-7
– year: 1987
  ident: ref22
  article-title: Evolutionary principles in self-referential learning, or on learning how to learn: The meta-meta-… Hook
– volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref2
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref33
  doi: 10.1109/5.726791
– ident: ref13
  doi: 10.1109/CVPR.2018.00131
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref29
  article-title: Hypernetworks
– start-page: 8024
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: PyTorch: An imperative style, high-performance deep learning library
– start-page: 1126
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref16
  article-title: Model-agnostic metalearning for fast adaptation of deep networks
– ident: ref25
  doi: 10.1162/neco.1992.4.1.131
– start-page: 1
  volume-title: Proc. Annu. Meeting Cogn. Sci. Soc.
  ident: ref8
  article-title: One shot learning of simple visual concepts
– ident: ref5
  doi: 10.1109/TNNLS.2018.2888757
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref28
  article-title: Towards a neural statistician
– ident: ref1
  doi: 10.5555/2999134.2999257
– ident: ref3
  doi: 10.1109/CVPR.2016.90
– year: 2009
  ident: ref34
  article-title: Learning multiple layers of features from tiny images
– ident: ref7
  doi: 10.1109/CVPR.2000.855856
– ident: ref23
  doi: 10.1109/IJCNN.1992.287172
– start-page: 3981
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Learning to learn by gradient descent by gradient descent
– volume-title: Proc. Int. Conf. Mach. Learn. Deep Learn. Workshop
  ident: ref9
  article-title: Siamese neural networks for one-shot image recognition
– volume-title: arXiv:1708.07747
  year: 2017
  ident: ref35
  article-title: Fashion-MBIST: A novel image dataset for benchmarking machine learning algorithms
– volume-title: arXiv:1803.02999
  year: 2018
  ident: ref32
  article-title: On first-order meta-learning algorithms
– ident: ref18
  doi: 10.1109/CVPR.2018.00459
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref15
  article-title: Optimization as a model for few-shot learning
– ident: ref31
  doi: 10.1109/CVPR.2018.00366
– volume: 5
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref39
  article-title: Adam: A method for stochastic optimization
– ident: ref4
  doi: 10.1109/TNNLS.2018.2874657
– ident: ref38
  doi: 10.1007/s13398-014-0173-7.2
– ident: ref6
  doi: 10.1109/TNNLS.2017.2712793
– start-page: 4077
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref14
  article-title: Prototypical networks for few-shot learning
– start-page: 1842
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref11
  article-title: Meta-learning with memory-augmented neural networks
– volume-title: Learning to Learn
  year: 2012
  ident: ref21
– ident: ref24
  doi: 10.1109/IJCNN.1991.155621
– ident: ref17
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 3637
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref10
  article-title: Matching networks for one shot learning
– start-page: 2255
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Few-shot learning through an information retrieval lens
SSID ssj0000605649
Score 2.5787334
Snippet Few-shot learning (FSL) aims to classify novel images based on a few labeled samples with the help of meta-knowledge. Most previous works address this problem...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6990
SubjectTerms Adaptation models
Coders
Domain-agnostic few-shot recognition
Domains
Image classification
Learning
Learning systems
meta-learning
Object recognition
Pattern recognition
Prototypes
prototypical learning
Task analysis
Task complexity
Testing
Training
Title Meta-Prototypical Learning for Domain-Agnostic Few-Shot Recognition
URI https://ieeexplore.ieee.org/document/9447837
https://www.proquest.com/docview/2729636794
https://www.proquest.com/docview/2539211605
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BnriUV6suL6USN-rFj8ROjmhhhSp2hXhIe4vsxC6oJUGQFWp_PWNvElUtqrhFim0lnvF4Pnu-GYBDVtrUZcYSI5OExEpSYgw3JBYq1kKVlJeenDydyfPb-Ns8ma_A154LY60NwWd25B_DXX5ZFwt_VHacxbFCQLUKqwjcllyt_jyFol8ug7fLmeSECzXvODI0O76ZzS6uEQ1yNhI-H3PiK8AJn-tJ-nIff2xJocbKP4Y57DaTdZh237kMMvkxWjRmVPz-K4Xje39kAz60bmd0stSTTVix1RasdyUdonaFb8N4ahtNLp_qpm5-PXoBRm0G1u8RurfRaf2g7yty4sPzcKhoYl_I9V3dRFddIFJdfYTbydnN-Jy0dRZIIXjaEMRUqXOMGl-NCo1j6ZzlylnPSqVKc82s0QhlFWodS3SJdqDISsTVCNac0lJ8gkFVV_YzRCgC9LhoUXKbxMKlRhpnuJOCU5cmWg6BdVOdF20Scl8L42cewAjN8iCp3EsqbyU1hKO-z-MyBcd_W2_7-e5btlM9hL1Oonm7Sp9zjshCCokmaQhf-te4vvylia5svcA2CXqQjKF27bw98i6scU-JCPzEPRg0Twu7j45KYw6Chr4CoLrg8w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xeNheYMCmdcDIJN42F_9I7OQRsVWFtdU0itS3yE7sbdpIEEuFtr-es5tE00Bob5FiW4nvfL7PvrsP4IiVNnWZscTIJCGxkpQYww2JhYq1UCXlpU9Ons7k-DI-XySLNXjf58JYa0PwmR36x3CXX9bF0h-VHWdxrBBQPYEN3PfjbJWt1Z-oUPTMZfB3OZOccKEWXZYMzY7ns9nkAvEgZ0PhKzInngNO-GpP0hN-_LUpBZaVe6Y57DejLZh2X7oKM_kxXDZmWPz5p4jj__7Kc9hsHc_oZKUp27Bmqx3Y6kgdonaN78Lp1DaafL6pm7r5fe1FGLU1WL9G6OBGH-or_b0iJz5AD4eKRvaWXHyrm-hLF4pUVy_gcvRxfjomLdMCKQRPG4KoKnWOUeP5qNA8ls5Zrpz1ealUaa6ZNRrBrEK9Y4ku0RIUWYnIGuGaU1qKl7Be1ZV9BRGKAH0uWpTcJrFwqZHGGe6k4NSliZYDYN1U50VbhtyzYfzMAxyhWR4klXtJ5a2kBvCu73O9KsLxaOtdP999y3aqB7DfSTRv1-mvnCO2kEKiURrA2_41rjB_baIrWy-xTYI-JGOoXa8fHvkQno7n00k-OZt92oNn3CdIhGzFfVhvbpb2AN2WxrwJ2noHm-TkQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-Prototypical+Learning+for+Domain-Agnostic+Few-Shot+Recognition&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Rui-Qi&rft.au=Zhang%2C+Xu-Yao&rft.au=Liu%2C+Cheng-Lin&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=33&rft.issue=11&rft.spage=6990&rft.epage=6996&rft_id=info:doi/10.1109%2FTNNLS.2021.3083650&rft_id=info%3Apmid%2F34097618&rft.externalDocID=9447837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon