Calibrating experts’ probabilistic assessments for improved probabilistic predictions

•We propose a new calibration measure to evaluate experts’ probability assessments.•The new calibration measure is compared with established calibration measures.•Theoretical properties of the new calibration are investigated are discussed.•We contrast and discuss results using a large data-set of e...

Full description

Saved in:
Bibliographic Details
Published inSafety science Vol. 118; pp. 763 - 771
Main Authors Hanea, A.M., Nane, G.F.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.10.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a new calibration measure to evaluate experts’ probability assessments.•The new calibration measure is compared with established calibration measures.•Theoretical properties of the new calibration are investigated are discussed.•We contrast and discuss results using a large data-set of experts’ predictions. Expert judgement is routinely required to inform critically important decisions. While expert judgement can be remarkably useful when data are absent, it can be easily influenced by contextual biases which can lead to poor judgements and subsequently poor decisions. Structured elicitation protocols aim to: (1) guard against biases and provide better (aggregated) judgements, and (2) subject expert judgements to the same level of scrutiny as is expected for empirical data. The latter ensures that if judgements are to be used as data, they are subject to the scientific principles of review, critical appraisal, and repeatability. Objectively evaluating the quality of expert data and validating expert judgements are other essential elements. Considerable research suggests that the performance of experts should be evaluated by scoring experts on questions related to the elicitation questions, whose answers are known a priori. Experts who can provide accurate, well-calibrated and informative judgements should receive more weight in a final aggregation of judgements. This is referred to as performance-weighting in the mathematical aggregation of multiple judgements. The weights depend on the chosen measures of performance. We are yet to understand the best methods to aggregate judgements, how well such aggregations perform out of sample, or the costs involved, as well as the benefits of the various approaches. In this paper we propose and explore a new measure of experts’ calibration. A sizeable data set containing predictions for outcomes of geopolitical events is used to investigate the properties of this calibration measure when compared to other, well established measures.
AbstractList Expert judgement is routinely required to inform critically important decisions. While expert judgement can be remarkably useful when data are absent, it can be easily influenced by contextual biases which can lead to poor judgements and subsequently poor decisions. Structured elicitation protocols aim to: (1) guard against biases and provide better (aggregated) judgements, and (2) subject expert judgements to the same level of scrutiny as is expected for empirical data. The latter ensures that if judgements are to be used as data, they are subject to the scientific principles of review, critical appraisal, and repeatability. Objectively evaluating the quality of expert data and validating expert judgements are other essential elements. Considerable research suggests that the performance of experts should be evaluated by scoring experts on questions related to the elicitation questions, whose answers are known a priori. Experts who can provide accurate, well-calibrated and informative judgements should receive more weight in a final aggregation of judgements. This is referred to as performance-weighting in the mathematical aggregation of multiple judgements. The weights depend on the chosen measures of performance. We are yet to understand the best methods to aggregate judgements, how well such aggregations perform out of sample, or the costs involved, as well as the benefits of the various approaches. In this paper we propose and explore a new measure of experts' calibration. A sizeable data set containing predictions for outcomes of geopolitical events is used to investigate the properties of this calibration measure when compared to other, well established measures.
•We propose a new calibration measure to evaluate experts’ probability assessments.•The new calibration measure is compared with established calibration measures.•Theoretical properties of the new calibration are investigated are discussed.•We contrast and discuss results using a large data-set of experts’ predictions. Expert judgement is routinely required to inform critically important decisions. While expert judgement can be remarkably useful when data are absent, it can be easily influenced by contextual biases which can lead to poor judgements and subsequently poor decisions. Structured elicitation protocols aim to: (1) guard against biases and provide better (aggregated) judgements, and (2) subject expert judgements to the same level of scrutiny as is expected for empirical data. The latter ensures that if judgements are to be used as data, they are subject to the scientific principles of review, critical appraisal, and repeatability. Objectively evaluating the quality of expert data and validating expert judgements are other essential elements. Considerable research suggests that the performance of experts should be evaluated by scoring experts on questions related to the elicitation questions, whose answers are known a priori. Experts who can provide accurate, well-calibrated and informative judgements should receive more weight in a final aggregation of judgements. This is referred to as performance-weighting in the mathematical aggregation of multiple judgements. The weights depend on the chosen measures of performance. We are yet to understand the best methods to aggregate judgements, how well such aggregations perform out of sample, or the costs involved, as well as the benefits of the various approaches. In this paper we propose and explore a new measure of experts’ calibration. A sizeable data set containing predictions for outcomes of geopolitical events is used to investigate the properties of this calibration measure when compared to other, well established measures.
Author Hanea, A.M.
Nane, G.F.
Author_xml – sequence: 1
  givenname: A.M.
  surname: Hanea
  fullname: Hanea, A.M.
  organization: Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Australia
– sequence: 2
  givenname: G.F.
  surname: Nane
  fullname: Nane, G.F.
  organization: Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands
BookMark eNp9kLtOwzAUhi1UJNrCCzBFYk7wJY4TiQVV3KRKLCBGy3GOkaM0CbZbwcZr8Ho8CY7K1KHTGc7_ncu3QLN-6AGhS4Izgklx3Wbea5tRTKoM8wzn5Qmak1JUKcE5naE5rihPBWf8DC28bzHGhBVkjt5WqrO1U8H27wl8juCC__3-SUY31Kq2nfXB6kR5D95voA8-MYNL7Cb2d9AcxEYHjdXBDr0_R6dGdR4u_usSvd7fvawe0_Xzw9Pqdp1qRsuQEkpMTQSuC8JKKFXJalEYqHkujAJtKBOc14XJWW4aJpgWTUPyAngDVaUhZ0t0tZ8bL_nYgg-yHbaujyslpQJzXOYVjSm6T2k3eO_AyNHZjXJfkmA5CZStnATKSaDEXEaBESoPIG2Dmr4LTtnuOHqzRyG-vrPgZExAr6MeBzrIZrDH8D9aLJGc
CitedBy_id crossref_primary_10_1016_j_ijcip_2020_100376
crossref_primary_10_1016_j_ssci_2023_106071
crossref_primary_10_1111_risa_13930
crossref_primary_10_46300_9108_2021_15_22
crossref_primary_10_1371_journal_pone_0256919
crossref_primary_10_1016_j_jisa_2023_103497
crossref_primary_10_1111_risa_13718
crossref_primary_10_1016_j_ssci_2020_104786
crossref_primary_10_1016_j_compchemeng_2023_108283
crossref_primary_10_1007_s10669_020_09794_9
crossref_primary_10_1016_j_ssci_2021_105435
crossref_primary_10_3390_jcm13061594
crossref_primary_10_1016_j_urbmob_2025_100099
Cites_doi 10.1007/s11009-016-9533-4
10.1037/0033-2909.121.1.43
10.1016/j.ijforecast.2016.02.008
10.1111/risa.12360
10.1111/j.1539-6924.1999.tb00399.x
10.1038/526317a
10.1111/j.1740-9713.2005.00100.x
10.1175/1520-0450(1968)007<0751:PA>2.0.CO;2
10.1371/journal.pone.0022998
10.1093/bioinformatics/btl633
10.1080/01621459.1961.10482105
10.1016/0005-1098(88)90011-8
10.2307/2332674
10.1007/978-0-306-47630-3_7
10.1016/0377-2217(92)90302-P
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1111/risa.12992
10.1111/j.1539-6924.1999.tb00439.x
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Oct 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 2019
DBID AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
DOI 10.1016/j.ssci.2019.05.048
DatabaseName CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Nursing & Allied Health Premium
Engineered Materials Abstracts
Health & Safety Science Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Public Health
EISSN 1879-1042
EndPage 771
ExternalDocumentID 10_1016_j_ssci_2019_05_048
S0925753518316072
GroupedDBID ---
--K
--M
.~1
0R~
123
13V
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABIVO
ABJNI
ABKBG
ABLVK
ABMAC
ABMMH
ABMVD
ABMZM
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACIWK
ACJTP
ACNNM
ACNTT
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXBA
AFXIZ
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AISVY
AITUG
AJBFU
AJOXV
AJRQY
AKURH
AKYCK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEH
HMK
HMO
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M29
M3W
M3Y
M41
MO0
N9A
NAHTW
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAE
SDF
SDG
SES
SEW
SNG
SPC
SPCBC
SSB
SSG
SSH
SSL
SSO
SSS
SST
SSZ
T5K
UHS
WH7
WUQ
YHZ
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
ID FETCH-LOGICAL-c328t-121fb170b6138e8a83b76feb547faecf23755b6f434fd373c7dd146e5de99ce43
IEDL.DBID .~1
ISSN 0925-7535
IngestDate Fri Jul 25 07:18:38 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Tue Jul 01 01:46:58 EDT 2025
Fri Feb 23 02:30:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Performance based weighting
Calibration
Structured expert judgement
Probabilistic predictions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-121fb170b6138e8a83b76feb547faecf23755b6f434fd373c7dd146e5de99ce43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2270508492
PQPubID 2045403
PageCount 9
ParticipantIDs proquest_journals_2270508492
crossref_primary_10_1016_j_ssci_2019_05_048
crossref_citationtrail_10_1016_j_ssci_2019_05_048
elsevier_sciencedirect_doi_10_1016_j_ssci_2019_05_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Safety science
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Rivals, Personnaz, Taing, Potier (b0105) 2006; 23
Slovic (b0120) 1999; 19
L.H. Ungar, B. Mellers, V.A. Satopaa, J. Baron, P.E. Tetlock, J. Ramos, and S. Swift. The good judgment project: A large scale test of different methods of combining expert predictions. AAAI Fall Symposium Series, (AAAI Technical Report FS-12-06), 2012.
Rowe, G., Wright, G., 2001. Expert opinions in forecasting: the role of the Delphi technique. In: Principles of forecasting: A handbook for researchers and practitioners, Kluwer Academic Publishers, Norwell, pp. 125–144.
Shrader-Frechette (b0115) 1996
Hanea, McBride, Burgman, Wintle, Fidler, Flander, Mascaro, Manning (b0055) 2016; 33
Brier (b0015) 1950; 78
Valverde (b0135) 2001
Hinsz, Tindale, Vollrath (b0065) 1997; 121
Cooke (b0040) 1991
O’Hagan (b0090) 2005; 2
Montibeller, von Winterfeldt (b0085) 2015; 35
Winkler, Murphy (b0140) 1968; 7
Cooke, Mendel, Thijs (b0045) 1988; 24
Butler, Stephens (b0030) 2017; 19
Mellers, Stone, Atanasov, Rohrbaugh, Metz, Ungar, Bishop, Horowitz, Merkle, Tetlock (b0080) 2015; 21
Agresti (b0005) 2003; vol. 482
Quigley, Colson, Aspinall, Cooke (b0100) 2018
Lancaster (b0070) 1949; 36
Burgman, McBride, Ashton, Speirs-Bridge, Flander (b0025) 2011; 6
Burgman (b0020) 2015
Bhola, Cooke (b0010) 1992; 57
Sutherland, Burgman (b0125) 2015; 526
Clemen, Winkler (b0035) 1999; 19
Lancaster (b0075) 1961; 56
O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley, Rakow (b0095) 2006
Wintle, Mascaro, Fidler, McBride, Burgman, Flander, Saw, Twardy, Lyon, Manning (b0145) 2012
Hanea, McBride, Burgman, Wintle (b0060) 2018
Hanea, McBride, Burgman, Wintle (b0050) 2016
Valverde (10.1016/j.ssci.2019.05.048_b0135) 2001
Hanea (10.1016/j.ssci.2019.05.048_b0055) 2016; 33
Rivals (10.1016/j.ssci.2019.05.048_b0105) 2006; 23
Montibeller (10.1016/j.ssci.2019.05.048_b0085) 2015; 35
O’Hagan (10.1016/j.ssci.2019.05.048_b0095) 2006
Quigley (10.1016/j.ssci.2019.05.048_b0100) 2018
Burgman (10.1016/j.ssci.2019.05.048_b0025) 2011; 6
O’Hagan (10.1016/j.ssci.2019.05.048_b0090) 2005; 2
Wintle (10.1016/j.ssci.2019.05.048_b0145) 2012
Mellers (10.1016/j.ssci.2019.05.048_b0080) 2015; 21
Slovic (10.1016/j.ssci.2019.05.048_b0120) 1999; 19
Shrader-Frechette (10.1016/j.ssci.2019.05.048_b0115) 1996
Lancaster (10.1016/j.ssci.2019.05.048_b0070) 1949; 36
Bhola (10.1016/j.ssci.2019.05.048_b0010) 1992; 57
Hanea (10.1016/j.ssci.2019.05.048_b0050) 2016
Hanea (10.1016/j.ssci.2019.05.048_b0060) 2018
Agresti (10.1016/j.ssci.2019.05.048_b0005) 2003; vol. 482
Lancaster (10.1016/j.ssci.2019.05.048_b0075) 1961; 56
Butler (10.1016/j.ssci.2019.05.048_b0030) 2017; 19
Hinsz (10.1016/j.ssci.2019.05.048_b0065) 1997; 121
Brier (10.1016/j.ssci.2019.05.048_b0015) 1950; 78
Burgman (10.1016/j.ssci.2019.05.048_b0020) 2015
Sutherland (10.1016/j.ssci.2019.05.048_b0125) 2015; 526
10.1016/j.ssci.2019.05.048_b0130
Winkler (10.1016/j.ssci.2019.05.048_b0140) 1968; 7
10.1016/j.ssci.2019.05.048_b0110
Cooke (10.1016/j.ssci.2019.05.048_b0040) 1991
Cooke (10.1016/j.ssci.2019.05.048_b0045) 1988; 24
Clemen (10.1016/j.ssci.2019.05.048_b0035) 1999; 19
References_xml – volume: 57
  start-page: 24
  year: 1992
  end-page: 31
  ident: b0010
  article-title: Expert opinion in project management
  publication-title: Eur. J. Oper. Res.
– volume: 33
  start-page: 267
  year: 2016
  end-page: 279
  ident: b0055
  article-title: for structured expert judgement
  publication-title: Int. J. Forecast.
– volume: 19
  start-page: 557
  year: 2017
  end-page: 571
  ident: b0030
  article-title: The distribution of a sum of independent binomial random variables
  publication-title: Methodol. Comput. Appl. Probab.
– volume: 7
  start-page: 751
  year: 1968
  end-page: 758
  ident: b0140
  article-title: Good probability assessors
  publication-title: J. Appl. Meteorol.
– volume: 78
  start-page: 1
  year: 1950
  end-page: 3
  ident: b0015
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon. Weather Rev.
– reference: Rowe, G., Wright, G., 2001. Expert opinions in forecasting: the role of the Delphi technique. In: Principles of forecasting: A handbook for researchers and practitioners, Kluwer Academic Publishers, Norwell, pp. 125–144.
– year: 2015
  ident: b0020
  article-title: Trusting Judgements: How to Get the Best Out of Experts
– volume: 23
  start-page: 401
  year: 2006
  end-page: 407
  ident: b0105
  article-title: Enrichment or depletion of a go category within a class of genes: which test?
  publication-title: Bioinformatics
– year: 2018
  ident: b0060
  article-title: The value of discussion and performance weights in aggregated expert judgements
  publication-title: Risk Anal.
– volume: vol. 482
  year: 2003
  ident: b0005
  publication-title: Categorical Data Analysis
– start-page: 15
  year: 2018
  end-page: 36
  ident: b0100
  article-title: Elicitation in the classical model
  publication-title: Elicitation: The Science and Art of Structuring Judgement
– volume: 56
  start-page: 223
  year: 1961
  end-page: 234
  ident: b0075
  article-title: Significance tests in discrete distributions
  publication-title: J. Am. Stat. Assoc.
– year: 2012
  ident: b0145
  article-title: The Intelligence Game: Assessing Delphi groups and structured question formats
  publication-title: Proceedings of the 5th Australian Security and Intelligence Conference
– volume: 36
  start-page: 370
  year: 1949
  end-page: 382
  ident: b0070
  article-title: The combination of probabilities arising from data in discrete distributions
  publication-title: Biometrika
– volume: 24
  start-page: 87
  year: 1988
  end-page: 94
  ident: b0045
  article-title: Calibration and information in expert resolution
  publication-title: Automatica
– volume: 35
  start-page: 1230
  year: 2015
  end-page: 1251
  ident: b0085
  article-title: Cognitive and motivational biases in decision and risk analysis
  publication-title: Risk Anal.
– volume: 2
  start-page: 84
  year: 2005
  end-page: 86
  ident: b0090
  article-title: Elicitation
  publication-title: Significance
– volume: 19
  start-page: 187
  year: 1999
  end-page: 203
  ident: b0035
  article-title: Combining probability distributions from experts in risk analysis
  publication-title: Risk Anal.
– volume: 21
  start-page: 1
  year: 2015
  end-page: 14
  ident: b0080
  article-title: The psychology of intelligence analysis: drivers of prediction accuracy in world politics
  publication-title: J. Experiment. Psychol.: Appl.
– year: 2006
  ident: b0095
  article-title: Uncertain Judgements: Eliciting Experts’ Probabilities
– year: 1991
  ident: b0040
  article-title: Experts in Uncertainty: Opinion and Subjective Probability in Science. Environmental Ethics and Science Policy Series
– volume: 121
  start-page: 43
  year: 1997
  end-page: 64
  ident: b0065
  article-title: The emerging conceptualization of groups as information processors
  publication-title: Psychol. Bull.
– reference: L.H. Ungar, B. Mellers, V.A. Satopaa, J. Baron, P.E. Tetlock, J. Ramos, and S. Swift. The good judgment project: A large scale test of different methods of combining expert predictions. AAAI Fall Symposium Series, (AAAI Technical Report FS-12-06), 2012.
– volume: 19
  start-page: 689
  year: 1999
  end-page: 701
  ident: b0120
  article-title: Trust, emotion, sex, politics, and science: surveying the risk-assessment battle field
  publication-title: Risk Anal.
– volume: 6
  start-page: e22998
  year: 2011
  ident: b0025
  article-title: Expert status and performance
  publication-title: PLoS ONE
– year: 2016
  ident: b0050
  article-title: Classical meets modern in the idea protocol for structured expert judgement
  publication-title: J. Risk Res.
– start-page: 291
  year: 1996
  end-page: 309
  ident: b0115
  article-title: Value judgments in verifying and validating risk assessment models
  publication-title: Handbook for Environmental Risk Decision Making: Values, Perception and Ethics, London
– start-page: 221
  year: 2001
  end-page: 238
  ident: b0135
  article-title: Expert judgment resolution in technically-intensive policy disputes
  publication-title: Assessment and management of environmental risks
– volume: 526
  start-page: 317
  year: 2015
  ident: b0125
  article-title: Policy advice: use experts wisely
  publication-title: Nature News
– volume: 19
  start-page: 557
  issue: 2
  year: 2017
  ident: 10.1016/j.ssci.2019.05.048_b0030
  article-title: The distribution of a sum of independent binomial random variables
  publication-title: Methodol. Comput. Appl. Probab.
  doi: 10.1007/s11009-016-9533-4
– volume: 121
  start-page: 43
  issue: 1
  year: 1997
  ident: 10.1016/j.ssci.2019.05.048_b0065
  article-title: The emerging conceptualization of groups as information processors
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.121.1.43
– start-page: 221
  year: 2001
  ident: 10.1016/j.ssci.2019.05.048_b0135
  article-title: Expert judgment resolution in technically-intensive policy disputes
– ident: 10.1016/j.ssci.2019.05.048_b0130
– volume: 33
  start-page: 267
  issue: 1
  year: 2016
  ident: 10.1016/j.ssci.2019.05.048_b0055
  article-title: InvestigateDiscussEstimateAggregate for structured expert judgement
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2016.02.008
– volume: 35
  start-page: 1230
  issue: 7
  year: 2015
  ident: 10.1016/j.ssci.2019.05.048_b0085
  article-title: Cognitive and motivational biases in decision and risk analysis
  publication-title: Risk Anal.
  doi: 10.1111/risa.12360
– year: 1991
  ident: 10.1016/j.ssci.2019.05.048_b0040
– year: 2012
  ident: 10.1016/j.ssci.2019.05.048_b0145
  article-title: The Intelligence Game: Assessing Delphi groups and structured question formats
– volume: 19
  start-page: 187
  year: 1999
  ident: 10.1016/j.ssci.2019.05.048_b0035
  article-title: Combining probability distributions from experts in risk analysis
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.1999.tb00399.x
– volume: 526
  start-page: 317
  issue: 7573
  year: 2015
  ident: 10.1016/j.ssci.2019.05.048_b0125
  article-title: Policy advice: use experts wisely
  publication-title: Nature News
  doi: 10.1038/526317a
– volume: 2
  start-page: 84
  year: 2005
  ident: 10.1016/j.ssci.2019.05.048_b0090
  article-title: Elicitation
  publication-title: Significance
  doi: 10.1111/j.1740-9713.2005.00100.x
– volume: 7
  start-page: 751
  year: 1968
  ident: 10.1016/j.ssci.2019.05.048_b0140
  article-title: Good probability assessors
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1968)007<0751:PA>2.0.CO;2
– year: 2006
  ident: 10.1016/j.ssci.2019.05.048_b0095
– volume: vol. 482
  year: 2003
  ident: 10.1016/j.ssci.2019.05.048_b0005
– volume: 6
  start-page: e22998
  year: 2011
  ident: 10.1016/j.ssci.2019.05.048_b0025
  article-title: Expert status and performance
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022998
– volume: 23
  start-page: 401
  issue: 4
  year: 2006
  ident: 10.1016/j.ssci.2019.05.048_b0105
  article-title: Enrichment or depletion of a go category within a class of genes: which test?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl633
– volume: 56
  start-page: 223
  issue: 294
  year: 1961
  ident: 10.1016/j.ssci.2019.05.048_b0075
  article-title: Significance tests in discrete distributions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1961.10482105
– volume: 24
  start-page: 87
  issue: 1
  year: 1988
  ident: 10.1016/j.ssci.2019.05.048_b0045
  article-title: Calibration and information in expert resolution
  publication-title: Automatica
  doi: 10.1016/0005-1098(88)90011-8
– year: 2015
  ident: 10.1016/j.ssci.2019.05.048_b0020
– year: 2016
  ident: 10.1016/j.ssci.2019.05.048_b0050
  article-title: Classical meets modern in the idea protocol for structured expert judgement
  publication-title: J. Risk Res.
– volume: 21
  start-page: 1
  year: 2015
  ident: 10.1016/j.ssci.2019.05.048_b0080
  article-title: The psychology of intelligence analysis: drivers of prediction accuracy in world politics
  publication-title: J. Experiment. Psychol.: Appl.
– volume: 36
  start-page: 370
  issue: 3/4
  year: 1949
  ident: 10.1016/j.ssci.2019.05.048_b0070
  article-title: The combination of probabilities arising from data in discrete distributions
  publication-title: Biometrika
  doi: 10.2307/2332674
– start-page: 15
  year: 2018
  ident: 10.1016/j.ssci.2019.05.048_b0100
  article-title: Elicitation in the classical model
– ident: 10.1016/j.ssci.2019.05.048_b0110
  doi: 10.1007/978-0-306-47630-3_7
– volume: 57
  start-page: 24
  year: 1992
  ident: 10.1016/j.ssci.2019.05.048_b0010
  article-title: Expert opinion in project management
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(92)90302-P
– volume: 78
  start-page: 1
  year: 1950
  ident: 10.1016/j.ssci.2019.05.048_b0015
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– year: 2018
  ident: 10.1016/j.ssci.2019.05.048_b0060
  article-title: The value of discussion and performance weights in aggregated expert judgements
  publication-title: Risk Anal.
  doi: 10.1111/risa.12992
– start-page: 291
  year: 1996
  ident: 10.1016/j.ssci.2019.05.048_b0115
  article-title: Value judgments in verifying and validating risk assessment models
– volume: 19
  start-page: 689
  year: 1999
  ident: 10.1016/j.ssci.2019.05.048_b0120
  article-title: Trust, emotion, sex, politics, and science: surveying the risk-assessment battle field
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.1999.tb00439.x
SSID ssj0001361
Score 2.3175955
Snippet •We propose a new calibration measure to evaluate experts’ probability assessments.•The new calibration measure is compared with established calibration...
Expert judgement is routinely required to inform critically important decisions. While expert judgement can be remarkably useful when data are absent, it can...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 763
SubjectTerms Agglomeration
Calibration
Decision making
Decisions
Expert systems
Geopolitics
Mechanical properties
Performance based weighting
Probabilistic predictions
Probability
Questions
Structured expert judgement
Title Calibrating experts’ probabilistic assessments for improved probabilistic predictions
URI https://dx.doi.org/10.1016/j.ssci.2019.05.048
https://www.proquest.com/docview/2270508492
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTsMwDI2mcQAJIRggBgP1wA2VtU2ztMdpYhogdoGJ3aKmSdAQKtNarojf4Pf4Euy0HWJCO3Bs5ViR7dhuaj8Tch4FKQSVxLhaG-WGhmo3SuFcKUSDkzJRxo57uxv3RpPwZsqmDTKoe2GwrLLy_aVPt966etOtpNmdz2bdey8Gc2OUgVEiShr64TDkaOWX7z9lHj61mKlI7CJ11ThT1njlwBjLu2KL3okzgP4OTitu2sae4S7ZqZJGp1_ua480dNYim3VPcd4i2-Xtm1M2Fe2TR2y5kqjc7MmxIP5F_vXx6eD4GAupi-jMTrJE5cwdyF2dmb1g0GqFbL7AnznWPg_IZHj1MBi51QgFN6VBVLh-4Bvpc09C1I50lERU8p7RkoXcJDoFRXDGZM-ENDSKcppypcB3aqZ0HKc6pIekmb1m-og4HL6MfM4jEySQ5QErGXhSexDdPKZo7LeJX8tOpBW-OI65eBF1IdmzQHkLlLfwmAB5t8nFcs28RNdYS81qlYhfNiLA_a9d16n1J6oTmosggH3D7uPg-J9sT8gWPpWVfR3SLBZv-hQylEKeWRM8Ixv969vR-BumMee5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT8IwFG-IHjAxRlEjirqDNzPZ1pVuR0MkqMBFiNyadW0NxiBheDV-Db-en8T3ug0jMRy8bq9N8_6ve-_3CLmIghSCSmJcrY1yQ0O1G6VgVwrR4KRMlLHj3vqDVncU3o3ZuELaZS8MllUWvj_36dZbF0-aBTebs8mk-eDFoG6MMlBKREkDP7wZgvniGIOr9586D59a0FSkdpG86JzJi7wy2Bnru2IL34lDgP6OTit-2gafzi7ZKbJG5zo_2B6p6GmNVMum4qxGtvPrNyfvKtonj9hzJVG60yfHovgvsq-PTwfnx1hMXYRndpIlLGfmQPLqTOwNg1YrZLM5_s2xCnpARp2bYbvrFjMU3JQG0cL1A99In3sSwnakoySikreMlizkJtEpSIIzJlsmpKFRlNOUKwXOUzOl4zjVIT0kG9PXqT4iDodPI5_zyAQJpHmwlQw8qT0Ibx5TNPbrxC95J9ICYBznXLyIspLsWSC_BfJbeEwAv-vkcrlmlsNrrKVmpUjELyUR4P_XrmuU8hOFiWYiCODccPo4OP7ntuek2h32e6J3O7g_IVv4Ji_za5CNxfxNn0K6spBnVh2_AQDg6Uc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibrating+experts%27+probabilistic+assessments+for+improved+probabilistic+predictions&rft.jtitle=Safety+science&rft.au=Hanea%2C+AM&rft.au=Nane%2C+GF&rft.date=2019-10-01&rft.pub=Elsevier+BV&rft.issn=0925-7535&rft.eissn=1879-1042&rft.volume=118&rft.spage=763&rft_id=info:doi/10.1016%2Fj.ssci.2019.05.048&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-7535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-7535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-7535&client=summon