Conceptual design and performance analysis of concentrated solar‐driven TIC/AMTEC/TEG hybrid system

Summary Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric generator (TEG) are incorporated into a novel thermoelectric hybrid system‐TIC/AMTEC/TEG hybrid system, driven by concentrated solar....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 42; no. 15; pp. 4674 - 4686
Main Authors Wu, Shuang‐Ying, Zhang, Yi‐Chen, Xiao, Lan
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric generator (TEG) are incorporated into a novel thermoelectric hybrid system‐TIC/AMTEC/TEG hybrid system, driven by concentrated solar. To evaluate the performance of concentrated solar‐driven TIC/AMTEC/TEG hybrid system accurately, a comprehensive theoretical model based on the first law of thermodynamics has been established for the first time. The effects of load parameters (voltage output of TIC subsystem V1, electrode current density of AMTEC subsystem J2, dimensionless current of TEG subsystem i) and dimensionless geometric parameters (the ratio of total electrode area of AMTEC subsystem to emitter area of TIC subsystem r, the ratio of TEG subsystem area to total electrode area of AMTEC subsystem c) on the conversion efficiency of TIC/AMTEC/TEG hybrid system (ηALL) were discussed. Furthermore, in order to demonstrate the contribution of the hybrid system, the comparisons with two‐stage hybrid systems and subsystems were explored. The results show that both V1 and i make a positive effect on ηALL; however, V1 is of greater importance for ηALL. ηALL increases first and then decreases under the influence of J2 and r. Smaller c can sometimes achieve better ηALL. The comparison results reveal that the TIC/AMTEC/TEG hybrid system is outstanding in most cases.
AbstractList Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric generator (TEG) are incorporated into a novel thermoelectric hybrid system‐TIC/AMTEC/TEG hybrid system, driven by concentrated solar. To evaluate the performance of concentrated solar‐driven TIC/AMTEC/TEG hybrid system accurately, a comprehensive theoretical model based on the first law of thermodynamics has been established for the first time. The effects of load parameters (voltage output of TIC subsystem V1, electrode current density of AMTEC subsystem J2, dimensionless current of TEG subsystem i) and dimensionless geometric parameters (the ratio of total electrode area of AMTEC subsystem to emitter area of TIC subsystem r, the ratio of TEG subsystem area to total electrode area of AMTEC subsystem c) on the conversion efficiency of TIC/AMTEC/TEG hybrid system (ηALL) were discussed. Furthermore, in order to demonstrate the contribution of the hybrid system, the comparisons with two‐stage hybrid systems and subsystems were explored. The results show that both V1 and i make a positive effect on ηALL; however, V1 is of greater importance for ηALL. ηALL increases first and then decreases under the influence of J2 and r. Smaller c can sometimes achieve better ηALL. The comparison results reveal that the TIC/AMTEC/TEG hybrid system is outstanding in most cases.
Summary Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric generator (TEG) are incorporated into a novel thermoelectric hybrid system‐TIC/AMTEC/TEG hybrid system, driven by concentrated solar. To evaluate the performance of concentrated solar‐driven TIC/AMTEC/TEG hybrid system accurately, a comprehensive theoretical model based on the first law of thermodynamics has been established for the first time. The effects of load parameters (voltage output of TIC subsystem V1, electrode current density of AMTEC subsystem J2, dimensionless current of TEG subsystem i) and dimensionless geometric parameters (the ratio of total electrode area of AMTEC subsystem to emitter area of TIC subsystem r, the ratio of TEG subsystem area to total electrode area of AMTEC subsystem c) on the conversion efficiency of TIC/AMTEC/TEG hybrid system (ηALL) were discussed. Furthermore, in order to demonstrate the contribution of the hybrid system, the comparisons with two‐stage hybrid systems and subsystems were explored. The results show that both V1 and i make a positive effect on ηALL; however, V1 is of greater importance for ηALL. ηALL increases first and then decreases under the influence of J2 and r. Smaller c can sometimes achieve better ηALL. The comparison results reveal that the TIC/AMTEC/TEG hybrid system is outstanding in most cases.
Author Zhang, Yi‐Chen
Wu, Shuang‐Ying
Xiao, Lan
Author_xml – sequence: 1
  givenname: Shuang‐Ying
  orcidid: 0000-0001-6978-5094
  surname: Wu
  fullname: Wu, Shuang‐Ying
  email: shuangyingwu@126.com
  organization: Chongqing University
– sequence: 2
  givenname: Yi‐Chen
  surname: Zhang
  fullname: Zhang, Yi‐Chen
  organization: Chongqing University
– sequence: 3
  givenname: Lan
  orcidid: 0000-0003-0005-8213
  surname: Xiao
  fullname: Xiao, Lan
  email: xiaolannancy@cqu.edu.cn
  organization: Chongqing University
BookMark eNp10N9KwzAUBvAgE5xTfIWAF15ItyT9m8tR6hxMBKmwu5A1p5rRNTXplN75CD6jT2LrvBK9OhzOj4_Dd4pGtakBoQtKppQQNgM7DRjhR2hMCecepcF6hMbEj3yPk3h9gk6d2xLS32g8RpCauoCm3csKK3D6qcayVrgBWxq7k_2t32XVOe2wKXEx6Lq1sgWFnamk_Xz_UFa_Qo3zZTqb3-VZOsuzBX7uNlb3pnMt7M7QcSkrB-c_c4Ieb7I8vfVW94tlOl95hc8S7pUq8vmmCBPKZUzAV2G0IRDRIAEVxopRBhCVVElOeKJYEPOyiKIwUSQuAj8J_Qm6POQ21rzswbVia_a2_98JFoR-T3nAenV1UIU1zlkoRWP1TtpOUCKGDgVYMXTYS--XLHQrW22GCnT1h78--DddQfdfrMgevvUXahKDcg
CitedBy_id crossref_primary_10_3390_en15166024
crossref_primary_10_1016_j_jclepro_2020_120953
crossref_primary_10_1016_j_applthermaleng_2022_119044
crossref_primary_10_1002_er_5064
crossref_primary_10_1016_j_egyr_2022_11_015
crossref_primary_10_1016_j_enconman_2018_12_061
crossref_primary_10_1016_j_enconman_2023_117727
crossref_primary_10_15377_2409_5818_2020_07_5
crossref_primary_10_1016_j_anucene_2024_110742
crossref_primary_10_1002_er_8176
crossref_primary_10_1016_j_energy_2022_126016
crossref_primary_10_1016_j_applthermaleng_2023_122257
crossref_primary_10_1002_er_6524
crossref_primary_10_1016_j_applthermaleng_2022_118605
crossref_primary_10_1155_2023_1990593
crossref_primary_10_1007_s10973_022_11280_0
crossref_primary_10_1016_j_tsep_2024_102879
Cites_doi 10.1016/S0378-7753(02)00620-1
10.1016/S0196-8904(03)00159-6
10.1126/science.221.4614.915
10.1016/j.jpowsour.2005.08.057
10.30638/eemj.2015.012
10.1016/j.jpowsour.2005.05.090
10.1016/j.energy.2011.03.057
10.1016/S0038-092X(96)00084-9
10.1016/j.enconman.2017.10.046
10.1063/1.49895
10.1016/j.applthermaleng.2015.02.072
10.1016/j.energy.2013.10.073
10.1016/j.jallcom.2014.04.116
10.1002/adfm.201001307
10.1016/j.apenergy.2009.08.041
10.1063/1.1290954
10.1063/1.49897
10.1149/1.2086775
10.1063/1.41758
10.1109/62.596648
10.1016/j.energy.2015.06.120
10.1023/A:1003728129770
10.1080/14786451.2017.1345906
10.1002/er.3849
10.1140/epjp/i2017-11561-2
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.4209
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 4686
ExternalDocumentID 10_1002_er_4209
ER4209
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2018CDXYDL0001
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c3289-fd639bc5819a70e3d56b0e6148ed57d212ee6f1da9098d2479fc6658d07c43853
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Aug 13 11:07:50 EDT 2025
Tue Jul 01 01:41:23 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Wed Jan 22 16:42:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3289-fd639bc5819a70e3d56b0e6148ed57d212ee6f1da9098d2479fc6658d07c43853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0005-8213
0000-0001-6978-5094
PQID 2453658942
PQPubID 996365
PageCount 13
ParticipantIDs proquest_journals_2453658942
crossref_primary_10_1002_er_4209
crossref_citationtrail_10_1002_er_4209
wiley_primary_10_1002_er_4209_ER4209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 14
1999; 29
2004; 45
1992; 246
2017; 154
1996; 361
2017; 132
2011; 36
1996; 58
2003; 115
2018; 42
2006; 156
2006; 158
2014; 64
2010; 87
1983; 221
1990; 137
2015; 82
2014; 609
2000; 504
1997; 12
1997; 387
2011; 21
2015; 90
2018; 37
Miskolczy (10.1002/er.4209-BIB0013|er4209-cit-0014) 1996; 361
Levin (10.1002/er.4209-BIB0022|er4209-cit-0023) 2011; 21
Underwood (10.1002/er.4209-BIB0019|er4209-cit-0020) 1992; 246
El-Genk (10.1002/er.4209-BIB0001|er4209-cit-0002) 2004; 45
Wu (10.1002/er.4209-BIB0003|er4209-cit-0004) 2018; 37
Mei (10.1002/er.4209-BIB0021|er4209-cit-0022) 2014; 609
Lodhi (10.1002/er.4209-BIB0005|er4209-cit-0006) 2006; 158
Ding (10.1002/er.4209-BIB0009|er4209-cit-0010) 2015; 14
Lodhi (10.1002/er.4209-BIB0011|er4209-cit-0012) 2006; 156
Tournier (10.1002/er.4209-BIB0017|er4209-cit-0018) 1999; 29
Van Hagan (10.1002/er.4209-BIB0012|er4209-cit-0013) 1997; 12
Xuan (10.1002/er.4209-BIB0006|er4209-cit-0007) 2003; 115
Naito (10.1002/er.4209-BIB0002|er4209-cit-0003) 1996; 58
Lodhi (10.1002/er.4209-BIB0010|er4209-cit-0011) 1996; 361
Wu (10.1002/er.4209-BIB0007|er4209-cit-0008) 2017; 154
Chen (10.1002/er.4209-BIB0024|er4209-cit-0025) 2014; 64
Gao (10.1002/er.4209-BIB0020|er4209-cit-0021) 2015; 82
Meng (10.1002/er.4209-BIB0023|er4209-cit-0024) 2011; 36
Xiao (10.1002/er.4209-BIB0025|er4209-cit-0026) 2018; 42
Ryan (10.1002/er.4209-BIB0026|er4209-cit-0027) 2000; 504
Williams (10.1002/er.4209-BIB0018|er4209-cit-0019) 1990; 137
Cole (10.1002/er.4209-BIB0015|er4209-cit-0016) 1983; 221
Tournier (10.1002/er.4209-BIB0016|er4209-cit-0017) 1997; 387
Wang (10.1002/er.4209-BIB0008|er4209-cit-0009) 2015; 90
Chen (10.1002/er.4209-BIB0014|er4209-cit-0015) 2017; 132
Wu (10.1002/er.4209-BIB0004|er4209-cit-0005) 2010; 87
References_xml – volume: 12
  start-page: 10
  issue: 7
  year: 1997
  end-page: 15
  article-title: Thermionic/AMTEC cascade converter concept for high‐efficiency space power
  publication-title: IEEE Aerosp Electron Syst Mag
– volume: 137
  start-page: 1709
  issue: 6
  year: 1990
  end-page: 1716
  article-title: Kinetics and transport at AMTEC electrodes.—I. The interfacial impedance model
  publication-title: J Electrochem Soc
– volume: 504
  start-page: 1377
  year: 2000
  end-page: 1382
  article-title: Lifetime of AMTEC electrodes: molybdenum, rhodium‐tungsten, and titanium nitride
  publication-title: AIP Conf Proc
– volume: 64
  start-page: 287
  year: 2014
  end-page: 297
  article-title: Modeling and simulation for the design of thermal‐concentrated solar thermoelectric generator
  publication-title: Energy
– volume: 90
  start-page: 1575
  year: 2015
  end-page: 1583
  article-title: Performance evaluation and parametric optimum design of an updated thermionic‐thermoelectric generator hybrid system
  publication-title: Energy
– volume: 156
  start-page: 685
  issue: 2
  year: 2006
  end-page: 691
  article-title: Optimization of the TIEC/AMTEC cascade cell for high efficiency
  publication-title: J Power Sources
– volume: 221
  start-page: 915
  issue: 4614
  year: 1983
  end-page: 920
  article-title: Thermoelectric energy conversion with solid electrolytes
  publication-title: Science
– volume: 115
  start-page: 167
  issue: 1
  year: 2003
  end-page: 170
  article-title: Optimization of a combined thermionic‐thermoelectric generator
  publication-title: J Power Sources
– volume: 361
  start-page: 1285
  year: 1996
  end-page: 1290
  article-title: Mathematical modeling for a thermionic‐AMTEC cascade system
  publication-title: AIP Conf Proc
– volume: 29
  start-page: 1263
  issue: 11
  year: 1999
  end-page: 1275
  article-title: An electric model of a vapour anode, multitube alkali‐metal thermal‐to‐electric converter
  publication-title: J Appl Electrochem
– volume: 87
  start-page: 452
  issue: 2
  year: 2010
  end-page: 462
  article-title: A parabolic dish/AMTEC solar thermal power system and its performance evaluation
  publication-title: Appl Energy
– volume: 37
  start-page: 533
  issue: 6
  year: 2018
  end-page: 548
  article-title: Performance comparison investigation on solar photovoltaic‐thermoelectric generation and solar photovoltaic‐thermoelectric cooling hybrid systems under different conditions
  publication-title: Int J Sustainable Energy
– volume: 14
  start-page: 97
  issue: 1
  year: 2015
  end-page: 108
  article-title: Performance analysis for an irreversible combined thermionic‐thermoelectric generator with finite rate heat transfer
  publication-title: Environ Eng Manag J
– volume: 154
  start-page: 118
  year: 2017
  end-page: 126
  article-title: Performance evaluation and parametric analysis of AMTEC/TEG hybrid system
  publication-title: Energ Conver Manage
– volume: 387
  start-page: 1543
  year: 1997
  end-page: 1552
  article-title: An analytical model for liquid‐anode and vapor‐anode AMTEC converters
  publication-title: AIP Conf Proc
– volume: 58
  start-page: 191
  issue: 4
  year: 1996
  end-page: 195
  article-title: Development of a solar receiver for a high‐efficiency thermionic/thermoelectric conversion system
  publication-title: Solar Energy
– volume: 609
  start-page: 201
  year: 2014
  end-page: 205
  article-title: Enhanced thermoelectric performance of n‐type PbTe bulk materials fabricated by semisolid powder processing
  publication-title: J Alloys Compd
– volume: 45
  start-page: 511
  issue: 4
  year: 2004
  end-page: 535
  article-title: AMTEC/TE static converters for high energy utilization, small nuclear power plants
  publication-title: Energ Conver Manage
– volume: 361
  start-page: 1291
  year: 1996
  end-page: 1298
  article-title: Design and preliminary testing of a thermionic AMTEC cascade
  publication-title: AIP Conf Proc
– volume: 132
  start-page: 293
  issue: 7
  year: 2017
  article-title: Thermodynamic performance optimization for an irreversible vacuum thermionic generator
  publication-title: Eur Phys J Plus
– volume: 21
  start-page: 441
  issue: 3
  year: 2011
  end-page: 447
  article-title: Analysis of Ce‐ and Yb‐doped TAGS‐85 materials with enhanced thermoelectric figure of merit
  publication-title: Adv Funct Mater
– volume: 42
  start-page: 656
  issue: 2
  year: 2018
  end-page: 672
  article-title: Parametric study on the thermoelectric conversion performance of a concentrated solar‐driven thermionic‐thermoelectric hybrid generator
  publication-title: Int J Energy Res
– volume: 82
  start-page: 162
  year: 2015
  end-page: 169
  article-title: Assessing the accuracy of mathematical models used in thermoelectric simulation: thermal influence of insulated air zone and radiation heat
  publication-title: Appl Therm Eng
– volume: 246
  start-page: 1331
  year: 1992
  end-page: 1337
  article-title: An AMTEC vapor‐vapor, series connected cell
  publication-title: AIP Conf Proc
– volume: 36
  start-page: 3513
  issue: 5
  year: 2011
  end-page: 3522
  article-title: A numerical model and comparative investigation of a thermoelectric generator with multi‐irreversibilities
  publication-title: Energy
– volume: 158
  start-page: 740
  issue: 1
  year: 2006
  end-page: 746
  article-title: Use of waste heat of TIEC as the power source for AMTEC
  publication-title: J Power Sources
– volume: 115
  start-page: 167
  issue: 1
  year: 2003
  ident: 10.1002/er.4209-BIB0006|er4209-cit-0007
  article-title: Optimization of a combined thermionic-thermoelectric generator
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(02)00620-1
– volume: 45
  start-page: 511
  issue: 4
  year: 2004
  ident: 10.1002/er.4209-BIB0001|er4209-cit-0002
  article-title: AMTEC/TE static converters for high energy utilization, small nuclear power plants
  publication-title: Energ Conver Manage
  doi: 10.1016/S0196-8904(03)00159-6
– volume: 221
  start-page: 915
  issue: 4614
  year: 1983
  ident: 10.1002/er.4209-BIB0015|er4209-cit-0016
  article-title: Thermoelectric energy conversion with solid electrolytes
  publication-title: Science
  doi: 10.1126/science.221.4614.915
– volume: 158
  start-page: 740
  issue: 1
  year: 2006
  ident: 10.1002/er.4209-BIB0005|er4209-cit-0006
  article-title: Use of waste heat of TIEC as the power source for AMTEC
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.08.057
– volume: 14
  start-page: 97
  issue: 1
  year: 2015
  ident: 10.1002/er.4209-BIB0009|er4209-cit-0010
  article-title: Performance analysis for an irreversible combined thermionic-thermoelectric generator with finite rate heat transfer
  publication-title: Environ Eng Manag J
  doi: 10.30638/eemj.2015.012
– volume: 156
  start-page: 685
  issue: 2
  year: 2006
  ident: 10.1002/er.4209-BIB0011|er4209-cit-0012
  article-title: Optimization of the TIEC/AMTEC cascade cell for high efficiency
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.05.090
– volume: 36
  start-page: 3513
  issue: 5
  year: 2011
  ident: 10.1002/er.4209-BIB0023|er4209-cit-0024
  article-title: A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.057
– volume: 58
  start-page: 191
  issue: 4
  year: 1996
  ident: 10.1002/er.4209-BIB0002|er4209-cit-0003
  article-title: Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system
  publication-title: Solar Energy
  doi: 10.1016/S0038-092X(96)00084-9
– volume: 154
  start-page: 118
  year: 2017
  ident: 10.1002/er.4209-BIB0007|er4209-cit-0008
  article-title: Performance evaluation and parametric analysis of AMTEC/TEG hybrid system
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2017.10.046
– volume: 361
  start-page: 1285
  year: 1996
  ident: 10.1002/er.4209-BIB0010|er4209-cit-0011
  article-title: Mathematical modeling for a thermionic-AMTEC cascade system
  publication-title: AIP Conf Proc
  doi: 10.1063/1.49895
– volume: 82
  start-page: 162
  year: 2015
  ident: 10.1002/er.4209-BIB0020|er4209-cit-0021
  article-title: Assessing the accuracy of mathematical models used in thermoelectric simulation: thermal influence of insulated air zone and radiation heat
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.02.072
– volume: 64
  start-page: 287
  year: 2014
  ident: 10.1002/er.4209-BIB0024|er4209-cit-0025
  article-title: Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator
  publication-title: Energy
  doi: 10.1016/j.energy.2013.10.073
– volume: 609
  start-page: 201
  year: 2014
  ident: 10.1002/er.4209-BIB0021|er4209-cit-0022
  article-title: Enhanced thermoelectric performance of n-type PbTe bulk materials fabricated by semisolid powder processing
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2014.04.116
– volume: 21
  start-page: 441
  issue: 3
  year: 2011
  ident: 10.1002/er.4209-BIB0022|er4209-cit-0023
  article-title: Analysis of Ce- and Yb-doped TAGS-85 materials with enhanced thermoelectric figure of merit
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201001307
– volume: 87
  start-page: 452
  issue: 2
  year: 2010
  ident: 10.1002/er.4209-BIB0004|er4209-cit-0005
  article-title: A parabolic dish/AMTEC solar thermal power system and its performance evaluation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.08.041
– volume: 387
  start-page: 1543
  year: 1997
  ident: 10.1002/er.4209-BIB0016|er4209-cit-0017
  article-title: An analytical model for liquid-anode and vapor-anode AMTEC converters
  publication-title: AIP Conf Proc
– volume: 504
  start-page: 1377
  year: 2000
  ident: 10.1002/er.4209-BIB0026|er4209-cit-0027
  article-title: Lifetime of AMTEC electrodes: molybdenum, rhodium-tungsten, and titanium nitride
  publication-title: AIP Conf Proc
  doi: 10.1063/1.1290954
– volume: 361
  start-page: 1291
  year: 1996
  ident: 10.1002/er.4209-BIB0013|er4209-cit-0014
  article-title: Design and preliminary testing of a thermionic AMTEC cascade
  publication-title: AIP Conf Proc
  doi: 10.1063/1.49897
– volume: 137
  start-page: 1709
  issue: 6
  year: 1990
  ident: 10.1002/er.4209-BIB0018|er4209-cit-0019
  article-title: Kinetics and transport at AMTEC electrodes.-I. The interfacial impedance model
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2086775
– volume: 246
  start-page: 1331
  year: 1992
  ident: 10.1002/er.4209-BIB0019|er4209-cit-0020
  article-title: An AMTEC vapor-vapor, series connected cell
  publication-title: AIP Conf Proc
  doi: 10.1063/1.41758
– volume: 12
  start-page: 10
  issue: 7
  year: 1997
  ident: 10.1002/er.4209-BIB0012|er4209-cit-0013
  article-title: Thermionic/AMTEC cascade converter concept for high-efficiency space power
  publication-title: IEEE Aerosp Electron Syst Mag
  doi: 10.1109/62.596648
– volume: 90
  start-page: 1575
  year: 2015
  ident: 10.1002/er.4209-BIB0008|er4209-cit-0009
  article-title: Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.120
– volume: 29
  start-page: 1263
  issue: 11
  year: 1999
  ident: 10.1002/er.4209-BIB0017|er4209-cit-0018
  article-title: An electric model of a vapour anode, multitube alkali-metal thermal-to-electric converter
  publication-title: J Appl Electrochem
  doi: 10.1023/A:1003728129770
– volume: 37
  start-page: 533
  issue: 6
  year: 2018
  ident: 10.1002/er.4209-BIB0003|er4209-cit-0004
  article-title: Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions
  publication-title: Int J Sustainable Energy
  doi: 10.1080/14786451.2017.1345906
– volume: 42
  start-page: 656
  issue: 2
  year: 2018
  ident: 10.1002/er.4209-BIB0025|er4209-cit-0026
  article-title: Parametric study on the thermoelectric conversion performance of a concentrated solar-driven thermionic-thermoelectric hybrid generator
  publication-title: Int J Energy Res
  doi: 10.1002/er.3849
– volume: 132
  start-page: 293
  issue: 7
  year: 2017
  ident: 10.1002/er.4209-BIB0014|er4209-cit-0015
  article-title: Thermodynamic performance optimization for an irreversible vacuum thermionic generator
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2017-11561-2
SSID ssj0009917
Score 2.31223
Snippet Summary Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and...
Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4674
SubjectTerms alkali metal thermal electric converter (AMTEC)
Alkali metals
AMTEC (converter)
Area
Conceptual design
Conversion
Current density
Electrodes
Emitters
Energy conservation law
hybrid system
Hybrid systems
Parameters
parametric analysis
Parametric statistics
performance evaluation
thermionic converter (TIC)
Thermionic converters
thermoelectric generator (TEG)
Thermoelectric generators
Thermoelectricity
Title Conceptual design and performance analysis of concentrated solar‐driven TIC/AMTEC/TEG hybrid system
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4209
https://www.proquest.com/docview/2453658942
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtV9lC8pUk372MJqVWoh5JC8RL2FQQllrQ96Mmf4G_0lzibTZqqCOIpLMzAkpnZ-TaZ-QahriQiyOyQqbKK0HB8QQzqUc-AVBcySWlAuGoUHt95o6lzO3NnG6O-ND_E-oObiozyvFYBTtnCbEhDZdFzSNm6pyq1FByaNMRRgHr8-i8lXP9mul1WaZqV3tc81IDLTYha5pjhHrqvd6dLSx57qyXr8ddvxI3_2v4-2q2QJx5oVzlAWzI_RDsbfIRHSEa6iXEFcqIs7cA0F3jeNBfAWpOY4OcMcyWdl_S2Ai_UHfnj7V0U6vzEyU1kDsZJHJlJfI0fXlRjGNa00cdoOoyTaGRUcxgMbsN9zMgEwBjGXQAP1LekLVyPWVIxiErhgnX7REov6wsaWmEgiOOHGfcA2QjL544NeOAEtfLnXJ4iLJhkgoO0T0Gd-aElAD9wYvskcx1J2-iqtkrKK5JyNSvjKdX0yiSVRareWxvhteBc83L8FOnUZk2rwFykxHHBW4LQIW3ULe3zm3oaT9Tj7G9i52gboFSgC106qLUsVvIC4MqSXZae-Qkk_OhE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG0kHtSDuxjXPgRvk0x69qOExLgkhzCBgIeht0FQJiHLQU9-gt_ol1g1PUlcEMTTMFAFPVO9vOqu95qQimYqTJ1IYFlFZLmBYhb3uW_BUhcJzXnIJBKFO12_3XdvBt6gqKpELozRh1hsuOHIyOdrHOC4IV1bqobqcdVlyN1bxfu883Sqt5SOAtwTzM8pIQEcGMIsutYKx68r0RJefgap-SrT2iL38_aZ4pLH6mwqqvLlm3Tj_z5gm2wW4JNemt6yQ1Z0tks2PkkS7hHdMDzGGdipvLqD8kzR0ZJfAO9Gx4QOUyrROssVbhWdYJr8_vqmxjiF0vi6UbvsxM1GLW5e0Ydn5IZRoxy9T_qtZtxoW8VVDJZ0ICWzUgVIRkgP8AMPbO0ozxe2RhFRrTwIcJ1p7ad1xSM7ChVzgyiVPoAbZQfSdQASHJBSNsz0IaFKaKEkWAcc3EUQ2QoghGROwFLP1bxMLuZhSWShU47XZTwlRmGZJXqc4H8rE7owHBlpjp8mJ_O4JsXYnCTM9RxoWuSyMqnkAfrNPWn28HH0N7NzstaOO3fJ3XX39pisA7IKTd3LCSlNxzN9CuhlKs7ybvoBoz7sXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgujBt1ituofiLW262byOpQ_ro0VKC8VL2FcQlLT0cdCTP8Hf6C9xNps-VATxFBZmYMjs7HyTzHyLUFERGcROyHVbRWhRXxKLecyzINWFXDEWEKEHhdsdr9WnNwN3sHLVl-GHWHxw05GRntc6wEcyLi9JQ9W4RIke3Vunnh3oDV3vLpmjAPb489-UUP8NzLysVi1nil8T0RJdrmLUNMk0d9DD3DzTW_JUmk15Sbx-Y278l_27aDuDnrhq9soeWlPJPtpaISQ8QKpmphhnICfT3g7MEolHy-kCWBsWEzyMsdDSScpvK_FEF8kfb-9yrA9Q3LuulavtXqNW7jWu8OOLngzDhjf6EPWbjV6tZWUXMVjCgYLMiiXgGC5cQA_Mt5UjXY_bSlOIKumCeytEKS-uSBbaYSAJ9cNYeABtpO0L6gAgOEK5ZJioY4QlV1wKkPYZqHM_tCUACEEcn8QuVSyPLudeiUTGUq4vy3iODL8yidQ40u8tj_BCcGSIOX6KFOZujbLInESEug6YFlKSR8XUP7-pR42ufpz8TewCbdzXm9Hddef2FG0CrApM00sB5abjmToD6DLl5-km_QQQ9-sX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conceptual+design+and+performance+analysis+of+concentrated+solar-driven+TIC%2FAMTEC%2FTEG+hybrid+system&rft.jtitle=International+journal+of+energy+research&rft.au=Wu%2C+Shuang-Ying&rft.au=Zhang%2C+Yi-Chen&rft.au=Xiao%2C+Lan&rft.date=2018-12-01&rft.issn=0363-907X&rft.volume=42&rft.issue=15&rft.spage=4674&rft.epage=4686&rft_id=info:doi/10.1002%2Fer.4209&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_4209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon