Conceptual design and performance analysis of concentrated solar‐driven TIC/AMTEC/TEG hybrid system
Summary Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric generator (TEG) are incorporated into a novel thermoelectric hybrid system‐TIC/AMTEC/TEG hybrid system, driven by concentrated solar....
Saved in:
Published in | International journal of energy research Vol. 42; no. 15; pp. 4674 - 4686 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric generator (TEG) are incorporated into a novel thermoelectric hybrid system‐TIC/AMTEC/TEG hybrid system, driven by concentrated solar. To evaluate the performance of concentrated solar‐driven TIC/AMTEC/TEG hybrid system accurately, a comprehensive theoretical model based on the first law of thermodynamics has been established for the first time. The effects of load parameters (voltage output of TIC subsystem V1, electrode current density of AMTEC subsystem J2, dimensionless current of TEG subsystem i) and dimensionless geometric parameters (the ratio of total electrode area of AMTEC subsystem to emitter area of TIC subsystem r, the ratio of TEG subsystem area to total electrode area of AMTEC subsystem c) on the conversion efficiency of TIC/AMTEC/TEG hybrid system (ηALL) were discussed. Furthermore, in order to demonstrate the contribution of the hybrid system, the comparisons with two‐stage hybrid systems and subsystems were explored. The results show that both V1 and i make a positive effect on ηALL; however, V1 is of greater importance for ηALL. ηALL increases first and then decreases under the influence of J2 and r. Smaller c can sometimes achieve better ηALL. The comparison results reveal that the TIC/AMTEC/TEG hybrid system is outstanding in most cases. |
---|---|
AbstractList | Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric generator (TEG) are incorporated into a novel thermoelectric hybrid system‐TIC/AMTEC/TEG hybrid system, driven by concentrated solar. To evaluate the performance of concentrated solar‐driven TIC/AMTEC/TEG hybrid system accurately, a comprehensive theoretical model based on the first law of thermodynamics has been established for the first time. The effects of load parameters (voltage output of TIC subsystem V1, electrode current density of AMTEC subsystem J2, dimensionless current of TEG subsystem i) and dimensionless geometric parameters (the ratio of total electrode area of AMTEC subsystem to emitter area of TIC subsystem r, the ratio of TEG subsystem area to total electrode area of AMTEC subsystem c) on the conversion efficiency of TIC/AMTEC/TEG hybrid system (ηALL) were discussed. Furthermore, in order to demonstrate the contribution of the hybrid system, the comparisons with two‐stage hybrid systems and subsystems were explored. The results show that both V1 and i make a positive effect on ηALL; however, V1 is of greater importance for ηALL. ηALL increases first and then decreases under the influence of J2 and r. Smaller c can sometimes achieve better ηALL. The comparison results reveal that the TIC/AMTEC/TEG hybrid system is outstanding in most cases. Summary Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric generator (TEG) are incorporated into a novel thermoelectric hybrid system‐TIC/AMTEC/TEG hybrid system, driven by concentrated solar. To evaluate the performance of concentrated solar‐driven TIC/AMTEC/TEG hybrid system accurately, a comprehensive theoretical model based on the first law of thermodynamics has been established for the first time. The effects of load parameters (voltage output of TIC subsystem V1, electrode current density of AMTEC subsystem J2, dimensionless current of TEG subsystem i) and dimensionless geometric parameters (the ratio of total electrode area of AMTEC subsystem to emitter area of TIC subsystem r, the ratio of TEG subsystem area to total electrode area of AMTEC subsystem c) on the conversion efficiency of TIC/AMTEC/TEG hybrid system (ηALL) were discussed. Furthermore, in order to demonstrate the contribution of the hybrid system, the comparisons with two‐stage hybrid systems and subsystems were explored. The results show that both V1 and i make a positive effect on ηALL; however, V1 is of greater importance for ηALL. ηALL increases first and then decreases under the influence of J2 and r. Smaller c can sometimes achieve better ηALL. The comparison results reveal that the TIC/AMTEC/TEG hybrid system is outstanding in most cases. |
Author | Zhang, Yi‐Chen Wu, Shuang‐Ying Xiao, Lan |
Author_xml | – sequence: 1 givenname: Shuang‐Ying orcidid: 0000-0001-6978-5094 surname: Wu fullname: Wu, Shuang‐Ying email: shuangyingwu@126.com organization: Chongqing University – sequence: 2 givenname: Yi‐Chen surname: Zhang fullname: Zhang, Yi‐Chen organization: Chongqing University – sequence: 3 givenname: Lan orcidid: 0000-0003-0005-8213 surname: Xiao fullname: Xiao, Lan email: xiaolannancy@cqu.edu.cn organization: Chongqing University |
BookMark | eNp10N9KwzAUBvAgE5xTfIWAF15ItyT9m8tR6hxMBKmwu5A1p5rRNTXplN75CD6jT2LrvBK9OhzOj4_Dd4pGtakBoQtKppQQNgM7DRjhR2hMCecepcF6hMbEj3yPk3h9gk6d2xLS32g8RpCauoCm3csKK3D6qcayVrgBWxq7k_2t32XVOe2wKXEx6Lq1sgWFnamk_Xz_UFa_Qo3zZTqb3-VZOsuzBX7uNlb3pnMt7M7QcSkrB-c_c4Ieb7I8vfVW94tlOl95hc8S7pUq8vmmCBPKZUzAV2G0IRDRIAEVxopRBhCVVElOeKJYEPOyiKIwUSQuAj8J_Qm6POQ21rzswbVia_a2_98JFoR-T3nAenV1UIU1zlkoRWP1TtpOUCKGDgVYMXTYS--XLHQrW22GCnT1h78--DddQfdfrMgevvUXahKDcg |
CitedBy_id | crossref_primary_10_3390_en15166024 crossref_primary_10_1016_j_jclepro_2020_120953 crossref_primary_10_1016_j_applthermaleng_2022_119044 crossref_primary_10_1002_er_5064 crossref_primary_10_1016_j_egyr_2022_11_015 crossref_primary_10_1016_j_enconman_2018_12_061 crossref_primary_10_1016_j_enconman_2023_117727 crossref_primary_10_15377_2409_5818_2020_07_5 crossref_primary_10_1016_j_anucene_2024_110742 crossref_primary_10_1002_er_8176 crossref_primary_10_1016_j_energy_2022_126016 crossref_primary_10_1016_j_applthermaleng_2023_122257 crossref_primary_10_1002_er_6524 crossref_primary_10_1016_j_applthermaleng_2022_118605 crossref_primary_10_1155_2023_1990593 crossref_primary_10_1007_s10973_022_11280_0 crossref_primary_10_1016_j_tsep_2024_102879 |
Cites_doi | 10.1016/S0378-7753(02)00620-1 10.1016/S0196-8904(03)00159-6 10.1126/science.221.4614.915 10.1016/j.jpowsour.2005.08.057 10.30638/eemj.2015.012 10.1016/j.jpowsour.2005.05.090 10.1016/j.energy.2011.03.057 10.1016/S0038-092X(96)00084-9 10.1016/j.enconman.2017.10.046 10.1063/1.49895 10.1016/j.applthermaleng.2015.02.072 10.1016/j.energy.2013.10.073 10.1016/j.jallcom.2014.04.116 10.1002/adfm.201001307 10.1016/j.apenergy.2009.08.041 10.1063/1.1290954 10.1063/1.49897 10.1149/1.2086775 10.1063/1.41758 10.1109/62.596648 10.1016/j.energy.2015.06.120 10.1023/A:1003728129770 10.1080/14786451.2017.1345906 10.1002/er.3849 10.1140/epjp/i2017-11561-2 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.4209 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
EndPage | 4686 |
ExternalDocumentID | 10_1002_er_4209 ER4209 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2018CDXYDL0001 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-c3289-fd639bc5819a70e3d56b0e6148ed57d212ee6f1da9098d2479fc6658d07c43853 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Wed Aug 13 11:07:50 EDT 2025 Tue Jul 01 01:41:23 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Wed Jan 22 16:42:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3289-fd639bc5819a70e3d56b0e6148ed57d212ee6f1da9098d2479fc6658d07c43853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0005-8213 0000-0001-6978-5094 |
PQID | 2453658942 |
PQPubID | 996365 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2453658942 crossref_primary_10_1002_er_4209 crossref_citationtrail_10_1002_er_4209 wiley_primary_10_1002_er_4209_ER4209 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 14 1999; 29 2004; 45 1992; 246 2017; 154 1996; 361 2017; 132 2011; 36 1996; 58 2003; 115 2018; 42 2006; 156 2006; 158 2014; 64 2010; 87 1983; 221 1990; 137 2015; 82 2014; 609 2000; 504 1997; 12 1997; 387 2011; 21 2015; 90 2018; 37 Miskolczy (10.1002/er.4209-BIB0013|er4209-cit-0014) 1996; 361 Levin (10.1002/er.4209-BIB0022|er4209-cit-0023) 2011; 21 Underwood (10.1002/er.4209-BIB0019|er4209-cit-0020) 1992; 246 El-Genk (10.1002/er.4209-BIB0001|er4209-cit-0002) 2004; 45 Wu (10.1002/er.4209-BIB0003|er4209-cit-0004) 2018; 37 Mei (10.1002/er.4209-BIB0021|er4209-cit-0022) 2014; 609 Lodhi (10.1002/er.4209-BIB0005|er4209-cit-0006) 2006; 158 Ding (10.1002/er.4209-BIB0009|er4209-cit-0010) 2015; 14 Lodhi (10.1002/er.4209-BIB0011|er4209-cit-0012) 2006; 156 Tournier (10.1002/er.4209-BIB0017|er4209-cit-0018) 1999; 29 Van Hagan (10.1002/er.4209-BIB0012|er4209-cit-0013) 1997; 12 Xuan (10.1002/er.4209-BIB0006|er4209-cit-0007) 2003; 115 Naito (10.1002/er.4209-BIB0002|er4209-cit-0003) 1996; 58 Lodhi (10.1002/er.4209-BIB0010|er4209-cit-0011) 1996; 361 Wu (10.1002/er.4209-BIB0007|er4209-cit-0008) 2017; 154 Chen (10.1002/er.4209-BIB0024|er4209-cit-0025) 2014; 64 Gao (10.1002/er.4209-BIB0020|er4209-cit-0021) 2015; 82 Meng (10.1002/er.4209-BIB0023|er4209-cit-0024) 2011; 36 Xiao (10.1002/er.4209-BIB0025|er4209-cit-0026) 2018; 42 Ryan (10.1002/er.4209-BIB0026|er4209-cit-0027) 2000; 504 Williams (10.1002/er.4209-BIB0018|er4209-cit-0019) 1990; 137 Cole (10.1002/er.4209-BIB0015|er4209-cit-0016) 1983; 221 Tournier (10.1002/er.4209-BIB0016|er4209-cit-0017) 1997; 387 Wang (10.1002/er.4209-BIB0008|er4209-cit-0009) 2015; 90 Chen (10.1002/er.4209-BIB0014|er4209-cit-0015) 2017; 132 Wu (10.1002/er.4209-BIB0004|er4209-cit-0005) 2010; 87 |
References_xml | – volume: 12 start-page: 10 issue: 7 year: 1997 end-page: 15 article-title: Thermionic/AMTEC cascade converter concept for high‐efficiency space power publication-title: IEEE Aerosp Electron Syst Mag – volume: 137 start-page: 1709 issue: 6 year: 1990 end-page: 1716 article-title: Kinetics and transport at AMTEC electrodes.—I. The interfacial impedance model publication-title: J Electrochem Soc – volume: 504 start-page: 1377 year: 2000 end-page: 1382 article-title: Lifetime of AMTEC electrodes: molybdenum, rhodium‐tungsten, and titanium nitride publication-title: AIP Conf Proc – volume: 64 start-page: 287 year: 2014 end-page: 297 article-title: Modeling and simulation for the design of thermal‐concentrated solar thermoelectric generator publication-title: Energy – volume: 90 start-page: 1575 year: 2015 end-page: 1583 article-title: Performance evaluation and parametric optimum design of an updated thermionic‐thermoelectric generator hybrid system publication-title: Energy – volume: 156 start-page: 685 issue: 2 year: 2006 end-page: 691 article-title: Optimization of the TIEC/AMTEC cascade cell for high efficiency publication-title: J Power Sources – volume: 221 start-page: 915 issue: 4614 year: 1983 end-page: 920 article-title: Thermoelectric energy conversion with solid electrolytes publication-title: Science – volume: 115 start-page: 167 issue: 1 year: 2003 end-page: 170 article-title: Optimization of a combined thermionic‐thermoelectric generator publication-title: J Power Sources – volume: 361 start-page: 1285 year: 1996 end-page: 1290 article-title: Mathematical modeling for a thermionic‐AMTEC cascade system publication-title: AIP Conf Proc – volume: 29 start-page: 1263 issue: 11 year: 1999 end-page: 1275 article-title: An electric model of a vapour anode, multitube alkali‐metal thermal‐to‐electric converter publication-title: J Appl Electrochem – volume: 87 start-page: 452 issue: 2 year: 2010 end-page: 462 article-title: A parabolic dish/AMTEC solar thermal power system and its performance evaluation publication-title: Appl Energy – volume: 37 start-page: 533 issue: 6 year: 2018 end-page: 548 article-title: Performance comparison investigation on solar photovoltaic‐thermoelectric generation and solar photovoltaic‐thermoelectric cooling hybrid systems under different conditions publication-title: Int J Sustainable Energy – volume: 14 start-page: 97 issue: 1 year: 2015 end-page: 108 article-title: Performance analysis for an irreversible combined thermionic‐thermoelectric generator with finite rate heat transfer publication-title: Environ Eng Manag J – volume: 154 start-page: 118 year: 2017 end-page: 126 article-title: Performance evaluation and parametric analysis of AMTEC/TEG hybrid system publication-title: Energ Conver Manage – volume: 387 start-page: 1543 year: 1997 end-page: 1552 article-title: An analytical model for liquid‐anode and vapor‐anode AMTEC converters publication-title: AIP Conf Proc – volume: 58 start-page: 191 issue: 4 year: 1996 end-page: 195 article-title: Development of a solar receiver for a high‐efficiency thermionic/thermoelectric conversion system publication-title: Solar Energy – volume: 609 start-page: 201 year: 2014 end-page: 205 article-title: Enhanced thermoelectric performance of n‐type PbTe bulk materials fabricated by semisolid powder processing publication-title: J Alloys Compd – volume: 45 start-page: 511 issue: 4 year: 2004 end-page: 535 article-title: AMTEC/TE static converters for high energy utilization, small nuclear power plants publication-title: Energ Conver Manage – volume: 361 start-page: 1291 year: 1996 end-page: 1298 article-title: Design and preliminary testing of a thermionic AMTEC cascade publication-title: AIP Conf Proc – volume: 132 start-page: 293 issue: 7 year: 2017 article-title: Thermodynamic performance optimization for an irreversible vacuum thermionic generator publication-title: Eur Phys J Plus – volume: 21 start-page: 441 issue: 3 year: 2011 end-page: 447 article-title: Analysis of Ce‐ and Yb‐doped TAGS‐85 materials with enhanced thermoelectric figure of merit publication-title: Adv Funct Mater – volume: 42 start-page: 656 issue: 2 year: 2018 end-page: 672 article-title: Parametric study on the thermoelectric conversion performance of a concentrated solar‐driven thermionic‐thermoelectric hybrid generator publication-title: Int J Energy Res – volume: 82 start-page: 162 year: 2015 end-page: 169 article-title: Assessing the accuracy of mathematical models used in thermoelectric simulation: thermal influence of insulated air zone and radiation heat publication-title: Appl Therm Eng – volume: 246 start-page: 1331 year: 1992 end-page: 1337 article-title: An AMTEC vapor‐vapor, series connected cell publication-title: AIP Conf Proc – volume: 36 start-page: 3513 issue: 5 year: 2011 end-page: 3522 article-title: A numerical model and comparative investigation of a thermoelectric generator with multi‐irreversibilities publication-title: Energy – volume: 158 start-page: 740 issue: 1 year: 2006 end-page: 746 article-title: Use of waste heat of TIEC as the power source for AMTEC publication-title: J Power Sources – volume: 115 start-page: 167 issue: 1 year: 2003 ident: 10.1002/er.4209-BIB0006|er4209-cit-0007 article-title: Optimization of a combined thermionic-thermoelectric generator publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00620-1 – volume: 45 start-page: 511 issue: 4 year: 2004 ident: 10.1002/er.4209-BIB0001|er4209-cit-0002 article-title: AMTEC/TE static converters for high energy utilization, small nuclear power plants publication-title: Energ Conver Manage doi: 10.1016/S0196-8904(03)00159-6 – volume: 221 start-page: 915 issue: 4614 year: 1983 ident: 10.1002/er.4209-BIB0015|er4209-cit-0016 article-title: Thermoelectric energy conversion with solid electrolytes publication-title: Science doi: 10.1126/science.221.4614.915 – volume: 158 start-page: 740 issue: 1 year: 2006 ident: 10.1002/er.4209-BIB0005|er4209-cit-0006 article-title: Use of waste heat of TIEC as the power source for AMTEC publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.08.057 – volume: 14 start-page: 97 issue: 1 year: 2015 ident: 10.1002/er.4209-BIB0009|er4209-cit-0010 article-title: Performance analysis for an irreversible combined thermionic-thermoelectric generator with finite rate heat transfer publication-title: Environ Eng Manag J doi: 10.30638/eemj.2015.012 – volume: 156 start-page: 685 issue: 2 year: 2006 ident: 10.1002/er.4209-BIB0011|er4209-cit-0012 article-title: Optimization of the TIEC/AMTEC cascade cell for high efficiency publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.05.090 – volume: 36 start-page: 3513 issue: 5 year: 2011 ident: 10.1002/er.4209-BIB0023|er4209-cit-0024 article-title: A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities publication-title: Energy doi: 10.1016/j.energy.2011.03.057 – volume: 58 start-page: 191 issue: 4 year: 1996 ident: 10.1002/er.4209-BIB0002|er4209-cit-0003 article-title: Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system publication-title: Solar Energy doi: 10.1016/S0038-092X(96)00084-9 – volume: 154 start-page: 118 year: 2017 ident: 10.1002/er.4209-BIB0007|er4209-cit-0008 article-title: Performance evaluation and parametric analysis of AMTEC/TEG hybrid system publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2017.10.046 – volume: 361 start-page: 1285 year: 1996 ident: 10.1002/er.4209-BIB0010|er4209-cit-0011 article-title: Mathematical modeling for a thermionic-AMTEC cascade system publication-title: AIP Conf Proc doi: 10.1063/1.49895 – volume: 82 start-page: 162 year: 2015 ident: 10.1002/er.4209-BIB0020|er4209-cit-0021 article-title: Assessing the accuracy of mathematical models used in thermoelectric simulation: thermal influence of insulated air zone and radiation heat publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.02.072 – volume: 64 start-page: 287 year: 2014 ident: 10.1002/er.4209-BIB0024|er4209-cit-0025 article-title: Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator publication-title: Energy doi: 10.1016/j.energy.2013.10.073 – volume: 609 start-page: 201 year: 2014 ident: 10.1002/er.4209-BIB0021|er4209-cit-0022 article-title: Enhanced thermoelectric performance of n-type PbTe bulk materials fabricated by semisolid powder processing publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2014.04.116 – volume: 21 start-page: 441 issue: 3 year: 2011 ident: 10.1002/er.4209-BIB0022|er4209-cit-0023 article-title: Analysis of Ce- and Yb-doped TAGS-85 materials with enhanced thermoelectric figure of merit publication-title: Adv Funct Mater doi: 10.1002/adfm.201001307 – volume: 87 start-page: 452 issue: 2 year: 2010 ident: 10.1002/er.4209-BIB0004|er4209-cit-0005 article-title: A parabolic dish/AMTEC solar thermal power system and its performance evaluation publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.08.041 – volume: 387 start-page: 1543 year: 1997 ident: 10.1002/er.4209-BIB0016|er4209-cit-0017 article-title: An analytical model for liquid-anode and vapor-anode AMTEC converters publication-title: AIP Conf Proc – volume: 504 start-page: 1377 year: 2000 ident: 10.1002/er.4209-BIB0026|er4209-cit-0027 article-title: Lifetime of AMTEC electrodes: molybdenum, rhodium-tungsten, and titanium nitride publication-title: AIP Conf Proc doi: 10.1063/1.1290954 – volume: 361 start-page: 1291 year: 1996 ident: 10.1002/er.4209-BIB0013|er4209-cit-0014 article-title: Design and preliminary testing of a thermionic AMTEC cascade publication-title: AIP Conf Proc doi: 10.1063/1.49897 – volume: 137 start-page: 1709 issue: 6 year: 1990 ident: 10.1002/er.4209-BIB0018|er4209-cit-0019 article-title: Kinetics and transport at AMTEC electrodes.-I. The interfacial impedance model publication-title: J Electrochem Soc doi: 10.1149/1.2086775 – volume: 246 start-page: 1331 year: 1992 ident: 10.1002/er.4209-BIB0019|er4209-cit-0020 article-title: An AMTEC vapor-vapor, series connected cell publication-title: AIP Conf Proc doi: 10.1063/1.41758 – volume: 12 start-page: 10 issue: 7 year: 1997 ident: 10.1002/er.4209-BIB0012|er4209-cit-0013 article-title: Thermionic/AMTEC cascade converter concept for high-efficiency space power publication-title: IEEE Aerosp Electron Syst Mag doi: 10.1109/62.596648 – volume: 90 start-page: 1575 year: 2015 ident: 10.1002/er.4209-BIB0008|er4209-cit-0009 article-title: Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system publication-title: Energy doi: 10.1016/j.energy.2015.06.120 – volume: 29 start-page: 1263 issue: 11 year: 1999 ident: 10.1002/er.4209-BIB0017|er4209-cit-0018 article-title: An electric model of a vapour anode, multitube alkali-metal thermal-to-electric converter publication-title: J Appl Electrochem doi: 10.1023/A:1003728129770 – volume: 37 start-page: 533 issue: 6 year: 2018 ident: 10.1002/er.4209-BIB0003|er4209-cit-0004 article-title: Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions publication-title: Int J Sustainable Energy doi: 10.1080/14786451.2017.1345906 – volume: 42 start-page: 656 issue: 2 year: 2018 ident: 10.1002/er.4209-BIB0025|er4209-cit-0026 article-title: Parametric study on the thermoelectric conversion performance of a concentrated solar-driven thermionic-thermoelectric hybrid generator publication-title: Int J Energy Res doi: 10.1002/er.3849 – volume: 132 start-page: 293 issue: 7 year: 2017 ident: 10.1002/er.4209-BIB0014|er4209-cit-0015 article-title: Thermodynamic performance optimization for an irreversible vacuum thermionic generator publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2017-11561-2 |
SSID | ssj0009917 |
Score | 2.31223 |
Snippet | Summary
Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and... Three kinds of static thermal to electrical conversion devices thermionic converter (TIC), alkali metal thermal electric converter (AMTEC), and thermoelectric... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4674 |
SubjectTerms | alkali metal thermal electric converter (AMTEC) Alkali metals AMTEC (converter) Area Conceptual design Conversion Current density Electrodes Emitters Energy conservation law hybrid system Hybrid systems Parameters parametric analysis Parametric statistics performance evaluation thermionic converter (TIC) Thermionic converters thermoelectric generator (TEG) Thermoelectric generators Thermoelectricity |
Title | Conceptual design and performance analysis of concentrated solar‐driven TIC/AMTEC/TEG hybrid system |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4209 https://www.proquest.com/docview/2453658942 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtV9lC8pUk372MJqVWoh5JC8RL2FQQllrQ96Mmf4G_0lzibTZqqCOIpLMzAkpnZ-TaZ-QahriQiyOyQqbKK0HB8QQzqUc-AVBcySWlAuGoUHt95o6lzO3NnG6O-ND_E-oObiozyvFYBTtnCbEhDZdFzSNm6pyq1FByaNMRRgHr8-i8lXP9mul1WaZqV3tc81IDLTYha5pjhHrqvd6dLSx57qyXr8ddvxI3_2v4-2q2QJx5oVzlAWzI_RDsbfIRHSEa6iXEFcqIs7cA0F3jeNBfAWpOY4OcMcyWdl_S2Ai_UHfnj7V0U6vzEyU1kDsZJHJlJfI0fXlRjGNa00cdoOoyTaGRUcxgMbsN9zMgEwBjGXQAP1LekLVyPWVIxiErhgnX7REov6wsaWmEgiOOHGfcA2QjL544NeOAEtfLnXJ4iLJhkgoO0T0Gd-aElAD9wYvskcx1J2-iqtkrKK5JyNSvjKdX0yiSVRareWxvhteBc83L8FOnUZk2rwFykxHHBW4LQIW3ULe3zm3oaT9Tj7G9i52gboFSgC106qLUsVvIC4MqSXZae-Qkk_OhE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG0kHtSDuxjXPgRvk0x69qOExLgkhzCBgIeht0FQJiHLQU9-gt_ol1g1PUlcEMTTMFAFPVO9vOqu95qQimYqTJ1IYFlFZLmBYhb3uW_BUhcJzXnIJBKFO12_3XdvBt6gqKpELozRh1hsuOHIyOdrHOC4IV1bqobqcdVlyN1bxfu883Sqt5SOAtwTzM8pIQEcGMIsutYKx68r0RJefgap-SrT2iL38_aZ4pLH6mwqqvLlm3Tj_z5gm2wW4JNemt6yQ1Z0tks2PkkS7hHdMDzGGdipvLqD8kzR0ZJfAO9Gx4QOUyrROssVbhWdYJr8_vqmxjiF0vi6UbvsxM1GLW5e0Ydn5IZRoxy9T_qtZtxoW8VVDJZ0ICWzUgVIRkgP8AMPbO0ozxe2RhFRrTwIcJ1p7ad1xSM7ChVzgyiVPoAbZQfSdQASHJBSNsz0IaFKaKEkWAcc3EUQ2QoghGROwFLP1bxMLuZhSWShU47XZTwlRmGZJXqc4H8rE7owHBlpjp8mJ_O4JsXYnCTM9RxoWuSyMqnkAfrNPWn28HH0N7NzstaOO3fJ3XX39pisA7IKTd3LCSlNxzN9CuhlKs7ybvoBoz7sXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgujBt1ituofiLW262byOpQ_ro0VKC8VL2FcQlLT0cdCTP8Hf6C9xNps-VATxFBZmYMjs7HyTzHyLUFERGcROyHVbRWhRXxKLecyzINWFXDEWEKEHhdsdr9WnNwN3sHLVl-GHWHxw05GRntc6wEcyLi9JQ9W4RIke3Vunnh3oDV3vLpmjAPb489-UUP8NzLysVi1nil8T0RJdrmLUNMk0d9DD3DzTW_JUmk15Sbx-Y278l_27aDuDnrhq9soeWlPJPtpaISQ8QKpmphhnICfT3g7MEolHy-kCWBsWEzyMsdDSScpvK_FEF8kfb-9yrA9Q3LuulavtXqNW7jWu8OOLngzDhjf6EPWbjV6tZWUXMVjCgYLMiiXgGC5cQA_Mt5UjXY_bSlOIKumCeytEKS-uSBbaYSAJ9cNYeABtpO0L6gAgOEK5ZJioY4QlV1wKkPYZqHM_tCUACEEcn8QuVSyPLudeiUTGUq4vy3iODL8yidQ40u8tj_BCcGSIOX6KFOZujbLInESEug6YFlKSR8XUP7-pR42ufpz8TewCbdzXm9Hddef2FG0CrApM00sB5abjmToD6DLl5-km_QQQ9-sX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conceptual+design+and+performance+analysis+of+concentrated+solar-driven+TIC%2FAMTEC%2FTEG+hybrid+system&rft.jtitle=International+journal+of+energy+research&rft.au=Wu%2C+Shuang-Ying&rft.au=Zhang%2C+Yi-Chen&rft.au=Xiao%2C+Lan&rft.date=2018-12-01&rft.issn=0363-907X&rft.volume=42&rft.issue=15&rft.spage=4674&rft.epage=4686&rft_id=info:doi/10.1002%2Fer.4209&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_4209 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |