Mechanistic Insight into how β‐Ketoacyl ACP Synthase I (KasA) Recognizes the Fatty Acid Chain Length of its Substrate
β‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carb...
Saved in:
Published in | ChemPlusChem (Weinheim, Germany) Vol. 89; no. 7; pp. e202300568 - n/a |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Germany
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | β‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested.
This study demonstrates the molecular details of how KasA can selectively elongate only the substrate longer than a certain length and reveals that this substrate specificity is closely associated with its cooperativity. |
---|---|
AbstractList | β
‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of
Mycobacterium Tuberculosis
, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested. β-ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested.β-ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested. β‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested. This study demonstrates the molecular details of how KasA can selectively elongate only the substrate longer than a certain length and reveals that this substrate specificity is closely associated with its cooperativity. β-ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested. |
Author | Lee, Wook |
Author_xml | – sequence: 1 givenname: Wook orcidid: 0000-0003-4646-7012 surname: Lee fullname: Lee, Wook email: wlee@kangwon.ac.kr organization: Kangwon National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37983623$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb9O3EAQh1cRUSAX2pRoSijusn-89ro8WZCcuCgohNpar8fnRb7dw7sWMRWPkGfJg-Qh8iQ5dATomGam-H5T_L73ZM95h4R8ZHTGKOWfzKYbZpxyQalM1RtywFnOp6mk6d6Le58chnBNt5NSyTPxjuyLLFci5eKA_PyKptXOhmgNLFywqzaCddFD62_hz--_97_OMXptxg7mxQVcji62OiAs4Phch_kJfEfjV87eYYDYIpzpGEeYG1tD0WrrYIluFVvwDdgY4HKoQux1xA_kbaO7gIePe0Kuzk5_FF-my2-fF8V8OTWCKzXFtJHMCNS50KxKUWJTKSkTWSeYJXmuaaUUbRjVImNcJYY1SVYjGiZkXWVcTMjx7u-m9zcDhliubTDYddqhH0LJVc55mvNtIRNy9IgO1RrrctPbte7H8n9bW2C2A0zvQ-ixeUIYLR-MlA9Gyicj20C-C9zaDsdX6LK4WF49Z_8BzAePwA |
Cites_doi | 10.1146/annurev.med.60.053107.103955 10.1093/bioinformatics/btab538 10.1021/acs.jctc.9b00591 10.1021/acs.jctc.5b00255 10.1074/jbc.M000569200 10.1007/s10822-011-9483-4 10.1016/0021-9991(77)90098-5 10.1021/ct4008603 10.1126/science.286.5438.295 10.1111/j.1365-2958.2007.05761.x 10.1007/s12539-017-0257-0 10.1126/science.3041592 10.1016/S0065-2911(08)60016-8 10.1021/bi200006t 10.1016/S1097-2765(00)80250-6 10.1128/JB.187.22.7596-7606.2005 10.1063/1.470117 10.1038/ncomms12581 10.1016/j.str.2009.04.012 10.1074/jbc.M113.511436 10.1021/bi401308j 10.1046/j.1365-2958.1998.01026.x 10.1016/j.bpj.2019.08.015 10.1038/166782a0 10.1146/annurev.biochem.66.1.717 10.1063/1.448118 10.1016/0021-9991(77)90121-8 10.1139/o03-076 10.1016/S0163-7827(02)00067-X 10.1021/jp403067m 10.1073/pnas.0608654104 10.1093/emboj/17.5.1183 10.1016/j.jmgm.2005.12.005 10.1038/228726a0 10.1017/S0033583500003826 10.1002/jcc.20035 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P 10.1110/ps.03259908 10.1002/jcc.10128 10.1016/S0163-7827(98)00008-3 10.1042/bj20011628 10.1063/1.445869 |
ContentType | Journal Article |
Copyright | 2023 Wiley-VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley-VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/cplu.202300568 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2192-6506 |
EndPage | n/a |
ExternalDocumentID | 37983623 10_1002_cplu_202300568 CPLU202300568 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) – fundername: Korea government (MSIT, Ministry of Science and ICT) funderid: 2021R1A2C1004344 – fundername: Korea government (MSIT, Ministry of Science and ICT) grantid: 2021R1A2C1004344 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3V. 50Y 77Q 8-0 8-1 88I 8AO 8FE 8FG 8FH A00 AAESR AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJCF ABJNI ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIHN ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEAQA AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CZ9 D1I DCZOG DPXWK DRFUL DRSTM DWQXO EBS EJD ESX G-S GNUQQ GODZA HCIFZ HGLYW HZ~ KB. KC. LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MXFUL MXSTM MY~ O9- P2W PCBAR PDBOC PQQKQ PROAC R.K ROL RX1 SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7X8 |
ID | FETCH-LOGICAL-c3288-e6f51c3ea93a1b6e5efb85545d4e7499a0b880f10a371284c1f47deec135db723 |
ISSN | 2192-6506 |
IngestDate | Fri Jul 11 11:55:26 EDT 2025 Mon Jul 21 05:36:49 EDT 2025 Tue Jul 01 03:12:37 EDT 2025 Wed Jan 22 17:17:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Beta-ketoacyl ACP synthase I (KasA) enzyme cooperativity molecular dynamics substrate specificity allosterism |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3288-e6f51c3ea93a1b6e5efb85545d4e7499a0b880f10a371284c1f47deec135db723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4646-7012 |
PMID | 37983623 |
PQID | 2892269298 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2892269298 pubmed_primary_37983623 crossref_primary_10_1002_cplu_202300568 wiley_primary_10_1002_cplu_202300568_CPLU202300568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 2024-Jul 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | ChemPlusChem (Weinheim, Germany) |
PublicationTitleAlternate | Chempluschem |
PublicationYear | 2024 |
References | 2007; 104 1998; 29 1989; 22 1984; 81 2004; 82 1997; 66 2000; 5 2019; 11 2009; 60 2004; 25 2000; 21 2015; 11 2008; 17 2013; 288 1999; 286 2020; 16 2000; 275 1988; 241 1977; 23 1970; 228 1983; 79 1998; 37 2021; 38 1998; 39 2016; 7 1998; 17 2005; 187 2002; 23 2002; 364 2006; 25 2011; 50 2013; 117 1950; 166 1995; 103 2019; 117 2011; 25 2007; 64 2003; 42 2014; 10 2009; 17 2014; 53 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 Sol A. (e_1_2_8_29_1) 2009; 17 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 7 start-page: 12581 year: 2016 publication-title: Nat. Commun. – volume: 11 start-page: 3696 year: 2015 end-page: 3713 publication-title: J. Chem. Theory Comput. – volume: 23 start-page: 327 year: 1977 end-page: 341 publication-title: J. Comput. Phys. – volume: 104 start-page: 5157 year: 2007 end-page: 5162 publication-title: Proc. Natl. Acad. Sci. USA – volume: 241 start-page: 669 year: 1988 end-page: 674 publication-title: Science – volume: 25 start-page: 1053 year: 2011 end-page: 1069 publication-title: J. Comput.-Aided Mol. Des. – volume: 187 start-page: 7596 year: 2005 end-page: 7606 publication-title: J. Bacteriol. – volume: 17 start-page: 1295 year: 2008 end-page: 1307 publication-title: Protein Sci. Publ. Protein Soc. – volume: 23 start-page: 187 year: 1977 end-page: 199 publication-title: J. Comput. Phys. – volume: 288 start-page: 34190 year: 2013 end-page: 34204 publication-title: J. Biol. Chem. – volume: 5 start-page: 717 year: 2000 end-page: 727 publication-title: Mol. Cell – volume: 364 start-page: 423 year: 2002 end-page: 430 publication-title: Biochem. J. – volume: 117 start-page: 8095 year: 2013 end-page: 8104 publication-title: J. Phys. Chem. B – volume: 17 start-page: 1042 year: 2009 end-page: 1050 publication-title: Struct. Lond. Engl. 1993 – volume: 79 start-page: 926 year: 1983 publication-title: J. Chem. Phys. – volume: 17 start-page: 1183 year: 1998 end-page: 1191 publication-title: EMBO J. – volume: 117 start-page: 1074 year: 2019 end-page: 1084 publication-title: Biophys. J. – volume: 66 start-page: 717 year: 1997 end-page: 749 publication-title: Annu. Rev. Biochem. – volume: 53 start-page: 919 year: 2014 end-page: 931 publication-title: Biochemistry – volume: 39 start-page: 131 year: 1998 end-page: 203 publication-title: Adv. Microb. Physiol. – volume: 38 start-page: 273 year: 2021 end-page: 274 publication-title: Bioinforma. Oxf. Engl. – volume: 22 start-page: 139 year: 1989 end-page: 237 publication-title: Q. Rev. Biophys. – volume: 60 start-page: 307 year: 2009 end-page: 320 publication-title: Annu. Rev. Med. – volume: 25 start-page: 247 year: 2006 end-page: 260 publication-title: J. Mol. Graphics Modell. – volume: 64 start-page: 1442 year: 2007 end-page: 1454 publication-title: Mol. Microbiol. – volume: 25 start-page: 1157 year: 2004 end-page: 1174 publication-title: J. Comput. Chem. – volume: 166 start-page: 782 year: 1950 end-page: 783 publication-title: Nature – volume: 286 start-page: 295 year: 1999 end-page: 299 publication-title: Science – volume: 29 start-page: 1449 year: 1998 end-page: 1458 publication-title: Mol. Microbiol. – volume: 10 start-page: 511 year: 2014 end-page: 517 publication-title: J. Chem. Theory Comput. – volume: 37 start-page: 143 year: 1998 end-page: 179 publication-title: Prog. Lipid Res. – volume: 50 start-page: 5743 year: 2011 end-page: 5756 publication-title: Biochemistry – volume: 17 start-page: 1004 year: 2009 end-page: 1013 publication-title: Structure – volume: 21 start-page: 132 year: 2000 end-page: 146 publication-title: J. Comput. Chem. – volume: 42 start-page: 289 year: 2003 end-page: 317 publication-title: Prog. Lipid Res. – volume: 81 start-page: 3684 year: 1984 end-page: 3690 publication-title: J. Chem. Phys. – volume: 82 start-page: 145 year: 2004 end-page: 155 publication-title: Biochem. Cell Biol. – volume: 23 start-page: 1623 year: 2002 end-page: 1641 publication-title: J. Comput. Chem. – volume: 228 start-page: 726 year: 1970 end-page: 734 publication-title: Nature – volume: 275 start-page: 16857 year: 2000 end-page: 16864 publication-title: J. Biol. Chem. – volume: 103 start-page: 8577 year: 1995 end-page: 8593 publication-title: J. Chem. Phys. – volume: 11 start-page: 215 year: 2019 end-page: 225 publication-title: Interdiscip. Sci. Comput. Life Sci. – volume: 16 start-page: 528 year: 2020 end-page: 552 publication-title: J. Chem. Theory Comput. – ident: e_1_2_8_2_1 doi: 10.1146/annurev.med.60.053107.103955 – ident: e_1_2_8_31_1 doi: 10.1093/bioinformatics/btab538 – ident: e_1_2_8_39_1 doi: 10.1021/acs.jctc.9b00591 – ident: e_1_2_8_38_1 doi: 10.1021/acs.jctc.5b00255 – ident: e_1_2_8_9_1 doi: 10.1074/jbc.M000569200 – ident: e_1_2_8_16_1 doi: 10.1007/s10822-011-9483-4 – ident: e_1_2_8_42_1 doi: 10.1016/0021-9991(77)90098-5 – ident: e_1_2_8_32_1 doi: 10.1021/ct4008603 – ident: e_1_2_8_27_1 doi: 10.1126/science.286.5438.295 – ident: e_1_2_8_13_1 doi: 10.1111/j.1365-2958.2007.05761.x – ident: e_1_2_8_19_1 doi: 10.1007/s12539-017-0257-0 – ident: e_1_2_8_25_1 doi: 10.1126/science.3041592 – volume: 17 start-page: 1042 year: 2009 ident: e_1_2_8_29_1 publication-title: Struct. Lond. Engl. 1993 – ident: e_1_2_8_7_1 doi: 10.1016/S0065-2911(08)60016-8 – ident: e_1_2_8_20_1 doi: 10.1021/bi200006t – ident: e_1_2_8_5_1 doi: 10.1016/S1097-2765(00)80250-6 – ident: e_1_2_8_14_1 doi: 10.1128/JB.187.22.7596-7606.2005 – ident: e_1_2_8_43_1 doi: 10.1063/1.470117 – ident: e_1_2_8_18_1 doi: 10.1038/ncomms12581 – ident: e_1_2_8_44_1 – ident: e_1_2_8_1_1 – ident: e_1_2_8_15_1 doi: 10.1016/j.str.2009.04.012 – ident: e_1_2_8_17_1 doi: 10.1074/jbc.M113.511436 – ident: e_1_2_8_22_1 doi: 10.1021/bi401308j – ident: e_1_2_8_8_1 doi: 10.1046/j.1365-2958.1998.01026.x – ident: e_1_2_8_30_1 doi: 10.1016/j.bpj.2019.08.015 – ident: e_1_2_8_3_1 doi: 10.1038/166782a0 – ident: e_1_2_8_33_1 doi: 10.1146/annurev.biochem.66.1.717 – ident: e_1_2_8_46_1 – ident: e_1_2_8_41_1 doi: 10.1063/1.448118 – ident: e_1_2_8_45_1 doi: 10.1016/0021-9991(77)90121-8 – ident: e_1_2_8_12_1 doi: 10.1139/o03-076 – ident: e_1_2_8_10_1 doi: 10.1016/S0163-7827(02)00067-X – ident: e_1_2_8_21_1 doi: 10.1021/jp403067m – ident: e_1_2_8_6_1 doi: 10.1073/pnas.0608654104 – ident: e_1_2_8_23_1 doi: 10.1093/emboj/17.5.1183 – ident: e_1_2_8_35_1 doi: 10.1016/j.jmgm.2005.12.005 – ident: e_1_2_8_24_1 doi: 10.1038/228726a0 – ident: e_1_2_8_26_1 doi: 10.1017/S0033583500003826 – ident: e_1_2_8_34_1 doi: 10.1002/jcc.20035 – ident: e_1_2_8_36_1 doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P – ident: e_1_2_8_28_1 doi: 10.1110/ps.03259908 – ident: e_1_2_8_37_1 doi: 10.1002/jcc.10128 – ident: e_1_2_8_4_1 doi: 10.1016/S0163-7827(98)00008-3 – ident: e_1_2_8_11_1 doi: 10.1042/bj20011628 – ident: e_1_2_8_40_1 doi: 10.1063/1.445869 |
SSID | ssj0000605273 |
Score | 2.3597984 |
Snippet | β‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival... β ‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the... β-ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202300568 |
SubjectTerms | 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - chemistry 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - metabolism allosterism Beta-ketoacyl ACP synthase I (KasA) enzyme cooperativity Fatty Acids - chemistry Fatty Acids - metabolism Isoenzymes molecular dynamics Molecular Dynamics Simulation Mycobacterium tuberculosis - enzymology Substrate Specificity Thermodynamics |
Title | Mechanistic Insight into how β‐Ketoacyl ACP Synthase I (KasA) Recognizes the Fatty Acid Chain Length of its Substrate |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcplu.202300568 https://www.ncbi.nlm.nih.gov/pubmed/37983623 https://www.proquest.com/docview/2892269298 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2lqQR9QdxJgWqRqABZLvb6_phaSVtSqqg0at-s9XpNIrV2RGxQ-ll8CN_EjG9xRBCXFyd2rLW052T2zO74LCGvPSuMDceLVBhNhWq60lO5K0JV5zICecRBxRZVvmf28cT8cGVddTqjVtVSnoUH4nbjeyX_gypcA1zxLdl_QLZpFC7Ad8AXjoAwHP8K448S39strJZx1R_zbPR_SJVp-k3Z9wf7h0wdySzlYglA-GPl0zLJpjBuKSeoLEd80cdZgfOyiOgW3R6ANUOegTLvi1mEi_GzRDmVyedsWnrTLopQU1jatnUt-g6Mr_MFfmLTl3KWTGW5U_MRBv9k2ZpzqKp_LmuBX806MLOpUIVBo4hOEOmYCvLObofScjegijJOKy5K3KUdbUfdjWG7tIEV8-v8YOON0O3zmwJE4JULY66xGr6aosL6py2yzSBnYF2yfTg4G583U24apG6g1mrrTo29X3_iDrlTt7GuUn5JPdYzmUKKXNwn96ocgvZLQjwgHZk8JHf9euu-R-Rrixi0IgZFYlAgBv3xvSEFBVLQmhT0hL5FSryjK0JQIAQtCEGRELQgBC0JQdOYAiFoQ4jHZDIcXPjHarXBhioMBv8laceWLgzJPYProS0tGYdYtmhFpnQgFeZaCOE91jVuOKhjhB6bTiSl0A0rCh1mPCHdJE3kM0Jj5oDw5HaMfkOmG3tcWI4Wuyxk0uM675E3dYcG89JHJSgds1mAKAQNCj3yqu7vALoN1694ItN8ETDXg2QB9Dzc87QEommrBq5HWIHMHx4S-OPTSXO2-9vmnpOdFftfkG72JZcvQYVm4R7ZcodHexXHfgLg_oIx |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Insight+into+how+%CE%B2-Ketoacyl+ACP+Synthase+I+%28KasA%29+Recognizes+the+Fatty+Acid+Chain+Length+of+its+Substrate&rft.jtitle=ChemPlusChem+%28Weinheim%2C+Germany%29&rft.au=Lee%2C+Wook&rft.date=2024-07-01&rft.eissn=2192-6506&rft.volume=89&rft.issue=7&rft.spage=e202300568&rft_id=info:doi/10.1002%2Fcplu.202300568&rft_id=info%3Apmid%2F37983623&rft.externalDocID=37983623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6506&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6506&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6506&client=summon |