Mechanistic Insight into how β‐Ketoacyl ACP Synthase I (KasA) Recognizes the Fatty Acid Chain Length of its Substrate

β‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carb...

Full description

Saved in:
Bibliographic Details
Published inChemPlusChem (Weinheim, Germany) Vol. 89; no. 7; pp. e202300568 - n/a
Main Author Lee, Wook
Format Journal Article
LanguageEnglish
Published Germany 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract β‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested. This study demonstrates the molecular details of how KasA can selectively elongate only the substrate longer than a certain length and reveals that this substrate specificity is closely associated with its cooperativity.
AbstractList β ‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis , a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested.
β-ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested.β-ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested.
β‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested. This study demonstrates the molecular details of how KasA can selectively elongate only the substrate longer than a certain length and reveals that this substrate specificity is closely associated with its cooperativity.
β-ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested.
Author Lee, Wook
Author_xml – sequence: 1
  givenname: Wook
  orcidid: 0000-0003-4646-7012
  surname: Lee
  fullname: Lee, Wook
  email: wlee@kangwon.ac.kr
  organization: Kangwon National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37983623$$D View this record in MEDLINE/PubMed
BookMark eNqFkb9O3EAQh1cRUSAX2pRoSijusn-89ro8WZCcuCgohNpar8fnRb7dw7sWMRWPkGfJg-Qh8iQ5dATomGam-H5T_L73ZM95h4R8ZHTGKOWfzKYbZpxyQalM1RtywFnOp6mk6d6Le58chnBNt5NSyTPxjuyLLFci5eKA_PyKptXOhmgNLFywqzaCddFD62_hz--_97_OMXptxg7mxQVcji62OiAs4Phch_kJfEfjV87eYYDYIpzpGEeYG1tD0WrrYIluFVvwDdgY4HKoQux1xA_kbaO7gIePe0Kuzk5_FF-my2-fF8V8OTWCKzXFtJHMCNS50KxKUWJTKSkTWSeYJXmuaaUUbRjVImNcJYY1SVYjGiZkXWVcTMjx7u-m9zcDhliubTDYddqhH0LJVc55mvNtIRNy9IgO1RrrctPbte7H8n9bW2C2A0zvQ-ixeUIYLR-MlA9Gyicj20C-C9zaDsdX6LK4WF49Z_8BzAePwA
Cites_doi 10.1146/annurev.med.60.053107.103955
10.1093/bioinformatics/btab538
10.1021/acs.jctc.9b00591
10.1021/acs.jctc.5b00255
10.1074/jbc.M000569200
10.1007/s10822-011-9483-4
10.1016/0021-9991(77)90098-5
10.1021/ct4008603
10.1126/science.286.5438.295
10.1111/j.1365-2958.2007.05761.x
10.1007/s12539-017-0257-0
10.1126/science.3041592
10.1016/S0065-2911(08)60016-8
10.1021/bi200006t
10.1016/S1097-2765(00)80250-6
10.1128/JB.187.22.7596-7606.2005
10.1063/1.470117
10.1038/ncomms12581
10.1016/j.str.2009.04.012
10.1074/jbc.M113.511436
10.1021/bi401308j
10.1046/j.1365-2958.1998.01026.x
10.1016/j.bpj.2019.08.015
10.1038/166782a0
10.1146/annurev.biochem.66.1.717
10.1063/1.448118
10.1016/0021-9991(77)90121-8
10.1139/o03-076
10.1016/S0163-7827(02)00067-X
10.1021/jp403067m
10.1073/pnas.0608654104
10.1093/emboj/17.5.1183
10.1016/j.jmgm.2005.12.005
10.1038/228726a0
10.1017/S0033583500003826
10.1002/jcc.20035
10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
10.1110/ps.03259908
10.1002/jcc.10128
10.1016/S0163-7827(98)00008-3
10.1042/bj20011628
10.1063/1.445869
ContentType Journal Article
Copyright 2023 Wiley-VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley-VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/cplu.202300568
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2192-6506
EndPage n/a
ExternalDocumentID 37983623
10_1002_cplu_202300568
CPLU202300568
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
– fundername: Korea government (MSIT, Ministry of Science and ICT)
  funderid: 2021R1A2C1004344
– fundername: Korea government (MSIT, Ministry of Science and ICT)
  grantid: 2021R1A2C1004344
GroupedDBID 05W
0R~
1OC
31~
33P
3V.
50Y
77Q
8-0
8-1
88I
8AO
8FE
8FG
8FH
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJCF
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIHN
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEAQA
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CZ9
D1I
DCZOG
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
ESX
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HZ~
KB.
KC.
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MXFUL
MXSTM
MY~
O9-
P2W
PCBAR
PDBOC
PQQKQ
PROAC
R.K
ROL
RX1
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7X8
ID FETCH-LOGICAL-c3288-e6f51c3ea93a1b6e5efb85545d4e7499a0b880f10a371284c1f47deec135db723
ISSN 2192-6506
IngestDate Fri Jul 11 11:55:26 EDT 2025
Mon Jul 21 05:36:49 EDT 2025
Tue Jul 01 03:12:37 EDT 2025
Wed Jan 22 17:17:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Beta-ketoacyl ACP synthase I (KasA)
enzyme cooperativity
molecular dynamics
substrate specificity
allosterism
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3288-e6f51c3ea93a1b6e5efb85545d4e7499a0b880f10a371284c1f47deec135db723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4646-7012
PMID 37983623
PQID 2892269298
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2892269298
pubmed_primary_37983623
crossref_primary_10_1002_cplu_202300568
wiley_primary_10_1002_cplu_202300568_CPLU202300568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-Jul
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle ChemPlusChem (Weinheim, Germany)
PublicationTitleAlternate Chempluschem
PublicationYear 2024
References 2007; 104
1998; 29
1989; 22
1984; 81
2004; 82
1997; 66
2000; 5
2019; 11
2009; 60
2004; 25
2000; 21
2015; 11
2008; 17
2013; 288
1999; 286
2020; 16
2000; 275
1988; 241
1977; 23
1970; 228
1983; 79
1998; 37
2021; 38
1998; 39
2016; 7
1998; 17
2005; 187
2002; 23
2002; 364
2006; 25
2011; 50
2013; 117
1950; 166
1995; 103
2019; 117
2011; 25
2007; 64
2003; 42
2014; 10
2009; 17
2014; 53
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
Sol A. (e_1_2_8_29_1) 2009; 17
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 7
  start-page: 12581
  year: 2016
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3696
  year: 2015
  end-page: 3713
  publication-title: J. Chem. Theory Comput.
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  publication-title: J. Comput. Phys.
– volume: 104
  start-page: 5157
  year: 2007
  end-page: 5162
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 241
  start-page: 669
  year: 1988
  end-page: 674
  publication-title: Science
– volume: 25
  start-page: 1053
  year: 2011
  end-page: 1069
  publication-title: J. Comput.-Aided Mol. Des.
– volume: 187
  start-page: 7596
  year: 2005
  end-page: 7606
  publication-title: J. Bacteriol.
– volume: 17
  start-page: 1295
  year: 2008
  end-page: 1307
  publication-title: Protein Sci. Publ. Protein Soc.
– volume: 23
  start-page: 187
  year: 1977
  end-page: 199
  publication-title: J. Comput. Phys.
– volume: 288
  start-page: 34190
  year: 2013
  end-page: 34204
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 717
  year: 2000
  end-page: 727
  publication-title: Mol. Cell
– volume: 364
  start-page: 423
  year: 2002
  end-page: 430
  publication-title: Biochem. J.
– volume: 117
  start-page: 8095
  year: 2013
  end-page: 8104
  publication-title: J. Phys. Chem. B
– volume: 17
  start-page: 1042
  year: 2009
  end-page: 1050
  publication-title: Struct. Lond. Engl. 1993
– volume: 79
  start-page: 926
  year: 1983
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 1183
  year: 1998
  end-page: 1191
  publication-title: EMBO J.
– volume: 117
  start-page: 1074
  year: 2019
  end-page: 1084
  publication-title: Biophys. J.
– volume: 66
  start-page: 717
  year: 1997
  end-page: 749
  publication-title: Annu. Rev. Biochem.
– volume: 53
  start-page: 919
  year: 2014
  end-page: 931
  publication-title: Biochemistry
– volume: 39
  start-page: 131
  year: 1998
  end-page: 203
  publication-title: Adv. Microb. Physiol.
– volume: 38
  start-page: 273
  year: 2021
  end-page: 274
  publication-title: Bioinforma. Oxf. Engl.
– volume: 22
  start-page: 139
  year: 1989
  end-page: 237
  publication-title: Q. Rev. Biophys.
– volume: 60
  start-page: 307
  year: 2009
  end-page: 320
  publication-title: Annu. Rev. Med.
– volume: 25
  start-page: 247
  year: 2006
  end-page: 260
  publication-title: J. Mol. Graphics Modell.
– volume: 64
  start-page: 1442
  year: 2007
  end-page: 1454
  publication-title: Mol. Microbiol.
– volume: 25
  start-page: 1157
  year: 2004
  end-page: 1174
  publication-title: J. Comput. Chem.
– volume: 166
  start-page: 782
  year: 1950
  end-page: 783
  publication-title: Nature
– volume: 286
  start-page: 295
  year: 1999
  end-page: 299
  publication-title: Science
– volume: 29
  start-page: 1449
  year: 1998
  end-page: 1458
  publication-title: Mol. Microbiol.
– volume: 10
  start-page: 511
  year: 2014
  end-page: 517
  publication-title: J. Chem. Theory Comput.
– volume: 37
  start-page: 143
  year: 1998
  end-page: 179
  publication-title: Prog. Lipid Res.
– volume: 50
  start-page: 5743
  year: 2011
  end-page: 5756
  publication-title: Biochemistry
– volume: 17
  start-page: 1004
  year: 2009
  end-page: 1013
  publication-title: Structure
– volume: 21
  start-page: 132
  year: 2000
  end-page: 146
  publication-title: J. Comput. Chem.
– volume: 42
  start-page: 289
  year: 2003
  end-page: 317
  publication-title: Prog. Lipid Res.
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  publication-title: J. Chem. Phys.
– volume: 82
  start-page: 145
  year: 2004
  end-page: 155
  publication-title: Biochem. Cell Biol.
– volume: 23
  start-page: 1623
  year: 2002
  end-page: 1641
  publication-title: J. Comput. Chem.
– volume: 228
  start-page: 726
  year: 1970
  end-page: 734
  publication-title: Nature
– volume: 275
  start-page: 16857
  year: 2000
  end-page: 16864
  publication-title: J. Biol. Chem.
– volume: 103
  start-page: 8577
  year: 1995
  end-page: 8593
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 215
  year: 2019
  end-page: 225
  publication-title: Interdiscip. Sci. Comput. Life Sci.
– volume: 16
  start-page: 528
  year: 2020
  end-page: 552
  publication-title: J. Chem. Theory Comput.
– ident: e_1_2_8_2_1
  doi: 10.1146/annurev.med.60.053107.103955
– ident: e_1_2_8_31_1
  doi: 10.1093/bioinformatics/btab538
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.jctc.9b00591
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.jctc.5b00255
– ident: e_1_2_8_9_1
  doi: 10.1074/jbc.M000569200
– ident: e_1_2_8_16_1
  doi: 10.1007/s10822-011-9483-4
– ident: e_1_2_8_42_1
  doi: 10.1016/0021-9991(77)90098-5
– ident: e_1_2_8_32_1
  doi: 10.1021/ct4008603
– ident: e_1_2_8_27_1
  doi: 10.1126/science.286.5438.295
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1365-2958.2007.05761.x
– ident: e_1_2_8_19_1
  doi: 10.1007/s12539-017-0257-0
– ident: e_1_2_8_25_1
  doi: 10.1126/science.3041592
– volume: 17
  start-page: 1042
  year: 2009
  ident: e_1_2_8_29_1
  publication-title: Struct. Lond. Engl. 1993
– ident: e_1_2_8_7_1
  doi: 10.1016/S0065-2911(08)60016-8
– ident: e_1_2_8_20_1
  doi: 10.1021/bi200006t
– ident: e_1_2_8_5_1
  doi: 10.1016/S1097-2765(00)80250-6
– ident: e_1_2_8_14_1
  doi: 10.1128/JB.187.22.7596-7606.2005
– ident: e_1_2_8_43_1
  doi: 10.1063/1.470117
– ident: e_1_2_8_18_1
  doi: 10.1038/ncomms12581
– ident: e_1_2_8_44_1
– ident: e_1_2_8_1_1
– ident: e_1_2_8_15_1
  doi: 10.1016/j.str.2009.04.012
– ident: e_1_2_8_17_1
  doi: 10.1074/jbc.M113.511436
– ident: e_1_2_8_22_1
  doi: 10.1021/bi401308j
– ident: e_1_2_8_8_1
  doi: 10.1046/j.1365-2958.1998.01026.x
– ident: e_1_2_8_30_1
  doi: 10.1016/j.bpj.2019.08.015
– ident: e_1_2_8_3_1
  doi: 10.1038/166782a0
– ident: e_1_2_8_33_1
  doi: 10.1146/annurev.biochem.66.1.717
– ident: e_1_2_8_46_1
– ident: e_1_2_8_41_1
  doi: 10.1063/1.448118
– ident: e_1_2_8_45_1
  doi: 10.1016/0021-9991(77)90121-8
– ident: e_1_2_8_12_1
  doi: 10.1139/o03-076
– ident: e_1_2_8_10_1
  doi: 10.1016/S0163-7827(02)00067-X
– ident: e_1_2_8_21_1
  doi: 10.1021/jp403067m
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.0608654104
– ident: e_1_2_8_23_1
  doi: 10.1093/emboj/17.5.1183
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jmgm.2005.12.005
– ident: e_1_2_8_24_1
  doi: 10.1038/228726a0
– ident: e_1_2_8_26_1
  doi: 10.1017/S0033583500003826
– ident: e_1_2_8_34_1
  doi: 10.1002/jcc.20035
– ident: e_1_2_8_36_1
  doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
– ident: e_1_2_8_28_1
  doi: 10.1110/ps.03259908
– ident: e_1_2_8_37_1
  doi: 10.1002/jcc.10128
– ident: e_1_2_8_4_1
  doi: 10.1016/S0163-7827(98)00008-3
– ident: e_1_2_8_11_1
  doi: 10.1042/bj20011628
– ident: e_1_2_8_40_1
  doi: 10.1063/1.445869
SSID ssj0000605273
Score 2.3597984
Snippet β‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival...
β ‐ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the...
β-ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202300568
SubjectTerms 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - chemistry
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - metabolism
allosterism
Beta-ketoacyl ACP synthase I (KasA)
enzyme cooperativity
Fatty Acids - chemistry
Fatty Acids - metabolism
Isoenzymes
molecular dynamics
Molecular Dynamics Simulation
Mycobacterium tuberculosis - enzymology
Substrate Specificity
Thermodynamics
Title Mechanistic Insight into how β‐Ketoacyl ACP Synthase I (KasA) Recognizes the Fatty Acid Chain Length of its Substrate
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcplu.202300568
https://www.ncbi.nlm.nih.gov/pubmed/37983623
https://www.proquest.com/docview/2892269298
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2lqQR9QdxJgWqRqABZLvb6_phaSVtSqqg0at-s9XpNIrV2RGxQ-ll8CN_EjG9xRBCXFyd2rLW052T2zO74LCGvPSuMDceLVBhNhWq60lO5K0JV5zICecRBxRZVvmf28cT8cGVddTqjVtVSnoUH4nbjeyX_gypcA1zxLdl_QLZpFC7Ad8AXjoAwHP8K448S39strJZx1R_zbPR_SJVp-k3Z9wf7h0wdySzlYglA-GPl0zLJpjBuKSeoLEd80cdZgfOyiOgW3R6ANUOegTLvi1mEi_GzRDmVyedsWnrTLopQU1jatnUt-g6Mr_MFfmLTl3KWTGW5U_MRBv9k2ZpzqKp_LmuBX806MLOpUIVBo4hOEOmYCvLObofScjegijJOKy5K3KUdbUfdjWG7tIEV8-v8YOON0O3zmwJE4JULY66xGr6aosL6py2yzSBnYF2yfTg4G583U24apG6g1mrrTo29X3_iDrlTt7GuUn5JPdYzmUKKXNwn96ocgvZLQjwgHZk8JHf9euu-R-Rrixi0IgZFYlAgBv3xvSEFBVLQmhT0hL5FSryjK0JQIAQtCEGRELQgBC0JQdOYAiFoQ4jHZDIcXPjHarXBhioMBv8laceWLgzJPYProS0tGYdYtmhFpnQgFeZaCOE91jVuOKhjhB6bTiSl0A0rCh1mPCHdJE3kM0Jj5oDw5HaMfkOmG3tcWI4Wuyxk0uM675E3dYcG89JHJSgds1mAKAQNCj3yqu7vALoN1694ItN8ETDXg2QB9Dzc87QEommrBq5HWIHMHx4S-OPTSXO2-9vmnpOdFftfkG72JZcvQYVm4R7ZcodHexXHfgLg_oIx
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Insight+into+how+%CE%B2-Ketoacyl+ACP+Synthase+I+%28KasA%29+Recognizes+the+Fatty+Acid+Chain+Length+of+its+Substrate&rft.jtitle=ChemPlusChem+%28Weinheim%2C+Germany%29&rft.au=Lee%2C+Wook&rft.date=2024-07-01&rft.eissn=2192-6506&rft.volume=89&rft.issue=7&rft.spage=e202300568&rft_id=info:doi/10.1002%2Fcplu.202300568&rft_id=info%3Apmid%2F37983623&rft.externalDocID=37983623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6506&client=summon