Design and experimental analysis of a dual‐cavity high‐concentration adaptive passive micro direct methanol fuel cell
Summary In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is investigated experimentally under different supply concentrations of methanol solution to detect the optimal working conditions. The advantag...
Saved in:
Published in | International journal of energy research Vol. 45; no. 4; pp. 5359 - 5368 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Inc
25.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is investigated experimentally under different supply concentrations of methanol solution to detect the optimal working conditions. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved. The effects of stainless steel metal felt, plastic porous barrier layer, hydrophilic and hydrophobic filter membrane on cell performance are experimentally investigated.
A high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved. |
---|---|
AbstractList | In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is investigated experimentally under different supply concentrations of methanol solution to detect the optimal working conditions. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved. The effects of stainless steel metal felt, plastic porous barrier layer, hydrophilic and hydrophobic filter membrane on cell performance are experimentally investigated. Summary In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is investigated experimentally under different supply concentrations of methanol solution to detect the optimal working conditions. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved. The effects of stainless steel metal felt, plastic porous barrier layer, hydrophilic and hydrophobic filter membrane on cell performance are experimentally investigated. A high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved. |
Author | Zuo, Kaiyuan Yuan, Zhenyu |
Author_xml | – sequence: 1 givenname: Kaiyuan orcidid: 0000-0002-1224-8623 surname: Zuo fullname: Zuo, Kaiyuan organization: Northeastern University – sequence: 2 givenname: Zhenyu orcidid: 0000-0003-2988-2214 surname: Yuan fullname: Yuan, Zhenyu email: yuanzhenyu@ise.neu.edu.cn organization: Northeastern University |
BookMark | eNp1kM1KAzEQx4Mo2FbxFQIePMjWZL_3KLV-QEEQhd6WbDJpU9LNmmyre_MRfEafxGzrSfQ0zOQ3fya_ITqsTQ0InVEypoSEV2DHKU3yAzSgpCgCSuP5IRqQKI2CgmTzYzR0bkWIf6PZAHU34NSixqwWGN4bsGoNdcu0HzDdOeWwkZhhsWH66-OTs61qO7xUi2XfmZp72LJWGZ8gWNOqLeCGOdfXteLWYKEs8BavoV2y2mgsN6AxB61P0JFk2sHpTx2hl9vp8-Q-mD3ePUyuZwGPwjwPeJYArTIZZiKDCAqShBJYxFPwQy6lqHJeiFgkMUmTiAkOcZ7TqgoljaPcr4zQ-T63seZ1A64tV2Zj_e9cGSaE5mmRZJGnLvaUv9k5C7JsvApmu5KSsvdagi17r54MfpFctTsF3oTSf_CXe_5Naej-iy2nTzv6G-AMjq4 |
CitedBy_id | crossref_primary_10_1002_er_8430 crossref_primary_10_1016_j_cej_2023_143663 crossref_primary_10_3390_en14206608 crossref_primary_10_3390_en15103787 crossref_primary_10_1021_acs_energyfuels_3c05146 crossref_primary_10_3390_mi12010072 |
Cites_doi | 10.1016/j.energy.2016.07.074 10.1002/fuce.201600221 10.1016/j.apenergy.2010.11.012 10.1016/j.applthermaleng.2017.07.186 10.1016/j.jpowsour.2019.01.088 10.1016/j.rser.2015.11.039 10.1016/j.ijhydene.2013.05.118 10.1016/j.jpowsour.2006.07.012 10.1016/j.jpowsour.2012.10.061 10.1016/j.ijhydene.2012.06.094 10.1016/j.apenergy.2014.10.044 10.1016/j.energy.2017.03.161 10.1016/j.jpowsour.2010.08.087 10.1016/j.jpowsour.2015.02.132 10.1016/j.jpowsour.2019.226948 10.1016/j.energy.2010.11.034 10.1016/S0378-7753(02)00339-7 10.1016/j.ijhydene.2016.05.116 10.1016/j.renene.2018.07.055 10.1016/j.ijheatmasstransfer.2010.11.009 10.1016/j.electacta.2014.03.183 10.1016/j.ijhydene.2009.12.085 10.1016/j.jpowsour.2006.10.047 10.1016/j.ijhydene.2016.11.022 10.1016/j.jpowsour.2012.12.009 10.1016/j.ijhydene.2016.09.087 10.1088/0960-1317/20/4/045014 10.1016/j.ijhydene.2016.03.094 10.1016/j.energy.2018.02.132 10.1126/sciadv.1700580 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.6158 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
EndPage | 5368 |
ExternalDocumentID | 10_1002_er_6158 ER6158 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities in China funderid: N170407005; N180102032; N170405001; N180408018 – fundername: National Natural Science Foundation of China funderid: 61973058; 61833006; 61673367 – fundername: Liaoning Province Natural Science Foundation funderid: 20170540324; 20180550483 – fundername: CAST‐BISEE Innovation Foundation funderid: CAST‐BISEE2019‐007 – fundername: Liao Ning Revitalization Talents Program funderid: XLYC1807198 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM F00 G-S G.N GNP GODZA H.T H.X HHY HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS CITATION 7SP 7ST 7TB 7TN 8FD C1K EBS F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-c3288-c75e1b7f27d7e3e9052fea3c6eb7fcffdb8c9d4d540653adce4881bb2f14387e3 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Wed Aug 13 11:33:55 EDT 2025 Tue Jul 01 01:41:33 EDT 2025 Thu Apr 24 22:49:53 EDT 2025 Wed Jan 22 16:29:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3288-c75e1b7f27d7e3e9052fea3c6eb7fcffdb8c9d4d540653adce4881bb2f14387e3 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Numbers: 61973058, 61833006, 61673367; CAST‐BISEE Innovation Foundation, Grant/Award Number: CAST‐BISEE2019‐007; Liaoning Province Natural Science Foundation, Grant/Award Numbers: 20170540324, 20180550483; Liao Ning Revitalization Talents Program, Grant/Award Number: XLYC1807198; Fundamental Research Funds for the Central Universities in China, Grant/Award Numbers: N170407005, N180102032, N170405001, N180408018 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1224-8623 0000-0003-2988-2214 |
PQID | 2501869573 |
PQPubID | 996365 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2501869573 crossref_primary_10_1002_er_6158 crossref_citationtrail_10_1002_er_6158 wiley_primary_10_1002_er_6158_ER6158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 25 March 2021 |
PublicationDateYYYYMMDD | 2021-03-25 |
PublicationDate_xml | – month: 03 year: 2021 text: 25 March 2021 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 284 2017; 42 2017; 3 2010; 35 2013; 226 2002; 111 2007; 164 2011; 54 2011; 36 2012; 37 2011; 196 2014; 133 2016; 56 2010; 20 2013; 38 2018; 150 2015; 138 2017; 17 2016; 113 2006; 162 2016; 41 2011; 88 2019; 416 2013; 230 2019; 437 2017; 126 2019; 131 2017; 128 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 42 start-page: 2680 year: 2017 end-page: 2690 article-title: Effect of cathode flow field configuration on the performance of flowing electrolytedirect methanol fuel cell publication-title: Int J Hydrogen Energy. – volume: 41 start-page: 16247 year: 2016 end-page: 16253 article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell publication-title: Int J Hydrogen Energy. – volume: 42 start-page: 9252 year: 2017 end-page: 9261 article-title: Applications of graphene nano‐sheets as anode diffusion layers in passive direct methanol fuel cells (DMFC) publication-title: Int J Hydrogen Energy – volume: 3 year: 2017 article-title: A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol publication-title: Sci Adv – volume: 138 start-page: 331 year: 2015 end-page: 336 article-title: A crack‐free and super‐hydrophobic cathode micro‐porous layer for direct methanol fuel cells publication-title: Appl Energy – volume: 38 start-page: 9873 year: 2013 end-page: 9885 article-title: A CFD model with semi‐empirical electrochemical relationships to study the influence of geometric and operating parameters on DMFC performance publication-title: Int J Hydrogen Energy. – volume: 126 start-page: 290 year: 2017 end-page: 295 article-title: Transport of highly concentrated fuel in direct methanol fuel cells publication-title: Appl Therm Eng. – volume: 133 start-page: 8 year: 2014 end-page: 15 article-title: Effects of design parameters on the performance of passive direct methanol fuel cells fed with concentrated fuel publication-title: Electrochimica Acta – volume: 230 start-page: 303 year: 2013 end-page: 320 article-title: Review and advances of direct methanol fuel cells: part II: modeling and numerical simulation publication-title: J Power Sources. – volume: 284 start-page: 77 year: 2015 end-page: 85 article-title: The influence of humidification and temperature differences between inlet gases on water transport through the membrane of a proton exchange membrane fuel cell publication-title: J Power Sources. – volume: 164 start-page: 189 year: 2007 end-page: 195 article-title: Modeling water transport in liquid feed direct methanol fuel cells publication-title: J Power Sources. – volume: 42 start-page: 1736 year: 2017 end-page: 1750 article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions publication-title: Int J Hydrogen Energy. – volume: 162 start-page: 114 year: 2006 end-page: 123 article-title: DMFC employing a porous plate for an efficient operation at high methanol concentrations publication-title: J Power Sources – volume: 35 start-page: 8225 year: 2010 end-page: 8233 article-title: Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst publication-title: Int J Hydrogen Energy. – volume: 416 start-page: 9 year: 2019 end-page: 20 article-title: The whole process, bubble dynamic analysis in two‐phase transport of the passive miniature direct methanol fuel cells publication-title: J Power Sources. – volume: 196 start-page: 1191 year: 2011 end-page: 1204 article-title: Exergy analysis of a passive direct methanol fuel cell publication-title: J Power Sources. – volume: 20 year: 2010 article-title: A microfluidic‐structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels publication-title: J Micromech Microeng – volume: 226 start-page: 223 year: 2013 end-page: 240 article-title: Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions publication-title: Journal of Power Sources. – volume: 111 start-page: 268 year: 2002 end-page: 282 article-title: Heat and power management of a direct‐methanol‐fuel‐cell (DMFC) system publication-title: J Power Sources. – volume: 131 start-page: 563 year: 2019 end-page: 584 article-title: Comparative analysis of liquid versus vapor‐feed passive direct methanol fuel cells publication-title: Renew Energy. – volume: 437 start-page: 22694 year: 2019 end-page: 22698 article-title: Commercial platinum group metal‐free cathodic electrocatalysts for highly performed direct methanol fuel cell applications publication-title: J Power Sources. – volume: 88 start-page: 1681 year: 2011 end-page: 1689 article-title: Passive direct methanol fuel cells for portable electronic devices publication-title: Appl Energy. – volume: 17 start-page: 315 year: 2017 end-page: 320 article-title: A neat methanol fed passive DMFC with a new anode structure publication-title: Fuel Cells. – volume: 56 start-page: 51 year: 2016 end-page: 74 article-title: Vapor feed direct methanol fuel cells (DMFCs): a review publication-title: Renew Sustain Energy Rev – volume: 128 start-page: 50 year: 2017 end-page: 61 article-title: Structural design and analysis of a passive DMFC supplied with concentrated methanol solution publication-title: Energy. – volume: 113 start-page: 1265 year: 2016 end-page: 1287 article-title: On the effect of operating conditions in liquid‐feed direct methanol fuel cells: a multiphysics modeling approach publication-title: Energy. – volume: 150 start-page: 28 year: 2018 end-page: 37 article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell publication-title: Energy. – volume: 54 start-page: 1132 year: 2011 end-page: 1143 article-title: Effect of the cathode gas diffusion layer on the water transport behavior and the performance of passive direct methanol fuel cells operating with neat methanol publication-title: Int J Heat Mass Trans – volume: 36 start-page: 1155 year: 2011 end-page: 1160 article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC publication-title: Energy. – volume: 37 start-page: 13510 year: 2012 end-page: 13521 article-title: Toward using porous metal‐fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell publication-title: Int J Hydrogen Energy. – ident: e_1_2_8_4_1 doi: 10.1016/j.energy.2016.07.074 – ident: e_1_2_8_24_1 doi: 10.1002/fuce.201600221 – ident: e_1_2_8_9_1 doi: 10.1016/j.apenergy.2010.11.012 – ident: e_1_2_8_29_1 doi: 10.1016/j.applthermaleng.2017.07.186 – ident: e_1_2_8_21_1 doi: 10.1016/j.jpowsour.2019.01.088 – ident: e_1_2_8_22_1 doi: 10.1016/j.rser.2015.11.039 – ident: e_1_2_8_6_1 doi: 10.1016/j.ijhydene.2013.05.118 – ident: e_1_2_8_30_1 doi: 10.1016/j.jpowsour.2006.07.012 – ident: e_1_2_8_10_1 doi: 10.1016/j.jpowsour.2012.10.061 – ident: e_1_2_8_17_1 doi: 10.1016/j.ijhydene.2012.06.094 – ident: e_1_2_8_27_1 doi: 10.1016/j.apenergy.2014.10.044 – ident: e_1_2_8_23_1 doi: 10.1016/j.energy.2017.03.161 – ident: e_1_2_8_8_1 doi: 10.1016/j.jpowsour.2010.08.087 – ident: e_1_2_8_11_1 doi: 10.1016/j.jpowsour.2015.02.132 – ident: e_1_2_8_15_1 doi: 10.1016/j.jpowsour.2019.226948 – ident: e_1_2_8_12_1 doi: 10.1016/j.energy.2010.11.034 – ident: e_1_2_8_5_1 doi: 10.1016/S0378-7753(02)00339-7 – ident: e_1_2_8_3_1 doi: 10.1016/j.ijhydene.2016.05.116 – ident: e_1_2_8_13_1 doi: 10.1016/j.renene.2018.07.055 – ident: e_1_2_8_25_1 doi: 10.1016/j.ijheatmasstransfer.2010.11.009 – ident: e_1_2_8_31_1 doi: 10.1016/j.electacta.2014.03.183 – ident: e_1_2_8_16_1 doi: 10.1016/j.ijhydene.2009.12.085 – ident: e_1_2_8_20_1 doi: 10.1016/j.jpowsour.2006.10.047 – ident: e_1_2_8_18_1 doi: 10.1016/j.ijhydene.2016.11.022 – ident: e_1_2_8_7_1 doi: 10.1016/j.jpowsour.2012.12.009 – ident: e_1_2_8_2_1 doi: 10.1016/j.ijhydene.2016.09.087 – ident: e_1_2_8_14_1 doi: 10.1088/0960-1317/20/4/045014 – ident: e_1_2_8_26_1 doi: 10.1016/j.ijhydene.2016.03.094 – ident: e_1_2_8_19_1 doi: 10.1016/j.energy.2018.02.132 – ident: e_1_2_8_28_1 doi: 10.1126/sciadv.1700580 |
SSID | ssj0009917 |
Score | 2.3261986 |
Snippet | Summary
In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is... In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5359 |
SubjectTerms | Barrier layers dual‐cavity Flux density Fuel cells Fuel technology high concentration Hydrophobicity Metals Methanol passive direct methanol fuel cell Stainless steel Stainless steels Working conditions |
Title | Design and experimental analysis of a dual‐cavity high‐concentration adaptive passive micro direct methanol fuel cell |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.6158 https://www.proquest.com/docview/2501869573 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7Ekx58i9Uqeyje-shuN2mOoi1F0EOxULyEfV6saenjoCd_gr_RX-JMNmmjIoinJcsOLJmZnS_ZmW8IqclQmLYJkArRWmxh5uqxAls2WoGB6Xags5Ysd_dhf9i-HYlRqdWX54dY_XBDz8jOa3RwqebNNWmonTUgGmOZL2ZqIRwarImjAPVExS0lfP6NfLksSjZzua9xaA0uyxA1izG9XfJY7M6nljw1lgvV0K_fiBv_tf09spMjT3rlTWWfbNj0gGyX-AgPyctNls9BZWpomfofJjx1CZ04KimWb328vWuJfScoEh7jE9Y_pjkJL5VGTvEgpVMA5zg-Y-If9QGUYttqmU7G1C3tmOLdwREZ9roP1_163puhrjkD59KRsIGKHItMZLmNW4I5K7kOLUxq54zq6BisAABhKLg02sJJESjFHPZbB5FjsplOUntCaKidBg0a1zExhNS4E7g4lC3DRcydjFiFXBaaSnROXI79M8aJp1xmiZ0l-C4rhK4WTj1Xx88l1ULVSe6s84QhqWEYi4hXSC3T2W_iSXeAw-nflp2RLYYZMC1eZ6JKNhezpT0HCLNQF5m1fgITaPK5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oHtSDbyOK2gPxtsi27OtoFIIKHAgkJB423T4u4kIQDnryJ_gb_SV29gGoMTGemm06ye52pjNtZ74PoMxdR9akjVCISiGFmbaCyOiyFJFRMFGzRULJ0u64zX7tbuAMsqxKrIVJ8SHmB25oGcl6jQaOB9KXC9RQNakYd-yvwhryeSfbqe4COsrEPV5-T2k2gIO0YBZFLzPBr55oEV4uB6mJl2lsw0P-fmlyyWNlNo0q4vUbdOP_PmAHtrLgk1yl2rILKyreg80lSMJ9eLlJUjoIjyVZRv83HSl6CRlpwglWcH28vQuO1BMEMY_xCUsg4wyHl3DJx7iWkrGJz7F9wtw_kvpQgszVPB4NiZ6pIcHrgwPoN-q966aV0TNYglFjX8JzlB15mnrSU0wFVYdqxZlwlekUWsvIF4FRBBMTug7jUiizWNhRRDVSrhuRQyjEo1gdAXGFFsxojfZlYLxq4Ns6cHlVMidgmnu0CBf5VIUiwy5HCo1hmKIu01BNQvyXRSDzgeMUruPnkFI-12Fmr88hRVxDN3A8VoRyMmm_iYf1LjbHfxt2DuvNXrsVtm479yewQTEhpsos6pSgMJ3M1KmJaKbRWaK6nyZ89tQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60gujBt1itmkPxtm036b6OYlvqq0ixULws2Twu1m2p7UFP_gR_o7_EzO62XRVBPIUNGQibbzKzm8n3AZS568i6tJEKUSmUMNNWEBksSxEZgIm6LRJJltuO2-7Vr_pOPyf1lfJDzH-4oWck-zU6-Ejq6oI0VI0rJhr7y7BSd2s-ArrRXTBHmbTHmx1Tmu-_fnpfFk2rmeHXQLTILvM5ahJkWpvwMJteWlvyWJlOoop4_cbc-K_5b8FGlnqS8xQr27Ck4h1YzxES7sJLIynoIDyWJM_9bzpS7hIy1IQTvL_18fYuOApPEGQ8xie8ABlnLLyESz7CnZSMTHaO7RNW_pE0ghLUrebxcED0VA0IHh7sQa_VvL9oW5k4gyUYNd4lPEfZkaepJz3FVFBzqFacCVeZTqG1jHwRGBiYjNB1GJdCma3CjiKqUXDdmOxDIR7G6gCIK7RgBjPal4GJqYFv68DlNcmcgGnu0SKczVYqFBlzOQpoDMKUc5mGahziuywCmQ8cpWQdP4eUZksdZt76HFJkNXQDx2NFKCdr9pt52Oxic_i3YaewetdohTeXnesjWKNYDVNjFnVKUJiMp-rYpDOT6CQB7id3n_WM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+experimental+analysis+of+a+dual%E2%80%90cavity+high%E2%80%90concentration+adaptive+passive+micro+direct+methanol+fuel+cell&rft.jtitle=International+journal+of+energy+research&rft.au=Zuo%2C+Kaiyuan&rft.au=Yuan%2C+Zhenyu&rft.date=2021-03-25&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=45&rft.issue=4&rft.spage=5359&rft.epage=5368&rft_id=info:doi/10.1002%2Fer.6158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_6158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |