Design and experimental analysis of a dual‐cavity high‐concentration adaptive passive micro direct methanol fuel cell

Summary In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is investigated experimentally under different supply concentrations of methanol solution to detect the optimal working conditions. The advantag...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 45; no. 4; pp. 5359 - 5368
Main Authors Zuo, Kaiyuan, Yuan, Zhenyu
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 25.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is investigated experimentally under different supply concentrations of methanol solution to detect the optimal working conditions. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved. The effects of stainless steel metal felt, plastic porous barrier layer, hydrophilic and hydrophobic filter membrane on cell performance are experimentally investigated. A high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved.
AbstractList In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is investigated experimentally under different supply concentrations of methanol solution to detect the optimal working conditions. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved. The effects of stainless steel metal felt, plastic porous barrier layer, hydrophilic and hydrophobic filter membrane on cell performance are experimentally investigated.
Summary In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is investigated experimentally under different supply concentrations of methanol solution to detect the optimal working conditions. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved. The effects of stainless steel metal felt, plastic porous barrier layer, hydrophilic and hydrophobic filter membrane on cell performance are experimentally investigated. A high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The advantages of the anode double‐cavity structure in high concentration and high energy density fuel supply are proved.
Author Zuo, Kaiyuan
Yuan, Zhenyu
Author_xml – sequence: 1
  givenname: Kaiyuan
  orcidid: 0000-0002-1224-8623
  surname: Zuo
  fullname: Zuo, Kaiyuan
  organization: Northeastern University
– sequence: 2
  givenname: Zhenyu
  orcidid: 0000-0003-2988-2214
  surname: Yuan
  fullname: Yuan, Zhenyu
  email: yuanzhenyu@ise.neu.edu.cn
  organization: Northeastern University
BookMark eNp1kM1KAzEQx4Mo2FbxFQIePMjWZL_3KLV-QEEQhd6WbDJpU9LNmmyre_MRfEafxGzrSfQ0zOQ3fya_ITqsTQ0InVEypoSEV2DHKU3yAzSgpCgCSuP5IRqQKI2CgmTzYzR0bkWIf6PZAHU34NSixqwWGN4bsGoNdcu0HzDdOeWwkZhhsWH66-OTs61qO7xUi2XfmZp72LJWGZ8gWNOqLeCGOdfXteLWYKEs8BavoV2y2mgsN6AxB61P0JFk2sHpTx2hl9vp8-Q-mD3ePUyuZwGPwjwPeJYArTIZZiKDCAqShBJYxFPwQy6lqHJeiFgkMUmTiAkOcZ7TqgoljaPcr4zQ-T63seZ1A64tV2Zj_e9cGSaE5mmRZJGnLvaUv9k5C7JsvApmu5KSsvdagi17r54MfpFctTsF3oTSf_CXe_5Naej-iy2nTzv6G-AMjq4
CitedBy_id crossref_primary_10_1002_er_8430
crossref_primary_10_1016_j_cej_2023_143663
crossref_primary_10_3390_en14206608
crossref_primary_10_3390_en15103787
crossref_primary_10_1021_acs_energyfuels_3c05146
crossref_primary_10_3390_mi12010072
Cites_doi 10.1016/j.energy.2016.07.074
10.1002/fuce.201600221
10.1016/j.apenergy.2010.11.012
10.1016/j.applthermaleng.2017.07.186
10.1016/j.jpowsour.2019.01.088
10.1016/j.rser.2015.11.039
10.1016/j.ijhydene.2013.05.118
10.1016/j.jpowsour.2006.07.012
10.1016/j.jpowsour.2012.10.061
10.1016/j.ijhydene.2012.06.094
10.1016/j.apenergy.2014.10.044
10.1016/j.energy.2017.03.161
10.1016/j.jpowsour.2010.08.087
10.1016/j.jpowsour.2015.02.132
10.1016/j.jpowsour.2019.226948
10.1016/j.energy.2010.11.034
10.1016/S0378-7753(02)00339-7
10.1016/j.ijhydene.2016.05.116
10.1016/j.renene.2018.07.055
10.1016/j.ijheatmasstransfer.2010.11.009
10.1016/j.electacta.2014.03.183
10.1016/j.ijhydene.2009.12.085
10.1016/j.jpowsour.2006.10.047
10.1016/j.ijhydene.2016.11.022
10.1016/j.jpowsour.2012.12.009
10.1016/j.ijhydene.2016.09.087
10.1088/0960-1317/20/4/045014
10.1016/j.ijhydene.2016.03.094
10.1016/j.energy.2018.02.132
10.1126/sciadv.1700580
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.6158
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 5368
ExternalDocumentID 10_1002_er_6158
ER6158
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities in China
  funderid: N170407005; N180102032; N170405001; N180408018
– fundername: National Natural Science Foundation of China
  funderid: 61973058; 61833006; 61673367
– fundername: Liaoning Province Natural Science Foundation
  funderid: 20170540324; 20180550483
– fundername: CAST‐BISEE Innovation Foundation
  funderid: CAST‐BISEE2019‐007
– fundername: Liao Ning Revitalization Talents Program
  funderid: XLYC1807198
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
F00
G-S
G.N
GNP
GODZA
H.T
H.X
HHY
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
EBS
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c3288-c75e1b7f27d7e3e9052fea3c6eb7fcffdb8c9d4d540653adce4881bb2f14387e3
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Aug 13 11:33:55 EDT 2025
Tue Jul 01 01:41:33 EDT 2025
Thu Apr 24 22:49:53 EDT 2025
Wed Jan 22 16:29:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3288-c75e1b7f27d7e3e9052fea3c6eb7fcffdb8c9d4d540653adce4881bb2f14387e3
Notes Funding information
National Natural Science Foundation of China, Grant/Award Numbers: 61973058, 61833006, 61673367; CAST‐BISEE Innovation Foundation, Grant/Award Number: CAST‐BISEE2019‐007; Liaoning Province Natural Science Foundation, Grant/Award Numbers: 20170540324, 20180550483; Liao Ning Revitalization Talents Program, Grant/Award Number: XLYC1807198; Fundamental Research Funds for the Central Universities in China, Grant/Award Numbers: N170407005, N180102032, N170405001, N180408018
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1224-8623
0000-0003-2988-2214
PQID 2501869573
PQPubID 996365
PageCount 10
ParticipantIDs proquest_journals_2501869573
crossref_primary_10_1002_er_6158
crossref_citationtrail_10_1002_er_6158
wiley_primary_10_1002_er_6158_ER6158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 March 2021
PublicationDateYYYYMMDD 2021-03-25
PublicationDate_xml – month: 03
  year: 2021
  text: 25 March 2021
  day: 25
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 284
2017; 42
2017; 3
2010; 35
2013; 226
2002; 111
2007; 164
2011; 54
2011; 36
2012; 37
2011; 196
2014; 133
2016; 56
2010; 20
2013; 38
2018; 150
2015; 138
2017; 17
2016; 113
2006; 162
2016; 41
2011; 88
2019; 416
2013; 230
2019; 437
2017; 126
2019; 131
2017; 128
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 42
  start-page: 2680
  year: 2017
  end-page: 2690
  article-title: Effect of cathode flow field configuration on the performance of flowing electrolytedirect methanol fuel cell
  publication-title: Int J Hydrogen Energy.
– volume: 41
  start-page: 16247
  year: 2016
  end-page: 16253
  article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell
  publication-title: Int J Hydrogen Energy.
– volume: 42
  start-page: 9252
  year: 2017
  end-page: 9261
  article-title: Applications of graphene nano‐sheets as anode diffusion layers in passive direct methanol fuel cells (DMFC)
  publication-title: Int J Hydrogen Energy
– volume: 3
  year: 2017
  article-title: A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol
  publication-title: Sci Adv
– volume: 138
  start-page: 331
  year: 2015
  end-page: 336
  article-title: A crack‐free and super‐hydrophobic cathode micro‐porous layer for direct methanol fuel cells
  publication-title: Appl Energy
– volume: 38
  start-page: 9873
  year: 2013
  end-page: 9885
  article-title: A CFD model with semi‐empirical electrochemical relationships to study the influence of geometric and operating parameters on DMFC performance
  publication-title: Int J Hydrogen Energy.
– volume: 126
  start-page: 290
  year: 2017
  end-page: 295
  article-title: Transport of highly concentrated fuel in direct methanol fuel cells
  publication-title: Appl Therm Eng.
– volume: 133
  start-page: 8
  year: 2014
  end-page: 15
  article-title: Effects of design parameters on the performance of passive direct methanol fuel cells fed with concentrated fuel
  publication-title: Electrochimica Acta
– volume: 230
  start-page: 303
  year: 2013
  end-page: 320
  article-title: Review and advances of direct methanol fuel cells: part II: modeling and numerical simulation
  publication-title: J Power Sources.
– volume: 284
  start-page: 77
  year: 2015
  end-page: 85
  article-title: The influence of humidification and temperature differences between inlet gases on water transport through the membrane of a proton exchange membrane fuel cell
  publication-title: J Power Sources.
– volume: 164
  start-page: 189
  year: 2007
  end-page: 195
  article-title: Modeling water transport in liquid feed direct methanol fuel cells
  publication-title: J Power Sources.
– volume: 42
  start-page: 1736
  year: 2017
  end-page: 1750
  article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions
  publication-title: Int J Hydrogen Energy.
– volume: 162
  start-page: 114
  year: 2006
  end-page: 123
  article-title: DMFC employing a porous plate for an efficient operation at high methanol concentrations
  publication-title: J Power Sources
– volume: 35
  start-page: 8225
  year: 2010
  end-page: 8233
  article-title: Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst
  publication-title: Int J Hydrogen Energy.
– volume: 416
  start-page: 9
  year: 2019
  end-page: 20
  article-title: The whole process, bubble dynamic analysis in two‐phase transport of the passive miniature direct methanol fuel cells
  publication-title: J Power Sources.
– volume: 196
  start-page: 1191
  year: 2011
  end-page: 1204
  article-title: Exergy analysis of a passive direct methanol fuel cell
  publication-title: J Power Sources.
– volume: 20
  year: 2010
  article-title: A microfluidic‐structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels
  publication-title: J Micromech Microeng
– volume: 226
  start-page: 223
  year: 2013
  end-page: 240
  article-title: Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions
  publication-title: Journal of Power Sources.
– volume: 111
  start-page: 268
  year: 2002
  end-page: 282
  article-title: Heat and power management of a direct‐methanol‐fuel‐cell (DMFC) system
  publication-title: J Power Sources.
– volume: 131
  start-page: 563
  year: 2019
  end-page: 584
  article-title: Comparative analysis of liquid versus vapor‐feed passive direct methanol fuel cells
  publication-title: Renew Energy.
– volume: 437
  start-page: 22694
  year: 2019
  end-page: 22698
  article-title: Commercial platinum group metal‐free cathodic electrocatalysts for highly performed direct methanol fuel cell applications
  publication-title: J Power Sources.
– volume: 88
  start-page: 1681
  year: 2011
  end-page: 1689
  article-title: Passive direct methanol fuel cells for portable electronic devices
  publication-title: Appl Energy.
– volume: 17
  start-page: 315
  year: 2017
  end-page: 320
  article-title: A neat methanol fed passive DMFC with a new anode structure
  publication-title: Fuel Cells.
– volume: 56
  start-page: 51
  year: 2016
  end-page: 74
  article-title: Vapor feed direct methanol fuel cells (DMFCs): a review
  publication-title: Renew Sustain Energy Rev
– volume: 128
  start-page: 50
  year: 2017
  end-page: 61
  article-title: Structural design and analysis of a passive DMFC supplied with concentrated methanol solution
  publication-title: Energy.
– volume: 113
  start-page: 1265
  year: 2016
  end-page: 1287
  article-title: On the effect of operating conditions in liquid‐feed direct methanol fuel cells: a multiphysics modeling approach
  publication-title: Energy.
– volume: 150
  start-page: 28
  year: 2018
  end-page: 37
  article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell
  publication-title: Energy.
– volume: 54
  start-page: 1132
  year: 2011
  end-page: 1143
  article-title: Effect of the cathode gas diffusion layer on the water transport behavior and the performance of passive direct methanol fuel cells operating with neat methanol
  publication-title: Int J Heat Mass Trans
– volume: 36
  start-page: 1155
  year: 2011
  end-page: 1160
  article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC
  publication-title: Energy.
– volume: 37
  start-page: 13510
  year: 2012
  end-page: 13521
  article-title: Toward using porous metal‐fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell
  publication-title: Int J Hydrogen Energy.
– ident: e_1_2_8_4_1
  doi: 10.1016/j.energy.2016.07.074
– ident: e_1_2_8_24_1
  doi: 10.1002/fuce.201600221
– ident: e_1_2_8_9_1
  doi: 10.1016/j.apenergy.2010.11.012
– ident: e_1_2_8_29_1
  doi: 10.1016/j.applthermaleng.2017.07.186
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jpowsour.2019.01.088
– ident: e_1_2_8_22_1
  doi: 10.1016/j.rser.2015.11.039
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ijhydene.2013.05.118
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jpowsour.2006.07.012
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jpowsour.2012.10.061
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ijhydene.2012.06.094
– ident: e_1_2_8_27_1
  doi: 10.1016/j.apenergy.2014.10.044
– ident: e_1_2_8_23_1
  doi: 10.1016/j.energy.2017.03.161
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jpowsour.2010.08.087
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jpowsour.2015.02.132
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jpowsour.2019.226948
– ident: e_1_2_8_12_1
  doi: 10.1016/j.energy.2010.11.034
– ident: e_1_2_8_5_1
  doi: 10.1016/S0378-7753(02)00339-7
– ident: e_1_2_8_3_1
  doi: 10.1016/j.ijhydene.2016.05.116
– ident: e_1_2_8_13_1
  doi: 10.1016/j.renene.2018.07.055
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ijheatmasstransfer.2010.11.009
– ident: e_1_2_8_31_1
  doi: 10.1016/j.electacta.2014.03.183
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ijhydene.2009.12.085
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jpowsour.2006.10.047
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ijhydene.2016.11.022
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jpowsour.2012.12.009
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ijhydene.2016.09.087
– ident: e_1_2_8_14_1
  doi: 10.1088/0960-1317/20/4/045014
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ijhydene.2016.03.094
– ident: e_1_2_8_19_1
  doi: 10.1016/j.energy.2018.02.132
– ident: e_1_2_8_28_1
  doi: 10.1126/sciadv.1700580
SSID ssj0009917
Score 2.3261986
Snippet Summary In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is...
In this article, a high concentration adaptive direct methanol fuel cell based on a dual‐cavity structure is presented. The performance of the cell is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5359
SubjectTerms Barrier layers
dual‐cavity
Flux density
Fuel cells
Fuel technology
high concentration
Hydrophobicity
Metals
Methanol
passive direct methanol fuel cell
Stainless steel
Stainless steels
Working conditions
Title Design and experimental analysis of a dual‐cavity high‐concentration adaptive passive micro direct methanol fuel cell
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.6158
https://www.proquest.com/docview/2501869573
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7Ekx58i9Uqeyje-shuN2mOoi1F0EOxULyEfV6saenjoCd_gr_RX-JMNmmjIoinJcsOLJmZnS_ZmW8IqclQmLYJkArRWmxh5uqxAls2WoGB6Xags5Ysd_dhf9i-HYlRqdWX54dY_XBDz8jOa3RwqebNNWmonTUgGmOZL2ZqIRwarImjAPVExS0lfP6NfLksSjZzua9xaA0uyxA1izG9XfJY7M6nljw1lgvV0K_fiBv_tf09spMjT3rlTWWfbNj0gGyX-AgPyctNls9BZWpomfofJjx1CZ04KimWb328vWuJfScoEh7jE9Y_pjkJL5VGTvEgpVMA5zg-Y-If9QGUYttqmU7G1C3tmOLdwREZ9roP1_163puhrjkD59KRsIGKHItMZLmNW4I5K7kOLUxq54zq6BisAABhKLg02sJJESjFHPZbB5FjsplOUntCaKidBg0a1zExhNS4E7g4lC3DRcydjFiFXBaaSnROXI79M8aJp1xmiZ0l-C4rhK4WTj1Xx88l1ULVSe6s84QhqWEYi4hXSC3T2W_iSXeAw-nflp2RLYYZMC1eZ6JKNhezpT0HCLNQF5m1fgITaPK5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oHtSDbyOK2gPxtsi27OtoFIIKHAgkJB423T4u4kIQDnryJ_gb_SV29gGoMTGemm06ye52pjNtZ74PoMxdR9akjVCISiGFmbaCyOiyFJFRMFGzRULJ0u64zX7tbuAMsqxKrIVJ8SHmB25oGcl6jQaOB9KXC9RQNakYd-yvwhryeSfbqe4COsrEPV5-T2k2gIO0YBZFLzPBr55oEV4uB6mJl2lsw0P-fmlyyWNlNo0q4vUbdOP_PmAHtrLgk1yl2rILKyreg80lSMJ9eLlJUjoIjyVZRv83HSl6CRlpwglWcH28vQuO1BMEMY_xCUsg4wyHl3DJx7iWkrGJz7F9wtw_kvpQgszVPB4NiZ6pIcHrgwPoN-q966aV0TNYglFjX8JzlB15mnrSU0wFVYdqxZlwlekUWsvIF4FRBBMTug7jUiizWNhRRDVSrhuRQyjEo1gdAXGFFsxojfZlYLxq4Ns6cHlVMidgmnu0CBf5VIUiwy5HCo1hmKIu01BNQvyXRSDzgeMUruPnkFI-12Fmr88hRVxDN3A8VoRyMmm_iYf1LjbHfxt2DuvNXrsVtm479yewQTEhpsos6pSgMJ3M1KmJaKbRWaK6nyZ89tQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60gujBt1itmkPxtm036b6OYlvqq0ixULws2Twu1m2p7UFP_gR_o7_EzO62XRVBPIUNGQibbzKzm8n3AZS568i6tJEKUSmUMNNWEBksSxEZgIm6LRJJltuO2-7Vr_pOPyf1lfJDzH-4oWck-zU6-Ejq6oI0VI0rJhr7y7BSd2s-ArrRXTBHmbTHmx1Tmu-_fnpfFk2rmeHXQLTILvM5ahJkWpvwMJteWlvyWJlOoop4_cbc-K_5b8FGlnqS8xQr27Ck4h1YzxES7sJLIynoIDyWJM_9bzpS7hIy1IQTvL_18fYuOApPEGQ8xie8ABlnLLyESz7CnZSMTHaO7RNW_pE0ghLUrebxcED0VA0IHh7sQa_VvL9oW5k4gyUYNd4lPEfZkaepJz3FVFBzqFacCVeZTqG1jHwRGBiYjNB1GJdCma3CjiKqUXDdmOxDIR7G6gCIK7RgBjPal4GJqYFv68DlNcmcgGnu0SKczVYqFBlzOQpoDMKUc5mGahziuywCmQ8cpWQdP4eUZksdZt76HFJkNXQDx2NFKCdr9pt52Oxic_i3YaewetdohTeXnesjWKNYDVNjFnVKUJiMp-rYpDOT6CQB7id3n_WM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+experimental+analysis+of+a+dual%E2%80%90cavity+high%E2%80%90concentration+adaptive+passive+micro+direct+methanol+fuel+cell&rft.jtitle=International+journal+of+energy+research&rft.au=Zuo%2C+Kaiyuan&rft.au=Yuan%2C+Zhenyu&rft.date=2021-03-25&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=45&rft.issue=4&rft.spage=5359&rft.epage=5368&rft_id=info:doi/10.1002%2Fer.6158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_6158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon