Photoredox Catalyzed Single C−F Bond Activation of Trifluoromethyl Ketones: A Solvent Controlled Divergent Access of gem‐Difluoromethylene Containing Scaffolds

Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 29; no. 12; pp. e202203428 - n/a
Main Authors Ghosh, Soumen, Qu, Zheng‐Wang, Roy, Sourav, Grimme, Stefan, Chatterjee, Indranil
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 24.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem‐difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo‐excited catalysts are found to be responsible for the generation of α,α‐difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C−C and two C−O bonds. State‐of‐the‐art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol. Single and selective C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis is achieved in a divergent fashion. Trapping of photo‐catalytically generated difluoromethyl radical to various styrene derivatives benefitted with the formation of two essential classes of difluoromethyl‐containing tetrahydrofuran‐ring and linear ketones in a divergent fashion. State‐of‐the‐art dispersion‐corrected DFT calculations strongly support the proposed mechanistic pathway for this novel transformation.
AbstractList Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem‐difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo‐excited catalysts are found to be responsible for the generation of α,α‐difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C−C and two C−O bonds. State‐of‐the‐art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.
Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem ‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem ‐difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo‐excited catalysts are found to be responsible for the generation of α,α‐difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C−C and two C−O bonds. State‐of‐the‐art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.
Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.
Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.
Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem‐difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo‐excited catalysts are found to be responsible for the generation of α,α‐difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C−C and two C−O bonds. State‐of‐the‐art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol. Single and selective C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis is achieved in a divergent fashion. Trapping of photo‐catalytically generated difluoromethyl radical to various styrene derivatives benefitted with the formation of two essential classes of difluoromethyl‐containing tetrahydrofuran‐ring and linear ketones in a divergent fashion. State‐of‐the‐art dispersion‐corrected DFT calculations strongly support the proposed mechanistic pathway for this novel transformation.
Author Ghosh, Soumen
Chatterjee, Indranil
Roy, Sourav
Qu, Zheng‐Wang
Grimme, Stefan
Author_xml – sequence: 1
  givenname: Soumen
  surname: Ghosh
  fullname: Ghosh, Soumen
  organization: Indian Institute of Technology Ropar
– sequence: 2
  givenname: Zheng‐Wang
  surname: Qu
  fullname: Qu, Zheng‐Wang
  organization: Rheinische Friedrich-Wilhelms-Universität Bonn
– sequence: 3
  givenname: Sourav
  surname: Roy
  fullname: Roy, Sourav
  organization: Indian Institute of Technology Ropar
– sequence: 4
  givenname: Stefan
  surname: Grimme
  fullname: Grimme, Stefan
  organization: Rheinische Friedrich-Wilhelms-Universität Bonn
– sequence: 5
  givenname: Indranil
  orcidid: 0000-0001-8957-5182
  surname: Chatterjee
  fullname: Chatterjee, Indranil
  email: indranil.chatterjee@iitrpr.ac.in
  organization: Indian Institute of Technology Ropar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36445786$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFK0dkiQuXLI6d2Am3JW0pogikLefIcca7qRy7tZOF7alHjoi_wD_rL8FhSxFcOI00-t6bp3kHaM86Cwg9Tck8JYS-VGvo55RQSlhGiwdoluY0TZjg-R6akTITCc9ZuY8OQrgghJScsUdon_Esy0XBZ-jHx7UbnIfWfcGVHKTZXkOLl51dGcDV7dfvJ_i1sy1eqKHbyKFzFjuNz32nzei862FYbw1-B0OMFV7hBV46swE74MrZwTtjottRtwG_mpYLpSCEyWEF_e3Nt6O_bMDCL5nsbLyPl0pq7UwbHqOHWpoAT-7mIfp0cnxenSZnH968rRZniWK0KJJUK5YXnJYNo1SU0ABXAohoMqAgWwKF5gVhlLE0y6jWDSc05iFNQZXIZMMO0Yud76V3VyOEoe67oMAYacGNoaYiozy-rRQRff4PeuFGb2O6SImSlTlJJ-rZHTU2PbT1pe966bf17_dHYL4DlHcheND3SErqqd966re-7zcKyp3gc2dg-x-6rk6P3__R_gSOxq0Q
Cites_doi 10.1002/chem.201200497
10.1002/anie.201701985
10.1002/ange.201709487
10.1002/cmdc.201402358
10.1021/cr800388c
10.1021/jacs.1c11059
10.1038/s41586-020-2733-7
10.1021/acscatal.2c02434
10.1002/anie.201508266
10.1021/acsomega.0c00830
10.1002/ejoc.201800532
10.1039/b515623h
10.1002/ange.202115272
10.1039/C5QO00398A
10.1021/ja00411a040
10.1055/s-2007-983902
10.1021/jacs.1c03760
10.1002/ange.201406088
10.1039/B711844A
10.1002/anie.201710866
10.1039/c2sc00764a
10.1039/C8RE00225H
10.1002/anie.201602347
10.1063/1.3382344
10.1021/jacs.7b12590
10.1021/acs.jmedchem.7b01788
10.1021/cr500366b
10.1021/cr5002386
10.1039/C4RA11860J
10.1039/C6SC02422J
10.1021/jo990566
10.1016/j.jfluchem.2006.05.006
10.1038/nature10108
10.1039/b915620h
10.1002/anie.201814457
10.1002/anie.201700135
10.1038/s41570-017-0088
10.1021/jo052652h
10.1002/ange.201604776
10.1002/anie.201206566
10.1002/anie.202107041
10.1016/j.ejca.2019.08.033
10.1002/anie.201510494
10.1002/anie.201300763
10.1021/ja500031m
10.1021/jp050536c
10.1021/ja511730k
10.1016/j.tetlet.2007.05.107
10.1002/ange.201700135
10.1039/D0CC05194B
10.1002/anie.201604776
10.1002/ange.201206566
10.1002/chem.202001905
10.1016/j.jfluchem.2016.08.003
10.1039/a903681d
10.1126/science.1159979
10.1080/14756360701425014
10.1002/ange.201814457
10.1021/acs.jmedchem.5b00258
10.1021/ja410815u
10.3390/ijms22031398
10.1002/anie.202115272
10.1021/acs.orglett.9b00054
10.1021/cr500257c
10.1002/anie.202115456
10.1002/ange.201602347
10.1039/c39940002117
10.1016/j.chempr.2021.08.004
10.1002/ange.201701985
10.1246/cl.1988.1833
10.1002/aic.690480220
10.1002/anie.201709487
10.1021/ja0426138
10.1039/B610213C
10.1002/ange.202106531
10.1016/j.cclet.2021.08.043
10.1021/acs.accounts.9b00028
10.1021/cs4003244
10.1039/C5SC03013G
10.1038/s41467-022-28007-2
10.1021/ol902039q
10.1021/ja311398j
10.1002/ange.201508266
10.1002/adsc.201000482
10.1002/chem.201801702
10.1126/science.abg0781
10.1039/D1SC01574E
10.1002/chem.201804873
10.1021/acs.jmedchem.8b01222
10.1021/acs.joc.6b01620
10.1002/ange.201510494
10.1021/jacs.5b13450
10.1021/cr500277b
10.1016/j.isci.2020.101467
10.1021/jacs.7b06847
10.1002/jcc.21759
10.1002/ange.201300763
10.1039/c3cc43019g
10.1002/anie.201406088
10.1021/cs400088e
10.1002/chem.201605919
10.3762/bjoc.11.162
10.1021/ol3000348
10.1002/anie.202106531
10.1021/ja0565323
10.1002/jccs.199400013
10.1021/jo034512i
10.1021/jacs.7b10755
10.1039/C7CP04913G
10.1021/jacs.0c03881
ContentType Journal Article
Copyright 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
– notice: 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202203428
DatabaseName Wiley Online Library Open Access - NZ
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 36445786
10_1002_chem_202203428
CHEM202203428
Genre article
Journal Article
GrantInformation_xml – fundername: SERB, DST
  funderid: ECR/2018/000098
– fundername: Deutsche Forschungsgemeinschaft
  funderid: project 490737079
– fundername: SERB, DST
  grantid: ECR/2018/000098
– fundername: Deutsche Forschungsgemeinschaft
  grantid: project 490737079
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3288-1fc358629b32279ebe6c7e07b4e2ead0e8f68032331442ffb602cce0b82c74ab3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 18:21:44 EDT 2025
Fri Jul 25 12:01:54 EDT 2025
Thu Apr 03 07:03:38 EDT 2025
Tue Jul 01 00:43:44 EDT 2025
Wed Jan 22 16:18:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords C−F bond activation
density functional calculations
gem-difluoromethylene unit
fluorinated solvent
photoredox catalysis
cyclic ketals
Language English
License Attribution
2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3288-1fc358629b32279ebe6c7e07b4e2ead0e8f68032331442ffb602cce0b82c74ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8957-5182
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202203428
PMID 36445786
PQID 2779395017
PQPubID 986340
PageCount 10
ParticipantIDs proquest_miscellaneous_2742657897
proquest_journals_2779395017
pubmed_primary_36445786
crossref_primary_10_1002_chem_202203428
wiley_primary_10_1002_chem_202203428_CHEM202203428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 24, 2023
PublicationDateYYYYMMDD 2023-02-24
PublicationDate_xml – month: 02
  year: 2023
  text: February 24, 2023
  day: 24
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2006; 71
2013; 3
2017; 1
2021; 22
2019; 52
1981; 103
2008; 37
2020; 127
2012; 18
2020; 56
2012; 14
2014; 136
2013 2013; 52 125
2011; 473
2018 2018; 57 134
2009; 11
2020; 5
2022 2022; 61 134
2015; 47
2002; 48
2015; 137
2019; 21
2019; 25
2010; 352
2016; 81
2022; 33
2006; 127
2007; 22
2016; 49
2006; 128
2016; 190
2021; 7
2015; 58
2015; 6
2019; 4
2015; 5
2018; 140
2013; 49
2020; 142
2015; 11
2013; 41
2015; 10
2017; 23
1988; 17
2009
2006; 8
2007
2011; 32
1999; 64
2020; 585
1994
2004
2018; 61
2017 2017; 56 129
2021; 143
2008; 321
2019 2019; 58 131
2017; 139
2018; 24
1999
2016; 7
2016 2016; 55 128
2012; 3
2021; 12
2016; 3
2015; 115
2022
2005; 127
2003; 68
2022; 12
2010; 132
2021 2021; 60 133
2022; 13
2018
2021; 371
2020; 26
2013; 135
2017; 19
2020; 23
2016; 138
2021; 60
2009; 109
2007; 48
e_1_2_8_26_3
e_1_2_8_49_3
e_1_2_8_49_2
e_1_2_8_45_2
e_1_2_8_68_1
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_5_3
e_1_2_8_5_2
e_1_2_8_41_2
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_117_2
e_1_2_8_60_3
e_1_2_8_113_1
e_1_2_8_83_2
e_1_2_8_1_1
e_1_2_8_60_2
e_1_2_8_19_2
e_1_2_8_34_3
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_38_1
e_1_2_8_15_2
e_1_2_8_57_2
e_1_2_8_91_2
e_1_2_8_95_2
e_1_2_8_120_2
e_1_2_8_95_3
e_1_2_8_99_1
e_1_2_8_30_2
Bégué J.-P. (e_1_2_8_80_2) 2004
e_1_2_8_105_2
e_1_2_8_11_1
e_1_2_8_76_1
e_1_2_8_105_3
e_1_2_8_53_2
e_1_2_8_72_2
e_1_2_8_101_2
e_1_2_8_29_2
(e_1_2_8_77_3) 2022; 134
e_1_2_8_25_2
e_1_2_8_2_1
e_1_2_8_110_2
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_118_2
(e_1_2_8_111_3) 2018; 134
e_1_2_8_40_2
e_1_2_8_82_2
e_1_2_8_114_2
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_79_1
(e_1_2_8_68_2) 2022; 134
Senaweera S. (e_1_2_8_48_2) 2016; 49
e_1_2_8_90_2
e_1_2_8_94_2
e_1_2_8_121_2
e_1_2_8_98_1
Champagne P. A. (e_1_2_8_106_2) 2015; 47
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_71_2
e_1_2_8_102_2
e_1_2_8_28_2
e_1_2_8_24_2
e_1_2_8_119_2
e_1_2_8_47_2
e_1_2_8_89_2
e_1_2_8_3_1
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_115_2
e_1_2_8_43_2
e_1_2_8_85_2
e_1_2_8_62_2
e_1_2_8_111_2
e_1_2_8_81_2
e_1_2_8_17_1
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_55_3
e_1_2_8_36_2
e_1_2_8_70_1
e_1_2_8_97_2
e_1_2_8_97_3
e_1_2_8_55_2
e_1_2_8_51_3
e_1_2_8_74_3
e_1_2_8_32_2
e_1_2_8_74_2
e_1_2_8_107_2
e_1_2_8_51_2
e_1_2_8_122_2
e_1_2_8_93_2
e_1_2_8_103_1
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_2
Giri R. (e_1_2_8_78_2) 2022
e_1_2_8_69_1
e_1_2_8_4_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_116_2
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_112_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_58_2
e_1_2_8_108_2
e_1_2_8_35_1
e_1_2_8_96_2
e_1_2_8_96_3
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_104_2
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_100_2
e_1_2_8_92_2
References_xml – volume: 58 131
  start-page: 14824 14966
  year: 2019 2019
  end-page: 14848 14991
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 9955
  year: 2012
  end-page: 9964
  publication-title: Chem. Eur. J.
– volume: 58
  start-page: 8315
  year: 2015
  end-page: 8359
  publication-title: J. Med. Chem.
– volume: 139
  start-page: 13092
  year: 2017
  end-page: 13101
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 1398
  year: 2021
  end-page: 1414
  publication-title: Int. J. Mol. Sci.
– volume: 103
  start-page: 6495
  year: 1981
  end-page: 6497
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 527
  year: 2007
  end-page: 540
  publication-title: J. Enzyme Inhib. Med. Chem.
– volume: 12
  start-page: 10252
  year: 2021
  end-page: 1025
  publication-title: Chem. Sci.
– volume: 37
  start-page: 320
  year: 2008
  end-page: 330
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 163
  year: 2018
  end-page: 166
  publication-title: J. Am. Chem. Soc.
– year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1057
  year: 2006
  end-page: 1065
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 6796
  year: 2016
  end-page: 6802
  publication-title: Chem. Sci.
– volume: 55 128
  start-page: 9416 9563
  year: 2016 2016
  end-page: 9421 9568
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 9308
  year: 2021
  end-page: 9313
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 5890 5984
  year: 2017 2017
  end-page: 5893 5987
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 10146
  year: 2020
  end-page: 10198
  publication-title: iScience
– volume: 56 129
  start-page: 15073 15269
  year: 2017 2017
  end-page: 15077 15273
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 18
  year: 2004
  end-page: 29
  publication-title: Synlett
– volume: 11
  start-page: 5050
  year: 2009
  end-page: 5053
  publication-title: Org. Lett.
– volume: 321
  start-page: 1188
  year: 2008
  end-page: 1190
  publication-title: Science
– volume: 60 133
  start-page: 20237 20399
  year: 2021 2021
  end-page: 20242 20404
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 8802
  year: 2022
  end-page: 8810
  publication-title: ACS Catal.
– volume: 138
  start-page: 2520
  year: 2016
  end-page: 2523
  publication-title: J. Am. Chem. Soc.
– start-page: 2117
  year: 1994
  end-page: 2118
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 25
  start-page: 2949
  year: 2019
  end-page: 2961
  publication-title: Chem. Eur. J.
– start-page: 3520
  year: 2018
  end-page: 3540
  publication-title: Eur. J. Org. Chem.
– volume: 68
  start-page: 9026
  year: 2003
  end-page: 9033
  publication-title: J. Org. Chem.
– volume: 4
  start-page: 244
  year: 2019
  end-page: 253
  publication-title: React. Chem. Eng.
– volume: 57 134
  start-page: 328 334
  year: 2018 2018
  end-page: 332 33
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 109
  start-page: 2119
  year: 2009
  end-page: 2183
  publication-title: Chem. Rev.
– volume: 61
  start-page: 10602
  year: 2018
  end-page: 10618
  publication-title: J. Med. Chem.
– volume: 24
  start-page: 14572
  year: 2018
  end-page: 14582
  publication-title: Chem. Eur. J.
– volume: 371
  start-page: 1232
  year: 2021
  end-page: 1240
  publication-title: Science
– volume: 473
  start-page: 470
  year: 2011
  end-page: 477
  publication-title: Nature
– volume: 11
  start-page: 1494
  year: 2015
  end-page: 1502
  publication-title: Beilstein J. Org. Chem.
– volume: 64
  start-page: 7048
  year: 1999
  end-page: 7054
  publication-title: J. Org. Chem.
– volume: 61
  start-page: 5822
  year: 2018
  end-page: 5880
  publication-title: J. Med. Chem.
– volume: 55 128
  start-page: 1417 1439
  year: 2016 2016
  end-page: 1421 1443
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 9181
  year: 2020
  end-page: 9187
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 354
  year: 2022
  end-page: 361
  publication-title: Nat. Commun.
– volume: 137
  start-page: 3276
  year: 2015
  end-page: 3282
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 826
  year: 2015
  end-page: 870
  publication-title: Chem. Rev.
– volume: 23
  start-page: 2249
  year: 2017
  end-page: 2254
  publication-title: Chem. Eur. J.
– volume: 3
  start-page: 394
  year: 2016
  end-page: 400
  publication-title: Org. Chem. Front.
– volume: 52
  start-page: 833
  year: 2019
  end-page: 847
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 369
  year: 2002
  end-page: 385
  publication-title: AIChE J.
– volume: 139
  start-page: 18444
  year: 2017
  end-page: 18447
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 306
  year: 2015
  end-page: 322
  publication-title: Synthesis
– volume: 135
  start-page: 17494
  year: 2013
  end-page: 17500
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 931
  year: 2015
  end-page: 972
  publication-title: Chem. Rev.
– volume: 14
  start-page: 1114
  year: 2012
  end-page: 1117
  publication-title: Org. Lett.
– volume: 3
  start-page: 1578
  year: 2013
  end-page: 1587
  publication-title: ACS Catal.
– volume: 81
  start-page: 7908
  year: 2016
  end-page: 7916
  publication-title: J. Org. Chem.
– volume: 21
  start-page: 1350
  year: 2019
  end-page: 1353
  publication-title: Org. Lett.
– volume: 71
  start-page: 2820
  year: 2006
  end-page: 2824
  publication-title: J. Org. Chem.
– volume: 49
  start-page: 45
  year: 2016
  end-page: 54
  publication-title: Aldrichimica Acta
– volume: 60
  start-page: 24924
  year: 2021
  end-page: 24929
  publication-title: Angew. Chem. Int. Ed.
– volume: 53 126
  start-page: 13835 14055
  year: 2014 2014
  end-page: 13839 14059
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 5305
  year: 2007
  end-page: 5307
  publication-title: Tetrahedron Lett.
– start-page: 2925
  year: 2007
  end-page: 2943
  publication-title: Synthesis
– volume: 52 125
  start-page: 8214 8372
  year: 2013 2013
  end-page: 8264
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 127
  start-page: 173
  year: 2020
  end-page: 182
  publication-title: Eur. J. Cancer
– volume: 55 128
  start-page: 10406 10562
  year: 2016 2016
  end-page: 10409 10565
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 19648
  year: 2021
  end-page: 19654
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 10620
  year: 2020
  end-page: 10625
  publication-title: Chem. Eur. J.
– volume: 49
  start-page: 5850
  year: 2013
  end-page: 5852
  publication-title: Chem. Commun.
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  publication-title: J. Comb. Chem.
– volume: 7
  start-page: 3099
  year: 2021
  end-page: 3113
  publication-title: Chem
– volume: 128
  start-page: 1434
  year: 2006
  end-page: 1435
  publication-title: J. Am. Chem. Soc.
– start-page: 6011
  year: 2009
  end-page: 6013
  publication-title: Chem. Commun.
– volume: 19
  start-page: 32184
  year: 2017
  end-page: 32215
  publication-title: Phys. Chem. Chem. Phys.
– volume: 127
  start-page: 2852
  year: 2005
  end-page: 2853
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1381
  year: 2012
  end-page: 1394
  publication-title: Chem. Sci.
– volume: 37
  start-page: 308
  year: 2008
  end-page: 319
  publication-title: Chem. Soc. Rev.
– start-page: 1323
  year: 1999
  end-page: 1324
  publication-title: Chem. Commun.
– volume: 115
  start-page: 765
  year: 2015
  end-page: 825
  publication-title: Chem. Rev.
– volume: 115
  start-page: 612
  year: 2015
  end-page: 633
  publication-title: Chem. Rev.
– volume: 6
  start-page: 7206
  year: 2015
  end-page: 7212
  publication-title: Chem. Sci.
– volume: 10
  start-page: 107
  year: 2015
  end-page: 115
  publication-title: ChemMedChem
– volume: 5
  start-page: 10633
  year: 2020
  end-page: 1064
  publication-title: ACS Omega
– volume: 17
  start-page: 1833
  year: 1988
  end-page: 1836
  publication-title: Chem. Lett.
– volume: 190
  start-page: 1
  year: 2016
  end-page: 6
  publication-title: J. Fluorine Chem.
– volume: 136
  start-page: 3002
  year: 2014
  end-page: 3005
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 895
  year: 2013
  end-page: 902
  publication-title: ACS Catal.
– volume: 127
  start-page: 992
  year: 2006
  end-page: 1012
  publication-title: J. Fluorine Chem.
– volume: 135
  start-page: 1248
  year: 2013
  end-page: 1251
  publication-title: J. Am. Chem. Soc.
– volume: 585
  start-page: 530
  year: 2020
  end-page: 537
  publication-title: Nature
– volume: 55 128
  start-page: 341 349
  year: 2016 2016
  end-page: 344 352
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 352
  start-page: 2691
  year: 2010
  end-page: 2707
  publication-title: Adv. Synth. Catal.
– volume: 52 125
  start-page: 3949 4041
  year: 2013 2013
  end-page: 3952 4044
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 33
  start-page: 1193
  year: 2022
  end-page: 1198
  publication-title: Chin. Chem. Lett.
– volume: 5
  start-page: 17269
  year: 2015
  end-page: 17282
  publication-title: RSC Adv.
– volume: 1
  start-page: 0088
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 56
  start-page: 11548
  year: 2020
  end-page: 11564
  publication-title: Chem. Commun.
– volume: 56 129
  start-page: 7266 7372
  year: 2017 2017
  end-page: 7270 7376
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 103
  year: 2013
  end-page: 108
  publication-title: J. Chin. Chem. Soc.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_8_70_1
– ident: e_1_2_8_119_2
  doi: 10.1002/chem.201200497
– ident: e_1_2_8_109_1
– ident: e_1_2_8_97_2
  doi: 10.1002/anie.201701985
– ident: e_1_2_8_55_3
  doi: 10.1002/ange.201709487
– volume: 49
  start-page: 45
  year: 2016
  ident: e_1_2_8_48_2
  publication-title: Aldrichimica Acta
– ident: e_1_2_8_20_2
  doi: 10.1002/cmdc.201402358
– ident: e_1_2_8_39_2
  doi: 10.1021/cr800388c
– ident: e_1_2_8_67_1
  doi: 10.1021/jacs.1c11059
– ident: e_1_2_8_58_2
  doi: 10.1038/s41586-020-2733-7
– ident: e_1_2_8_63_2
  doi: 10.1021/acscatal.2c02434
– ident: e_1_2_8_74_2
  doi: 10.1002/anie.201508266
– ident: e_1_2_8_1_1
  doi: 10.1021/acsomega.0c00830
– ident: e_1_2_8_43_2
  doi: 10.1002/ejoc.201800532
– ident: e_1_2_8_113_1
– ident: e_1_2_8_121_2
  doi: 10.1039/b515623h
– volume: 134
  year: 2022
  ident: e_1_2_8_77_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202115272
– ident: e_1_2_8_83_2
  doi: 10.1039/C5QO00398A
– ident: e_1_2_8_88_2
  doi: 10.1021/ja00411a040
– ident: e_1_2_8_81_2
  doi: 10.1055/s-2007-983902
– ident: e_1_2_8_18_1
– ident: e_1_2_8_99_1
– ident: e_1_2_8_59_2
  doi: 10.1021/jacs.1c03760
– ident: e_1_2_8_105_3
  doi: 10.1002/ange.201406088
– ident: e_1_2_8_4_2
  doi: 10.1039/B711844A
– ident: e_1_2_8_111_2
  doi: 10.1002/anie.201710866
– ident: e_1_2_8_104_2
  doi: 10.1039/c2sc00764a
– ident: e_1_2_8_85_2
  doi: 10.1039/C8RE00225H
– ident: e_1_2_8_115_2
– ident: e_1_2_8_49_2
  doi: 10.1002/anie.201602347
– ident: e_1_2_8_117_2
  doi: 10.1063/1.3382344
– ident: e_1_2_8_56_2
  doi: 10.1021/jacs.7b12590
– ident: e_1_2_8_9_2
  doi: 10.1021/acs.jmedchem.7b01788
– ident: e_1_2_8_23_2
  doi: 10.1021/cr500366b
– ident: e_1_2_8_6_1
– ident: e_1_2_8_24_2
  doi: 10.1021/cr5002386
– ident: e_1_2_8_82_2
  doi: 10.1039/C4RA11860J
– ident: e_1_2_8_47_2
  doi: 10.1039/C6SC02422J
– ident: e_1_2_8_32_2
  doi: 10.1021/jo990566
– ident: e_1_2_8_15_2
  doi: 10.1016/j.jfluchem.2006.05.006
– volume: 47
  start-page: 306
  year: 2015
  ident: e_1_2_8_106_2
  publication-title: Synthesis
– ident: e_1_2_8_22_2
  doi: 10.1038/nature10108
– ident: e_1_2_8_93_2
  doi: 10.1039/b915620h
– ident: e_1_2_8_34_2
  doi: 10.1002/anie.201814457
– ident: e_1_2_8_51_2
  doi: 10.1002/anie.201700135
– ident: e_1_2_8_84_2
  doi: 10.1038/s41570-017-0088
– ident: e_1_2_8_37_2
  doi: 10.1021/jo052652h
– ident: e_1_2_8_96_3
  doi: 10.1002/ange.201604776
– ident: e_1_2_8_26_2
  doi: 10.1002/anie.201206566
– ident: e_1_2_8_62_2
– ident: e_1_2_8_19_2
  doi: 10.1002/anie.202107041
– ident: e_1_2_8_35_1
– ident: e_1_2_8_13_2
  doi: 10.1016/j.ejca.2019.08.033
– ident: e_1_2_8_95_2
  doi: 10.1002/anie.201510494
– ident: e_1_2_8_38_1
– volume: 134
  year: 2022
  ident: e_1_2_8_68_2
  publication-title: Angew. Chem.
– ident: e_1_2_8_5_2
  doi: 10.1002/anie.201300763
– ident: e_1_2_8_44_2
  doi: 10.1021/ja500031m
– ident: e_1_2_8_116_2
  doi: 10.1021/jp050536c
– ident: e_1_2_8_73_2
  doi: 10.1021/ja511730k
– ident: e_1_2_8_98_1
– ident: e_1_2_8_28_2
  doi: 10.1016/j.tetlet.2007.05.107
– ident: e_1_2_8_79_1
– start-page: 18
  year: 2004
  ident: e_1_2_8_80_2
  publication-title: Synlett
– ident: e_1_2_8_76_1
– ident: e_1_2_8_51_3
  doi: 10.1002/ange.201700135
– ident: e_1_2_8_86_2
  doi: 10.1039/D0CC05194B
– ident: e_1_2_8_96_2
  doi: 10.1002/anie.201604776
– ident: e_1_2_8_26_3
  doi: 10.1002/ange.201206566
– ident: e_1_2_8_108_2
  doi: 10.1002/chem.202001905
– ident: e_1_2_8_14_1
– ident: e_1_2_8_107_2
  doi: 10.1016/j.jfluchem.2016.08.003
– ident: e_1_2_8_72_2
  doi: 10.1039/a903681d
– ident: e_1_2_8_92_2
  doi: 10.1126/science.1159979
– ident: e_1_2_8_3_1
– ident: e_1_2_8_10_2
  doi: 10.1080/14756360701425014
– ident: e_1_2_8_34_3
  doi: 10.1002/ange.201814457
– ident: e_1_2_8_103_1
– ident: e_1_2_8_8_2
  doi: 10.1021/acs.jmedchem.5b00258
– ident: e_1_2_8_30_2
  doi: 10.1021/ja410815u
– ident: e_1_2_8_16_2
  doi: 10.3390/ijms22031398
– ident: e_1_2_8_77_2
  doi: 10.1002/anie.202115272
– ident: e_1_2_8_33_2
  doi: 10.1021/acs.orglett.9b00054
– ident: e_1_2_8_41_2
  doi: 10.1021/cr500257c
– ident: e_1_2_8_68_1
  doi: 10.1002/anie.202115456
– ident: e_1_2_8_49_3
  doi: 10.1002/ange.201602347
– ident: e_1_2_8_71_2
  doi: 10.1039/c39940002117
– year: 2022
  ident: e_1_2_8_78_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_8_61_2
  doi: 10.1016/j.chempr.2021.08.004
– ident: e_1_2_8_97_3
  doi: 10.1002/ange.201701985
– ident: e_1_2_8_89_2
  doi: 10.1246/cl.1988.1833
– ident: e_1_2_8_120_2
  doi: 10.1002/aic.690480220
– ident: e_1_2_8_55_2
  doi: 10.1002/anie.201709487
– ident: e_1_2_8_90_2
  doi: 10.1021/ja0426138
– ident: e_1_2_8_7_2
  doi: 10.1039/B610213C
– ident: e_1_2_8_60_3
  doi: 10.1002/ange.202106531
– ident: e_1_2_8_66_2
  doi: 10.1016/j.cclet.2021.08.043
– ident: e_1_2_8_102_2
  doi: 10.1021/acs.accounts.9b00028
– ident: e_1_2_8_40_2
  doi: 10.1021/cs4003244
– ident: e_1_2_8_45_2
  doi: 10.1039/C5SC03013G
– ident: e_1_2_8_64_1
– ident: e_1_2_8_69_1
  doi: 10.1038/s41467-022-28007-2
– ident: e_1_2_8_29_2
  doi: 10.1021/ol902039q
– ident: e_1_2_8_94_2
  doi: 10.1021/ja311398j
– ident: e_1_2_8_74_3
  doi: 10.1002/ange.201508266
– ident: e_1_2_8_27_2
  doi: 10.1002/adsc.201000482
– ident: e_1_2_8_42_2
  doi: 10.1002/chem.201801702
– ident: e_1_2_8_65_2
  doi: 10.1126/science.abg0781
– ident: e_1_2_8_75_2
  doi: 10.1039/D1SC01574E
– ident: e_1_2_8_101_2
  doi: 10.1002/chem.201804873
– ident: e_1_2_8_11_1
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.jmedchem.8b01222
– ident: e_1_2_8_52_2
  doi: 10.1021/acs.joc.6b01620
– ident: e_1_2_8_95_3
  doi: 10.1002/ange.201510494
– ident: e_1_2_8_46_2
  doi: 10.1021/jacs.5b13450
– ident: e_1_2_8_25_2
  doi: 10.1021/cr500277b
– ident: e_1_2_8_2_1
  doi: 10.1016/j.isci.2020.101467
– ident: e_1_2_8_50_2
  doi: 10.1021/jacs.7b06847
– ident: e_1_2_8_118_2
  doi: 10.1002/jcc.21759
– ident: e_1_2_8_5_3
  doi: 10.1002/ange.201300763
– ident: e_1_2_8_112_2
  doi: 10.1039/c3cc43019g
– ident: e_1_2_8_105_2
  doi: 10.1002/anie.201406088
– ident: e_1_2_8_21_1
– ident: e_1_2_8_100_2
  doi: 10.1021/cs400088e
– ident: e_1_2_8_114_2
– ident: e_1_2_8_54_2
  doi: 10.1002/chem.201605919
– ident: e_1_2_8_110_2
  doi: 10.3762/bjoc.11.162
– ident: e_1_2_8_31_2
  doi: 10.1021/ol3000348
– ident: e_1_2_8_60_2
  doi: 10.1002/anie.202106531
– ident: e_1_2_8_91_2
  doi: 10.1021/ja0565323
– ident: e_1_2_8_12_2
  doi: 10.1002/jccs.199400013
– ident: e_1_2_8_36_2
  doi: 10.1021/jo034512i
– ident: e_1_2_8_53_2
  doi: 10.1021/jacs.7b10755
– ident: e_1_2_8_122_2
  doi: 10.1039/C7CP04913G
– ident: e_1_2_8_57_2
  doi: 10.1021/jacs.0c03881
– volume: 134
  start-page: 334
  year: 2018
  ident: e_1_2_8_111_3
  publication-title: Angew. Chem.
– ident: e_1_2_8_87_1
SSID ssj0009633
Score 2.4765909
Snippet Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the...
Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202203428
SubjectTerms Access control
Agrochemicals
Alkenes
Catalysis
Catalysts
Chemistry
cyclic ketals
C−F bond activation
density functional calculations
Divergence
fluorinated solvent
gem-difluoromethylene unit
Ketones
Molecular structure
Photoredox catalysis
Solvents
Stereoselectivity
Tetrahydrofuran
Title Photoredox Catalyzed Single C−F Bond Activation of Trifluoromethyl Ketones: A Solvent Controlled Divergent Access of gem‐Difluoromethylene Containing Scaffolds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202203428
https://www.ncbi.nlm.nih.gov/pubmed/36445786
https://www.proquest.com/docview/2779395017
https://www.proquest.com/docview/2742657897
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VLu2l0F-2UGSkSj0FsnYSZ3tbZbtCrahQFyRuke3YtCJsKnZXAk4cOVZ9hb7ZPkln4k3otodK5ZYo_vfMeMaZ-QbgjUxDZbSWgUlRBEaSErmrUAcyTlRXpUrEmq4GDj4l-8fRh5P45Lcofo8P0V64EWfU8poYXOnJ3h1oKM6JIsk5JxA7ivYlhy3Sij7f4Uchdflc8pEMCIO1QW0M-d5y9eVT6S9Vc1lzrY-e4RqoZtDe4-RsdzbVu-b6DzzH-8xqHR4v9FLW94T0BB7Y8VN4mDXp4J7Bz8MvFdrntqguWUZ3PlfXtmAjPPlKy7L57Y8hoxTFrG-ahGmscuzo4qsrZxVhIiBFlOyjJfDvyTvWZ6OqJF9Llnln-RJbG5CTCMV6YSsUvkAtnNrz-c33wVIzKJ_raj67BRsZ5VxVFpPncDx8f5TtB4sMD4ERHFm064yI0abqaUFIhkhQiZE2lDqyHEk8tKlL0lBwIdDu487pJOTYf6hTbmSktHgBq2Mc9gawbmF6xhVdqaWIrHCKu8IIa9H-M3gY6A68bXY4_-aBPHIP2cxzWvS8XfQObDUEkC8YepJziYKsF6P86sBO-xm3gP6vqLGtZlQG1R2UgD0s89ITTtuVQL0TPyUd4PX2_2MMOQFitG-v_qfSJjzCZ1GH30dbsDq9mNnXqEBN9Tas8Ohwu2aVX1a3F9o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8WChgJxClt1k7iLBKHVZbVlm0rxG6l3oLt2IAIG9TdFbQnjhwRr8AT9FX6CH0SZpJNqoUDElIPHBPbE_-MZ8bOzDcAj2XsK6O19EyMIjCQlMhd-dqTYaTaKlYi1HQ1sLMbDfaCl_vh_goc17EwFT5Ec-FGO6OU17TB6UJ68ww1FAdFoeScE4pdvPCrHNrDz3hqmz7f6uESP-G8_2KcDLxFYgHPCI6c0XZGhGjKd7QgAD0cR2Sk9aUOLMeZ9W3sotgXXAg8bnDndORzY6yvY25koLRAuhfgIqURJ7j-3uszxCrk5yp7fSA9Qn2tcSJ9vrnc32U9-Idxu2wrl8qufwVO6mmqfFw-bMxnesMc_YYg-V_N41W4vDC9WbfaK9dgxU6uw1pSZ7y7AT9fvStmBSGofmEJXWsdHtmMjVC555Ylp99-9BllYWZdU-eEY4Vj44P3Lp8XBPuATJ-zoSV88-kz1mWjIid3UpZU8QA5UuuRHwyFsyEVitAgCm_tx9Ov33tLZFAFlc2qBB5sZJRzRZ5Nb8LeuczRLVidYLfvAGtnpmNc1pZaisAKp7jLjLAWj7gG9Z1uwdOapdJPFVZJWqFS85QWOW0WuQXrNcelC5k1TblEWd0JUUS34FFTjEtAv5DUxBZzqoMWHQr5Dta5XXFq8ymBpjUWRS3gJb_9pQ8pYX40T3f_pdFDWBuMd7bT7a3d4T24hO9FiTYQrMPq7GBu76O9ONMPyh3K4M15s_Iv3I10uA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVgIuiN-ytFBXAnGKmrWTOIvEYZVl1bKlWmlbqbdgO3aLFDZVtytoTxw5or5CX4Bn6pMwk79qxQEJqcck9sT22OMZe-YbgNcy9pXRWnomRhEYSErkrnztyTBSXRUrEWo6Gvi0F20fBB8Pw8Ml-N3EwlT4EO2BG62MUl7TAj_J3NYNaCj2iSLJOScQu7h2qxzZ829otM3e7wyQw284H37YT7a9Oq-AZwTHidF1RoSoyfe0IPw87EZkpPWlDizHgfVt7KLYF1wItDa4czryuTHW1zE3MlBaIN07sEI3jORExoPxDcxvVCevD6RHoK8NTKTPtxbbu7gN_qXbLqrK5V43fAgPaiWV9atZ9QiW7PQx3Eua3HBP4Gp8XKCxbrPiO0voAOj8wmZsgttgblly_fNyyChfMeubJnsaKxzbP_3i8nlBAAk4PXI2soQEPnvH-mxS5OR4yZLKcz5HagPyGKHAL6RCsQxE4ch-vf7xa7BABoV1Wa1KdcEmRjlX5NnsKRzcCluewfIUm_0cWDczPeOyrtRSBFY4xV1mhLVoDBrcGXQH3jajn55UqB5phd_MU-JT2vKpA-sNc9J6dc9SLlGq9UIUZh3YbD8jC-iyRU1tMacyqPugOOxhmdWKqe2vBCqh-CnqAC-5_I82pISO0T69-J9KG3B3PBimuzt7ozW4j69FGZYfrMPy2encvkTF6ky_Kucyg8-3vXj-ANRwMhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoredox+Catalyzed+Single+C-F+Bond+Activation+of+Trifluoromethyl+Ketones%3A+A+Solvent+Controlled+Divergent+Access+of+gem-Difluoromethylene+Containing+Scaffolds&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Ghosh%2C+Soumen&rft.au=Qu%2C+Zheng-Wang&rft.au=Roy%2C+Sourav&rft.au=Grimme%2C+Stefan&rft.date=2023-02-24&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=29&rft.issue=12&rft.spage=e202203428&rft_id=info:doi/10.1002%2Fchem.202203428&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon