Photoredox Catalyzed Single C−F Bond Activation of Trifluoromethyl Ketones: A Solvent Controlled Divergent Access of gem‐Difluoromethylene Containing Scaffolds
Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals...
Saved in:
Published in | Chemistry : a European journal Vol. 29; no. 12; pp. e202203428 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
24.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem‐difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo‐excited catalysts are found to be responsible for the generation of α,α‐difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C−C and two C−O bonds. State‐of‐the‐art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.
Single and selective C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis is achieved in a divergent fashion. Trapping of photo‐catalytically generated difluoromethyl radical to various styrene derivatives benefitted with the formation of two essential classes of difluoromethyl‐containing tetrahydrofuran‐ring and linear ketones in a divergent fashion. State‐of‐the‐art dispersion‐corrected DFT calculations strongly support the proposed mechanistic pathway for this novel transformation. |
---|---|
AbstractList | Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem‐difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo‐excited catalysts are found to be responsible for the generation of α,α‐difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C−C and two C−O bonds. State‐of‐the‐art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol. Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem ‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem ‐difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo‐excited catalysts are found to be responsible for the generation of α,α‐difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C−C and two C−O bonds. State‐of‐the‐art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol. Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol. Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol. Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem‐difluoromethylene unit for the construction of the molecular architectures of well‐known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem‐difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo‐excited catalysts are found to be responsible for the generation of α,α‐difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C−C and two C−O bonds. State‐of‐the‐art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol. Single and selective C−F bond activation of trifluoromethyl ketones using visible‐light photoredox catalysis is achieved in a divergent fashion. Trapping of photo‐catalytically generated difluoromethyl radical to various styrene derivatives benefitted with the formation of two essential classes of difluoromethyl‐containing tetrahydrofuran‐ring and linear ketones in a divergent fashion. State‐of‐the‐art dispersion‐corrected DFT calculations strongly support the proposed mechanistic pathway for this novel transformation. |
Author | Ghosh, Soumen Chatterjee, Indranil Roy, Sourav Qu, Zheng‐Wang Grimme, Stefan |
Author_xml | – sequence: 1 givenname: Soumen surname: Ghosh fullname: Ghosh, Soumen organization: Indian Institute of Technology Ropar – sequence: 2 givenname: Zheng‐Wang surname: Qu fullname: Qu, Zheng‐Wang organization: Rheinische Friedrich-Wilhelms-Universität Bonn – sequence: 3 givenname: Sourav surname: Roy fullname: Roy, Sourav organization: Indian Institute of Technology Ropar – sequence: 4 givenname: Stefan surname: Grimme fullname: Grimme, Stefan organization: Rheinische Friedrich-Wilhelms-Universität Bonn – sequence: 5 givenname: Indranil orcidid: 0000-0001-8957-5182 surname: Chatterjee fullname: Chatterjee, Indranil email: indranil.chatterjee@iitrpr.ac.in organization: Indian Institute of Technology Ropar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36445786$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFK0dkiQuXLI6d2Am3JW0pogikLefIcca7qRy7tZOF7alHjoi_wD_rL8FhSxFcOI00-t6bp3kHaM86Cwg9Tck8JYS-VGvo55RQSlhGiwdoluY0TZjg-R6akTITCc9ZuY8OQrgghJScsUdon_Esy0XBZ-jHx7UbnIfWfcGVHKTZXkOLl51dGcDV7dfvJ_i1sy1eqKHbyKFzFjuNz32nzei862FYbw1-B0OMFV7hBV46swE74MrZwTtjottRtwG_mpYLpSCEyWEF_e3Nt6O_bMDCL5nsbLyPl0pq7UwbHqOHWpoAT-7mIfp0cnxenSZnH968rRZniWK0KJJUK5YXnJYNo1SU0ABXAohoMqAgWwKF5gVhlLE0y6jWDSc05iFNQZXIZMMO0Yud76V3VyOEoe67oMAYacGNoaYiozy-rRQRff4PeuFGb2O6SImSlTlJJ-rZHTU2PbT1pe966bf17_dHYL4DlHcheND3SErqqd966re-7zcKyp3gc2dg-x-6rk6P3__R_gSOxq0Q |
Cites_doi | 10.1002/chem.201200497 10.1002/anie.201701985 10.1002/ange.201709487 10.1002/cmdc.201402358 10.1021/cr800388c 10.1021/jacs.1c11059 10.1038/s41586-020-2733-7 10.1021/acscatal.2c02434 10.1002/anie.201508266 10.1021/acsomega.0c00830 10.1002/ejoc.201800532 10.1039/b515623h 10.1002/ange.202115272 10.1039/C5QO00398A 10.1021/ja00411a040 10.1055/s-2007-983902 10.1021/jacs.1c03760 10.1002/ange.201406088 10.1039/B711844A 10.1002/anie.201710866 10.1039/c2sc00764a 10.1039/C8RE00225H 10.1002/anie.201602347 10.1063/1.3382344 10.1021/jacs.7b12590 10.1021/acs.jmedchem.7b01788 10.1021/cr500366b 10.1021/cr5002386 10.1039/C4RA11860J 10.1039/C6SC02422J 10.1021/jo990566 10.1016/j.jfluchem.2006.05.006 10.1038/nature10108 10.1039/b915620h 10.1002/anie.201814457 10.1002/anie.201700135 10.1038/s41570-017-0088 10.1021/jo052652h 10.1002/ange.201604776 10.1002/anie.201206566 10.1002/anie.202107041 10.1016/j.ejca.2019.08.033 10.1002/anie.201510494 10.1002/anie.201300763 10.1021/ja500031m 10.1021/jp050536c 10.1021/ja511730k 10.1016/j.tetlet.2007.05.107 10.1002/ange.201700135 10.1039/D0CC05194B 10.1002/anie.201604776 10.1002/ange.201206566 10.1002/chem.202001905 10.1016/j.jfluchem.2016.08.003 10.1039/a903681d 10.1126/science.1159979 10.1080/14756360701425014 10.1002/ange.201814457 10.1021/acs.jmedchem.5b00258 10.1021/ja410815u 10.3390/ijms22031398 10.1002/anie.202115272 10.1021/acs.orglett.9b00054 10.1021/cr500257c 10.1002/anie.202115456 10.1002/ange.201602347 10.1039/c39940002117 10.1016/j.chempr.2021.08.004 10.1002/ange.201701985 10.1246/cl.1988.1833 10.1002/aic.690480220 10.1002/anie.201709487 10.1021/ja0426138 10.1039/B610213C 10.1002/ange.202106531 10.1016/j.cclet.2021.08.043 10.1021/acs.accounts.9b00028 10.1021/cs4003244 10.1039/C5SC03013G 10.1038/s41467-022-28007-2 10.1021/ol902039q 10.1021/ja311398j 10.1002/ange.201508266 10.1002/adsc.201000482 10.1002/chem.201801702 10.1126/science.abg0781 10.1039/D1SC01574E 10.1002/chem.201804873 10.1021/acs.jmedchem.8b01222 10.1021/acs.joc.6b01620 10.1002/ange.201510494 10.1021/jacs.5b13450 10.1021/cr500277b 10.1016/j.isci.2020.101467 10.1021/jacs.7b06847 10.1002/jcc.21759 10.1002/ange.201300763 10.1039/c3cc43019g 10.1002/anie.201406088 10.1021/cs400088e 10.1002/chem.201605919 10.3762/bjoc.11.162 10.1021/ol3000348 10.1002/anie.202106531 10.1021/ja0565323 10.1002/jccs.199400013 10.1021/jo034512i 10.1021/jacs.7b10755 10.1039/C7CP04913G 10.1021/jacs.0c03881 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH – notice: 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202203428 |
DatabaseName | Wiley Online Library Open Access - NZ CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 36445786 10_1002_chem_202203428 CHEM202203428 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: SERB, DST funderid: ECR/2018/000098 – fundername: Deutsche Forschungsgemeinschaft funderid: project 490737079 – fundername: SERB, DST grantid: ECR/2018/000098 – fundername: Deutsche Forschungsgemeinschaft grantid: project 490737079 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3288-1fc358629b32279ebe6c7e07b4e2ead0e8f68032331442ffb602cce0b82c74ab3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 18:21:44 EDT 2025 Fri Jul 25 12:01:54 EDT 2025 Thu Apr 03 07:03:38 EDT 2025 Tue Jul 01 00:43:44 EDT 2025 Wed Jan 22 16:18:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | C−F bond activation density functional calculations gem-difluoromethylene unit fluorinated solvent photoredox catalysis cyclic ketals |
Language | English |
License | Attribution 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3288-1fc358629b32279ebe6c7e07b4e2ead0e8f68032331442ffb602cce0b82c74ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8957-5182 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202203428 |
PMID | 36445786 |
PQID | 2779395017 |
PQPubID | 986340 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2742657897 proquest_journals_2779395017 pubmed_primary_36445786 crossref_primary_10_1002_chem_202203428 wiley_primary_10_1002_chem_202203428_CHEM202203428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 24, 2023 |
PublicationDateYYYYMMDD | 2023-02-24 |
PublicationDate_xml | – month: 02 year: 2023 text: February 24, 2023 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2006; 71 2013; 3 2017; 1 2021; 22 2019; 52 1981; 103 2008; 37 2020; 127 2012; 18 2020; 56 2012; 14 2014; 136 2013 2013; 52 125 2011; 473 2018 2018; 57 134 2009; 11 2020; 5 2022 2022; 61 134 2015; 47 2002; 48 2015; 137 2019; 21 2019; 25 2010; 352 2016; 81 2022; 33 2006; 127 2007; 22 2016; 49 2006; 128 2016; 190 2021; 7 2015; 58 2015; 6 2019; 4 2015; 5 2018; 140 2013; 49 2020; 142 2015; 11 2013; 41 2015; 10 2017; 23 1988; 17 2009 2006; 8 2007 2011; 32 1999; 64 2020; 585 1994 2004 2018; 61 2017 2017; 56 129 2021; 143 2008; 321 2019 2019; 58 131 2017; 139 2018; 24 1999 2016; 7 2016 2016; 55 128 2012; 3 2021; 12 2016; 3 2015; 115 2022 2005; 127 2003; 68 2022; 12 2010; 132 2021 2021; 60 133 2022; 13 2018 2021; 371 2020; 26 2013; 135 2017; 19 2020; 23 2016; 138 2021; 60 2009; 109 2007; 48 e_1_2_8_26_3 e_1_2_8_49_3 e_1_2_8_49_2 e_1_2_8_45_2 e_1_2_8_68_1 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_5_3 e_1_2_8_5_2 e_1_2_8_41_2 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_117_2 e_1_2_8_60_3 e_1_2_8_113_1 e_1_2_8_83_2 e_1_2_8_1_1 e_1_2_8_60_2 e_1_2_8_19_2 e_1_2_8_34_3 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_38_1 e_1_2_8_15_2 e_1_2_8_57_2 e_1_2_8_91_2 e_1_2_8_95_2 e_1_2_8_120_2 e_1_2_8_95_3 e_1_2_8_99_1 e_1_2_8_30_2 Bégué J.-P. (e_1_2_8_80_2) 2004 e_1_2_8_105_2 e_1_2_8_11_1 e_1_2_8_76_1 e_1_2_8_105_3 e_1_2_8_53_2 e_1_2_8_72_2 e_1_2_8_101_2 e_1_2_8_29_2 (e_1_2_8_77_3) 2022; 134 e_1_2_8_25_2 e_1_2_8_2_1 e_1_2_8_110_2 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_2 (e_1_2_8_111_3) 2018; 134 e_1_2_8_40_2 e_1_2_8_82_2 e_1_2_8_114_2 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_79_1 (e_1_2_8_68_2) 2022; 134 Senaweera S. (e_1_2_8_48_2) 2016; 49 e_1_2_8_90_2 e_1_2_8_94_2 e_1_2_8_121_2 e_1_2_8_98_1 Champagne P. A. (e_1_2_8_106_2) 2015; 47 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_71_2 e_1_2_8_102_2 e_1_2_8_28_2 e_1_2_8_24_2 e_1_2_8_119_2 e_1_2_8_47_2 e_1_2_8_89_2 e_1_2_8_3_1 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_115_2 e_1_2_8_43_2 e_1_2_8_85_2 e_1_2_8_62_2 e_1_2_8_111_2 e_1_2_8_81_2 e_1_2_8_17_1 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_55_3 e_1_2_8_36_2 e_1_2_8_70_1 e_1_2_8_97_2 e_1_2_8_97_3 e_1_2_8_55_2 e_1_2_8_51_3 e_1_2_8_74_3 e_1_2_8_32_2 e_1_2_8_74_2 e_1_2_8_107_2 e_1_2_8_51_2 e_1_2_8_122_2 e_1_2_8_93_2 e_1_2_8_103_1 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_46_2 Giri R. (e_1_2_8_78_2) 2022 e_1_2_8_69_1 e_1_2_8_4_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_116_2 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_112_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_12_2 e_1_2_8_58_2 e_1_2_8_108_2 e_1_2_8_35_1 e_1_2_8_96_2 e_1_2_8_96_3 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_104_2 e_1_2_8_50_2 e_1_2_8_73_2 e_1_2_8_100_2 e_1_2_8_92_2 |
References_xml | – volume: 58 131 start-page: 14824 14966 year: 2019 2019 end-page: 14848 14991 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 9955 year: 2012 end-page: 9964 publication-title: Chem. Eur. J. – volume: 58 start-page: 8315 year: 2015 end-page: 8359 publication-title: J. Med. Chem. – volume: 139 start-page: 13092 year: 2017 end-page: 13101 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 1398 year: 2021 end-page: 1414 publication-title: Int. J. Mol. Sci. – volume: 103 start-page: 6495 year: 1981 end-page: 6497 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 527 year: 2007 end-page: 540 publication-title: J. Enzyme Inhib. Med. Chem. – volume: 12 start-page: 10252 year: 2021 end-page: 1025 publication-title: Chem. Sci. – volume: 37 start-page: 320 year: 2008 end-page: 330 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 163 year: 2018 end-page: 166 publication-title: J. Am. Chem. Soc. – year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1057 year: 2006 end-page: 1065 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 6796 year: 2016 end-page: 6802 publication-title: Chem. Sci. – volume: 55 128 start-page: 9416 9563 year: 2016 2016 end-page: 9421 9568 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 9308 year: 2021 end-page: 9313 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 5890 5984 year: 2017 2017 end-page: 5893 5987 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 10146 year: 2020 end-page: 10198 publication-title: iScience – volume: 56 129 start-page: 15073 15269 year: 2017 2017 end-page: 15077 15273 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 18 year: 2004 end-page: 29 publication-title: Synlett – volume: 11 start-page: 5050 year: 2009 end-page: 5053 publication-title: Org. Lett. – volume: 321 start-page: 1188 year: 2008 end-page: 1190 publication-title: Science – volume: 60 133 start-page: 20237 20399 year: 2021 2021 end-page: 20242 20404 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 8802 year: 2022 end-page: 8810 publication-title: ACS Catal. – volume: 138 start-page: 2520 year: 2016 end-page: 2523 publication-title: J. Am. Chem. Soc. – start-page: 2117 year: 1994 end-page: 2118 publication-title: J. Chem. Soc. Chem. Commun. – volume: 25 start-page: 2949 year: 2019 end-page: 2961 publication-title: Chem. Eur. J. – start-page: 3520 year: 2018 end-page: 3540 publication-title: Eur. J. Org. Chem. – volume: 68 start-page: 9026 year: 2003 end-page: 9033 publication-title: J. Org. Chem. – volume: 4 start-page: 244 year: 2019 end-page: 253 publication-title: React. Chem. Eng. – volume: 57 134 start-page: 328 334 year: 2018 2018 end-page: 332 33 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 109 start-page: 2119 year: 2009 end-page: 2183 publication-title: Chem. Rev. – volume: 61 start-page: 10602 year: 2018 end-page: 10618 publication-title: J. Med. Chem. – volume: 24 start-page: 14572 year: 2018 end-page: 14582 publication-title: Chem. Eur. J. – volume: 371 start-page: 1232 year: 2021 end-page: 1240 publication-title: Science – volume: 473 start-page: 470 year: 2011 end-page: 477 publication-title: Nature – volume: 11 start-page: 1494 year: 2015 end-page: 1502 publication-title: Beilstein J. Org. Chem. – volume: 64 start-page: 7048 year: 1999 end-page: 7054 publication-title: J. Org. Chem. – volume: 61 start-page: 5822 year: 2018 end-page: 5880 publication-title: J. Med. Chem. – volume: 55 128 start-page: 1417 1439 year: 2016 2016 end-page: 1421 1443 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 9181 year: 2020 end-page: 9187 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 354 year: 2022 end-page: 361 publication-title: Nat. Commun. – volume: 137 start-page: 3276 year: 2015 end-page: 3282 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 826 year: 2015 end-page: 870 publication-title: Chem. Rev. – volume: 23 start-page: 2249 year: 2017 end-page: 2254 publication-title: Chem. Eur. J. – volume: 3 start-page: 394 year: 2016 end-page: 400 publication-title: Org. Chem. Front. – volume: 52 start-page: 833 year: 2019 end-page: 847 publication-title: Acc. Chem. Res. – volume: 48 start-page: 369 year: 2002 end-page: 385 publication-title: AIChE J. – volume: 139 start-page: 18444 year: 2017 end-page: 18447 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 306 year: 2015 end-page: 322 publication-title: Synthesis – volume: 135 start-page: 17494 year: 2013 end-page: 17500 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 931 year: 2015 end-page: 972 publication-title: Chem. Rev. – volume: 14 start-page: 1114 year: 2012 end-page: 1117 publication-title: Org. Lett. – volume: 3 start-page: 1578 year: 2013 end-page: 1587 publication-title: ACS Catal. – volume: 81 start-page: 7908 year: 2016 end-page: 7916 publication-title: J. Org. Chem. – volume: 21 start-page: 1350 year: 2019 end-page: 1353 publication-title: Org. Lett. – volume: 71 start-page: 2820 year: 2006 end-page: 2824 publication-title: J. Org. Chem. – volume: 49 start-page: 45 year: 2016 end-page: 54 publication-title: Aldrichimica Acta – volume: 60 start-page: 24924 year: 2021 end-page: 24929 publication-title: Angew. Chem. Int. Ed. – volume: 53 126 start-page: 13835 14055 year: 2014 2014 end-page: 13839 14059 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 5305 year: 2007 end-page: 5307 publication-title: Tetrahedron Lett. – start-page: 2925 year: 2007 end-page: 2943 publication-title: Synthesis – volume: 52 125 start-page: 8214 8372 year: 2013 2013 end-page: 8264 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 127 start-page: 173 year: 2020 end-page: 182 publication-title: Eur. J. Cancer – volume: 55 128 start-page: 10406 10562 year: 2016 2016 end-page: 10409 10565 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 19648 year: 2021 end-page: 19654 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 10620 year: 2020 end-page: 10625 publication-title: Chem. Eur. J. – volume: 49 start-page: 5850 year: 2013 end-page: 5852 publication-title: Chem. Commun. – volume: 32 start-page: 1456 year: 2011 end-page: 1465 publication-title: J. Comb. Chem. – volume: 7 start-page: 3099 year: 2021 end-page: 3113 publication-title: Chem – volume: 128 start-page: 1434 year: 2006 end-page: 1435 publication-title: J. Am. Chem. Soc. – start-page: 6011 year: 2009 end-page: 6013 publication-title: Chem. Commun. – volume: 19 start-page: 32184 year: 2017 end-page: 32215 publication-title: Phys. Chem. Chem. Phys. – volume: 127 start-page: 2852 year: 2005 end-page: 2853 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1381 year: 2012 end-page: 1394 publication-title: Chem. Sci. – volume: 37 start-page: 308 year: 2008 end-page: 319 publication-title: Chem. Soc. Rev. – start-page: 1323 year: 1999 end-page: 1324 publication-title: Chem. Commun. – volume: 115 start-page: 765 year: 2015 end-page: 825 publication-title: Chem. Rev. – volume: 115 start-page: 612 year: 2015 end-page: 633 publication-title: Chem. Rev. – volume: 6 start-page: 7206 year: 2015 end-page: 7212 publication-title: Chem. Sci. – volume: 10 start-page: 107 year: 2015 end-page: 115 publication-title: ChemMedChem – volume: 5 start-page: 10633 year: 2020 end-page: 1064 publication-title: ACS Omega – volume: 17 start-page: 1833 year: 1988 end-page: 1836 publication-title: Chem. Lett. – volume: 190 start-page: 1 year: 2016 end-page: 6 publication-title: J. Fluorine Chem. – volume: 136 start-page: 3002 year: 2014 end-page: 3005 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 895 year: 2013 end-page: 902 publication-title: ACS Catal. – volume: 127 start-page: 992 year: 2006 end-page: 1012 publication-title: J. Fluorine Chem. – volume: 135 start-page: 1248 year: 2013 end-page: 1251 publication-title: J. Am. Chem. Soc. – volume: 585 start-page: 530 year: 2020 end-page: 537 publication-title: Nature – volume: 55 128 start-page: 341 349 year: 2016 2016 end-page: 344 352 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 352 start-page: 2691 year: 2010 end-page: 2707 publication-title: Adv. Synth. Catal. – volume: 52 125 start-page: 3949 4041 year: 2013 2013 end-page: 3952 4044 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 33 start-page: 1193 year: 2022 end-page: 1198 publication-title: Chin. Chem. Lett. – volume: 5 start-page: 17269 year: 2015 end-page: 17282 publication-title: RSC Adv. – volume: 1 start-page: 0088 year: 2017 publication-title: Nat. Chem. Rev. – volume: 56 start-page: 11548 year: 2020 end-page: 11564 publication-title: Chem. Commun. – volume: 56 129 start-page: 7266 7372 year: 2017 2017 end-page: 7270 7376 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 103 year: 2013 end-page: 108 publication-title: J. Chin. Chem. Soc. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_8_70_1 – ident: e_1_2_8_119_2 doi: 10.1002/chem.201200497 – ident: e_1_2_8_109_1 – ident: e_1_2_8_97_2 doi: 10.1002/anie.201701985 – ident: e_1_2_8_55_3 doi: 10.1002/ange.201709487 – volume: 49 start-page: 45 year: 2016 ident: e_1_2_8_48_2 publication-title: Aldrichimica Acta – ident: e_1_2_8_20_2 doi: 10.1002/cmdc.201402358 – ident: e_1_2_8_39_2 doi: 10.1021/cr800388c – ident: e_1_2_8_67_1 doi: 10.1021/jacs.1c11059 – ident: e_1_2_8_58_2 doi: 10.1038/s41586-020-2733-7 – ident: e_1_2_8_63_2 doi: 10.1021/acscatal.2c02434 – ident: e_1_2_8_74_2 doi: 10.1002/anie.201508266 – ident: e_1_2_8_1_1 doi: 10.1021/acsomega.0c00830 – ident: e_1_2_8_43_2 doi: 10.1002/ejoc.201800532 – ident: e_1_2_8_113_1 – ident: e_1_2_8_121_2 doi: 10.1039/b515623h – volume: 134 year: 2022 ident: e_1_2_8_77_3 publication-title: Angew. Chem. doi: 10.1002/ange.202115272 – ident: e_1_2_8_83_2 doi: 10.1039/C5QO00398A – ident: e_1_2_8_88_2 doi: 10.1021/ja00411a040 – ident: e_1_2_8_81_2 doi: 10.1055/s-2007-983902 – ident: e_1_2_8_18_1 – ident: e_1_2_8_99_1 – ident: e_1_2_8_59_2 doi: 10.1021/jacs.1c03760 – ident: e_1_2_8_105_3 doi: 10.1002/ange.201406088 – ident: e_1_2_8_4_2 doi: 10.1039/B711844A – ident: e_1_2_8_111_2 doi: 10.1002/anie.201710866 – ident: e_1_2_8_104_2 doi: 10.1039/c2sc00764a – ident: e_1_2_8_85_2 doi: 10.1039/C8RE00225H – ident: e_1_2_8_115_2 – ident: e_1_2_8_49_2 doi: 10.1002/anie.201602347 – ident: e_1_2_8_117_2 doi: 10.1063/1.3382344 – ident: e_1_2_8_56_2 doi: 10.1021/jacs.7b12590 – ident: e_1_2_8_9_2 doi: 10.1021/acs.jmedchem.7b01788 – ident: e_1_2_8_23_2 doi: 10.1021/cr500366b – ident: e_1_2_8_6_1 – ident: e_1_2_8_24_2 doi: 10.1021/cr5002386 – ident: e_1_2_8_82_2 doi: 10.1039/C4RA11860J – ident: e_1_2_8_47_2 doi: 10.1039/C6SC02422J – ident: e_1_2_8_32_2 doi: 10.1021/jo990566 – ident: e_1_2_8_15_2 doi: 10.1016/j.jfluchem.2006.05.006 – volume: 47 start-page: 306 year: 2015 ident: e_1_2_8_106_2 publication-title: Synthesis – ident: e_1_2_8_22_2 doi: 10.1038/nature10108 – ident: e_1_2_8_93_2 doi: 10.1039/b915620h – ident: e_1_2_8_34_2 doi: 10.1002/anie.201814457 – ident: e_1_2_8_51_2 doi: 10.1002/anie.201700135 – ident: e_1_2_8_84_2 doi: 10.1038/s41570-017-0088 – ident: e_1_2_8_37_2 doi: 10.1021/jo052652h – ident: e_1_2_8_96_3 doi: 10.1002/ange.201604776 – ident: e_1_2_8_26_2 doi: 10.1002/anie.201206566 – ident: e_1_2_8_62_2 – ident: e_1_2_8_19_2 doi: 10.1002/anie.202107041 – ident: e_1_2_8_35_1 – ident: e_1_2_8_13_2 doi: 10.1016/j.ejca.2019.08.033 – ident: e_1_2_8_95_2 doi: 10.1002/anie.201510494 – ident: e_1_2_8_38_1 – volume: 134 year: 2022 ident: e_1_2_8_68_2 publication-title: Angew. Chem. – ident: e_1_2_8_5_2 doi: 10.1002/anie.201300763 – ident: e_1_2_8_44_2 doi: 10.1021/ja500031m – ident: e_1_2_8_116_2 doi: 10.1021/jp050536c – ident: e_1_2_8_73_2 doi: 10.1021/ja511730k – ident: e_1_2_8_98_1 – ident: e_1_2_8_28_2 doi: 10.1016/j.tetlet.2007.05.107 – ident: e_1_2_8_79_1 – start-page: 18 year: 2004 ident: e_1_2_8_80_2 publication-title: Synlett – ident: e_1_2_8_76_1 – ident: e_1_2_8_51_3 doi: 10.1002/ange.201700135 – ident: e_1_2_8_86_2 doi: 10.1039/D0CC05194B – ident: e_1_2_8_96_2 doi: 10.1002/anie.201604776 – ident: e_1_2_8_26_3 doi: 10.1002/ange.201206566 – ident: e_1_2_8_108_2 doi: 10.1002/chem.202001905 – ident: e_1_2_8_14_1 – ident: e_1_2_8_107_2 doi: 10.1016/j.jfluchem.2016.08.003 – ident: e_1_2_8_72_2 doi: 10.1039/a903681d – ident: e_1_2_8_92_2 doi: 10.1126/science.1159979 – ident: e_1_2_8_3_1 – ident: e_1_2_8_10_2 doi: 10.1080/14756360701425014 – ident: e_1_2_8_34_3 doi: 10.1002/ange.201814457 – ident: e_1_2_8_103_1 – ident: e_1_2_8_8_2 doi: 10.1021/acs.jmedchem.5b00258 – ident: e_1_2_8_30_2 doi: 10.1021/ja410815u – ident: e_1_2_8_16_2 doi: 10.3390/ijms22031398 – ident: e_1_2_8_77_2 doi: 10.1002/anie.202115272 – ident: e_1_2_8_33_2 doi: 10.1021/acs.orglett.9b00054 – ident: e_1_2_8_41_2 doi: 10.1021/cr500257c – ident: e_1_2_8_68_1 doi: 10.1002/anie.202115456 – ident: e_1_2_8_49_3 doi: 10.1002/ange.201602347 – ident: e_1_2_8_71_2 doi: 10.1039/c39940002117 – year: 2022 ident: e_1_2_8_78_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_61_2 doi: 10.1016/j.chempr.2021.08.004 – ident: e_1_2_8_97_3 doi: 10.1002/ange.201701985 – ident: e_1_2_8_89_2 doi: 10.1246/cl.1988.1833 – ident: e_1_2_8_120_2 doi: 10.1002/aic.690480220 – ident: e_1_2_8_55_2 doi: 10.1002/anie.201709487 – ident: e_1_2_8_90_2 doi: 10.1021/ja0426138 – ident: e_1_2_8_7_2 doi: 10.1039/B610213C – ident: e_1_2_8_60_3 doi: 10.1002/ange.202106531 – ident: e_1_2_8_66_2 doi: 10.1016/j.cclet.2021.08.043 – ident: e_1_2_8_102_2 doi: 10.1021/acs.accounts.9b00028 – ident: e_1_2_8_40_2 doi: 10.1021/cs4003244 – ident: e_1_2_8_45_2 doi: 10.1039/C5SC03013G – ident: e_1_2_8_64_1 – ident: e_1_2_8_69_1 doi: 10.1038/s41467-022-28007-2 – ident: e_1_2_8_29_2 doi: 10.1021/ol902039q – ident: e_1_2_8_94_2 doi: 10.1021/ja311398j – ident: e_1_2_8_74_3 doi: 10.1002/ange.201508266 – ident: e_1_2_8_27_2 doi: 10.1002/adsc.201000482 – ident: e_1_2_8_42_2 doi: 10.1002/chem.201801702 – ident: e_1_2_8_65_2 doi: 10.1126/science.abg0781 – ident: e_1_2_8_75_2 doi: 10.1039/D1SC01574E – ident: e_1_2_8_101_2 doi: 10.1002/chem.201804873 – ident: e_1_2_8_11_1 – ident: e_1_2_8_17_1 doi: 10.1021/acs.jmedchem.8b01222 – ident: e_1_2_8_52_2 doi: 10.1021/acs.joc.6b01620 – ident: e_1_2_8_95_3 doi: 10.1002/ange.201510494 – ident: e_1_2_8_46_2 doi: 10.1021/jacs.5b13450 – ident: e_1_2_8_25_2 doi: 10.1021/cr500277b – ident: e_1_2_8_2_1 doi: 10.1016/j.isci.2020.101467 – ident: e_1_2_8_50_2 doi: 10.1021/jacs.7b06847 – ident: e_1_2_8_118_2 doi: 10.1002/jcc.21759 – ident: e_1_2_8_5_3 doi: 10.1002/ange.201300763 – ident: e_1_2_8_112_2 doi: 10.1039/c3cc43019g – ident: e_1_2_8_105_2 doi: 10.1002/anie.201406088 – ident: e_1_2_8_21_1 – ident: e_1_2_8_100_2 doi: 10.1021/cs400088e – ident: e_1_2_8_114_2 – ident: e_1_2_8_54_2 doi: 10.1002/chem.201605919 – ident: e_1_2_8_110_2 doi: 10.3762/bjoc.11.162 – ident: e_1_2_8_31_2 doi: 10.1021/ol3000348 – ident: e_1_2_8_60_2 doi: 10.1002/anie.202106531 – ident: e_1_2_8_91_2 doi: 10.1021/ja0565323 – ident: e_1_2_8_12_2 doi: 10.1002/jccs.199400013 – ident: e_1_2_8_36_2 doi: 10.1021/jo034512i – ident: e_1_2_8_53_2 doi: 10.1021/jacs.7b10755 – ident: e_1_2_8_122_2 doi: 10.1039/C7CP04913G – ident: e_1_2_8_57_2 doi: 10.1021/jacs.0c03881 – volume: 134 start-page: 334 year: 2018 ident: e_1_2_8_111_3 publication-title: Angew. Chem. – ident: e_1_2_8_87_1 |
SSID | ssj0009633 |
Score | 2.4765909 |
Snippet | Selective defluorinative functionalization of trifluoromethyl ketones is a long‐standing challenge owing to the exhaustive mode of the process. To meet the... Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202203428 |
SubjectTerms | Access control Agrochemicals Alkenes Catalysis Catalysts Chemistry cyclic ketals C−F bond activation density functional calculations Divergence fluorinated solvent gem-difluoromethylene unit Ketones Molecular structure Photoredox catalysis Solvents Stereoselectivity Tetrahydrofuran |
Title | Photoredox Catalyzed Single C−F Bond Activation of Trifluoromethyl Ketones: A Solvent Controlled Divergent Access of gem‐Difluoromethylene Containing Scaffolds |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202203428 https://www.ncbi.nlm.nih.gov/pubmed/36445786 https://www.proquest.com/docview/2779395017 https://www.proquest.com/docview/2742657897 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VLu2l0F-2UGSkSj0FsnYSZ3tbZbtCrahQFyRuke3YtCJsKnZXAk4cOVZ9hb7ZPkln4k3otodK5ZYo_vfMeMaZ-QbgjUxDZbSWgUlRBEaSErmrUAcyTlRXpUrEmq4GDj4l-8fRh5P45Lcofo8P0V64EWfU8poYXOnJ3h1oKM6JIsk5JxA7ivYlhy3Sij7f4Uchdflc8pEMCIO1QW0M-d5y9eVT6S9Vc1lzrY-e4RqoZtDe4-RsdzbVu-b6DzzH-8xqHR4v9FLW94T0BB7Y8VN4mDXp4J7Bz8MvFdrntqguWUZ3PlfXtmAjPPlKy7L57Y8hoxTFrG-ahGmscuzo4qsrZxVhIiBFlOyjJfDvyTvWZ6OqJF9Llnln-RJbG5CTCMV6YSsUvkAtnNrz-c33wVIzKJ_raj67BRsZ5VxVFpPncDx8f5TtB4sMD4ERHFm064yI0abqaUFIhkhQiZE2lDqyHEk8tKlL0lBwIdDu487pJOTYf6hTbmSktHgBq2Mc9gawbmF6xhVdqaWIrHCKu8IIa9H-M3gY6A68bXY4_-aBPHIP2cxzWvS8XfQObDUEkC8YepJziYKsF6P86sBO-xm3gP6vqLGtZlQG1R2UgD0s89ITTtuVQL0TPyUd4PX2_2MMOQFitG-v_qfSJjzCZ1GH30dbsDq9mNnXqEBN9Tas8Ohwu2aVX1a3F9o |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8WChgJxClt1k7iLBKHVZbVlm0rxG6l3oLt2IAIG9TdFbQnjhwRr8AT9FX6CH0SZpJNqoUDElIPHBPbE_-MZ8bOzDcAj2XsK6O19EyMIjCQlMhd-dqTYaTaKlYi1HQ1sLMbDfaCl_vh_goc17EwFT5Ec-FGO6OU17TB6UJ68ww1FAdFoeScE4pdvPCrHNrDz3hqmz7f6uESP-G8_2KcDLxFYgHPCI6c0XZGhGjKd7QgAD0cR2Sk9aUOLMeZ9W3sotgXXAg8bnDndORzY6yvY25koLRAuhfgIqURJ7j-3uszxCrk5yp7fSA9Qn2tcSJ9vrnc32U9-Idxu2wrl8qufwVO6mmqfFw-bMxnesMc_YYg-V_N41W4vDC9WbfaK9dgxU6uw1pSZ7y7AT9fvStmBSGofmEJXWsdHtmMjVC555Ylp99-9BllYWZdU-eEY4Vj44P3Lp8XBPuATJ-zoSV88-kz1mWjIid3UpZU8QA5UuuRHwyFsyEVitAgCm_tx9Ov33tLZFAFlc2qBB5sZJRzRZ5Nb8LeuczRLVidYLfvAGtnpmNc1pZaisAKp7jLjLAWj7gG9Z1uwdOapdJPFVZJWqFS85QWOW0WuQXrNcelC5k1TblEWd0JUUS34FFTjEtAv5DUxBZzqoMWHQr5Dta5XXFq8ymBpjUWRS3gJb_9pQ8pYX40T3f_pdFDWBuMd7bT7a3d4T24hO9FiTYQrMPq7GBu76O9ONMPyh3K4M15s_Iv3I10uA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVgIuiN-ytFBXAnGKmrWTOIvEYZVl1bKlWmlbqbdgO3aLFDZVtytoTxw5or5CX4Bn6pMwk79qxQEJqcck9sT22OMZe-YbgNcy9pXRWnomRhEYSErkrnztyTBSXRUrEWo6Gvi0F20fBB8Pw8Ml-N3EwlT4EO2BG62MUl7TAj_J3NYNaCj2iSLJOScQu7h2qxzZ829otM3e7wyQw284H37YT7a9Oq-AZwTHidF1RoSoyfe0IPw87EZkpPWlDizHgfVt7KLYF1wItDa4czryuTHW1zE3MlBaIN07sEI3jORExoPxDcxvVCevD6RHoK8NTKTPtxbbu7gN_qXbLqrK5V43fAgPaiWV9atZ9QiW7PQx3Eua3HBP4Gp8XKCxbrPiO0voAOj8wmZsgttgblly_fNyyChfMeubJnsaKxzbP_3i8nlBAAk4PXI2soQEPnvH-mxS5OR4yZLKcz5HagPyGKHAL6RCsQxE4ch-vf7xa7BABoV1Wa1KdcEmRjlX5NnsKRzcCluewfIUm_0cWDczPeOyrtRSBFY4xV1mhLVoDBrcGXQH3jajn55UqB5phd_MU-JT2vKpA-sNc9J6dc9SLlGq9UIUZh3YbD8jC-iyRU1tMacyqPugOOxhmdWKqe2vBCqh-CnqAC-5_I82pISO0T69-J9KG3B3PBimuzt7ozW4j69FGZYfrMPy2encvkTF6ky_Kucyg8-3vXj-ANRwMhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoredox+Catalyzed+Single+C-F+Bond+Activation+of+Trifluoromethyl+Ketones%3A+A+Solvent+Controlled+Divergent+Access+of+gem-Difluoromethylene+Containing+Scaffolds&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Ghosh%2C+Soumen&rft.au=Qu%2C+Zheng-Wang&rft.au=Roy%2C+Sourav&rft.au=Grimme%2C+Stefan&rft.date=2023-02-24&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=29&rft.issue=12&rft.spage=e202203428&rft_id=info:doi/10.1002%2Fchem.202203428&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |