Coupled optical and thermal analysis of large aperture parabolic trough solar collector
Summary Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of the power plant. In the present study, coupled flux distribution and thermal analysis of large aperture PTSC are presented by incorpor...
Saved in:
Published in | International journal of energy research Vol. 45; no. 3; pp. 4630 - 4651 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Inc
10.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of the power plant. In the present study, coupled flux distribution and thermal analysis of large aperture PTSC are presented by incorporating the limb darkening effect. MATLAB tool is used to develop the in‐house model to obtain the circumferential flux distribution on the absorber surface. The analyses are performed for different Sun shape models, the number of rays, aperture, rim angle, slope error, and receiver displacement on the flux distribution. The flux distribution for large aperture PTSC such as 7, 8, 9, and 10 m has also been studied with an available absorber diameter of 70, 80, 90 and 110 mm. Better manufacturing standards need to be incorporated to improve the performance of the large aperture PTSC with available receiver sizes. There is no significant effect on the intercept factor for the upward and downward displacement of larger aperture PTSC receiver, but the downward displacement of the conventional PTSC receiver drastically decreases the intercept factor. Based on the flux distribution analysis, a collector geometry having an aperture of 9 m with an absorber diameter of 110 mm has been considered for the thermal analysis. The effect of variation of the mass flow rate, aperture, and various heat transfer fluids are studied on the PTSC thermal performance. Liquid sodium offers the least thermal gradient around the absorber circumference, which leads to less deformation of the receiver from the focal length.
In this article coupled optical‐thermal analysis of large aperture PTSC is performed to improve the nonuniformity of the flux distribution and minimise the thermal gradient on the absorber circumference. The analysis is performed for the various aperture sizes such as 5.77, 7, 8, 9 and 10 m with commercially available absorber diameter, that is, 70, 80, 90 and 110 mm. Furthermore, the effect of receiver displacement from the focal plane is also performed. |
---|---|
AbstractList | Summary
Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of the power plant. In the present study, coupled flux distribution and thermal analysis of large aperture PTSC are presented by incorporating the limb darkening effect. MATLAB tool is used to develop the in‐house model to obtain the circumferential flux distribution on the absorber surface. The analyses are performed for different Sun shape models, the number of rays, aperture, rim angle, slope error, and receiver displacement on the flux distribution. The flux distribution for large aperture PTSC such as 7, 8, 9, and 10 m has also been studied with an available absorber diameter of 70, 80, 90 and 110 mm. Better manufacturing standards need to be incorporated to improve the performance of the large aperture PTSC with available receiver sizes. There is no significant effect on the intercept factor for the upward and downward displacement of larger aperture PTSC receiver, but the downward displacement of the conventional PTSC receiver drastically decreases the intercept factor. Based on the flux distribution analysis, a collector geometry having an aperture of 9 m with an absorber diameter of 110 mm has been considered for the thermal analysis. The effect of variation of the mass flow rate, aperture, and various heat transfer fluids are studied on the PTSC thermal performance. Liquid sodium offers the least thermal gradient around the absorber circumference, which leads to less deformation of the receiver from the focal length.
In this article coupled optical‐thermal analysis of large aperture PTSC is performed to improve the nonuniformity of the flux distribution and minimise the thermal gradient on the absorber circumference. The analysis is performed for the various aperture sizes such as 5.77, 7, 8, 9 and 10 m with commercially available absorber diameter, that is, 70, 80, 90 and 110 mm. Furthermore, the effect of receiver displacement from the focal plane is also performed. Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of the power plant. In the present study, coupled flux distribution and thermal analysis of large aperture PTSC are presented by incorporating the limb darkening effect. MATLAB tool is used to develop the in‐house model to obtain the circumferential flux distribution on the absorber surface. The analyses are performed for different Sun shape models, the number of rays, aperture, rim angle, slope error, and receiver displacement on the flux distribution. The flux distribution for large aperture PTSC such as 7, 8, 9, and 10 m has also been studied with an available absorber diameter of 70, 80, 90 and 110 mm. Better manufacturing standards need to be incorporated to improve the performance of the large aperture PTSC with available receiver sizes. There is no significant effect on the intercept factor for the upward and downward displacement of larger aperture PTSC receiver, but the downward displacement of the conventional PTSC receiver drastically decreases the intercept factor. Based on the flux distribution analysis, a collector geometry having an aperture of 9 m with an absorber diameter of 110 mm has been considered for the thermal analysis. The effect of variation of the mass flow rate, aperture, and various heat transfer fluids are studied on the PTSC thermal performance. Liquid sodium offers the least thermal gradient around the absorber circumference, which leads to less deformation of the receiver from the focal length. |
Author | K., Ravi Kumar Malan, Anish |
Author_xml | – sequence: 1 givenname: Anish surname: Malan fullname: Malan, Anish organization: Indian Institute of Technology Delhi – sequence: 2 givenname: Ravi Kumar orcidid: 0000-0002-5739-3744 surname: K. fullname: K., Ravi Kumar email: krk@ces.iitd.ac.in organization: Indian Institute of Technology Delhi |
BookMark | eNp10E1LAzEQBuAgFWyr-BcCHjzI1mQ3u9kcpdQPEARR7C2k2UmbkjZrkkX67922nkRPMzAPL8M7QoOt3wJCl5RMKCH5LYRJRfP6BA0pESKjlM0HaEiKqsgE4fMzNIpxTUh_o3yIPqa-ax002LfJauWw2jY4rSBsDrtyu2gj9gY7FZaAVQshdQFwq4JaeGc1TsF3yxWOvhdYe-dAJx_O0alRLsLFzxyj9_vZ2_Qxe355eJrePWe6yOs6o5obkwMAE6Ygijd1w4WhlRLCcAZQU1aqUpMq50IDXZSLipbAaFMWxugCijG6Oua2wX92EJNc-y70f0eZs5pRzlhZ9yo7Kh18jAGM1DapZP02BWWdpETuu5MQ5L673l__8m2wGxV2f8ibo_yyDnb_MTl7PehvCyl_YA |
CitedBy_id | crossref_primary_10_1016_j_renene_2022_04_141 crossref_primary_10_30521_jes_952658 crossref_primary_10_30521_jes_952627 crossref_primary_10_1002_htj_22406 crossref_primary_10_24113_ijoscience_v7i11_418 crossref_primary_10_1016_j_seta_2021_101305 crossref_primary_10_1016_j_applthermaleng_2024_122496 crossref_primary_10_1016_j_jclepro_2021_127550 crossref_primary_10_1016_j_renene_2021_12_105 crossref_primary_10_1007_s10668_024_05159_3 crossref_primary_10_1016_j_solener_2023_112148 crossref_primary_10_1007_s10098_021_02205_w crossref_primary_10_1016_j_tsep_2022_101543 crossref_primary_10_1002_ente_202100533 crossref_primary_10_2139_ssrn_4048140 |
Cites_doi | 10.1115/1.3266115 10.1016/0306-2619(94)90041-8 10.4028/www.scientific.net/AMR.860-863.180 10.1115/1.3268106 10.1115/1.3035811 10.1016/j.applthermaleng.2014.05.051 10.1016/j.solener.2015.11.036 10.1016/j.renene.2017.10.047 10.1115/ES2011-54683 10.1016/j.solener.2006.10.006 10.1016/j.rser.2011.08.009 10.1002/er.5157 10.1080/14786450903302808 10.1016/j.egypro.2015.03.029 10.1002/er.4165 10.2172/7267964 10.1016/j.ijheatmasstransfer.2014.11.055 10.1016/j.apenergy.2012.10.021 10.1016/j.solener.2016.06.045 10.1016/j.solener.2017.01.055 10.1615/IHMTC-2019.410 10.2172/900712 10.1016/j.renene.2010.07.017 10.1016/j.solener.2013.11.005 10.1115/1.3027507 10.2172/15004820 10.1016/j.applthermaleng.2019.114070 10.1016/j.scs.2017.08.031 10.1364/AO.24.000296 10.1016/j.apenergy.2015.03.079 10.1016/j.enconman.2019.112030 10.1016/j.pecs.2018.11.001 10.1016/j.egypro.2014.03.196 10.1016/j.solener.2013.02.020 10.1016/j.apenergy.2018.05.014 10.1002/er.5271 10.1016/j.apenergy.2017.05.047 10.1016/j.solener.2012.02.039 10.1016/j.seta.2020.100696 10.1016/j.apenergy.2013.04.067 10.1016/0038-092X(86)90130-1 10.1016/j.energy.2014.06.063 10.2172/958386 10.1002/er.4554 10.1115/1.2710249 10.1016/j.solener.2018.07.068 10.1016/0038-092X(57)90167-6 10.1016/0196-8904(94)90040-X 10.2172/70756 10.1016/j.molliq.2020.114151 10.1016/j.renene.2020.06.059 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.6128 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
EndPage | 4651 |
ExternalDocumentID | 10_1002_er_6128 ER6128 |
Genre | article |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM F00 G-S G.N GNP GODZA H.T H.X HHY HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS CITATION 7SP 7ST 7TB 7TN 8FD C1K EBS F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-c3288-1c7ff2eee49f30a7d8d79f16a99f74ee8145a5c06279ce1b5b615e41d53ffc3e3 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Wed Aug 13 11:14:19 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Tue Jul 01 01:41:33 EDT 2025 Wed Jan 22 16:30:07 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3288-1c7ff2eee49f30a7d8d79f16a99f74ee8145a5c06279ce1b5b615e41d53ffc3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5739-3744 |
PQID | 2484174458 |
PQPubID | 996365 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2484174458 crossref_citationtrail_10_1002_er_6128 crossref_primary_10_1002_er_6128 wiley_primary_10_1002_er_6128_ER6128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 March 2021 |
PublicationDateYYYYMMDD | 2021-03-10 |
PublicationDate_xml | – month: 03 year: 2021 text: 10 March 2021 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2014; 70 2015; 148 1986; 37 2012; 16 2019; 160 2018; 42 1979 1985; 24 1986; 108 2018; 173 2015; 82 2010; 29 2017; 35 2013; 111 1994; 35 2020; 44 2017; 201 2019; 199 2014; 99 1980; 102 2019; 71 2007; 129 2012 2018; 225 1976; 2 2016; 124 2014; 49 2020; 39 1994; 47 2013; 103 2013; 92 1994 2005 2003 2009; 131 2011; 36 1957; 1 2011; 133 2015; 69 2018; 119 2019; 43 2016; 135 2020; 159 2014; 860–863 2019 2007; 81 2014 2014; 73 2017; 147 2012; 86 2020; 319 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Kotzé JP (e_1_2_8_50_1) 2012 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 |
References_xml | – volume: 35 start-page: 786 year: 2017 end-page: 798 article-title: Optical modeling and investigation of sun tracking parabolic trough solar collector basing on ray tracing 3Dimensions‐4Rays publication-title: Sustain Cities Soc – year: 2005 – volume: 81 start-page: 761 year: 2007 end-page: 767 article-title: Reverse ray‐tracing model for the performance evaluation of stationary solar concentrators publication-title: Sol Energy – volume: 2 start-page: 235 year: 1976 end-page: 252 – volume: 860–863 start-page: 180 year: 2014 end-page: 190 article-title: Development of empirical equations for irradiance profile of a standard parabolic trough collector using Monte Carlo ray tracing technique publication-title: Adv Mat Res – volume: 1 start-page: 19 year: 1957 end-page: 22 article-title: The flux through the focal spot of a solar furnace publication-title: Sol Energy – volume: 99 start-page: 134 year: 2014 end-page: 151 article-title: Deflection and stresses in absorber tube of solar parabolic trough due to circumferential and axial flux variations on absorber tube supported at multiple points publication-title: Sol Energy – volume: 131 start-page: 0110141 year: 2009 end-page: 0110145 article-title: Slope error measurements of parabolic troughs using the reflected image of the absorber tube publication-title: J Sol Energy Eng Trans ASME – volume: 108 start-page: 275 year: 1986 end-page: 281 article-title: Derivation of universal error parameters for comprehensive optical analysis of parabolic troughs publication-title: J Sol Energy Eng Trans ASME – volume: 43 start-page: 1 issue: 9 year: 2019 end-page: 17 article-title: Heat transfer analysis of receiver for large aperture parabolic trough solar collector publication-title: Int J Energy Res – volume: 147 start-page: 189 year: 2017 end-page: 201 article-title: A detailed study on the optical performance of parabolic trough solar collectors with Monte Carlo ray tracing method based on theoretical analysis publication-title: Sol Energy – volume: 16 start-page: 449 year: 2012 end-page: 465 article-title: Solar energy: markets, economics and policies publication-title: Renew Sustain Energy Rev – volume: 135 start-page: 703 year: 2016 end-page: 718 article-title: Influence of optical errors on the thermal and thermodynamic performance of a solar parabolic trough receiver publication-title: Sol Energy – year: 1979 – year: 2014 – year: 1994 – volume: 159 start-page: 1215 year: 2020 end-page: 1223 article-title: Improving the performance of large‐aperture parabolic trough solar concentrator using semi‐circular absorber tube with external fin and flat‐plate radiation shield publication-title: Renew Energy – volume: 39 start-page: 100696 year: 2020 article-title: Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts publication-title: Sustainab Energy Technol Assess – volume: 133 start-page: 795 year: 2011 end-page: 801 article-title: Numerical analysis of heat loss from a parabolic trough absorber tube with active vacuum system publication-title: ASME 2011 5th Int Conf Energy Sustain ES – volume: 111 start-page: 581 year: 2013 end-page: 592 article-title: Heat transfer analysis and numerical simulation of a parabolic trough solar collector publication-title: Appl Energy – volume: 103 start-page: 73 year: 2013 end-page: 84 article-title: Thermal analysis of solar receiver pipes with superheated steam publication-title: Appl Energy – volume: 37 start-page: 335 year: 1986 end-page: 345 article-title: Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation publication-title: Sol Energy – volume: 69 start-page: 250 year: 2015 end-page: 258 article-title: The simulation model of flux density distribution on an absorber tube publication-title: Energy Procedia – volume: 92 start-page: 26 year: 2013 end-page: 40 article-title: Analytical expression for circumferential and axial distribution of absorbed flux on a bent absorber tube of solar parabolic trough concentrator publication-title: Sol Energy – volume: 73 start-page: 606 year: 2014 end-page: 617 article-title: Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non‐uniform heat flux at different rim angles and concentration ratios publication-title: Energy – volume: 42 start-page: 4512 year: 2018 end-page: 4521 article-title: An improved model for predicting the performance of parabolic trough solar collectors publication-title: Int J Energy Res – volume: 225 start-page: 135 year: 2018 end-page: 174 article-title: Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review publication-title: Appl Energy – start-page: 11 year: 2012 end-page: 14 – volume: 29 start-page: 19 issue: 1 year: 2010 end-page: 36 article-title: Optical simulation of a parabolic solar trough collector publication-title: Int J Sustainab Energy – year: 2019 – volume: 131 start-page: 011004 year: 2009 article-title: Experimental verification of optical modeling of parabolic trough collectors by flux measurement publication-title: J Sol Energy Eng – volume: 148 start-page: 282 year: 2015 end-page: 293 article-title: Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm publication-title: Appl Energy – volume: 124 start-page: 184 year: 2016 end-page: 197 article-title: Inverse Monte Carlo ray‐tracing method (IMCRT) applied to line‐focus reflectors publication-title: Sol Energy – volume: 70 start-page: 462 year: 2014 end-page: 476 article-title: A three‐dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid publication-title: Appl Therm Eng – volume: 160 start-page: 114070 year: 2019 article-title: Optical performance of parabolic trough solar collectors under condition of multiple optical factors publication-title: Appl Therm Eng – volume: 36 start-page: 976 year: 2011 end-page: 985 article-title: A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector publication-title: Renew Energy – volume: 199 start-page: 112030 year: 2019 article-title: A new concept of solar thermal power plants with large‐aperture parabolic‐trough collectors and sCO2 as working fluid publication-title: Energ Conver Manage – year: 2003 – volume: 119 start-page: 844 year: 2018 end-page: 862 article-title: Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs‐Therminol® VP‐1 nanofluid publication-title: Renew Energy – volume: 102 start-page: 16 year: 1980 end-page: 21 article-title: Incidence‐angle modifier and average optical efficiency of parabolic trough collectors publication-title: J Sol Energy Eng – volume: 82 start-page: 236 year: 2015 end-page: 249 article-title: Performance analysis of a parabolic trough solar collector with non‐uniform solar flux conditions publication-title: Int J Heat Mass Transf – volume: 86 start-page: 1770 year: 2012 end-page: 1784 article-title: Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method publication-title: Sol Energy – volume: 44 start-page: 3711 year: 2020 end-page: 3723 article-title: Design, modeling, and optimization of a dual reflector parabolic trough concentration system publication-title: Int J Energy Res – volume: 35 start-page: 575 year: 1994 end-page: 582 article-title: Effect of optical errors on flux distribution around the absorber tube of a parabolic trough concentrator publication-title: Energ Conver Manage – volume: 173 start-page: 291 year: 2018 end-page: 303 article-title: A tool for fast flux distribution calculation of parabolic trough solar concentrators publication-title: Sol Energy – volume: 71 start-page: 81 year: 2019 end-page: 117 article-title: Alternative designs of parabolic trough solar collectors publication-title: Prog Energy Combust Sci – volume: 44 start-page: 5117 year: 2020 end-page: 5164 article-title: An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors publication-title: Int J Energy Res – volume: 129 start-page: 147 year: 2007 end-page: 152 article-title: Parabolic trough optical performance analysis techniques publication-title: J Sol Energy Eng Trans ASME – volume: 24 start-page: 296 year: 1985 article-title: Solar limb darkening and ray trace evaluation of solar concentrators publication-title: Appl Optics – volume: 319 year: 2020 article-title: Thermal and thermodynamic benchmarking of liquid heat transfer fluids in a high concentration ratio parabolic trough solar collector system publication-title: J Mol Liq – volume: 201 start-page: 60 year: 2017 end-page: 68 article-title: A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors publication-title: Appl Energy – volume: 49 start-page: 1848 year: 2014 end-page: 1857 article-title: ULTIMATE TROUGH® ‐ fabrication, erection and commissioning of the world's largest parabolic trough collector publication-title: Energy Procedia – volume: 47 start-page: 341 year: 1994 end-page: 354 article-title: Design and performance characteristics of a parabolic‐trough solar‐collector system publication-title: Appl Energy – ident: e_1_2_8_6_1 doi: 10.1115/1.3266115 – ident: e_1_2_8_9_1 doi: 10.1016/0306-2619(94)90041-8 – ident: e_1_2_8_29_1 doi: 10.4028/www.scientific.net/AMR.860-863.180 – ident: e_1_2_8_8_1 doi: 10.1115/1.3268106 – ident: e_1_2_8_12_1 doi: 10.1115/1.3035811 – ident: e_1_2_8_16_1 doi: 10.1016/j.applthermaleng.2014.05.051 – ident: e_1_2_8_22_1 doi: 10.1016/j.solener.2015.11.036 – ident: e_1_2_8_45_1 doi: 10.1016/j.renene.2017.10.047 – ident: e_1_2_8_54_1 – ident: e_1_2_8_14_1 doi: 10.1115/ES2011-54683 – ident: e_1_2_8_25_1 doi: 10.1016/j.solener.2006.10.006 – ident: e_1_2_8_3_1 doi: 10.1016/j.rser.2011.08.009 – ident: e_1_2_8_46_1 doi: 10.1002/er.5157 – ident: e_1_2_8_47_1 doi: 10.1080/14786450903302808 – ident: e_1_2_8_18_1 doi: 10.1016/j.egypro.2015.03.029 – ident: e_1_2_8_40_1 doi: 10.1002/er.4165 – ident: e_1_2_8_4_1 doi: 10.2172/7267964 – ident: e_1_2_8_26_1 doi: 10.1016/j.ijheatmasstransfer.2014.11.055 – ident: e_1_2_8_39_1 doi: 10.1016/j.apenergy.2012.10.021 – ident: e_1_2_8_27_1 doi: 10.1016/j.solener.2016.06.045 – ident: e_1_2_8_21_1 doi: 10.1016/j.solener.2017.01.055 – ident: e_1_2_8_57_1 doi: 10.1615/IHMTC-2019.410 – ident: e_1_2_8_5_1 doi: 10.2172/900712 – ident: e_1_2_8_23_1 doi: 10.1016/j.renene.2010.07.017 – ident: e_1_2_8_49_1 doi: 10.1016/j.solener.2013.11.005 – ident: e_1_2_8_11_1 doi: 10.1115/1.3027507 – ident: e_1_2_8_38_1 doi: 10.2172/15004820 – ident: e_1_2_8_52_1 doi: 10.1016/j.applthermaleng.2019.114070 – ident: e_1_2_8_53_1 – ident: e_1_2_8_19_1 doi: 10.1016/j.scs.2017.08.031 – ident: e_1_2_8_31_1 doi: 10.1364/AO.24.000296 – ident: e_1_2_8_17_1 doi: 10.1016/j.apenergy.2015.03.079 – ident: e_1_2_8_56_1 – ident: e_1_2_8_44_1 doi: 10.1016/j.enconman.2019.112030 – ident: e_1_2_8_2_1 doi: 10.1016/j.pecs.2018.11.001 – ident: e_1_2_8_32_1 doi: 10.1016/j.egypro.2014.03.196 – ident: e_1_2_8_48_1 doi: 10.1016/j.solener.2013.02.020 – ident: e_1_2_8_33_1 – ident: e_1_2_8_35_1 doi: 10.1016/j.apenergy.2018.05.014 – ident: e_1_2_8_34_1 doi: 10.1002/er.5271 – ident: e_1_2_8_20_1 doi: 10.1016/j.apenergy.2017.05.047 – ident: e_1_2_8_24_1 doi: 10.1016/j.solener.2012.02.039 – ident: e_1_2_8_42_1 doi: 10.1016/j.seta.2020.100696 – ident: e_1_2_8_55_1 – start-page: 11 volume-title: Proceedings of the Solar PACES 2012 International Conference year: 2012 ident: e_1_2_8_50_1 – ident: e_1_2_8_15_1 doi: 10.1016/j.apenergy.2013.04.067 – ident: e_1_2_8_7_1 doi: 10.1016/0038-092X(86)90130-1 – ident: e_1_2_8_28_1 doi: 10.1016/j.energy.2014.06.063 – ident: e_1_2_8_58_1 doi: 10.2172/958386 – ident: e_1_2_8_36_1 doi: 10.1002/er.4554 – ident: e_1_2_8_13_1 doi: 10.1115/1.2710249 – ident: e_1_2_8_51_1 doi: 10.1016/j.solener.2018.07.068 – ident: e_1_2_8_30_1 doi: 10.1016/0038-092X(57)90167-6 – ident: e_1_2_8_10_1 doi: 10.1016/0196-8904(94)90040-X – ident: e_1_2_8_37_1 doi: 10.2172/70756 – ident: e_1_2_8_41_1 doi: 10.1016/j.molliq.2020.114151 – ident: e_1_2_8_43_1 doi: 10.1016/j.renene.2020.06.059 |
SSID | ssj0009917 |
Score | 2.3722892 |
Snippet | Summary
Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital... Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4630 |
SubjectTerms | Absorbers Analysis Apertures Capital costs Computational fluid dynamics Darkening Deformation Diameters Displacement Distribution Flow rates Fluctuations Fluids Flux flux distribution Heat transfer large aperture Limb darkening limb darkening effect Liquid sodium Mass flow rate parabolic trough Performance enhancement Power plants receiver displacement Sodium Solar collectors Temperature gradients Thermal analysis |
Title | Coupled optical and thermal analysis of large aperture parabolic trough solar collector |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.6128 https://www.proquest.com/docview/2484174458 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHf4vTKTkMb93WNlmbo4yNIehhOBxeSn68XJzr2LqLf715afdDRRBPLTSB0OQl35e8fB4hTaGVSWVqA552koA5rzYQPIIAYWxChqrDFG7oPz51h2P2MOGTnVRfJR9is-GGluHnazRwqZbtLTQUFi23OuM1X4zUQjk02oKjnOpJ1qeUzv2blNdlsWa7qvd1HdqKy12J6teYwRF5XbeuDC15a60K1dIf38CN_2r-MTmslCe9L4fKCdmD2Sk52OERnpGXXr6aT8HQfO63uKmcGYoK8d2_l_gSmls6xfhxKuewwAMIivxwhYBhWvisP3SJDjPFMeYPBc7JeNB_7g2DKvNCoOPImU6oE2sjAGDCxh2ZmNQkwoZdKYRNGEAaMi65RsSx0BAqrpwwAhYaHlurY4gvSG2Wz-CSUMMZGCGF83MiZo2TY13NbBzqUDvXNTJ1crfuh0xXWHLMjjHNSqBylMEiwz9VJ3RTcF6SOH4Waaw7MqtMcZlFLGXO7WLcfW76HvmtetYf4ePqb8WuyX6E8S0-tq9BasViBTdOoBTq1o_FT0xL4rY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMcbxYN68LcRRe2BeBuwrWXr0SAEFTgQiCQelq19vYhA-HHxr7evGz_UmBhPW7I22da-9fte3z6PkKKQiQrjUDs8rAQOM16tI7gHDsLYROwmFZZgQL_dqTb77GnAB1lWJf4Lk_IhVgE3tAz7vUYDx4B0eU0NhWnJLM_hNtnBet7IzX_ortFRRvcEy31K4wAO0h9msWs56_h1JVrLy02RaleZxiF5Xd5fmlzyVlrMk5L8-IZu_N8DHJGDTHzS-3S2HJMtGJ2Q_Q0k4Sl5qY0XkyEoOp7YKDeNR4qiSHy35ynBhI41HWIKOY0nMMU9CIoI8QQZw3RuC__QGfrMFKeZ3Rc4I_1GvVdrOlnxBUf6nrEeVwZaewDAhPYrcaBCFQjtVmMhdMAAQpfxmEukHAsJbsITo42AuYr7Wksf_HOSG41HcEGo4gyUiIVxdTymlVFkVcm070pXGu_VU3lytxyISGZkciyQMYxSprIXwTTCN5UndNVwksI4fjYpLEcyyqxxFnksZMbzYtxcLtoh-a17VO_i4fJvzW7JbrPXbkWtx87zFdnzMN3FpvoVSG4-XcC10Svz5MZOzE937ubS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDThB98C5Op-Zh-Na5tsnaPMouzNuQ4XD4Utrk5MW5lV1e_PTmpN1FRRCfWmgCoSen-Z_k9HcIKQuZqDAOtcPDauAwE9U6gnvgIIxNxG5SZQlu6D92au0eu-vz_kqpr4wPsdhwQ8-w32t08FTp6yU0FMYVszqH62SD1aoCqzY0uktylJE9wfyY0sR__ex_Wex6nXf8uhAt1eWqRrWLTGuXvM6Hl-WWvFVm06QiP76RG_81_j2yk0tPepPNlX2yBsMDsr0CJDwkL_XRLB2AoqPU7nHTeKgoSsR3e5_xS-hI0wEmkNM4hTGeQFAEiCdIGKZTW_aHTjBipjjJ7KnAEem1ms_1tpOXXnCk7xnfcWWgtQcATGi_GgcqVIHQbi0WQgcMIHQZj7lExrGQ4CY8McoImKu4r7X0wT8mheFoCCeEKs5AiViYQMdjWhk9VpNM-650pYldPVUkV3M7RDLnkmN5jEGUEZW9CMYRvqkioYuGaYbi-NmkNDdklPviJPJYyEzcxbh5XLYW-a171Ozi5fRvzS7J5lOjFT3cdu7PyJaHuS42z69ECtPxDM6NWJkmF3ZafgLh7-WB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupled+optical+and+thermal+analysis+of+large+aperture+parabolic+trough+solar+collector&rft.jtitle=International+journal+of+energy+research&rft.au=Malan%2C+Anish&rft.au=K.%2C+Ravi+Kumar&rft.date=2021-03-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=45&rft.issue=3&rft.spage=4630&rft.epage=4651&rft_id=info:doi/10.1002%2Fer.6128&rft.externalDBID=10.1002%252Fer.6128&rft.externalDocID=ER6128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |