Coupled optical and thermal analysis of large aperture parabolic trough solar collector

Summary Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of the power plant. In the present study, coupled flux distribution and thermal analysis of large aperture PTSC are presented by incorpor...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 45; no. 3; pp. 4630 - 4651
Main Authors Malan, Anish, K., Ravi Kumar
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 10.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of the power plant. In the present study, coupled flux distribution and thermal analysis of large aperture PTSC are presented by incorporating the limb darkening effect. MATLAB tool is used to develop the in‐house model to obtain the circumferential flux distribution on the absorber surface. The analyses are performed for different Sun shape models, the number of rays, aperture, rim angle, slope error, and receiver displacement on the flux distribution. The flux distribution for large aperture PTSC such as 7, 8, 9, and 10 m has also been studied with an available absorber diameter of 70, 80, 90 and 110 mm. Better manufacturing standards need to be incorporated to improve the performance of the large aperture PTSC with available receiver sizes. There is no significant effect on the intercept factor for the upward and downward displacement of larger aperture PTSC receiver, but the downward displacement of the conventional PTSC receiver drastically decreases the intercept factor. Based on the flux distribution analysis, a collector geometry having an aperture of 9 m with an absorber diameter of 110 mm has been considered for the thermal analysis. The effect of variation of the mass flow rate, aperture, and various heat transfer fluids are studied on the PTSC thermal performance. Liquid sodium offers the least thermal gradient around the absorber circumference, which leads to less deformation of the receiver from the focal length. In this article coupled optical‐thermal analysis of large aperture PTSC is performed to improve the nonuniformity of the flux distribution and minimise the thermal gradient on the absorber circumference. The analysis is performed for the various aperture sizes such as 5.77, 7, 8, 9 and 10 m with commercially available absorber diameter, that is, 70, 80, 90 and 110 mm. Furthermore, the effect of receiver displacement from the focal plane is also performed.
AbstractList Summary Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of the power plant. In the present study, coupled flux distribution and thermal analysis of large aperture PTSC are presented by incorporating the limb darkening effect. MATLAB tool is used to develop the in‐house model to obtain the circumferential flux distribution on the absorber surface. The analyses are performed for different Sun shape models, the number of rays, aperture, rim angle, slope error, and receiver displacement on the flux distribution. The flux distribution for large aperture PTSC such as 7, 8, 9, and 10 m has also been studied with an available absorber diameter of 70, 80, 90 and 110 mm. Better manufacturing standards need to be incorporated to improve the performance of the large aperture PTSC with available receiver sizes. There is no significant effect on the intercept factor for the upward and downward displacement of larger aperture PTSC receiver, but the downward displacement of the conventional PTSC receiver drastically decreases the intercept factor. Based on the flux distribution analysis, a collector geometry having an aperture of 9 m with an absorber diameter of 110 mm has been considered for the thermal analysis. The effect of variation of the mass flow rate, aperture, and various heat transfer fluids are studied on the PTSC thermal performance. Liquid sodium offers the least thermal gradient around the absorber circumference, which leads to less deformation of the receiver from the focal length. In this article coupled optical‐thermal analysis of large aperture PTSC is performed to improve the nonuniformity of the flux distribution and minimise the thermal gradient on the absorber circumference. The analysis is performed for the various aperture sizes such as 5.77, 7, 8, 9 and 10 m with commercially available absorber diameter, that is, 70, 80, 90 and 110 mm. Furthermore, the effect of receiver displacement from the focal plane is also performed.
Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of the power plant. In the present study, coupled flux distribution and thermal analysis of large aperture PTSC are presented by incorporating the limb darkening effect. MATLAB tool is used to develop the in‐house model to obtain the circumferential flux distribution on the absorber surface. The analyses are performed for different Sun shape models, the number of rays, aperture, rim angle, slope error, and receiver displacement on the flux distribution. The flux distribution for large aperture PTSC such as 7, 8, 9, and 10 m has also been studied with an available absorber diameter of 70, 80, 90 and 110 mm. Better manufacturing standards need to be incorporated to improve the performance of the large aperture PTSC with available receiver sizes. There is no significant effect on the intercept factor for the upward and downward displacement of larger aperture PTSC receiver, but the downward displacement of the conventional PTSC receiver drastically decreases the intercept factor. Based on the flux distribution analysis, a collector geometry having an aperture of 9 m with an absorber diameter of 110 mm has been considered for the thermal analysis. The effect of variation of the mass flow rate, aperture, and various heat transfer fluids are studied on the PTSC thermal performance. Liquid sodium offers the least thermal gradient around the absorber circumference, which leads to less deformation of the receiver from the focal length.
Author K., Ravi Kumar
Malan, Anish
Author_xml – sequence: 1
  givenname: Anish
  surname: Malan
  fullname: Malan, Anish
  organization: Indian Institute of Technology Delhi
– sequence: 2
  givenname: Ravi Kumar
  orcidid: 0000-0002-5739-3744
  surname: K.
  fullname: K., Ravi Kumar
  email: krk@ces.iitd.ac.in
  organization: Indian Institute of Technology Delhi
BookMark eNp10E1LAzEQBuAgFWyr-BcCHjzI1mQ3u9kcpdQPEARR7C2k2UmbkjZrkkX67922nkRPMzAPL8M7QoOt3wJCl5RMKCH5LYRJRfP6BA0pESKjlM0HaEiKqsgE4fMzNIpxTUh_o3yIPqa-ax002LfJauWw2jY4rSBsDrtyu2gj9gY7FZaAVQshdQFwq4JaeGc1TsF3yxWOvhdYe-dAJx_O0alRLsLFzxyj9_vZ2_Qxe355eJrePWe6yOs6o5obkwMAE6Ygijd1w4WhlRLCcAZQU1aqUpMq50IDXZSLipbAaFMWxugCijG6Oua2wX92EJNc-y70f0eZs5pRzlhZ9yo7Kh18jAGM1DapZP02BWWdpETuu5MQ5L673l__8m2wGxV2f8ibo_yyDnb_MTl7PehvCyl_YA
CitedBy_id crossref_primary_10_1016_j_renene_2022_04_141
crossref_primary_10_30521_jes_952658
crossref_primary_10_30521_jes_952627
crossref_primary_10_1002_htj_22406
crossref_primary_10_24113_ijoscience_v7i11_418
crossref_primary_10_1016_j_seta_2021_101305
crossref_primary_10_1016_j_applthermaleng_2024_122496
crossref_primary_10_1016_j_jclepro_2021_127550
crossref_primary_10_1016_j_renene_2021_12_105
crossref_primary_10_1007_s10668_024_05159_3
crossref_primary_10_1016_j_solener_2023_112148
crossref_primary_10_1007_s10098_021_02205_w
crossref_primary_10_1016_j_tsep_2022_101543
crossref_primary_10_1002_ente_202100533
crossref_primary_10_2139_ssrn_4048140
Cites_doi 10.1115/1.3266115
10.1016/0306-2619(94)90041-8
10.4028/www.scientific.net/AMR.860-863.180
10.1115/1.3268106
10.1115/1.3035811
10.1016/j.applthermaleng.2014.05.051
10.1016/j.solener.2015.11.036
10.1016/j.renene.2017.10.047
10.1115/ES2011-54683
10.1016/j.solener.2006.10.006
10.1016/j.rser.2011.08.009
10.1002/er.5157
10.1080/14786450903302808
10.1016/j.egypro.2015.03.029
10.1002/er.4165
10.2172/7267964
10.1016/j.ijheatmasstransfer.2014.11.055
10.1016/j.apenergy.2012.10.021
10.1016/j.solener.2016.06.045
10.1016/j.solener.2017.01.055
10.1615/IHMTC-2019.410
10.2172/900712
10.1016/j.renene.2010.07.017
10.1016/j.solener.2013.11.005
10.1115/1.3027507
10.2172/15004820
10.1016/j.applthermaleng.2019.114070
10.1016/j.scs.2017.08.031
10.1364/AO.24.000296
10.1016/j.apenergy.2015.03.079
10.1016/j.enconman.2019.112030
10.1016/j.pecs.2018.11.001
10.1016/j.egypro.2014.03.196
10.1016/j.solener.2013.02.020
10.1016/j.apenergy.2018.05.014
10.1002/er.5271
10.1016/j.apenergy.2017.05.047
10.1016/j.solener.2012.02.039
10.1016/j.seta.2020.100696
10.1016/j.apenergy.2013.04.067
10.1016/0038-092X(86)90130-1
10.1016/j.energy.2014.06.063
10.2172/958386
10.1002/er.4554
10.1115/1.2710249
10.1016/j.solener.2018.07.068
10.1016/0038-092X(57)90167-6
10.1016/0196-8904(94)90040-X
10.2172/70756
10.1016/j.molliq.2020.114151
10.1016/j.renene.2020.06.059
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.6128
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 4651
ExternalDocumentID 10_1002_er_6128
ER6128
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
F00
G-S
G.N
GNP
GODZA
H.T
H.X
HHY
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
EBS
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c3288-1c7ff2eee49f30a7d8d79f16a99f74ee8145a5c06279ce1b5b615e41d53ffc3e3
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Aug 13 11:14:19 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Tue Jul 01 01:41:33 EDT 2025
Wed Jan 22 16:30:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3288-1c7ff2eee49f30a7d8d79f16a99f74ee8145a5c06279ce1b5b615e41d53ffc3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5739-3744
PQID 2484174458
PQPubID 996365
PageCount 22
ParticipantIDs proquest_journals_2484174458
crossref_citationtrail_10_1002_er_6128
crossref_primary_10_1002_er_6128
wiley_primary_10_1002_er_6128_ER6128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 March 2021
PublicationDateYYYYMMDD 2021-03-10
PublicationDate_xml – month: 03
  year: 2021
  text: 10 March 2021
  day: 10
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2014; 70
2015; 148
1986; 37
2012; 16
2019; 160
2018; 42
1979
1985; 24
1986; 108
2018; 173
2015; 82
2010; 29
2017; 35
2013; 111
1994; 35
2020; 44
2017; 201
2019; 199
2014; 99
1980; 102
2019; 71
2007; 129
2012
2018; 225
1976; 2
2016; 124
2014; 49
2020; 39
1994; 47
2013; 103
2013; 92
1994
2005
2003
2009; 131
2011; 36
1957; 1
2011; 133
2015; 69
2018; 119
2019; 43
2016; 135
2020; 159
2014; 860–863
2019
2007; 81
2014
2014; 73
2017; 147
2012; 86
2020; 319
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Kotzé JP (e_1_2_8_50_1) 2012
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
References_xml – volume: 35
  start-page: 786
  year: 2017
  end-page: 798
  article-title: Optical modeling and investigation of sun tracking parabolic trough solar collector basing on ray tracing 3Dimensions‐4Rays
  publication-title: Sustain Cities Soc
– year: 2005
– volume: 81
  start-page: 761
  year: 2007
  end-page: 767
  article-title: Reverse ray‐tracing model for the performance evaluation of stationary solar concentrators
  publication-title: Sol Energy
– volume: 2
  start-page: 235
  year: 1976
  end-page: 252
– volume: 860–863
  start-page: 180
  year: 2014
  end-page: 190
  article-title: Development of empirical equations for irradiance profile of a standard parabolic trough collector using Monte Carlo ray tracing technique
  publication-title: Adv Mat Res
– volume: 1
  start-page: 19
  year: 1957
  end-page: 22
  article-title: The flux through the focal spot of a solar furnace
  publication-title: Sol Energy
– volume: 99
  start-page: 134
  year: 2014
  end-page: 151
  article-title: Deflection and stresses in absorber tube of solar parabolic trough due to circumferential and axial flux variations on absorber tube supported at multiple points
  publication-title: Sol Energy
– volume: 131
  start-page: 0110141
  year: 2009
  end-page: 0110145
  article-title: Slope error measurements of parabolic troughs using the reflected image of the absorber tube
  publication-title: J Sol Energy Eng Trans ASME
– volume: 108
  start-page: 275
  year: 1986
  end-page: 281
  article-title: Derivation of universal error parameters for comprehensive optical analysis of parabolic troughs
  publication-title: J Sol Energy Eng Trans ASME
– volume: 43
  start-page: 1
  issue: 9
  year: 2019
  end-page: 17
  article-title: Heat transfer analysis of receiver for large aperture parabolic trough solar collector
  publication-title: Int J Energy Res
– volume: 147
  start-page: 189
  year: 2017
  end-page: 201
  article-title: A detailed study on the optical performance of parabolic trough solar collectors with Monte Carlo ray tracing method based on theoretical analysis
  publication-title: Sol Energy
– volume: 16
  start-page: 449
  year: 2012
  end-page: 465
  article-title: Solar energy: markets, economics and policies
  publication-title: Renew Sustain Energy Rev
– volume: 135
  start-page: 703
  year: 2016
  end-page: 718
  article-title: Influence of optical errors on the thermal and thermodynamic performance of a solar parabolic trough receiver
  publication-title: Sol Energy
– year: 1979
– year: 2014
– year: 1994
– volume: 159
  start-page: 1215
  year: 2020
  end-page: 1223
  article-title: Improving the performance of large‐aperture parabolic trough solar concentrator using semi‐circular absorber tube with external fin and flat‐plate radiation shield
  publication-title: Renew Energy
– volume: 39
  start-page: 100696
  year: 2020
  article-title: Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts
  publication-title: Sustainab Energy Technol Assess
– volume: 133
  start-page: 795
  year: 2011
  end-page: 801
  article-title: Numerical analysis of heat loss from a parabolic trough absorber tube with active vacuum system
  publication-title: ASME 2011 5th Int Conf Energy Sustain ES
– volume: 111
  start-page: 581
  year: 2013
  end-page: 592
  article-title: Heat transfer analysis and numerical simulation of a parabolic trough solar collector
  publication-title: Appl Energy
– volume: 103
  start-page: 73
  year: 2013
  end-page: 84
  article-title: Thermal analysis of solar receiver pipes with superheated steam
  publication-title: Appl Energy
– volume: 37
  start-page: 335
  year: 1986
  end-page: 345
  article-title: Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation
  publication-title: Sol Energy
– volume: 69
  start-page: 250
  year: 2015
  end-page: 258
  article-title: The simulation model of flux density distribution on an absorber tube
  publication-title: Energy Procedia
– volume: 92
  start-page: 26
  year: 2013
  end-page: 40
  article-title: Analytical expression for circumferential and axial distribution of absorbed flux on a bent absorber tube of solar parabolic trough concentrator
  publication-title: Sol Energy
– volume: 73
  start-page: 606
  year: 2014
  end-page: 617
  article-title: Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non‐uniform heat flux at different rim angles and concentration ratios
  publication-title: Energy
– volume: 42
  start-page: 4512
  year: 2018
  end-page: 4521
  article-title: An improved model for predicting the performance of parabolic trough solar collectors
  publication-title: Int J Energy Res
– volume: 225
  start-page: 135
  year: 2018
  end-page: 174
  article-title: Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review
  publication-title: Appl Energy
– start-page: 11
  year: 2012
  end-page: 14
– volume: 29
  start-page: 19
  issue: 1
  year: 2010
  end-page: 36
  article-title: Optical simulation of a parabolic solar trough collector
  publication-title: Int J Sustainab Energy
– year: 2019
– volume: 131
  start-page: 011004
  year: 2009
  article-title: Experimental verification of optical modeling of parabolic trough collectors by flux measurement
  publication-title: J Sol Energy Eng
– volume: 148
  start-page: 282
  year: 2015
  end-page: 293
  article-title: Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm
  publication-title: Appl Energy
– volume: 124
  start-page: 184
  year: 2016
  end-page: 197
  article-title: Inverse Monte Carlo ray‐tracing method (IMCRT) applied to line‐focus reflectors
  publication-title: Sol Energy
– volume: 70
  start-page: 462
  year: 2014
  end-page: 476
  article-title: A three‐dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid
  publication-title: Appl Therm Eng
– volume: 160
  start-page: 114070
  year: 2019
  article-title: Optical performance of parabolic trough solar collectors under condition of multiple optical factors
  publication-title: Appl Therm Eng
– volume: 36
  start-page: 976
  year: 2011
  end-page: 985
  article-title: A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector
  publication-title: Renew Energy
– volume: 199
  start-page: 112030
  year: 2019
  article-title: A new concept of solar thermal power plants with large‐aperture parabolic‐trough collectors and sCO2 as working fluid
  publication-title: Energ Conver Manage
– year: 2003
– volume: 119
  start-page: 844
  year: 2018
  end-page: 862
  article-title: Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs‐Therminol® VP‐1 nanofluid
  publication-title: Renew Energy
– volume: 102
  start-page: 16
  year: 1980
  end-page: 21
  article-title: Incidence‐angle modifier and average optical efficiency of parabolic trough collectors
  publication-title: J Sol Energy Eng
– volume: 82
  start-page: 236
  year: 2015
  end-page: 249
  article-title: Performance analysis of a parabolic trough solar collector with non‐uniform solar flux conditions
  publication-title: Int J Heat Mass Transf
– volume: 86
  start-page: 1770
  year: 2012
  end-page: 1784
  article-title: Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method
  publication-title: Sol Energy
– volume: 44
  start-page: 3711
  year: 2020
  end-page: 3723
  article-title: Design, modeling, and optimization of a dual reflector parabolic trough concentration system
  publication-title: Int J Energy Res
– volume: 35
  start-page: 575
  year: 1994
  end-page: 582
  article-title: Effect of optical errors on flux distribution around the absorber tube of a parabolic trough concentrator
  publication-title: Energ Conver Manage
– volume: 173
  start-page: 291
  year: 2018
  end-page: 303
  article-title: A tool for fast flux distribution calculation of parabolic trough solar concentrators
  publication-title: Sol Energy
– volume: 71
  start-page: 81
  year: 2019
  end-page: 117
  article-title: Alternative designs of parabolic trough solar collectors
  publication-title: Prog Energy Combust Sci
– volume: 44
  start-page: 5117
  year: 2020
  end-page: 5164
  article-title: An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors
  publication-title: Int J Energy Res
– volume: 129
  start-page: 147
  year: 2007
  end-page: 152
  article-title: Parabolic trough optical performance analysis techniques
  publication-title: J Sol Energy Eng Trans ASME
– volume: 24
  start-page: 296
  year: 1985
  article-title: Solar limb darkening and ray trace evaluation of solar concentrators
  publication-title: Appl Optics
– volume: 319
  year: 2020
  article-title: Thermal and thermodynamic benchmarking of liquid heat transfer fluids in a high concentration ratio parabolic trough solar collector system
  publication-title: J Mol Liq
– volume: 201
  start-page: 60
  year: 2017
  end-page: 68
  article-title: A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors
  publication-title: Appl Energy
– volume: 49
  start-page: 1848
  year: 2014
  end-page: 1857
  article-title: ULTIMATE TROUGH® ‐ fabrication, erection and commissioning of the world's largest parabolic trough collector
  publication-title: Energy Procedia
– volume: 47
  start-page: 341
  year: 1994
  end-page: 354
  article-title: Design and performance characteristics of a parabolic‐trough solar‐collector system
  publication-title: Appl Energy
– ident: e_1_2_8_6_1
  doi: 10.1115/1.3266115
– ident: e_1_2_8_9_1
  doi: 10.1016/0306-2619(94)90041-8
– ident: e_1_2_8_29_1
  doi: 10.4028/www.scientific.net/AMR.860-863.180
– ident: e_1_2_8_8_1
  doi: 10.1115/1.3268106
– ident: e_1_2_8_12_1
  doi: 10.1115/1.3035811
– ident: e_1_2_8_16_1
  doi: 10.1016/j.applthermaleng.2014.05.051
– ident: e_1_2_8_22_1
  doi: 10.1016/j.solener.2015.11.036
– ident: e_1_2_8_45_1
  doi: 10.1016/j.renene.2017.10.047
– ident: e_1_2_8_54_1
– ident: e_1_2_8_14_1
  doi: 10.1115/ES2011-54683
– ident: e_1_2_8_25_1
  doi: 10.1016/j.solener.2006.10.006
– ident: e_1_2_8_3_1
  doi: 10.1016/j.rser.2011.08.009
– ident: e_1_2_8_46_1
  doi: 10.1002/er.5157
– ident: e_1_2_8_47_1
  doi: 10.1080/14786450903302808
– ident: e_1_2_8_18_1
  doi: 10.1016/j.egypro.2015.03.029
– ident: e_1_2_8_40_1
  doi: 10.1002/er.4165
– ident: e_1_2_8_4_1
  doi: 10.2172/7267964
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ijheatmasstransfer.2014.11.055
– ident: e_1_2_8_39_1
  doi: 10.1016/j.apenergy.2012.10.021
– ident: e_1_2_8_27_1
  doi: 10.1016/j.solener.2016.06.045
– ident: e_1_2_8_21_1
  doi: 10.1016/j.solener.2017.01.055
– ident: e_1_2_8_57_1
  doi: 10.1615/IHMTC-2019.410
– ident: e_1_2_8_5_1
  doi: 10.2172/900712
– ident: e_1_2_8_23_1
  doi: 10.1016/j.renene.2010.07.017
– ident: e_1_2_8_49_1
  doi: 10.1016/j.solener.2013.11.005
– ident: e_1_2_8_11_1
  doi: 10.1115/1.3027507
– ident: e_1_2_8_38_1
  doi: 10.2172/15004820
– ident: e_1_2_8_52_1
  doi: 10.1016/j.applthermaleng.2019.114070
– ident: e_1_2_8_53_1
– ident: e_1_2_8_19_1
  doi: 10.1016/j.scs.2017.08.031
– ident: e_1_2_8_31_1
  doi: 10.1364/AO.24.000296
– ident: e_1_2_8_17_1
  doi: 10.1016/j.apenergy.2015.03.079
– ident: e_1_2_8_56_1
– ident: e_1_2_8_44_1
  doi: 10.1016/j.enconman.2019.112030
– ident: e_1_2_8_2_1
  doi: 10.1016/j.pecs.2018.11.001
– ident: e_1_2_8_32_1
  doi: 10.1016/j.egypro.2014.03.196
– ident: e_1_2_8_48_1
  doi: 10.1016/j.solener.2013.02.020
– ident: e_1_2_8_33_1
– ident: e_1_2_8_35_1
  doi: 10.1016/j.apenergy.2018.05.014
– ident: e_1_2_8_34_1
  doi: 10.1002/er.5271
– ident: e_1_2_8_20_1
  doi: 10.1016/j.apenergy.2017.05.047
– ident: e_1_2_8_24_1
  doi: 10.1016/j.solener.2012.02.039
– ident: e_1_2_8_42_1
  doi: 10.1016/j.seta.2020.100696
– ident: e_1_2_8_55_1
– start-page: 11
  volume-title: Proceedings of the Solar PACES 2012 International Conference
  year: 2012
  ident: e_1_2_8_50_1
– ident: e_1_2_8_15_1
  doi: 10.1016/j.apenergy.2013.04.067
– ident: e_1_2_8_7_1
  doi: 10.1016/0038-092X(86)90130-1
– ident: e_1_2_8_28_1
  doi: 10.1016/j.energy.2014.06.063
– ident: e_1_2_8_58_1
  doi: 10.2172/958386
– ident: e_1_2_8_36_1
  doi: 10.1002/er.4554
– ident: e_1_2_8_13_1
  doi: 10.1115/1.2710249
– ident: e_1_2_8_51_1
  doi: 10.1016/j.solener.2018.07.068
– ident: e_1_2_8_30_1
  doi: 10.1016/0038-092X(57)90167-6
– ident: e_1_2_8_10_1
  doi: 10.1016/0196-8904(94)90040-X
– ident: e_1_2_8_37_1
  doi: 10.2172/70756
– ident: e_1_2_8_41_1
  doi: 10.1016/j.molliq.2020.114151
– ident: e_1_2_8_43_1
  doi: 10.1016/j.renene.2020.06.059
SSID ssj0009917
Score 2.3722892
Snippet Summary Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital...
Large‐aperture parabolic trough solar collector (PTSC) has the potential to improve the performance of the solar field and also to reduce the capital cost of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4630
SubjectTerms Absorbers
Analysis
Apertures
Capital costs
Computational fluid dynamics
Darkening
Deformation
Diameters
Displacement
Distribution
Flow rates
Fluctuations
Fluids
Flux
flux distribution
Heat transfer
large aperture
Limb darkening
limb darkening effect
Liquid sodium
Mass flow rate
parabolic trough
Performance enhancement
Power plants
receiver displacement
Sodium
Solar collectors
Temperature gradients
Thermal analysis
Title Coupled optical and thermal analysis of large aperture parabolic trough solar collector
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.6128
https://www.proquest.com/docview/2484174458
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHf4vTKTkMb93WNlmbo4yNIehhOBxeSn68XJzr2LqLf715afdDRRBPLTSB0OQl35e8fB4hTaGVSWVqA552koA5rzYQPIIAYWxChqrDFG7oPz51h2P2MOGTnVRfJR9is-GGluHnazRwqZbtLTQUFi23OuM1X4zUQjk02oKjnOpJ1qeUzv2blNdlsWa7qvd1HdqKy12J6teYwRF5XbeuDC15a60K1dIf38CN_2r-MTmslCe9L4fKCdmD2Sk52OERnpGXXr6aT8HQfO63uKmcGYoK8d2_l_gSmls6xfhxKuewwAMIivxwhYBhWvisP3SJDjPFMeYPBc7JeNB_7g2DKvNCoOPImU6oE2sjAGDCxh2ZmNQkwoZdKYRNGEAaMi65RsSx0BAqrpwwAhYaHlurY4gvSG2Wz-CSUMMZGCGF83MiZo2TY13NbBzqUDvXNTJ1crfuh0xXWHLMjjHNSqBylMEiwz9VJ3RTcF6SOH4Waaw7MqtMcZlFLGXO7WLcfW76HvmtetYf4ePqb8WuyX6E8S0-tq9BasViBTdOoBTq1o_FT0xL4rY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMcbxYN68LcRRe2BeBuwrWXr0SAEFTgQiCQelq19vYhA-HHxr7evGz_UmBhPW7I22da-9fte3z6PkKKQiQrjUDs8rAQOM16tI7gHDsLYROwmFZZgQL_dqTb77GnAB1lWJf4Lk_IhVgE3tAz7vUYDx4B0eU0NhWnJLM_hNtnBet7IzX_ortFRRvcEy31K4wAO0h9msWs56_h1JVrLy02RaleZxiF5Xd5fmlzyVlrMk5L8-IZu_N8DHJGDTHzS-3S2HJMtGJ2Q_Q0k4Sl5qY0XkyEoOp7YKDeNR4qiSHy35ynBhI41HWIKOY0nMMU9CIoI8QQZw3RuC__QGfrMFKeZ3Rc4I_1GvVdrOlnxBUf6nrEeVwZaewDAhPYrcaBCFQjtVmMhdMAAQpfxmEukHAsJbsITo42AuYr7Wksf_HOSG41HcEGo4gyUiIVxdTymlVFkVcm070pXGu_VU3lytxyISGZkciyQMYxSprIXwTTCN5UndNVwksI4fjYpLEcyyqxxFnksZMbzYtxcLtoh-a17VO_i4fJvzW7JbrPXbkWtx87zFdnzMN3FpvoVSG4-XcC10Svz5MZOzE937ubS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDThB98C5Op-Zh-Na5tsnaPMouzNuQ4XD4Utrk5MW5lV1e_PTmpN1FRRCfWmgCoSen-Z_k9HcIKQuZqDAOtcPDauAwE9U6gnvgIIxNxG5SZQlu6D92au0eu-vz_kqpr4wPsdhwQ8-w32t08FTp6yU0FMYVszqH62SD1aoCqzY0uktylJE9wfyY0sR__ex_Wex6nXf8uhAt1eWqRrWLTGuXvM6Hl-WWvFVm06QiP76RG_81_j2yk0tPepPNlX2yBsMDsr0CJDwkL_XRLB2AoqPU7nHTeKgoSsR3e5_xS-hI0wEmkNM4hTGeQFAEiCdIGKZTW_aHTjBipjjJ7KnAEem1ms_1tpOXXnCk7xnfcWWgtQcATGi_GgcqVIHQbi0WQgcMIHQZj7lExrGQ4CY8McoImKu4r7X0wT8mheFoCCeEKs5AiViYQMdjWhk9VpNM-650pYldPVUkV3M7RDLnkmN5jEGUEZW9CMYRvqkioYuGaYbi-NmkNDdklPviJPJYyEzcxbh5XLYW-a171Ozi5fRvzS7J5lOjFT3cdu7PyJaHuS42z69ECtPxDM6NWJkmF3ZafgLh7-WB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupled+optical+and+thermal+analysis+of+large+aperture+parabolic+trough+solar+collector&rft.jtitle=International+journal+of+energy+research&rft.au=Malan%2C+Anish&rft.au=K.%2C+Ravi+Kumar&rft.date=2021-03-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=45&rft.issue=3&rft.spage=4630&rft.epage=4651&rft_id=info:doi/10.1002%2Fer.6128&rft.externalDBID=10.1002%252Fer.6128&rft.externalDocID=ER6128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon