Electrochemical Nanogravimetric Studies of Ruthenium(III) Trichloride Microcrystals
Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of aqueous solutions of M+Cl− electrolytes, where M+ = Li+, Na+, K+, Rb+, Cs+ and K2SO4 by cyclic voltammetry and electrochemical nanogravimetry at...
Saved in:
Published in | Israel journal of chemistry Vol. 48; no. 3-4; pp. 185 - 196 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.12.2008
WILEY‐VCH Verlag |
Online Access | Get full text |
Cover
Loading…
Abstract | Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of aqueous solutions of M+Cl− electrolytes, where M+ = Li+, Na+, K+, Rb+, Cs+ and K2SO4 by cyclic voltammetry and electrochemical nanogravimetry at a quartz crystal microbalance (EQCM). The electrochemical reduction of the layered α‐RuCl3 microcrystals causes drastic changes in the composition and the structure of crystals. The comparison of the current—potential and surface mass change—potential functions belonging to the first reduction‐reoxidation cycle with the subsequent ones reveals that the simple intercalation scheme described in the literature cannot be entirely valid. During the first reduction step at ca. 0.2 V vs. SCE the charge consumption is substantially higher than in the course of the further potential cycling, and the simultaneous rapid and intense mass decrease indicates that considerable chemical and structural transformations occurs. Although a loss of the surface mass cannot be entirely excluded, the frequency increase most likely is not related to the dissolution of the microcrystals, however, large amounts of water molecules and—to a much smaller extent—chloride ions leave the crystal phase, and in fact a new material, which remains strongly attached to the gold or graphite surface, is formed. The extremely high frequency change at the first reduction process during the first cycle is most likely related to the stress effect originating in the phase transition of the surface layer and/or the removal of the water rigidly coupled to the surface into voids of the immobilized microcrystals. Depending on the amount of microcrystals on the electrode surface and the experimental conditions (the nature and concentration of the contacting electrolyte, scan rate, and potential range) used, after the “break‐in” cycle stable electrochemical and nanogravimetric responses develop. The several reduction and reoxidation pairs of waves in the cyclic voltammograms and the simultaneous mass changes are in connection with the wide variety of intercalation reactions and complex formation during the electrochemical transformations. The mass change was reversible, in general, during reduction mass increase, while during oxidation mass decrease occurred at medium electrolyte concentrations in three or more steps. The mass excursions are rather complicated, involving different mass increase/decrease regions as a function of potential and the composition of the contacting solution.
Taking into account the layered structure of RuCl3, the electrochemical reduction can be explained as an intercalation reaction in that mixed valence intercalation phases with a general formula K n+ Ru z‐nIII [Ru nII Cl3z‐y (H2O)y] • dH2O are formed from z (RuCl3 · H2O). The reduction/reoxidation waves are related to the redox transformations of Ru(III) to Ru(II) sites and the insertion/deinsertion of cations and water molecules, while the composition of the polynuclear complexes and the structure of microcrystals change. |
---|---|
AbstractList | Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of aqueous solutions of M+Cl− electrolytes, where M+ = Li+, Na+, K+, Rb+, Cs+ and K2SO4 by cyclic voltammetry and electrochemical nanogravimetry at a quartz crystal microbalance (EQCM). The electrochemical reduction of the layered α‐RuCl3 microcrystals causes drastic changes in the composition and the structure of crystals. The comparison of the current—potential and surface mass change—potential functions belonging to the first reduction‐reoxidation cycle with the subsequent ones reveals that the simple intercalation scheme described in the literature cannot be entirely valid. During the first reduction step at ca. 0.2 V vs. SCE the charge consumption is substantially higher than in the course of the further potential cycling, and the simultaneous rapid and intense mass decrease indicates that considerable chemical and structural transformations occurs. Although a loss of the surface mass cannot be entirely excluded, the frequency increase most likely is not related to the dissolution of the microcrystals, however, large amounts of water molecules and—to a much smaller extent—chloride ions leave the crystal phase, and in fact a new material, which remains strongly attached to the gold or graphite surface, is formed. The extremely high frequency change at the first reduction process during the first cycle is most likely related to the stress effect originating in the phase transition of the surface layer and/or the removal of the water rigidly coupled to the surface into voids of the immobilized microcrystals. Depending on the amount of microcrystals on the electrode surface and the experimental conditions (the nature and concentration of the contacting electrolyte, scan rate, and potential range) used, after the “break‐in” cycle stable electrochemical and nanogravimetric responses develop. The several reduction and reoxidation pairs of waves in the cyclic voltammograms and the simultaneous mass changes are in connection with the wide variety of intercalation reactions and complex formation during the electrochemical transformations. The mass change was reversible, in general, during reduction mass increase, while during oxidation mass decrease occurred at medium electrolyte concentrations in three or more steps. The mass excursions are rather complicated, involving different mass increase/decrease regions as a function of potential and the composition of the contacting solution.
Taking into account the layered structure of RuCl3, the electrochemical reduction can be explained as an intercalation reaction in that mixed valence intercalation phases with a general formula K n+ Ru z‐nIII [Ru nII Cl3z‐y (H2O)y] • dH2O are formed from z (RuCl3 · H2O). The reduction/reoxidation waves are related to the redox transformations of Ru(III) to Ru(II) sites and the insertion/deinsertion of cations and water molecules, while the composition of the polynuclear complexes and the structure of microcrystals change. Abstract Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of aqueous solutions of M + Cl − electrolytes, where M + = Li + , Na + , K + , Rb + , Cs + and K 2 SO 4 by cyclic voltammetry and electrochemical nanogravimetry at a quartz crystal microbalance (EQCM). The electrochemical reduction of the layered α‐RuCl 3 microcrystals causes drastic changes in the composition and the structure of crystals. The comparison of the current—potential and surface mass change—potential functions belonging to the first reduction‐reoxidation cycle with the subsequent ones reveals that the simple intercalation scheme described in the literature cannot be entirely valid. During the first reduction step at ca. 0.2 V vs. SCE the charge consumption is substantially higher than in the course of the further potential cycling, and the simultaneous rapid and intense mass decrease indicates that considerable chemical and structural transformations occurs. Although a loss of the surface mass cannot be entirely excluded, the frequency increase most likely is not related to the dissolution of the microcrystals, however, large amounts of water molecules and—to a much smaller extent—chloride ions leave the crystal phase, and in fact a new material, which remains strongly attached to the gold or graphite surface, is formed. The extremely high frequency change at the first reduction process during the first cycle is most likely related to the stress effect originating in the phase transition of the surface layer and/or the removal of the water rigidly coupled to the surface into voids of the immobilized microcrystals. Depending on the amount of microcrystals on the electrode surface and the experimental conditions (the nature and concentration of the contacting electrolyte, scan rate, and potential range) used, after the “break‐in” cycle stable electrochemical and nanogravimetric responses develop. The several reduction and reoxidation pairs of waves in the cyclic voltammograms and the simultaneous mass changes are in connection with the wide variety of intercalation reactions and complex formation during the electrochemical transformations. The mass change was reversible, in general, during reduction mass increase, while during oxidation mass decrease occurred at medium electrolyte concentrations in three or more steps. The mass excursions are rather complicated, involving different mass increase/decrease regions as a function of potential and the composition of the contacting solution. Taking into account the layered structure of RuCl 3 , the electrochemical reduction can be explained as an intercalation reaction in that mixed valence intercalation phases with a general formula K Ru [Ru Cl 3z‐y (H 2 O) y ] • dH 2 O are formed from z (RuCl 3 · H 2 O). The reduction/reoxidation waves are related to the redox transformations of Ru(III) to Ru(II) sites and the insertion/deinsertion of cations and water molecules, while the composition of the polynuclear complexes and the structure of microcrystals change. |
Author | Róka, András Inzelt, György |
Author_xml | – sequence: 1 givenname: György surname: Inzelt fullname: Inzelt, György email: inzeltgy@chem.elte.hu organization: Department of Physical Chemistry, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/A, H-1117, Hungary – sequence: 2 givenname: András surname: Róka fullname: Róka, András organization: Department of Physical Chemistry, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/A, H-1117, Hungary |
BookMark | eNqFkM1Lw0AUxBepYFu9es5RD4lvux_ZeJPaj0itaAtCL8u6ebGrSSObVO1_b0rFq6fh8eY3A9MjnU21QULOKURUSLhK74YRVxELeUSVOCJdqmQSCiVVh3QBBjQcUK5OSK-u3wAggSTpksWoQNv4yq6xdNYUwdxsqldvPl2JjXc2WDTbzGEdVHnwtG3WuHHb8iJN08tg2b7XReVdhsG9s22G39WNKepTcpy3gme_2ifL8Wg5nIazh0k6vJmFlg1UHBplLbyYxKAAxlQmBlyCBI4izoQwlmUgc2YQQYHI0FJUlNtEQJ4lUsWsT6JDbFtd1x5z_eFdafxOU9D7RXS7iOZKM811u0gLXB-AL1fg7h_3_pwKqYArYLBvCw-wqxv8_oONf9cyZrHQz_OJXo0fb-diutK37Afh7nc5 |
CitedBy_id | crossref_primary_10_1007_s10008_014_2643_4 crossref_primary_10_1002_zaac_202300141 crossref_primary_10_1007_s10008_015_2770_6 |
Cites_doi | 10.1016/0167-2738(86)90056-1 10.1021/cm980474l 10.1016/S0013-4686(99)00202-9 10.1016/0022-0728(87)85116-1 10.1016/j.elecom.2004.05.019 10.1007/s10008-004-0551-8 10.1016/S0013-4686(02)00359-6 10.1007/s10008-005-0019-5 10.1016/S0022-328X(99)00532-X 10.1021/ja9944610 10.1016/S1388-2481(02)00475-7 10.1016/S0022-0728(96)04832-2 10.1016/j.micromeso.2003.09.006 10.1016/S0003-2670(00)00724-8 10.1039/b400473f 10.1016/j.electacta.2007.06.014 10.1016/S0022-0728(00)00456-3 10.1016/S0013-4686(00)00338-8 10.1007/s10008-005-0054-2 10.1021/ja070895g 10.1016/j.electacta.2006.11.020 10.1016/j.jelechem.2003.11.040 10.1021/jp9925942 10.1016/j.electacta.2003.12.027 10.1021/ic00225a015 10.1007/s10008-004-0547-4 10.1016/S1388-2481(00)00005-9 10.1021/jp0561773 10.1016/S0022-0728(96)04833-4 10.1135/cccc20020163 10.1021/jp0041757 10.1002/ange.19830950711 10.1021/cm00040a020 10.1016/S0013-4686(00)00468-0 |
ContentType | Journal Article |
Copyright | Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1560/IJC.48.3-4.185 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1869-5868 |
EndPage | 196 |
ExternalDocumentID | 10_1560_IJC_48_3_4_185 IJCH5680480307 ark_67375_WNG_ZFQDN5HZ_D |
Genre | article |
GroupedDBID | -~X 05W 0R~ 1OB 1OC 31~ 33P 4.4 53G 5GY 8-1 9LF A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABDBF ABEFU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AHBTC AI. AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB B0M BDRZF BFHJK BMXJE BRXPI BSCLL BZXJU CS3 DCZOG DRFUL DRSTM DU5 EAD EAP EAS EBS EJD EMK ESX F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI ML- MSFUL MSSTM MXFUL MXSTM MY~ O9- P2P P2W P4E PALCI RIWAO RJQFR ROL SAMSI SJN SUPJJ TUS VH1 WBKPD WH7 WOHZO WXSBR WYJ ZE2 ZZTAW ~02 ~8M AAYXX CITATION |
ID | FETCH-LOGICAL-c3287-a8cc0ba9ae50338d52460604e57d55ac3d06f3aee0805dec1e814c950fd96873 |
ISSN | 0021-2148 |
IngestDate | Fri Aug 23 01:03:20 EDT 2024 Sat Aug 24 00:52:27 EDT 2024 Wed Oct 30 09:55:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3287-a8cc0ba9ae50338d52460604e57d55ac3d06f3aee0805dec1e814c950fd96873 |
Notes | istex:D921212551429CB67A0228FC7DF936C363DA6839 ArticleID:IJCH5680480307 ark:/67375/WNG-ZFQDN5HZ-D |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1560_IJC_48_3_4_185 wiley_primary_10_1560_IJC_48_3_4_185_IJCH5680480307 istex_primary_ark_67375_WNG_ZFQDN5HZ_D |
PublicationCentury | 2000 |
PublicationDate | December 2008 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: December 2008 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Israel journal of chemistry |
PublicationTitleAlternate | Isr. J. Chem |
PublicationYear | 2008 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | Wang, L.; Brazis, P.; Rocci, M.; Kannewurf, C. R.; Kanatzidis, M. G. Chem. Mater. 1998, 10, 3298-3300. Llopis, J. F.; Tordesillas, I. M. In Encyclopedia of Electrochemistry. Vol. 6; Bard, A. J., Ed.; Marcel Dekker: New York, 1976; pp 277-325. Robinson, R. A.; Stokes, R. H. Electrolyte Solutions; Butterworths: London, 1959; pp 491, 504. Latimer, W. M. The Oxidation States of the Elements and Their Potentials in Aqueous Solutions; Prentice-Hall: Englewood Cliffs, NJ, 1952; p 228. Levi, M. D.; Aurbach, D. Electrochim. Acta 1997, 45, 167-185. Hepel, M.; Janusz, W. Electrochim. Acta 2000, 45, 3785-3799. Ramaray, R.; Kabbe, C.; Scholz, F. Electrochem. Commun. 2000, 2, 190-194. Inzelt, G.; Puskás, Z. J. Solid State Electrochem. 2006, 10, 125-133. Appelbaum, L.; Heinrichs, C.; Demtschuk, J.; Michman, M.; Oron, M.; Schäfer, H. J.; Schumann, H. Organomet. J. Chem. 1999, 592, 240. Schöllhorn, R.; Steffen, R.; Wagner, K. Angew. Chem. 1983, 95, 559-560. Hepel, M. In Interfacial Electrochemistry; Wieczkowski, A., Ed.; Marcel Dekker: New York, 1999; pp 599-630. Vericat, C.; Wakisaka, M.; Haasch, R.; Bagus, P. S.; Wieckowski, A. J. Solid State Electrochem. 2004, 8, 794-803. Puskás, Z.; Inzelt, G. J. Solid State Electrochem. 2004, 8, 828-841 Giménez-Romero, D.; Bueno, P. R.; Garcia-Jareno, J. J.; Gabrielli, C.; Perrot, H.; Vicente, F. J. Phys. Chem. B 2006, 110, 2715-2722. Grygar, T.; Marken, F.; Schröder, U.; Scholz, F. Coll. Czech Chem. Commun. 2002, 67, 163-208. Fehér, K.; Inzelt, G. Electrochim. Acta 2002, 47, 3551-3559. Steffen, R.; Schöllhorn, R. Solid State Ionics 1986, 22, 31-41. Levi, M. D.; Aurbach, D. J. Electroanal. Chem. 1997, 421, 79-88. Taqui Khan, M. M.; Ramachandraiah, G.; Prakash Rao, A. Inorg. Chem. 1986, 25, 665-672. Colom, F. In Standard Potentials in Aqueous Solution; Bard, A. J.; Parsons, R.; Jordan, J., Eds.; Marcel Dekker: New York, 1985; pp 413-428. Chen, S. M.; Hsueh, S. H. J. Electroanal. Chem. 2004, 566, 291-303. Inzelt, G.; Puskás, Z. Electrochem. Commun. 2004, 6, 805-811. Levi, M. D.; Levi, E. A.; Aurbach, D. J. Electroanal. Chem. 1997, 421, 89-97. Wang, J. X.; Marinkovic, N. S.; Zajonz, H.; Ocko, B. M.; Adzic, R. R. J. Phys. Chem. B 2001, 105, 2809-2814. Scholz, F.; Meyer, B. In Electroanalytical Chemistry. Vol. 20; Bard, A. J.; Rubinstein, I., Eds.; Marcel Dekker: New York, 1998; pp 1-86. Giménez-Romero, D.; Agrisuelas, J.; Garcia-Jareno, J. J.; Gregory, J.; Gabrielli, C.; Perrot, H.; Vicente, F. J. Am. Chem. Soc. 2007, 129, 7121-7126. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochman, M. Advanced Inorganic Chemistry; Wiley: New York, 1999; pp 1010-1039. Marinkovic, N. S.; Wang, J. X.; Zajonz, H.; Adzic, R. R. J. Electroanal. Chem. 2001, 500, 388-394. Bond, A. M.; Marken, F.; Williams, C. T.; Beattie, D. A.; Keyes, T. E.; Forster, R. J.; Vos, J. G. J Phys. Chem. 2000, 104, 1977-1977. De Benedetto, G. E.; Guascito, M. R.; Ciriello, R.; Cataldi, T. R. I. Anal. Chim. Acta 2000, 410, 143-152. Blandamer, M. J.; Engberts, J. B. F. N.; Gleeson, P. T.; Reis, J. C. R. Chem. Soc. Rev. 2005, 34, 440-458. Inzelt, G.; Puskás, Z. Electrochim. Acta 2004, 49, 1969-1969. Inzelt, G.; Németh, K.; Róka, A. Electrochim Acta, 2007, 52, 4015-4023. Livingstone, S. E. In Comprehensive Inorganic Chemistry. Vol. 3; Bailar, J. C.; Emeléus, M. J.; Nyholm, R.; Trotman-Dickenson, A. F., Eds.; Pergamon Press: Oxford, 1973; pp 1163-1370. Kasem, K.; Steldt, F. R.; Miller, T. J.; Zimmerman, A. N. Microporous Mesoporous Mat. 2003, 66, 133-141. Fiedler, D. A.; Scholz, F. In Electroanalytical Methods. Ch II 8; Scholz, F., Ed.; Springer: Berlin, 2002; pp 201-222. Kulesza, P. J. J. Electroanal. Chem. 1987, 220, 295-309. Trasatti, S. Electrochim. Acta 2000, 45, 2377-2385. Inzelt, G.; Róka, A. Electrochim. Acta 2008, 53, 3932-3941. Evans, C. D.; Chambers, J. Q. Chem. Mater. 1994, 6, 454-460. Chaudret, B.; Sabo-Etienne, S. In Encyclopedia of Inorganic Chemistry. Vol. 7; King, R. B., Ed.; Wiley: Chichester, 1994; pp 3514-3533. El-Aziz, A. M.; Kibler, L. A. Electrochem. Commun. 2002, 4, 866-870. Wang, L.; Rocci-Lane, M.; Brazis, P.; Kannewurf, C. R.; Kim, Y. I.; Lee, W.; Choy, J. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2000, 122, 6629-6640. Inzelt, G.; Puskás, Z.; Németh, K.; Varga, I. J. Solid State Electrochem. 2005, 9, 823-835. 2007; 129 2004; 566 1987; 220 2000; 410 2000; 45 2006; 10 2004; 49 2004; 8 1997; 45 1952 2004; 6 1983; 95 2006; 110 2002; 4 2000; 2 2002 2008; 53 2007; 52 1998; 20 1959 1976; 6 2001; 500 1999 2001; 105 1997; 421 2002; 47 2000; 104 1986; 22 2002; 67 2005; 9 1986; 25 1985 1999; 592 2000; 122 1998; 10 2005; 34 1973; 3 1994; 7 2003; 66 1994; 6 e_1_2_7_5_2 e_1_2_7_6_2 Llopis J. F. (e_1_2_7_8_2) 1976 e_1_2_7_19_2 Cotton F. A. (e_1_2_7_2_2) 1999 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_45_2 e_1_2_7_26_2 Fiedler D. A. (e_1_2_7_16_2) 2002 e_1_2_7_27_2 Latimer W. M. (e_1_2_7_7_2) 1952 e_1_2_7_28_2 e_1_2_7_29_2 Colom F. (e_1_2_7_9_2) 1985 Livingstone S. E. (e_1_2_7_3_2) 1973 Robinson R. A. (e_1_2_7_43_2) 1959 Chaudret B. (e_1_2_7_4_2) 1994 Scholz F. (e_1_2_7_14_2) 1998 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 Hepel M. (e_1_2_7_40_2) 1999 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 |
References_xml | – start-page: 228 year: 1952 – volume: 105 start-page: 2809 year: 2001 end-page: 2814 publication-title: J. Phys. Chem. B – volume: 20 start-page: 1 year: 1998 end-page: 86 – volume: 122 start-page: 6629 year: 2000 end-page: 6640 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 277 year: 1976 end-page: 325 – start-page: 201 year: 2002 end-page: 222 – volume: 4 start-page: 866 year: 2002 end-page: 870 publication-title: Electrochem. Commun. – start-page: 491 year: 1959 – volume: 67 start-page: 163 year: 2002 end-page: 208 publication-title: Coll. Czech Chem. Commun. – volume: 592 start-page: 240 year: 1999 publication-title: Organomet. J. Chem. – volume: 49 start-page: 1969 year: 2004 end-page: 1969 publication-title: Electrochim. Acta – volume: 52 start-page: 4015 year: 2007 end-page: 4023 publication-title: Electrochim Acta – volume: 45 start-page: 2377 year: 2000 end-page: 2385 publication-title: Electrochim. Acta – volume: 95 start-page: 559 year: 1983 end-page: 560 publication-title: Angew. Chem. – volume: 8 start-page: 828 year: 2004 end-page: 841 publication-title: J. Solid State Electrochem. – volume: 47 start-page: 3551 year: 2002 end-page: 3559 publication-title: Electrochim. Acta – volume: 220 start-page: 295 year: 1987 end-page: 309 publication-title: J. Electroanal. Chem. – volume: 500 start-page: 388 year: 2001 end-page: 394 publication-title: J. Electroanal. Chem. – volume: 104 start-page: 1977 year: 2000 end-page: 1977 publication-title: J Phys. Chem. – volume: 129 start-page: 7121 year: 2007 end-page: 7126 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 167 year: 1997 end-page: 185 publication-title: Electrochim. Acta – volume: 410 start-page: 143 year: 2000 end-page: 152 publication-title: Anal. Chim. Acta – start-page: 413 year: 1985 end-page: 428 – volume: 66 start-page: 133 year: 2003 end-page: 141 publication-title: Microporous Mesoporous Mat. – volume: 22 start-page: 31 year: 1986 end-page: 41 publication-title: Solid State Ionics – volume: 110 start-page: 2715 year: 2006 end-page: 2722 publication-title: J. Phys. Chem. B – volume: 45 start-page: 3785 year: 2000 end-page: 3799 publication-title: Electrochim. Acta – start-page: 599 year: 1999 end-page: 630 – volume: 9 start-page: 823 year: 2005 end-page: 835 publication-title: J. Solid State Electrochem. – volume: 421 start-page: 79 year: 1997 end-page: 88 publication-title: J. Electroanal. Chem. – volume: 6 start-page: 805 year: 2004 end-page: 811 publication-title: Electrochem. Commun. – volume: 8 start-page: 794 year: 2004 end-page: 803 publication-title: J. Solid State Electrochem. – volume: 2 start-page: 190 year: 2000 end-page: 194 publication-title: Electrochem. Commun. – volume: 10 start-page: 3298 year: 1998 end-page: 3300 publication-title: Chem. Mater. – volume: 34 start-page: 440 year: 2005 end-page: 458 publication-title: Chem. Soc. Rev. – volume: 421 start-page: 89 year: 1997 end-page: 97 publication-title: J. Electroanal. Chem. – volume: 3 start-page: 1163 year: 1973 end-page: 1370 – volume: 53 start-page: 3932 year: 2008 end-page: 3941 publication-title: Electrochim. Acta – volume: 6 start-page: 454 year: 1994 end-page: 460 publication-title: Chem. Mater. – volume: 7 start-page: 3514 year: 1994 end-page: 3533 – volume: 566 start-page: 291 year: 2004 end-page: 303 publication-title: J. Electroanal. Chem. – volume: 25 start-page: 665 year: 1986 end-page: 672 publication-title: Inorg. Chem. – start-page: 1010 year: 1999 end-page: 1039 – volume: 10 start-page: 125 year: 2006 end-page: 133 publication-title: J. Solid State Electrochem. – start-page: 3514 volume-title: Encyclopedia of Inorganic Chemistry year: 1994 ident: e_1_2_7_4_2 contributor: fullname: Chaudret B. – start-page: 1 volume-title: Electroanalytical Chemistry year: 1998 ident: e_1_2_7_14_2 contributor: fullname: Scholz F. – start-page: 201 volume-title: Electroanalytical Methods year: 2002 ident: e_1_2_7_16_2 contributor: fullname: Fiedler D. A. – ident: e_1_2_7_30_2 doi: 10.1016/0167-2738(86)90056-1 – ident: e_1_2_7_32_2 doi: 10.1021/cm980474l – start-page: 1163 volume-title: Comprehensive Inorganic Chemistry year: 1973 ident: e_1_2_7_3_2 contributor: fullname: Livingstone S. E. – ident: e_1_2_7_35_2 doi: 10.1016/S0013-4686(99)00202-9 – start-page: 599 volume-title: Interfacial Electrochemistry year: 1999 ident: e_1_2_7_40_2 contributor: fullname: Hepel M. – ident: e_1_2_7_13_2 doi: 10.1016/0022-0728(87)85116-1 – ident: e_1_2_7_19_2 doi: 10.1016/j.elecom.2004.05.019 – ident: e_1_2_7_39_2 doi: 10.1007/s10008-004-0551-8 – ident: e_1_2_7_23_2 doi: 10.1016/S0013-4686(02)00359-6 – ident: e_1_2_7_20_2 doi: 10.1007/s10008-005-0019-5 – ident: e_1_2_7_5_2 doi: 10.1016/S0022-328X(99)00532-X – ident: e_1_2_7_31_2 doi: 10.1021/ja9944610 – ident: e_1_2_7_25_2 doi: 10.1016/S1388-2481(02)00475-7 – ident: e_1_2_7_33_2 doi: 10.1016/S0022-0728(96)04832-2 – ident: e_1_2_7_11_2 doi: 10.1016/j.micromeso.2003.09.006 – start-page: 277 volume-title: Encyclopedia of Electrochemistry year: 1976 ident: e_1_2_7_8_2 contributor: fullname: Llopis J. F. – start-page: 413 volume-title: Standard Potentials in Aqueous Solution year: 1985 ident: e_1_2_7_9_2 contributor: fullname: Colom F. – ident: e_1_2_7_10_2 doi: 10.1016/S0003-2670(00)00724-8 – ident: e_1_2_7_45_2 doi: 10.1039/b400473f – ident: e_1_2_7_22_2 doi: 10.1016/j.electacta.2007.06.014 – start-page: 228 volume-title: The Oxidation States of the Elements and Their Potentials in Aqueous Solutions year: 1952 ident: e_1_2_7_7_2 contributor: fullname: Latimer W. M. – ident: e_1_2_7_26_2 doi: 10.1016/S0022-0728(00)00456-3 – ident: e_1_2_7_6_2 doi: 10.1016/S0013-4686(00)00338-8 – ident: e_1_2_7_21_2 doi: 10.1007/s10008-005-0054-2 – start-page: 1010 volume-title: Advanced Inorganic Chemistry year: 1999 ident: e_1_2_7_2_2 contributor: fullname: Cotton F. A. – ident: e_1_2_7_42_2 doi: 10.1021/ja070895g – ident: e_1_2_7_44_2 doi: 10.1016/j.electacta.2006.11.020 – ident: e_1_2_7_12_2 doi: 10.1016/j.jelechem.2003.11.040 – ident: e_1_2_7_17_2 doi: 10.1021/jp9925942 – ident: e_1_2_7_24_2 doi: 10.1016/j.electacta.2003.12.027 – ident: e_1_2_7_36_2 doi: 10.1021/ic00225a015 – ident: e_1_2_7_28_2 doi: 10.1007/s10008-004-0547-4 – start-page: 491 volume-title: Electrolyte Solutions year: 1959 ident: e_1_2_7_43_2 contributor: fullname: Robinson R. A. – ident: e_1_2_7_18_2 doi: 10.1016/S1388-2481(00)00005-9 – ident: e_1_2_7_41_2 doi: 10.1021/jp0561773 – ident: e_1_2_7_34_2 doi: 10.1016/S0022-0728(96)04833-4 – ident: e_1_2_7_15_2 doi: 10.1135/cccc20020163 – ident: e_1_2_7_27_2 doi: 10.1021/jp0041757 – ident: e_1_2_7_29_2 doi: 10.1002/ange.19830950711 – ident: e_1_2_7_37_2 doi: 10.1021/cm00040a020 – ident: e_1_2_7_38_2 doi: 10.1016/S0013-4686(00)00468-0 |
SSID | ssj0009099 |
Score | 1.8366824 |
Snippet | Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of... Abstract Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the... |
SourceID | crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 185 |
Title | Electrochemical Nanogravimetric Studies of Ruthenium(III) Trichloride Microcrystals |
URI | https://api.istex.fr/ark:/67375/WNG-ZFQDN5HZ-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1560%2FIJC.48.3-4.185 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK-wAviKsoN-UBcRFKcOLYdR7Xdl0yiUpAgWkvVmI7YtrIUFYQ2xv_nOM4SZMCYvAStVZqped8OTefC0JPiAK1StLIzQNpjhkxdrmSxGWEBDjVlIVVMOf1ksXvw_0DejAY_OhWl6wzT178tq7kf7gKa8BXUyX7D5xtN4UF-Az8hStwGK6X4vGunWEjm6J_EJUm2-rb0WczJ0s2SYJVwxGTyV4cmanGPEkSEwxYwS2fTAKe0iZ7HvYpz8FWPDnrGqzJWZnqXoMJ2YyIa1FVXOiTSpbvnZtz9ykrN4H6t9UKOU6b7MnqZN7vRxv4VuaGnX31YRa_7IQbm7IA3w182zbT01aacha5lNu5OY24DXkHVk2Jj5Wevp3eUyti3466_UXGg40GjEn2Z17IPdjAa3_Wbaa9peTa1MO0PDa5bBMqPi73xOHizXxJ40Mxv4JGAcgqPkSjnel8uth0bsZRnSdk_1_d-ROe4lX_GXqWzci8pN_7Hk9lsqxuoOu1r-HsWODcRANd3EJXZw3_bqN3WwBytgDk1AByTnOnBdBzgM8LpwMepweeO2i12F3NYreesuFKAu6ym3IpcWaatJsTba5oEDLTUUnTiaI0lURhlpNUa_AtqNLS19wPZURxriLGJ-QuGhanhb6HHBKoAGdURyTLwMrGPNKa4Rx0RqgzMGXH6FlDIPHF9lIRxgcFUgogpQi5ICIUQMoxelrRr73tT1wbI1IR-C_7ma8xZdw0UACldv-y2z9A1zYvwUM0XJdf9SMwQtfZ4xomPwF6EoGI |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Nanogravimetric+Studies+of+Ruthenium%28III%29+Trichloride+Microcrystals&rft.jtitle=Israel+journal+of+chemistry&rft.au=Inzelt%2C+Gy%C3%B6rgy&rft.au=R%C3%B3ka%2C+Andr%C3%A1s&rft.date=2008-12-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0021-2148&rft.eissn=1869-5868&rft.volume=48&rft.issue=3-4&rft.spage=185&rft.epage=196&rft_id=info:doi/10.1560%2FIJC.48.3-4.185&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_ZFQDN5HZ_D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-2148&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-2148&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-2148&client=summon |