Electrochemical Nanogravimetric Studies of Ruthenium(III) Trichloride Microcrystals

Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of aqueous solutions of M+Cl− electrolytes, where M+ = Li+, Na+, K+, Rb+, Cs+ and K2SO4 by cyclic voltammetry and electrochemical nanogravimetry at...

Full description

Saved in:
Bibliographic Details
Published inIsrael journal of chemistry Vol. 48; no. 3-4; pp. 185 - 196
Main Authors Inzelt, György, Róka, András
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.12.2008
WILEY‐VCH Verlag
Online AccessGet full text

Cover

Loading…
Abstract Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of aqueous solutions of M+Cl− electrolytes, where M+ = Li+, Na+, K+, Rb+, Cs+ and K2SO4 by cyclic voltammetry and electrochemical nanogravimetry at a quartz crystal microbalance (EQCM). The electrochemical reduction of the layered α‐RuCl3 microcrystals causes drastic changes in the composition and the structure of crystals. The comparison of the current—potential and surface mass change—potential functions belonging to the first reduction‐reoxidation cycle with the subsequent ones reveals that the simple intercalation scheme described in the literature cannot be entirely valid. During the first reduction step at ca. 0.2 V vs. SCE the charge consumption is substantially higher than in the course of the further potential cycling, and the simultaneous rapid and intense mass decrease indicates that considerable chemical and structural transformations occurs. Although a loss of the surface mass cannot be entirely excluded, the frequency increase most likely is not related to the dissolution of the microcrystals, however, large amounts of water molecules and—to a much smaller extent—chloride ions leave the crystal phase, and in fact a new material, which remains strongly attached to the gold or graphite surface, is formed. The extremely high frequency change at the first reduction process during the first cycle is most likely related to the stress effect originating in the phase transition of the surface layer and/or the removal of the water rigidly coupled to the surface into voids of the immobilized microcrystals. Depending on the amount of microcrystals on the electrode surface and the experimental conditions (the nature and concentration of the contacting electrolyte, scan rate, and potential range) used, after the “break‐in” cycle stable electrochemical and nanogravimetric responses develop. The several reduction and reoxidation pairs of waves in the cyclic voltammograms and the simultaneous mass changes are in connection with the wide variety of intercalation reactions and complex formation during the electrochemical transformations. The mass change was reversible, in general, during reduction mass increase, while during oxidation mass decrease occurred at medium electrolyte concentrations in three or more steps. The mass excursions are rather complicated, involving different mass increase/decrease regions as a function of potential and the composition of the contacting solution. Taking into account the layered structure of RuCl3, the electrochemical reduction can be explained as an intercalation reaction in that mixed valence intercalation phases with a general formula K n+ Ru z‐nIII [Ru nII Cl3z‐y (H2O)y] • dH2O are formed from z (RuCl3 · H2O). The reduction/reoxidation waves are related to the redox transformations of Ru(III) to Ru(II) sites and the insertion/deinsertion of cations and water molecules, while the composition of the polynuclear complexes and the structure of microcrystals change.
AbstractList Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of aqueous solutions of M+Cl− electrolytes, where M+ = Li+, Na+, K+, Rb+, Cs+ and K2SO4 by cyclic voltammetry and electrochemical nanogravimetry at a quartz crystal microbalance (EQCM). The electrochemical reduction of the layered α‐RuCl3 microcrystals causes drastic changes in the composition and the structure of crystals. The comparison of the current—potential and surface mass change—potential functions belonging to the first reduction‐reoxidation cycle with the subsequent ones reveals that the simple intercalation scheme described in the literature cannot be entirely valid. During the first reduction step at ca. 0.2 V vs. SCE the charge consumption is substantially higher than in the course of the further potential cycling, and the simultaneous rapid and intense mass decrease indicates that considerable chemical and structural transformations occurs. Although a loss of the surface mass cannot be entirely excluded, the frequency increase most likely is not related to the dissolution of the microcrystals, however, large amounts of water molecules and—to a much smaller extent—chloride ions leave the crystal phase, and in fact a new material, which remains strongly attached to the gold or graphite surface, is formed. The extremely high frequency change at the first reduction process during the first cycle is most likely related to the stress effect originating in the phase transition of the surface layer and/or the removal of the water rigidly coupled to the surface into voids of the immobilized microcrystals. Depending on the amount of microcrystals on the electrode surface and the experimental conditions (the nature and concentration of the contacting electrolyte, scan rate, and potential range) used, after the “break‐in” cycle stable electrochemical and nanogravimetric responses develop. The several reduction and reoxidation pairs of waves in the cyclic voltammograms and the simultaneous mass changes are in connection with the wide variety of intercalation reactions and complex formation during the electrochemical transformations. The mass change was reversible, in general, during reduction mass increase, while during oxidation mass decrease occurred at medium electrolyte concentrations in three or more steps. The mass excursions are rather complicated, involving different mass increase/decrease regions as a function of potential and the composition of the contacting solution. Taking into account the layered structure of RuCl3, the electrochemical reduction can be explained as an intercalation reaction in that mixed valence intercalation phases with a general formula K n+ Ru z‐nIII [Ru nII Cl3z‐y (H2O)y] • dH2O are formed from z (RuCl3 · H2O). The reduction/reoxidation waves are related to the redox transformations of Ru(III) to Ru(II) sites and the insertion/deinsertion of cations and water molecules, while the composition of the polynuclear complexes and the structure of microcrystals change.
Abstract Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of aqueous solutions of M + Cl − electrolytes, where M + = Li + , Na + , K + , Rb + , Cs + and K 2 SO 4 by cyclic voltammetry and electrochemical nanogravimetry at a quartz crystal microbalance (EQCM). The electrochemical reduction of the layered α‐RuCl 3 microcrystals causes drastic changes in the composition and the structure of crystals. The comparison of the current—potential and surface mass change—potential functions belonging to the first reduction‐reoxidation cycle with the subsequent ones reveals that the simple intercalation scheme described in the literature cannot be entirely valid. During the first reduction step at ca. 0.2 V vs. SCE the charge consumption is substantially higher than in the course of the further potential cycling, and the simultaneous rapid and intense mass decrease indicates that considerable chemical and structural transformations occurs. Although a loss of the surface mass cannot be entirely excluded, the frequency increase most likely is not related to the dissolution of the microcrystals, however, large amounts of water molecules and—to a much smaller extent—chloride ions leave the crystal phase, and in fact a new material, which remains strongly attached to the gold or graphite surface, is formed. The extremely high frequency change at the first reduction process during the first cycle is most likely related to the stress effect originating in the phase transition of the surface layer and/or the removal of the water rigidly coupled to the surface into voids of the immobilized microcrystals. Depending on the amount of microcrystals on the electrode surface and the experimental conditions (the nature and concentration of the contacting electrolyte, scan rate, and potential range) used, after the “break‐in” cycle stable electrochemical and nanogravimetric responses develop. The several reduction and reoxidation pairs of waves in the cyclic voltammograms and the simultaneous mass changes are in connection with the wide variety of intercalation reactions and complex formation during the electrochemical transformations. The mass change was reversible, in general, during reduction mass increase, while during oxidation mass decrease occurred at medium electrolyte concentrations in three or more steps. The mass excursions are rather complicated, involving different mass increase/decrease regions as a function of potential and the composition of the contacting solution. Taking into account the layered structure of RuCl 3 , the electrochemical reduction can be explained as an intercalation reaction in that mixed valence intercalation phases with a general formula K Ru [Ru Cl 3z‐y (H 2 O) y ] • dH 2 O are formed from z (RuCl 3 · H 2 O). The reduction/reoxidation waves are related to the redox transformations of Ru(III) to Ru(II) sites and the insertion/deinsertion of cations and water molecules, while the composition of the polynuclear complexes and the structure of microcrystals change.
Author Róka, András
Inzelt, György
Author_xml – sequence: 1
  givenname: György
  surname: Inzelt
  fullname: Inzelt, György
  email: inzeltgy@chem.elte.hu
  organization: Department of Physical Chemistry, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/A, H-1117, Hungary
– sequence: 2
  givenname: András
  surname: Róka
  fullname: Róka, András
  organization: Department of Physical Chemistry, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/A, H-1117, Hungary
BookMark eNqFkM1Lw0AUxBepYFu9es5RD4lvux_ZeJPaj0itaAtCL8u6ebGrSSObVO1_b0rFq6fh8eY3A9MjnU21QULOKURUSLhK74YRVxELeUSVOCJdqmQSCiVVh3QBBjQcUK5OSK-u3wAggSTpksWoQNv4yq6xdNYUwdxsqldvPl2JjXc2WDTbzGEdVHnwtG3WuHHb8iJN08tg2b7XReVdhsG9s22G39WNKepTcpy3gme_2ifL8Wg5nIazh0k6vJmFlg1UHBplLbyYxKAAxlQmBlyCBI4izoQwlmUgc2YQQYHI0FJUlNtEQJ4lUsWsT6JDbFtd1x5z_eFdafxOU9D7RXS7iOZKM811u0gLXB-AL1fg7h_3_pwKqYArYLBvCw-wqxv8_oONf9cyZrHQz_OJXo0fb-diutK37Afh7nc5
CitedBy_id crossref_primary_10_1007_s10008_014_2643_4
crossref_primary_10_1002_zaac_202300141
crossref_primary_10_1007_s10008_015_2770_6
Cites_doi 10.1016/0167-2738(86)90056-1
10.1021/cm980474l
10.1016/S0013-4686(99)00202-9
10.1016/0022-0728(87)85116-1
10.1016/j.elecom.2004.05.019
10.1007/s10008-004-0551-8
10.1016/S0013-4686(02)00359-6
10.1007/s10008-005-0019-5
10.1016/S0022-328X(99)00532-X
10.1021/ja9944610
10.1016/S1388-2481(02)00475-7
10.1016/S0022-0728(96)04832-2
10.1016/j.micromeso.2003.09.006
10.1016/S0003-2670(00)00724-8
10.1039/b400473f
10.1016/j.electacta.2007.06.014
10.1016/S0022-0728(00)00456-3
10.1016/S0013-4686(00)00338-8
10.1007/s10008-005-0054-2
10.1021/ja070895g
10.1016/j.electacta.2006.11.020
10.1016/j.jelechem.2003.11.040
10.1021/jp9925942
10.1016/j.electacta.2003.12.027
10.1021/ic00225a015
10.1007/s10008-004-0547-4
10.1016/S1388-2481(00)00005-9
10.1021/jp0561773
10.1016/S0022-0728(96)04833-4
10.1135/cccc20020163
10.1021/jp0041757
10.1002/ange.19830950711
10.1021/cm00040a020
10.1016/S0013-4686(00)00468-0
ContentType Journal Article
Copyright Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1560/IJC.48.3-4.185
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1869-5868
EndPage 196
ExternalDocumentID 10_1560_IJC_48_3_4_185
IJCH5680480307
ark_67375_WNG_ZFQDN5HZ_D
Genre article
GroupedDBID -~X
05W
0R~
1OB
1OC
31~
33P
4.4
53G
5GY
8-1
9LF
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABEFU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
B0M
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
BZXJU
CS3
DCZOG
DRFUL
DRSTM
DU5
EAD
EAP
EAS
EBS
EJD
EMK
ESX
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
ML-
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P2P
P2W
P4E
PALCI
RIWAO
RJQFR
ROL
SAMSI
SJN
SUPJJ
TUS
VH1
WBKPD
WH7
WOHZO
WXSBR
WYJ
ZE2
ZZTAW
~02
~8M
AAYXX
CITATION
ID FETCH-LOGICAL-c3287-a8cc0ba9ae50338d52460604e57d55ac3d06f3aee0805dec1e814c950fd96873
ISSN 0021-2148
IngestDate Fri Aug 23 01:03:20 EDT 2024
Sat Aug 24 00:52:27 EDT 2024
Wed Oct 30 09:55:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3-4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3287-a8cc0ba9ae50338d52460604e57d55ac3d06f3aee0805dec1e814c950fd96873
Notes istex:D921212551429CB67A0228FC7DF936C363DA6839
ArticleID:IJCH5680480307
ark:/67375/WNG-ZFQDN5HZ-D
PageCount 12
ParticipantIDs crossref_primary_10_1560_IJC_48_3_4_185
wiley_primary_10_1560_IJC_48_3_4_185_IJCH5680480307
istex_primary_ark_67375_WNG_ZFQDN5HZ_D
PublicationCentury 2000
PublicationDate December 2008
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: December 2008
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Israel journal of chemistry
PublicationTitleAlternate Isr. J. Chem
PublicationYear 2008
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References Wang, L.; Brazis, P.; Rocci, M.; Kannewurf, C. R.; Kanatzidis, M. G. Chem. Mater. 1998, 10, 3298-3300.
Llopis, J. F.; Tordesillas, I. M. In Encyclopedia of Electrochemistry. Vol. 6; Bard, A. J., Ed.; Marcel Dekker: New York, 1976; pp 277-325.
Robinson, R. A.; Stokes, R. H. Electrolyte Solutions; Butterworths: London, 1959; pp 491, 504.
Latimer, W. M. The Oxidation States of the Elements and Their Potentials in Aqueous Solutions; Prentice-Hall: Englewood Cliffs, NJ, 1952; p 228.
Levi, M. D.; Aurbach, D. Electrochim. Acta 1997, 45, 167-185.
Hepel, M.; Janusz, W. Electrochim. Acta 2000, 45, 3785-3799.
Ramaray, R.; Kabbe, C.; Scholz, F. Electrochem. Commun. 2000, 2, 190-194.
Inzelt, G.; Puskás, Z. J. Solid State Electrochem. 2006, 10, 125-133.
Appelbaum, L.; Heinrichs, C.; Demtschuk, J.; Michman, M.; Oron, M.; Schäfer, H. J.; Schumann, H. Organomet. J. Chem. 1999, 592, 240.
Schöllhorn, R.; Steffen, R.; Wagner, K. Angew. Chem. 1983, 95, 559-560.
Hepel, M. In Interfacial Electrochemistry; Wieczkowski, A., Ed.; Marcel Dekker: New York, 1999; pp 599-630.
Vericat, C.; Wakisaka, M.; Haasch, R.; Bagus, P. S.; Wieckowski, A. J. Solid State Electrochem. 2004, 8, 794-803.
Puskás, Z.; Inzelt, G. J. Solid State Electrochem. 2004, 8, 828-841
Giménez-Romero, D.; Bueno, P. R.; Garcia-Jareno, J. J.; Gabrielli, C.; Perrot, H.; Vicente, F. J. Phys. Chem. B 2006, 110, 2715-2722.
Grygar, T.; Marken, F.; Schröder, U.; Scholz, F. Coll. Czech Chem. Commun. 2002, 67, 163-208.
Fehér, K.; Inzelt, G. Electrochim. Acta 2002, 47, 3551-3559.
Steffen, R.; Schöllhorn, R. Solid State Ionics 1986, 22, 31-41.
Levi, M. D.; Aurbach, D. J. Electroanal. Chem. 1997, 421, 79-88.
Taqui Khan, M. M.; Ramachandraiah, G.; Prakash Rao, A. Inorg. Chem. 1986, 25, 665-672.
Colom, F. In Standard Potentials in Aqueous Solution; Bard, A. J.; Parsons, R.; Jordan, J., Eds.; Marcel Dekker: New York, 1985; pp 413-428.
Chen, S. M.; Hsueh, S. H. J. Electroanal. Chem. 2004, 566, 291-303.
Inzelt, G.; Puskás, Z. Electrochem. Commun. 2004, 6, 805-811.
Levi, M. D.; Levi, E. A.; Aurbach, D. J. Electroanal. Chem. 1997, 421, 89-97.
Wang, J. X.; Marinkovic, N. S.; Zajonz, H.; Ocko, B. M.; Adzic, R. R. J. Phys. Chem. B 2001, 105, 2809-2814.
Scholz, F.; Meyer, B. In Electroanalytical Chemistry. Vol. 20; Bard, A. J.; Rubinstein, I., Eds.; Marcel Dekker: New York, 1998; pp 1-86.
Giménez-Romero, D.; Agrisuelas, J.; Garcia-Jareno, J. J.; Gregory, J.; Gabrielli, C.; Perrot, H.; Vicente, F. J. Am. Chem. Soc. 2007, 129, 7121-7126.
Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochman, M. Advanced Inorganic Chemistry; Wiley: New York, 1999; pp 1010-1039.
Marinkovic, N. S.; Wang, J. X.; Zajonz, H.; Adzic, R. R. J. Electroanal. Chem. 2001, 500, 388-394.
Bond, A. M.; Marken, F.; Williams, C. T.; Beattie, D. A.; Keyes, T. E.; Forster, R. J.; Vos, J. G. J Phys. Chem. 2000, 104, 1977-1977.
De Benedetto, G. E.; Guascito, M. R.; Ciriello, R.; Cataldi, T. R. I. Anal. Chim. Acta 2000, 410, 143-152.
Blandamer, M. J.; Engberts, J. B. F. N.; Gleeson, P. T.; Reis, J. C. R. Chem. Soc. Rev. 2005, 34, 440-458.
Inzelt, G.; Puskás, Z. Electrochim. Acta 2004, 49, 1969-1969.
Inzelt, G.; Németh, K.; Róka, A. Electrochim Acta, 2007, 52, 4015-4023.
Livingstone, S. E. In Comprehensive Inorganic Chemistry. Vol. 3; Bailar, J. C.; Emeléus, M. J.; Nyholm, R.; Trotman-Dickenson, A. F., Eds.; Pergamon Press: Oxford, 1973; pp 1163-1370.
Kasem, K.; Steldt, F. R.; Miller, T. J.; Zimmerman, A. N. Microporous Mesoporous Mat. 2003, 66, 133-141.
Fiedler, D. A.; Scholz, F. In Electroanalytical Methods. Ch II 8; Scholz, F., Ed.; Springer: Berlin, 2002; pp 201-222.
Kulesza, P. J. J. Electroanal. Chem. 1987, 220, 295-309.
Trasatti, S. Electrochim. Acta 2000, 45, 2377-2385.
Inzelt, G.; Róka, A. Electrochim. Acta 2008, 53, 3932-3941.
Evans, C. D.; Chambers, J. Q. Chem. Mater. 1994, 6, 454-460.
Chaudret, B.; Sabo-Etienne, S. In Encyclopedia of Inorganic Chemistry. Vol. 7; King, R. B., Ed.; Wiley: Chichester, 1994; pp 3514-3533.
El-Aziz, A. M.; Kibler, L. A. Electrochem. Commun. 2002, 4, 866-870.
Wang, L.; Rocci-Lane, M.; Brazis, P.; Kannewurf, C. R.; Kim, Y. I.; Lee, W.; Choy, J. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2000, 122, 6629-6640.
Inzelt, G.; Puskás, Z.; Németh, K.; Varga, I. J. Solid State Electrochem. 2005, 9, 823-835.
2007; 129
2004; 566
1987; 220
2000; 410
2000; 45
2006; 10
2004; 49
2004; 8
1997; 45
1952
2004; 6
1983; 95
2006; 110
2002; 4
2000; 2
2002
2008; 53
2007; 52
1998; 20
1959
1976; 6
2001; 500
1999
2001; 105
1997; 421
2002; 47
2000; 104
1986; 22
2002; 67
2005; 9
1986; 25
1985
1999; 592
2000; 122
1998; 10
2005; 34
1973; 3
1994; 7
2003; 66
1994; 6
e_1_2_7_5_2
e_1_2_7_6_2
Llopis J. F. (e_1_2_7_8_2) 1976
e_1_2_7_19_2
Cotton F. A. (e_1_2_7_2_2) 1999
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_45_2
e_1_2_7_26_2
Fiedler D. A. (e_1_2_7_16_2) 2002
e_1_2_7_27_2
Latimer W. M. (e_1_2_7_7_2) 1952
e_1_2_7_28_2
e_1_2_7_29_2
Colom F. (e_1_2_7_9_2) 1985
Livingstone S. E. (e_1_2_7_3_2) 1973
Robinson R. A. (e_1_2_7_43_2) 1959
Chaudret B. (e_1_2_7_4_2) 1994
Scholz F. (e_1_2_7_14_2) 1998
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
Hepel M. (e_1_2_7_40_2) 1999
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – start-page: 228
  year: 1952
– volume: 105
  start-page: 2809
  year: 2001
  end-page: 2814
  publication-title: J. Phys. Chem. B
– volume: 20
  start-page: 1
  year: 1998
  end-page: 86
– volume: 122
  start-page: 6629
  year: 2000
  end-page: 6640
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 277
  year: 1976
  end-page: 325
– start-page: 201
  year: 2002
  end-page: 222
– volume: 4
  start-page: 866
  year: 2002
  end-page: 870
  publication-title: Electrochem. Commun.
– start-page: 491
  year: 1959
– volume: 67
  start-page: 163
  year: 2002
  end-page: 208
  publication-title: Coll. Czech Chem. Commun.
– volume: 592
  start-page: 240
  year: 1999
  publication-title: Organomet. J. Chem.
– volume: 49
  start-page: 1969
  year: 2004
  end-page: 1969
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 4015
  year: 2007
  end-page: 4023
  publication-title: Electrochim Acta
– volume: 45
  start-page: 2377
  year: 2000
  end-page: 2385
  publication-title: Electrochim. Acta
– volume: 95
  start-page: 559
  year: 1983
  end-page: 560
  publication-title: Angew. Chem.
– volume: 8
  start-page: 828
  year: 2004
  end-page: 841
  publication-title: J. Solid State Electrochem.
– volume: 47
  start-page: 3551
  year: 2002
  end-page: 3559
  publication-title: Electrochim. Acta
– volume: 220
  start-page: 295
  year: 1987
  end-page: 309
  publication-title: J. Electroanal. Chem.
– volume: 500
  start-page: 388
  year: 2001
  end-page: 394
  publication-title: J. Electroanal. Chem.
– volume: 104
  start-page: 1977
  year: 2000
  end-page: 1977
  publication-title: J Phys. Chem.
– volume: 129
  start-page: 7121
  year: 2007
  end-page: 7126
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 167
  year: 1997
  end-page: 185
  publication-title: Electrochim. Acta
– volume: 410
  start-page: 143
  year: 2000
  end-page: 152
  publication-title: Anal. Chim. Acta
– start-page: 413
  year: 1985
  end-page: 428
– volume: 66
  start-page: 133
  year: 2003
  end-page: 141
  publication-title: Microporous Mesoporous Mat.
– volume: 22
  start-page: 31
  year: 1986
  end-page: 41
  publication-title: Solid State Ionics
– volume: 110
  start-page: 2715
  year: 2006
  end-page: 2722
  publication-title: J. Phys. Chem. B
– volume: 45
  start-page: 3785
  year: 2000
  end-page: 3799
  publication-title: Electrochim. Acta
– start-page: 599
  year: 1999
  end-page: 630
– volume: 9
  start-page: 823
  year: 2005
  end-page: 835
  publication-title: J. Solid State Electrochem.
– volume: 421
  start-page: 79
  year: 1997
  end-page: 88
  publication-title: J. Electroanal. Chem.
– volume: 6
  start-page: 805
  year: 2004
  end-page: 811
  publication-title: Electrochem. Commun.
– volume: 8
  start-page: 794
  year: 2004
  end-page: 803
  publication-title: J. Solid State Electrochem.
– volume: 2
  start-page: 190
  year: 2000
  end-page: 194
  publication-title: Electrochem. Commun.
– volume: 10
  start-page: 3298
  year: 1998
  end-page: 3300
  publication-title: Chem. Mater.
– volume: 34
  start-page: 440
  year: 2005
  end-page: 458
  publication-title: Chem. Soc. Rev.
– volume: 421
  start-page: 89
  year: 1997
  end-page: 97
  publication-title: J. Electroanal. Chem.
– volume: 3
  start-page: 1163
  year: 1973
  end-page: 1370
– volume: 53
  start-page: 3932
  year: 2008
  end-page: 3941
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 454
  year: 1994
  end-page: 460
  publication-title: Chem. Mater.
– volume: 7
  start-page: 3514
  year: 1994
  end-page: 3533
– volume: 566
  start-page: 291
  year: 2004
  end-page: 303
  publication-title: J. Electroanal. Chem.
– volume: 25
  start-page: 665
  year: 1986
  end-page: 672
  publication-title: Inorg. Chem.
– start-page: 1010
  year: 1999
  end-page: 1039
– volume: 10
  start-page: 125
  year: 2006
  end-page: 133
  publication-title: J. Solid State Electrochem.
– start-page: 3514
  volume-title: Encyclopedia of Inorganic Chemistry
  year: 1994
  ident: e_1_2_7_4_2
  contributor:
    fullname: Chaudret B.
– start-page: 1
  volume-title: Electroanalytical Chemistry
  year: 1998
  ident: e_1_2_7_14_2
  contributor:
    fullname: Scholz F.
– start-page: 201
  volume-title: Electroanalytical Methods
  year: 2002
  ident: e_1_2_7_16_2
  contributor:
    fullname: Fiedler D. A.
– ident: e_1_2_7_30_2
  doi: 10.1016/0167-2738(86)90056-1
– ident: e_1_2_7_32_2
  doi: 10.1021/cm980474l
– start-page: 1163
  volume-title: Comprehensive Inorganic Chemistry
  year: 1973
  ident: e_1_2_7_3_2
  contributor:
    fullname: Livingstone S. E.
– ident: e_1_2_7_35_2
  doi: 10.1016/S0013-4686(99)00202-9
– start-page: 599
  volume-title: Interfacial Electrochemistry
  year: 1999
  ident: e_1_2_7_40_2
  contributor:
    fullname: Hepel M.
– ident: e_1_2_7_13_2
  doi: 10.1016/0022-0728(87)85116-1
– ident: e_1_2_7_19_2
  doi: 10.1016/j.elecom.2004.05.019
– ident: e_1_2_7_39_2
  doi: 10.1007/s10008-004-0551-8
– ident: e_1_2_7_23_2
  doi: 10.1016/S0013-4686(02)00359-6
– ident: e_1_2_7_20_2
  doi: 10.1007/s10008-005-0019-5
– ident: e_1_2_7_5_2
  doi: 10.1016/S0022-328X(99)00532-X
– ident: e_1_2_7_31_2
  doi: 10.1021/ja9944610
– ident: e_1_2_7_25_2
  doi: 10.1016/S1388-2481(02)00475-7
– ident: e_1_2_7_33_2
  doi: 10.1016/S0022-0728(96)04832-2
– ident: e_1_2_7_11_2
  doi: 10.1016/j.micromeso.2003.09.006
– start-page: 277
  volume-title: Encyclopedia of Electrochemistry
  year: 1976
  ident: e_1_2_7_8_2
  contributor:
    fullname: Llopis J. F.
– start-page: 413
  volume-title: Standard Potentials in Aqueous Solution
  year: 1985
  ident: e_1_2_7_9_2
  contributor:
    fullname: Colom F.
– ident: e_1_2_7_10_2
  doi: 10.1016/S0003-2670(00)00724-8
– ident: e_1_2_7_45_2
  doi: 10.1039/b400473f
– ident: e_1_2_7_22_2
  doi: 10.1016/j.electacta.2007.06.014
– start-page: 228
  volume-title: The Oxidation States of the Elements and Their Potentials in Aqueous Solutions
  year: 1952
  ident: e_1_2_7_7_2
  contributor:
    fullname: Latimer W. M.
– ident: e_1_2_7_26_2
  doi: 10.1016/S0022-0728(00)00456-3
– ident: e_1_2_7_6_2
  doi: 10.1016/S0013-4686(00)00338-8
– ident: e_1_2_7_21_2
  doi: 10.1007/s10008-005-0054-2
– start-page: 1010
  volume-title: Advanced Inorganic Chemistry
  year: 1999
  ident: e_1_2_7_2_2
  contributor:
    fullname: Cotton F. A.
– ident: e_1_2_7_42_2
  doi: 10.1021/ja070895g
– ident: e_1_2_7_44_2
  doi: 10.1016/j.electacta.2006.11.020
– ident: e_1_2_7_12_2
  doi: 10.1016/j.jelechem.2003.11.040
– ident: e_1_2_7_17_2
  doi: 10.1021/jp9925942
– ident: e_1_2_7_24_2
  doi: 10.1016/j.electacta.2003.12.027
– ident: e_1_2_7_36_2
  doi: 10.1021/ic00225a015
– ident: e_1_2_7_28_2
  doi: 10.1007/s10008-004-0547-4
– start-page: 491
  volume-title: Electrolyte Solutions
  year: 1959
  ident: e_1_2_7_43_2
  contributor:
    fullname: Robinson R. A.
– ident: e_1_2_7_18_2
  doi: 10.1016/S1388-2481(00)00005-9
– ident: e_1_2_7_41_2
  doi: 10.1021/jp0561773
– ident: e_1_2_7_34_2
  doi: 10.1016/S0022-0728(96)04833-4
– ident: e_1_2_7_15_2
  doi: 10.1135/cccc20020163
– ident: e_1_2_7_27_2
  doi: 10.1021/jp0041757
– ident: e_1_2_7_29_2
  doi: 10.1002/ange.19830950711
– ident: e_1_2_7_37_2
  doi: 10.1021/cm00040a020
– ident: e_1_2_7_38_2
  doi: 10.1016/S0013-4686(00)00468-0
SSID ssj0009099
Score 1.8366824
Snippet Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the presence of...
Abstract Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold and paraffin‐impregnated graphite surfaces and studied in the...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 185
Title Electrochemical Nanogravimetric Studies of Ruthenium(III) Trichloride Microcrystals
URI https://api.istex.fr/ark:/67375/WNG-ZFQDN5HZ-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1560%2FIJC.48.3-4.185
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK-wAviKsoN-UBcRFKcOLYdR7Xdl0yiUpAgWkvVmI7YtrIUFYQ2xv_nOM4SZMCYvAStVZqped8OTefC0JPiAK1StLIzQNpjhkxdrmSxGWEBDjVlIVVMOf1ksXvw_0DejAY_OhWl6wzT178tq7kf7gKa8BXUyX7D5xtN4UF-Az8hStwGK6X4vGunWEjm6J_EJUm2-rb0WczJ0s2SYJVwxGTyV4cmanGPEkSEwxYwS2fTAKe0iZ7HvYpz8FWPDnrGqzJWZnqXoMJ2YyIa1FVXOiTSpbvnZtz9ykrN4H6t9UKOU6b7MnqZN7vRxv4VuaGnX31YRa_7IQbm7IA3w182zbT01aacha5lNu5OY24DXkHVk2Jj5Wevp3eUyti3466_UXGg40GjEn2Z17IPdjAa3_Wbaa9peTa1MO0PDa5bBMqPi73xOHizXxJ40Mxv4JGAcgqPkSjnel8uth0bsZRnSdk_1_d-ROe4lX_GXqWzci8pN_7Hk9lsqxuoOu1r-HsWODcRANd3EJXZw3_bqN3WwBytgDk1AByTnOnBdBzgM8LpwMepweeO2i12F3NYreesuFKAu6ym3IpcWaatJsTba5oEDLTUUnTiaI0lURhlpNUa_AtqNLS19wPZURxriLGJ-QuGhanhb6HHBKoAGdURyTLwMrGPNKa4Rx0RqgzMGXH6FlDIPHF9lIRxgcFUgogpQi5ICIUQMoxelrRr73tT1wbI1IR-C_7ma8xZdw0UACldv-y2z9A1zYvwUM0XJdf9SMwQtfZ4xomPwF6EoGI
link.rule.ids 315,783,787,27938,27939
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Nanogravimetric+Studies+of+Ruthenium%28III%29+Trichloride+Microcrystals&rft.jtitle=Israel+journal+of+chemistry&rft.au=Inzelt%2C+Gy%C3%B6rgy&rft.au=R%C3%B3ka%2C+Andr%C3%A1s&rft.date=2008-12-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0021-2148&rft.eissn=1869-5868&rft.volume=48&rft.issue=3-4&rft.spage=185&rft.epage=196&rft_id=info:doi/10.1560%2FIJC.48.3-4.185&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_ZFQDN5HZ_D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-2148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-2148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-2148&client=summon