Reference‐Attached pH Nanosensor for Accurately Monitoring the Rapid Kinetics of Intracellular H+ Oscillations
Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real‐time and precise tracking of these rapid pH changes within a single living cell is therefore important....
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 3; pp. e2406796 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real‐time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference‐attached pH nanosensor (R‐pH‐nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+‐sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole‐inside‐cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R‐pH‐nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real‐time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed.
A reference‐attached pH nanosensor is developed with the capability to timely and accurately monitor rapid intracellular pH variation. This nanosensor successfully tracks asymmetric pH fluctuations during glycolysis in cancer cells, reveals faster production of acidic metabolites over their removal, and clarifies the inhibitory effects of lactate rather than H+ to glycolysis. |
---|---|
AbstractList | Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real‐time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference‐attached pH nanosensor (R‐pH‐nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H + ‐sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole‐inside‐cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R‐pH‐nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real‐time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed. Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference-attached pH nanosensor (R-pH-nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+-sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole-inside-cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R-pH-nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real-time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed.Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference-attached pH nanosensor (R-pH-nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+-sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole-inside-cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R-pH-nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real-time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed. Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference-attached pH nanosensor (R-pH-nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H -sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole-inside-cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R-pH-nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real-time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed. Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real‐time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference‐attached pH nanosensor (R‐pH‐nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+‐sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole‐inside‐cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R‐pH‐nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real‐time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed. A reference‐attached pH nanosensor is developed with the capability to timely and accurately monitor rapid intracellular pH variation. This nanosensor successfully tracks asymmetric pH fluctuations during glycolysis in cancer cells, reveals faster production of acidic metabolites over their removal, and clarifies the inhibitory effects of lactate rather than H+ to glycolysis. |
Author | Zhang, Xin‐Wei Jiao, Yu‐Ting Huang, Wei‐Hua Qi, Yu‐Ting Wen, Ming‐Yong |
Author_xml | – sequence: 1 givenname: Ming‐Yong surname: Wen fullname: Wen, Ming‐Yong organization: Wuhan University – sequence: 2 givenname: Yu‐Ting surname: Qi fullname: Qi, Yu‐Ting organization: Wuhan University – sequence: 3 givenname: Yu‐Ting surname: Jiao fullname: Jiao, Yu‐Ting organization: Wuhan University – sequence: 4 givenname: Xin‐Wei orcidid: 0000-0003-3325-5010 surname: Zhang fullname: Zhang, Xin‐Wei email: xinweizhang@whu.edu.cn organization: Wuhan University – sequence: 5 givenname: Wei‐Hua orcidid: 0000-0001-8951-075X surname: Huang fullname: Huang, Wei‐Hua email: whhuang@whu.edu.cn organization: Zhongnan Hospital of Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39573856$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1U1C965Ygs9YKEEvy19u4xioBUpFQqcF55vbOtK8debK9QbvwEfiO_BEcpqcSlh9HM4Xlfzcx7ho588IDQa0rmlBD2Pm2cmzPCBJGqkS_QKZWUz2TNmqPDTMkJOkvpgRBOmVDH6IQ3leJ1JU_ReAsDRPAG_vz6vchZm3vo8bjCX7QPCXwKEQ-lFsZMUWdwW3wdvM0hWn-H8z3gWz3aHn-2HrI1CYcBX_kctQHnJqcjXr3DN8lY53S2wadX6OWgXYKLx36Ovn_88G25mq1vPl0tF-uZ4ayWs64jRAOnnA99JYDL3tRUCio6BuVYbgBY34jOcNHJbqhBdj0VSmnFJBFA-Dl6u_cdY_gxQcrtxqbdUtpDmFJbrGldcUKrgl7-hz6EKfqyXaEq1SihKlaoN4_U1G2gb8doNzpu23-_LMB8D5gYUoowHBBK2l1Y7S6s9hBWETR7wU_rYPsM3X69Xq-ftH8BKFuZIg |
Cites_doi | 10.1063/1.2798582 10.1111/apha.13068 10.1002/mco2.6 10.1021/acs.analchem.9b01191 10.1063/1.5005810 10.1002/anie.202115820 10.1021/acs.chemrev.8b00655 10.1016/j.semcancer.2017.02.003 10.1007/BF01870526 10.1002/sia.5852 10.1039/D2CC06557F 10.1007/978-3-030-59805-1_15 10.1002/elan.201800410 10.1038/s41467-021-23496-z 10.1038/s41598-023-31095-9 10.1073/pnas.1816391116 10.1126/scitranslmed.abb8969 10.1038/s41467-019-08532-3 10.1016/0003-2697(78)90736-4 10.1002/anie.201707187 10.1074/jbc.274.11.6827 10.1021/ac401883n 10.1038/nrc.2016.77 10.1007/s11581-017-2058-1 10.1038/cr.2013.15 10.1021/ac00237a031 10.1038/s41416-022-01910-7 10.1016/j.pmatsci.2019.100635 10.1016/0005-2736(87)90023-X 10.1016/S0306-4522(97)00441-7 10.1159/000446268 10.1007/s00216-020-02899-9 10.1038/s41586-020-2428-0 10.1126/science.abb5916 10.1073/pnas.0709747104 10.1073/pnas.2219994120 10.1016/j.chempr.2018.11.010 10.1038/s44161-023-00270-6 10.1016/j.celrep.2018.11.043 10.1021/acs.analchem.1c03874 10.1016/j.sna.2011.05.016 10.1016/j.snb.2013.10.129 10.4161/chan.5.6.17484 10.1172/JCI137552 10.1038/cddis.2014.587 10.3390/ijms241511914 10.1002/anie.202106251 10.1021/ic50074a029 10.1111/febs.16454 10.1038/s41598-017-14382-0 10.1161/01.CIR.0000093277.20968.C7 10.1038/nrm2820 10.1002/smll.201901673 10.1063/1.5087216 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202406796 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39573856 10_1002_smll_202406796 SMLL202406796 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: Grants 22090050; 22090051; and 21721005 – fundername: Key Technologies Research and Development Program funderid: 2022YFA1104800 – fundername: National Natural Science Foundation of China grantid: and 21721005 – fundername: National Natural Science Foundation of China grantid: Grants 22090050 – fundername: National Natural Science Foundation of China grantid: 22090051 – fundername: Key Technologies Research and Development Program grantid: 2022YFA1104800 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ 53G AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3286-bb00ae3133fd54e36dc816414b2e2403cee2d94bc34b6bf8e6bd1477a72604e03 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:44:50 EDT 2025 Fri Jul 25 11:57:32 EDT 2025 Mon Jul 21 05:57:22 EDT 2025 Tue Jul 01 05:14:22 EDT 2025 Thu Jan 23 09:59:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | intracellular pH oscillations biosensors metabolism potentiometry glycolysis |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3286-bb00ae3133fd54e36dc816414b2e2403cee2d94bc34b6bf8e6bd1477a72604e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8951-075X 0000-0003-3325-5010 |
PMID | 39573856 |
PQID | 3157974752 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3131853015 proquest_journals_3157974752 pubmed_primary_39573856 crossref_primary_10_1002_smll_202406796 wiley_primary_10_1002_smll_202406796_SMLL202406796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2017; 7 2019; 91 2015; 6 2019; 5 2019 2022 2021 2023; 29 289 2 2017 2021 2023; 56 60 120 2023; 59 2013; 23 2017; 43 2019; 15 2017; 23 2020 2020; 12 1 1978 2019 2020; 89 119 109 2020; 584 1998; 84 2016; 16 2018; 25 1969; 8 2023 2021; 13 12 2003 2018; 108 223 2023; 24 2020; 130 2021; 413 2019; 116 2021; 371 2019 2015; 10 47 2018; 30 1991 2007 2011; 121 102 5 2011 2013 2014; 169 85 192 1987 1999 2007 2016 2017 2022; 905 274 104 2 27 61 1981 2021; 53 93 2022; 127 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_29_1 e_1_2_7_27_4 e_1_2_7_30_1 e_1_2_7_20_6 e_1_2_7_24_2 e_1_2_7_20_5 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_20_4 e_1_2_7_32_2 e_1_2_7_20_3 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 6 year: 2015 publication-title: Cell Death Dis. – volume: 24 year: 2023 publication-title: Int. J. Mol. Sci. – volume: 169 85 192 start-page: 1 8070 399 year: 2011 2013 2014 publication-title: Sens. Actuators, A Anal. Chem. Sens. Actuators, B – volume: 13 12 start-page: 3991 3474 year: 2023 2021 publication-title: Sci. Rep. Nat. Commun. – volume: 43 start-page: 157 year: 2017 publication-title: Semin. Cancer Biol. – volume: 59 start-page: 1959 year: 2023 publication-title: Chem. Commun. – volume: 10 47 start-page: 572 1072 year: 2019 2015 publication-title: Nat. Commun. Surf. Interface Anal. – volume: 56 60 120 year: 2017 2021 2023 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Proc. Natl. Acad. Sci. USA – volume: 127 start-page: 1365 year: 2022 publication-title: Br. J. Cancer – volume: 91 start-page: 8383 year: 2019 publication-title: Anal. Chem. – volume: 905 274 104 2 27 61 start-page: 195 6827 72 year: 1987 1999 2007 2016 2017 2022 publication-title: Biochim. Biophys. Acta, Biomembr. J. Biol. Chem. Proc. Natl. Acad. Sci. USA Kidney Dis. Chaos Angew. Chem., Int. Ed. – volume: 23 start-page: 724 year: 2013 publication-title: Cell Res. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 12 1 start-page: 47 year: 2020 2020 publication-title: Sci. Transl. Med. Medcomm – volume: 15 year: 2019 publication-title: Small – volume: 108 223 start-page: 2275 year: 2003 2018 publication-title: Circulation Acta Physiol. – volume: 11 start-page: 50 year: 2010 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 116 start-page: 3909 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 89 119 109 start-page: 151 5248 year: 1978 2019 2020 publication-title: Anal. Biochem. Chem. Rev. Prog. Mater. Sci. – volume: 5 start-page: 445 year: 2019 publication-title: Chem – volume: 130 start-page: 5074 year: 2020 publication-title: J. Clin. Invest. – volume: 29 289 2 start-page: 5551 245 504 year: 2019 2022 2021 2023 end-page: 259 publication-title: Chaos FEBS J. Nat. Cardiovasc. Res. – volume: 121 102 5 start-page: 101 530 year: 1991 2007 2011 publication-title: J. Membr. Biol. J. Appl. Phys. Channels – volume: 23 start-page: 2167 year: 2017 publication-title: Ionics – volume: 30 start-page: 2195 year: 2018 publication-title: Electroanalysis – volume: 16 start-page: 635 year: 2016 publication-title: Nat. Rev. Cancer – volume: 584 start-page: 98 year: 2020 publication-title: Nature – volume: 371 start-page: 265 year: 2021 publication-title: Science – volume: 53 93 start-page: 2267 year: 1981 2021 publication-title: Anal. Chem. Anal. Chem. – volume: 8 start-page: 841 year: 1969 publication-title: Inorg. Chem. – volume: 84 start-page: 645 year: 1998 publication-title: Neuroscience – volume: 25 start-page: 3047 year: 2018 publication-title: Cell Rep. – volume: 413 start-page: 17 year: 2021 publication-title: Anal. Bioanal. Chem. – ident: e_1_2_7_15_2 doi: 10.1063/1.2798582 – ident: e_1_2_7_24_2 doi: 10.1111/apha.13068 – ident: e_1_2_7_32_2 doi: 10.1002/mco2.6 – ident: e_1_2_7_8_1 doi: 10.1021/acs.analchem.9b01191 – ident: e_1_2_7_20_5 doi: 10.1063/1.5005810 – ident: e_1_2_7_20_6 doi: 10.1002/anie.202115820 – ident: e_1_2_7_10_2 doi: 10.1021/acs.chemrev.8b00655 – ident: e_1_2_7_2_1 doi: 10.1016/j.semcancer.2017.02.003 – ident: e_1_2_7_15_1 doi: 10.1007/BF01870526 – ident: e_1_2_7_19_2 doi: 10.1002/sia.5852 – ident: e_1_2_7_21_1 doi: 10.1039/D2CC06557F – ident: e_1_2_7_27_3 doi: 10.1007/978-3-030-59805-1_15 – ident: e_1_2_7_9_1 doi: 10.1002/elan.201800410 – ident: e_1_2_7_25_2 doi: 10.1038/s41467-021-23496-z – ident: e_1_2_7_25_1 doi: 10.1038/s41598-023-31095-9 – ident: e_1_2_7_26_1 doi: 10.1073/pnas.1816391116 – ident: e_1_2_7_32_1 doi: 10.1126/scitranslmed.abb8969 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-019-08532-3 – ident: e_1_2_7_10_1 doi: 10.1016/0003-2697(78)90736-4 – ident: e_1_2_7_14_1 doi: 10.1002/anie.201707187 – ident: e_1_2_7_20_2 doi: 10.1074/jbc.274.11.6827 – ident: e_1_2_7_13_2 doi: 10.1021/ac401883n – ident: e_1_2_7_16_1 doi: 10.1038/nrc.2016.77 – ident: e_1_2_7_17_1 doi: 10.1007/s11581-017-2058-1 – ident: e_1_2_7_22_1 doi: 10.1038/cr.2013.15 – ident: e_1_2_7_11_1 doi: 10.1021/ac00237a031 – ident: e_1_2_7_29_1 doi: 10.1038/s41416-022-01910-7 – ident: e_1_2_7_10_3 doi: 10.1016/j.pmatsci.2019.100635 – ident: e_1_2_7_20_1 doi: 10.1016/0005-2736(87)90023-X – ident: e_1_2_7_6_1 doi: 10.1016/S0306-4522(97)00441-7 – ident: e_1_2_7_20_4 doi: 10.1159/000446268 – ident: e_1_2_7_33_1 doi: 10.1007/s00216-020-02899-9 – ident: e_1_2_7_4_1 doi: 10.1038/s41586-020-2428-0 – ident: e_1_2_7_3_1 doi: 10.1126/science.abb5916 – ident: e_1_2_7_20_3 doi: 10.1073/pnas.0709747104 – ident: e_1_2_7_14_3 doi: 10.1073/pnas.2219994120 – ident: e_1_2_7_18_1 doi: 10.1016/j.chempr.2018.11.010 – ident: e_1_2_7_27_4 doi: 10.1038/s44161-023-00270-6 – ident: e_1_2_7_28_1 doi: 10.1016/j.celrep.2018.11.043 – ident: e_1_2_7_11_2 doi: 10.1021/acs.analchem.1c03874 – ident: e_1_2_7_13_1 doi: 10.1016/j.sna.2011.05.016 – ident: e_1_2_7_13_3 doi: 10.1016/j.snb.2013.10.129 – ident: e_1_2_7_15_3 doi: 10.4161/chan.5.6.17484 – ident: e_1_2_7_31_1 doi: 10.1172/JCI137552 – ident: e_1_2_7_23_1 doi: 10.1038/cddis.2014.587 – ident: e_1_2_7_30_1 doi: 10.3390/ijms241511914 – ident: e_1_2_7_14_2 doi: 10.1002/anie.202106251 – ident: e_1_2_7_12_1 doi: 10.1021/ic50074a029 – ident: e_1_2_7_27_2 doi: 10.1111/febs.16454 – ident: e_1_2_7_5_1 doi: 10.1038/s41598-017-14382-0 – ident: e_1_2_7_24_1 doi: 10.1161/01.CIR.0000093277.20968.C7 – ident: e_1_2_7_1_1 doi: 10.1038/nrm2820 – ident: e_1_2_7_7_1 doi: 10.1002/smll.201901673 – ident: e_1_2_7_27_1 doi: 10.1063/1.5087216 |
SSID | ssj0031247 |
Score | 2.4817674 |
Snippet | Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2406796 |
SubjectTerms | Acidification Biosensing Techniques - methods biosensors Cell membranes Dynamic response Electric potential Electrodes Glycolysis Homeostasis Humans Hydrogen-Ion Concentration intracellular pH oscillations Kinetics metabolism Monitoring Nanosensors Nanotechnology - methods Nanowires Nanowires - chemistry Oscillations potentiometry Protons Time synchronization |
Title | Reference‐Attached pH Nanosensor for Accurately Monitoring the Rapid Kinetics of Intracellular H+ Oscillations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406796 https://www.ncbi.nlm.nih.gov/pubmed/39573856 https://www.proquest.com/docview/3157974752 https://www.proquest.com/docview/3131853015 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZA4oEBiO3F6rBCoQAsSi8Qt8hYJUZqqTQ9w4hP4Rr6EmaQNFA5IcIwSO95meePxMyF7TmohXWA8q_wQAApPPdSBHk91CpjZpUbh2eH2ZdS8E-f34f2XU_wlP0QVcEPJKPQ1CrjSg6NP0tDBUwe3DtAiyTpybmPCFnpF1xV_FAfjVdyuAjbLQ-KtMWujz44mi09apR-u5qTnWpie03mixo0uM04eD4e5PjQv3_gc_9OrBTI38ktpo1xIi2TKdZfI7Be2wmXSq0hp31_fGnmOVNCW9poUNHQ2ADic9Sm4wLRhzBAJKDrPtNQYWJyCo0mvVe_B0guoEsmhaZbSM4wt4-YBZsPS5gG9ApPcGeXnrZC705Pb46Y3urDBM5zFkadBhpXjAHtTGwrHI2tigGOB0Mwh7x8YZGbrQhsudKTT2EXaBkJKJQFVCefzVTLdzbpunVDlB0pK7rhVUhifqbpxwkYAorH2OKiR_fGEJb2SlyMpGZhZgmOYVGNYI1vj-UxG8jlIeBBKRFIhq5Hd6jVIFvZYdV02xG_wZDkowLBG1sp1UP0Kdzd5HELlrJjNX9qQ3LRbrepp4y-FNskMw6uHi-jPFpnO-0O3Df5QrneKNf8B4WgEFQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lA4QKEUFgoYqVIPVdrEduLscYWoUrpbpD6k3iK_IlVdNqtu9gAnfkJ_Y38JM8kmsPRQCY5RYseveXzj8WeAHa-MVD6ygdNhjABFFAHpwEAUpkDM7Aur6ezw6CTJLuSXy7jNJqSzMA0_RBdwI8mo9TUJOAWkD36zhs6-jWnvgEyS6iePYI2u9a5R1WnHICXQfNX3q6DVCoh6q-VtDPnBcvllu3TP2Vz2XWvjc_gMTNvsJufken9emX374y9Gx__q1wY8XbimbNCspeew4icv4MkfhIWbMO14ae9-3g6qitigHZtmDJV0OUNEXN4w9ILZwNo5cVCMv7NGaVBxhr4mO9XTK8eOsUrih2ZlwY4ovEz7B5QQy7I99hWt8niRovcSLg4_n3_KgsWdDYEVPE0Cg2KsvUDkW7hYepE4myIii6Thnqj_0CZz15fGCmkSU6Q-MS6SSmmFwEr6UGzB6qSc-NfAdBhppYQXTitpQ6771kuXII6m2tOoB7vtjOXThpojb0iYeU5jmHdj2IPtdkLzhYjOchHFisBUzHvwsXuNwkU91hNfzukbOlyOOjDuwatmIXS_og1OkcZYOa-n84E25Gej4bB7evMvhT7AenY-GubDo5Pjt_CY003EdTBoG1arm7l_h-5RZd7XAvALHOoIMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD4RTAw-KCjoKsiQmPBgurQz0073cQNsFljQgCS8NXNrYly3Ddt90Cd_gr_RX-I57W5l9cEEH5t2pnM5t-_MzDcAb70yUvnIBk6HMQIUkQdkAwORmxwxs8-tprPD5xfJ8Fqe3sQ3d07xN_wQbcKNNKO216TgpcsPfpOGTr-MaemAPJLqJSvwUCZhSnJ9dNkSSAn0XvX1Kui0AmLeWtA2hvxgufyyW_or1lwOXWvfM3gKetHqZsvJ5-6sMl377Q9Cx__p1jo8mQemrN9I0gY88JNn8PgOXeFzKFtW2p_ff_SririgHSuHDE10MUU8XNwyjIFZ39oZMVCMv7LGZFBxhpEmu9TlJ8fOsEpih2ZFzk4ouUyrB7Qdlg3fsffok8fzDXqbcD04_ng4DOY3NgRW8DQJDCqx9gJxb-5i6UXibIp4LJKGeyL-Q4_MXU8aK6RJTJ76xLhIKqUVwirpQ7EFq5Ni4l8C02GklRJeOK2kDbnuWS9dgiiaak-jDuwvJiwrG2KOrKFg5hmNYdaOYQe2F_OZzRV0mokoVgSlYt6BvfY1qhb1WE98MaNv6Gg5WsC4Ay8aOWh_RcubIo2xcl7P5j_akF2dj0bt06v7FNqFRx-OBtno5OLsNaxxuoa4zgRtw2p1O_M7GBtV5k0t_r8AGVMG6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reference-Attached+pH+Nanosensor+for+Accurately+Monitoring+the+Rapid+Kinetics+of+Intracellular+H%2B+Oscillations&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wen%2C+Ming-Yong&rft.au=Qi%2C+Yu-Ting&rft.au=Jiao%2C+Yu-Ting&rft.au=Zhang%2C+Xin-Wei&rft.date=2025-01-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.spage=e2406796&rft_id=info:doi/10.1002%2Fsmll.202406796&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |