Reference‐Attached pH Nanosensor for Accurately Monitoring the Rapid Kinetics of Intracellular H+ Oscillations

Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real‐time and precise tracking of these rapid pH changes within a single living cell is therefore important....

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 3; pp. e2406796 - n/a
Main Authors Wen, Ming‐Yong, Qi, Yu‐Ting, Jiao, Yu‐Ting, Zhang, Xin‐Wei, Huang, Wei‐Hua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real‐time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference‐attached pH nanosensor (R‐pH‐nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+‐sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole‐inside‐cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R‐pH‐nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real‐time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed. A reference‐attached pH nanosensor is developed with the capability to timely and accurately monitor rapid intracellular pH variation. This nanosensor successfully tracks asymmetric pH fluctuations during glycolysis in cancer cells, reveals faster production of acidic metabolites over their removal, and clarifies the inhibitory effects of lactate rather than H+ to glycolysis.
AbstractList Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real‐time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference‐attached pH nanosensor (R‐pH‐nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H + ‐sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole‐inside‐cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R‐pH‐nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real‐time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed.
Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference-attached pH nanosensor (R-pH-nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+-sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole-inside-cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R-pH-nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real-time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed.Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference-attached pH nanosensor (R-pH-nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+-sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole-inside-cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R-pH-nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real-time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed.
Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference-attached pH nanosensor (R-pH-nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H -sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole-inside-cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R-pH-nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real-time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed.
Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real‐time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference‐attached pH nanosensor (R‐pH‐nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+‐sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole‐inside‐cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R‐pH‐nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real‐time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed. A reference‐attached pH nanosensor is developed with the capability to timely and accurately monitor rapid intracellular pH variation. This nanosensor successfully tracks asymmetric pH fluctuations during glycolysis in cancer cells, reveals faster production of acidic metabolites over their removal, and clarifies the inhibitory effects of lactate rather than H+ to glycolysis.
Author Zhang, Xin‐Wei
Jiao, Yu‐Ting
Huang, Wei‐Hua
Qi, Yu‐Ting
Wen, Ming‐Yong
Author_xml – sequence: 1
  givenname: Ming‐Yong
  surname: Wen
  fullname: Wen, Ming‐Yong
  organization: Wuhan University
– sequence: 2
  givenname: Yu‐Ting
  surname: Qi
  fullname: Qi, Yu‐Ting
  organization: Wuhan University
– sequence: 3
  givenname: Yu‐Ting
  surname: Jiao
  fullname: Jiao, Yu‐Ting
  organization: Wuhan University
– sequence: 4
  givenname: Xin‐Wei
  orcidid: 0000-0003-3325-5010
  surname: Zhang
  fullname: Zhang, Xin‐Wei
  email: xinweizhang@whu.edu.cn
  organization: Wuhan University
– sequence: 5
  givenname: Wei‐Hua
  orcidid: 0000-0001-8951-075X
  surname: Huang
  fullname: Huang, Wei‐Hua
  email: whhuang@whu.edu.cn
  organization: Zhongnan Hospital of Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39573856$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1U1C965Ygs9YKEEvy19u4xioBUpFQqcF55vbOtK8debK9QbvwEfiO_BEcpqcSlh9HM4Xlfzcx7ho588IDQa0rmlBD2Pm2cmzPCBJGqkS_QKZWUz2TNmqPDTMkJOkvpgRBOmVDH6IQ3leJ1JU_ReAsDRPAG_vz6vchZm3vo8bjCX7QPCXwKEQ-lFsZMUWdwW3wdvM0hWn-H8z3gWz3aHn-2HrI1CYcBX_kctQHnJqcjXr3DN8lY53S2wadX6OWgXYKLx36Ovn_88G25mq1vPl0tF-uZ4ayWs64jRAOnnA99JYDL3tRUCio6BuVYbgBY34jOcNHJbqhBdj0VSmnFJBFA-Dl6u_cdY_gxQcrtxqbdUtpDmFJbrGldcUKrgl7-hz6EKfqyXaEq1SihKlaoN4_U1G2gb8doNzpu23-_LMB8D5gYUoowHBBK2l1Y7S6s9hBWETR7wU_rYPsM3X69Xq-ftH8BKFuZIg
Cites_doi 10.1063/1.2798582
10.1111/apha.13068
10.1002/mco2.6
10.1021/acs.analchem.9b01191
10.1063/1.5005810
10.1002/anie.202115820
10.1021/acs.chemrev.8b00655
10.1016/j.semcancer.2017.02.003
10.1007/BF01870526
10.1002/sia.5852
10.1039/D2CC06557F
10.1007/978-3-030-59805-1_15
10.1002/elan.201800410
10.1038/s41467-021-23496-z
10.1038/s41598-023-31095-9
10.1073/pnas.1816391116
10.1126/scitranslmed.abb8969
10.1038/s41467-019-08532-3
10.1016/0003-2697(78)90736-4
10.1002/anie.201707187
10.1074/jbc.274.11.6827
10.1021/ac401883n
10.1038/nrc.2016.77
10.1007/s11581-017-2058-1
10.1038/cr.2013.15
10.1021/ac00237a031
10.1038/s41416-022-01910-7
10.1016/j.pmatsci.2019.100635
10.1016/0005-2736(87)90023-X
10.1016/S0306-4522(97)00441-7
10.1159/000446268
10.1007/s00216-020-02899-9
10.1038/s41586-020-2428-0
10.1126/science.abb5916
10.1073/pnas.0709747104
10.1073/pnas.2219994120
10.1016/j.chempr.2018.11.010
10.1038/s44161-023-00270-6
10.1016/j.celrep.2018.11.043
10.1021/acs.analchem.1c03874
10.1016/j.sna.2011.05.016
10.1016/j.snb.2013.10.129
10.4161/chan.5.6.17484
10.1172/JCI137552
10.1038/cddis.2014.587
10.3390/ijms241511914
10.1002/anie.202106251
10.1021/ic50074a029
10.1111/febs.16454
10.1038/s41598-017-14382-0
10.1161/01.CIR.0000093277.20968.C7
10.1038/nrm2820
10.1002/smll.201901673
10.1063/1.5087216
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202406796
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39573856
10_1002_smll_202406796
SMLL202406796
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: Grants 22090050; 22090051; and 21721005
– fundername: Key Technologies Research and Development Program
  funderid: 2022YFA1104800
– fundername: National Natural Science Foundation of China
  grantid: and 21721005
– fundername: National Natural Science Foundation of China
  grantid: Grants 22090050
– fundername: National Natural Science Foundation of China
  grantid: 22090051
– fundername: Key Technologies Research and Development Program
  grantid: 2022YFA1104800
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
53G
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3286-bb00ae3133fd54e36dc816414b2e2403cee2d94bc34b6bf8e6bd1477a72604e03
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:44:50 EDT 2025
Fri Jul 25 11:57:32 EDT 2025
Mon Jul 21 05:57:22 EDT 2025
Tue Jul 01 05:14:22 EDT 2025
Thu Jan 23 09:59:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords intracellular pH oscillations
biosensors
metabolism
potentiometry
glycolysis
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3286-bb00ae3133fd54e36dc816414b2e2403cee2d94bc34b6bf8e6bd1477a72604e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8951-075X
0000-0003-3325-5010
PMID 39573856
PQID 3157974752
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_3131853015
proquest_journals_3157974752
pubmed_primary_39573856
crossref_primary_10_1002_smll_202406796
wiley_primary_10_1002_smll_202406796_SMLL202406796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2017; 7
2019; 91
2015; 6
2019; 5
2019 2022 2021 2023; 29 289 2
2017 2021 2023; 56 60 120
2023; 59
2013; 23
2017; 43
2019; 15
2017; 23
2020 2020; 12 1
1978 2019 2020; 89 119 109
2020; 584
1998; 84
2016; 16
2018; 25
1969; 8
2023 2021; 13 12
2003 2018; 108 223
2023; 24
2020; 130
2021; 413
2019; 116
2021; 371
2019 2015; 10 47
2018; 30
1991 2007 2011; 121 102 5
2011 2013 2014; 169 85 192
1987 1999 2007 2016 2017 2022; 905 274 104 2 27 61
1981 2021; 53 93
2022; 127
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_1
e_1_2_7_27_4
e_1_2_7_30_1
e_1_2_7_20_6
e_1_2_7_24_2
e_1_2_7_20_5
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_20_4
e_1_2_7_32_2
e_1_2_7_20_3
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 6
  year: 2015
  publication-title: Cell Death Dis.
– volume: 24
  year: 2023
  publication-title: Int. J. Mol. Sci.
– volume: 169 85 192
  start-page: 1 8070 399
  year: 2011 2013 2014
  publication-title: Sens. Actuators, A Anal. Chem. Sens. Actuators, B
– volume: 13 12
  start-page: 3991 3474
  year: 2023 2021
  publication-title: Sci. Rep. Nat. Commun.
– volume: 43
  start-page: 157
  year: 2017
  publication-title: Semin. Cancer Biol.
– volume: 59
  start-page: 1959
  year: 2023
  publication-title: Chem. Commun.
– volume: 10 47
  start-page: 572 1072
  year: 2019 2015
  publication-title: Nat. Commun. Surf. Interface Anal.
– volume: 56 60 120
  year: 2017 2021 2023
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Proc. Natl. Acad. Sci. USA
– volume: 127
  start-page: 1365
  year: 2022
  publication-title: Br. J. Cancer
– volume: 91
  start-page: 8383
  year: 2019
  publication-title: Anal. Chem.
– volume: 905 274 104 2 27 61
  start-page: 195 6827 72
  year: 1987 1999 2007 2016 2017 2022
  publication-title: Biochim. Biophys. Acta, Biomembr. J. Biol. Chem. Proc. Natl. Acad. Sci. USA Kidney Dis. Chaos Angew. Chem., Int. Ed.
– volume: 23
  start-page: 724
  year: 2013
  publication-title: Cell Res.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 12 1
  start-page: 47
  year: 2020 2020
  publication-title: Sci. Transl. Med. Medcomm
– volume: 15
  year: 2019
  publication-title: Small
– volume: 108 223
  start-page: 2275
  year: 2003 2018
  publication-title: Circulation Acta Physiol.
– volume: 11
  start-page: 50
  year: 2010
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 116
  start-page: 3909
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 89 119 109
  start-page: 151 5248
  year: 1978 2019 2020
  publication-title: Anal. Biochem. Chem. Rev. Prog. Mater. Sci.
– volume: 5
  start-page: 445
  year: 2019
  publication-title: Chem
– volume: 130
  start-page: 5074
  year: 2020
  publication-title: J. Clin. Invest.
– volume: 29 289 2
  start-page: 5551 245 504
  year: 2019 2022 2021 2023
  end-page: 259
  publication-title: Chaos FEBS J. Nat. Cardiovasc. Res.
– volume: 121 102 5
  start-page: 101 530
  year: 1991 2007 2011
  publication-title: J. Membr. Biol. J. Appl. Phys. Channels
– volume: 23
  start-page: 2167
  year: 2017
  publication-title: Ionics
– volume: 30
  start-page: 2195
  year: 2018
  publication-title: Electroanalysis
– volume: 16
  start-page: 635
  year: 2016
  publication-title: Nat. Rev. Cancer
– volume: 584
  start-page: 98
  year: 2020
  publication-title: Nature
– volume: 371
  start-page: 265
  year: 2021
  publication-title: Science
– volume: 53 93
  start-page: 2267
  year: 1981 2021
  publication-title: Anal. Chem. Anal. Chem.
– volume: 8
  start-page: 841
  year: 1969
  publication-title: Inorg. Chem.
– volume: 84
  start-page: 645
  year: 1998
  publication-title: Neuroscience
– volume: 25
  start-page: 3047
  year: 2018
  publication-title: Cell Rep.
– volume: 413
  start-page: 17
  year: 2021
  publication-title: Anal. Bioanal. Chem.
– ident: e_1_2_7_15_2
  doi: 10.1063/1.2798582
– ident: e_1_2_7_24_2
  doi: 10.1111/apha.13068
– ident: e_1_2_7_32_2
  doi: 10.1002/mco2.6
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.analchem.9b01191
– ident: e_1_2_7_20_5
  doi: 10.1063/1.5005810
– ident: e_1_2_7_20_6
  doi: 10.1002/anie.202115820
– ident: e_1_2_7_10_2
  doi: 10.1021/acs.chemrev.8b00655
– ident: e_1_2_7_2_1
  doi: 10.1016/j.semcancer.2017.02.003
– ident: e_1_2_7_15_1
  doi: 10.1007/BF01870526
– ident: e_1_2_7_19_2
  doi: 10.1002/sia.5852
– ident: e_1_2_7_21_1
  doi: 10.1039/D2CC06557F
– ident: e_1_2_7_27_3
  doi: 10.1007/978-3-030-59805-1_15
– ident: e_1_2_7_9_1
  doi: 10.1002/elan.201800410
– ident: e_1_2_7_25_2
  doi: 10.1038/s41467-021-23496-z
– ident: e_1_2_7_25_1
  doi: 10.1038/s41598-023-31095-9
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.1816391116
– ident: e_1_2_7_32_1
  doi: 10.1126/scitranslmed.abb8969
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-019-08532-3
– ident: e_1_2_7_10_1
  doi: 10.1016/0003-2697(78)90736-4
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.201707187
– ident: e_1_2_7_20_2
  doi: 10.1074/jbc.274.11.6827
– ident: e_1_2_7_13_2
  doi: 10.1021/ac401883n
– ident: e_1_2_7_16_1
  doi: 10.1038/nrc.2016.77
– ident: e_1_2_7_17_1
  doi: 10.1007/s11581-017-2058-1
– ident: e_1_2_7_22_1
  doi: 10.1038/cr.2013.15
– ident: e_1_2_7_11_1
  doi: 10.1021/ac00237a031
– ident: e_1_2_7_29_1
  doi: 10.1038/s41416-022-01910-7
– ident: e_1_2_7_10_3
  doi: 10.1016/j.pmatsci.2019.100635
– ident: e_1_2_7_20_1
  doi: 10.1016/0005-2736(87)90023-X
– ident: e_1_2_7_6_1
  doi: 10.1016/S0306-4522(97)00441-7
– ident: e_1_2_7_20_4
  doi: 10.1159/000446268
– ident: e_1_2_7_33_1
  doi: 10.1007/s00216-020-02899-9
– ident: e_1_2_7_4_1
  doi: 10.1038/s41586-020-2428-0
– ident: e_1_2_7_3_1
  doi: 10.1126/science.abb5916
– ident: e_1_2_7_20_3
  doi: 10.1073/pnas.0709747104
– ident: e_1_2_7_14_3
  doi: 10.1073/pnas.2219994120
– ident: e_1_2_7_18_1
  doi: 10.1016/j.chempr.2018.11.010
– ident: e_1_2_7_27_4
  doi: 10.1038/s44161-023-00270-6
– ident: e_1_2_7_28_1
  doi: 10.1016/j.celrep.2018.11.043
– ident: e_1_2_7_11_2
  doi: 10.1021/acs.analchem.1c03874
– ident: e_1_2_7_13_1
  doi: 10.1016/j.sna.2011.05.016
– ident: e_1_2_7_13_3
  doi: 10.1016/j.snb.2013.10.129
– ident: e_1_2_7_15_3
  doi: 10.4161/chan.5.6.17484
– ident: e_1_2_7_31_1
  doi: 10.1172/JCI137552
– ident: e_1_2_7_23_1
  doi: 10.1038/cddis.2014.587
– ident: e_1_2_7_30_1
  doi: 10.3390/ijms241511914
– ident: e_1_2_7_14_2
  doi: 10.1002/anie.202106251
– ident: e_1_2_7_12_1
  doi: 10.1021/ic50074a029
– ident: e_1_2_7_27_2
  doi: 10.1111/febs.16454
– ident: e_1_2_7_5_1
  doi: 10.1038/s41598-017-14382-0
– ident: e_1_2_7_24_1
  doi: 10.1161/01.CIR.0000093277.20968.C7
– ident: e_1_2_7_1_1
  doi: 10.1038/nrm2820
– ident: e_1_2_7_7_1
  doi: 10.1002/smll.201901673
– ident: e_1_2_7_27_1
  doi: 10.1063/1.5087216
SSID ssj0031247
Score 2.4817674
Snippet Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2406796
SubjectTerms Acidification
Biosensing Techniques - methods
biosensors
Cell membranes
Dynamic response
Electric potential
Electrodes
Glycolysis
Homeostasis
Humans
Hydrogen-Ion Concentration
intracellular pH oscillations
Kinetics
metabolism
Monitoring
Nanosensors
Nanotechnology - methods
Nanowires
Nanowires - chemistry
Oscillations
potentiometry
Protons
Time synchronization
Title Reference‐Attached pH Nanosensor for Accurately Monitoring the Rapid Kinetics of Intracellular H+ Oscillations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406796
https://www.ncbi.nlm.nih.gov/pubmed/39573856
https://www.proquest.com/docview/3157974752
https://www.proquest.com/docview/3131853015
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZA4oEBiO3F6rBCoQAsSi8Qt8hYJUZqqTQ9w4hP4Rr6EmaQNFA5IcIwSO95meePxMyF7TmohXWA8q_wQAApPPdSBHk91CpjZpUbh2eH2ZdS8E-f34f2XU_wlP0QVcEPJKPQ1CrjSg6NP0tDBUwe3DtAiyTpybmPCFnpF1xV_FAfjVdyuAjbLQ-KtMWujz44mi09apR-u5qTnWpie03mixo0uM04eD4e5PjQv3_gc_9OrBTI38ktpo1xIi2TKdZfI7Be2wmXSq0hp31_fGnmOVNCW9poUNHQ2ADic9Sm4wLRhzBAJKDrPtNQYWJyCo0mvVe_B0guoEsmhaZbSM4wt4-YBZsPS5gG9ApPcGeXnrZC705Pb46Y3urDBM5zFkadBhpXjAHtTGwrHI2tigGOB0Mwh7x8YZGbrQhsudKTT2EXaBkJKJQFVCefzVTLdzbpunVDlB0pK7rhVUhifqbpxwkYAorH2OKiR_fGEJb2SlyMpGZhZgmOYVGNYI1vj-UxG8jlIeBBKRFIhq5Hd6jVIFvZYdV02xG_wZDkowLBG1sp1UP0Kdzd5HELlrJjNX9qQ3LRbrepp4y-FNskMw6uHi-jPFpnO-0O3Df5QrneKNf8B4WgEFQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lA4QKEUFgoYqVIPVdrEduLscYWoUrpbpD6k3iK_IlVdNqtu9gAnfkJ_Y38JM8kmsPRQCY5RYseveXzj8WeAHa-MVD6ygdNhjABFFAHpwEAUpkDM7Aur6ezw6CTJLuSXy7jNJqSzMA0_RBdwI8mo9TUJOAWkD36zhs6-jWnvgEyS6iePYI2u9a5R1WnHICXQfNX3q6DVCoh6q-VtDPnBcvllu3TP2Vz2XWvjc_gMTNvsJufken9emX374y9Gx__q1wY8XbimbNCspeew4icv4MkfhIWbMO14ae9-3g6qitigHZtmDJV0OUNEXN4w9ILZwNo5cVCMv7NGaVBxhr4mO9XTK8eOsUrih2ZlwY4ovEz7B5QQy7I99hWt8niRovcSLg4_n3_KgsWdDYEVPE0Cg2KsvUDkW7hYepE4myIii6Thnqj_0CZz15fGCmkSU6Q-MS6SSmmFwEr6UGzB6qSc-NfAdBhppYQXTitpQ6771kuXII6m2tOoB7vtjOXThpojb0iYeU5jmHdj2IPtdkLzhYjOchHFisBUzHvwsXuNwkU91hNfzukbOlyOOjDuwatmIXS_og1OkcZYOa-n84E25Gej4bB7evMvhT7AenY-GubDo5Pjt_CY003EdTBoG1arm7l_h-5RZd7XAvALHOoIMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD4RTAw-KCjoKsiQmPBgurQz0073cQNsFljQgCS8NXNrYly3Ddt90Cd_gr_RX-I57W5l9cEEH5t2pnM5t-_MzDcAb70yUvnIBk6HMQIUkQdkAwORmxwxs8-tprPD5xfJ8Fqe3sQ3d07xN_wQbcKNNKO216TgpcsPfpOGTr-MaemAPJLqJSvwUCZhSnJ9dNkSSAn0XvX1Kui0AmLeWtA2hvxgufyyW_or1lwOXWvfM3gKetHqZsvJ5-6sMl377Q9Cx__p1jo8mQemrN9I0gY88JNn8PgOXeFzKFtW2p_ff_SririgHSuHDE10MUU8XNwyjIFZ39oZMVCMv7LGZFBxhpEmu9TlJ8fOsEpih2ZFzk4ouUyrB7Qdlg3fsffok8fzDXqbcD04_ng4DOY3NgRW8DQJDCqx9gJxb-5i6UXibIp4LJKGeyL-Q4_MXU8aK6RJTJ76xLhIKqUVwirpQ7EFq5Ni4l8C02GklRJeOK2kDbnuWS9dgiiaak-jDuwvJiwrG2KOrKFg5hmNYdaOYQe2F_OZzRV0mokoVgSlYt6BvfY1qhb1WE98MaNv6Gg5WsC4Ay8aOWh_RcubIo2xcl7P5j_akF2dj0bt06v7FNqFRx-OBtno5OLsNaxxuoa4zgRtw2p1O_M7GBtV5k0t_r8AGVMG6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reference-Attached+pH+Nanosensor+for+Accurately+Monitoring+the+Rapid+Kinetics+of+Intracellular+H%2B+Oscillations&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wen%2C+Ming-Yong&rft.au=Qi%2C+Yu-Ting&rft.au=Jiao%2C+Yu-Ting&rft.au=Zhang%2C+Xin-Wei&rft.date=2025-01-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.spage=e2406796&rft_id=info:doi/10.1002%2Fsmll.202406796&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon