Preparation of Peapod‐Like Nano‐Copolymers with Periodic Sequence via Polymerization‐Induced Morphology Differentiation and Fusion

Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparti...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 20; pp. e202424666 - n/a
Main Authors Yin, De‐Peng, Zhao, Xin‐Yue, Cheng, Jia‐Min, Zhu, Ren‐Man, Liu, Chao, Hong, Chun‐Yan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.05.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod‐like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization‐induced self‐assembly (PISA) and can be viewed as nanoscale monomers (“nanomers”). The subsequent copolymerization of these nanomers is completed in one‐pot, which greatly simplifies the preparation of nanomers and peapod‐like nano‐copolymers. It is demonstrated that appropriate π–π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano‐copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod‐like nano‐copolymers will open new directions toward development of artificial organelle and on‐demand catalysis in different compartments within the same nano‐object. We report a novel strategy for constructing peapod‐like nano‐copolymers with periodic sequence through fusion of vesicles and porous spheres. The generation and assembly of vesicles and porous spheres are achieved via polymerization‐induced self‐assembly (PISA) in one‐pot. The aggregation unit numbers of peapod‐like nano‐copolymers are affected by the length of solvophobic block and collision probability of vesicles and porous spheres.
AbstractList Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod‐like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization‐induced self‐assembly (PISA) and can be viewed as nanoscale monomers (“nanomers”). The subsequent copolymerization of these nanomers is completed in one‐pot, which greatly simplifies the preparation of nanomers and peapod‐like nano‐copolymers. It is demonstrated that appropriate π–π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano‐copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod‐like nano‐copolymers will open new directions toward development of artificial organelle and on‐demand catalysis in different compartments within the same nano‐object. We report a novel strategy for constructing peapod‐like nano‐copolymers with periodic sequence through fusion of vesicles and porous spheres. The generation and assembly of vesicles and porous spheres are achieved via polymerization‐induced self‐assembly (PISA) in one‐pot. The aggregation unit numbers of peapod‐like nano‐copolymers are affected by the length of solvophobic block and collision probability of vesicles and porous spheres.
Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod-like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization-induced self-assembly (PISA) and can be viewed as nanoscale monomers ("nanomers"). The subsequent copolymerization of these nanomers is completed in one-pot, which greatly simplifies the preparation of nanomers and peapod-like nano-copolymers. It is demonstrated that appropriate π-π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano-copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod-like nano-copolymers will open new directions toward development of artificial organelle and on-demand catalysis in different compartments within the same nano-object.
Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod-like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization-induced self-assembly (PISA) and can be viewed as nanoscale monomers ("nanomers"). The subsequent copolymerization of these nanomers is completed in one-pot, which greatly simplifies the preparation of nanomers and peapod-like nano-copolymers. It is demonstrated that appropriate π-π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano-copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod-like nano-copolymers will open new directions toward development of artificial organelle and on-demand catalysis in different compartments within the same nano-object.Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod-like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization-induced self-assembly (PISA) and can be viewed as nanoscale monomers ("nanomers"). The subsequent copolymerization of these nanomers is completed in one-pot, which greatly simplifies the preparation of nanomers and peapod-like nano-copolymers. It is demonstrated that appropriate π-π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano-copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod-like nano-copolymers will open new directions toward development of artificial organelle and on-demand catalysis in different compartments within the same nano-object.
Author Zhao, Xin‐Yue
Liu, Chao
Zhu, Ren‐Man
Yin, De‐Peng
Cheng, Jia‐Min
Hong, Chun‐Yan
Author_xml – sequence: 1
  givenname: De‐Peng
  surname: Yin
  fullname: Yin, De‐Peng
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Xin‐Yue
  surname: Zhao
  fullname: Zhao, Xin‐Yue
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Jia‐Min
  surname: Cheng
  fullname: Cheng, Jia‐Min
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Ren‐Man
  surname: Zhu
  fullname: Zhu, Ren‐Man
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  email: liuchao216@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Chun‐Yan
  orcidid: 0000-0002-5295-4741
  surname: Hong
  fullname: Hong, Chun‐Yan
  email: hongcy@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39980473$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1vFDEQhi0UlC_SUiJLNDR7-GPtXZfRJYGTjnASSW357FnisGcv9i3RUVFS8hv5JThsCBINsjR-i-edGc17hPZCDIDQc0pmlBD22gQPM0ZYzWop5RN0SAWjFW8avld0zXnVtIIeoKOcbwvftkTuowOuVEvqhh-i76sEg0lm62PAscMrMEN0P7_9WPpPgC9NiEXP4xD73QZSxnd-e1Og5KPzFn-AzyMEC_iLN3g1Mf7r72bFtghutODwu5iGm9jHjzt85rsOEoStnyaa4PDFmIt8hp52ps9w8vAfo-uL86v522r5_s1ifrqsLGetrIRsmZAWWE1dQzgDTrs1UMYoU07YmtfrVoFQjRDOMm54KQ5qwTtlqZGCH6NXU98hxbJ83uqNzxb63gSIY9acSkVbIqgs6Mt_0Ns4plC205yxVsnySKFePFDjegNOD8lvTNrpPzcuwGwCbIo5J-geEUr0fYj6PkT9GGIxqMlw53vY_YfWp5eL87_eX9Q8o8Q
Cites_doi 10.1007/s10118-024-3198-1
10.1021/acsmacrolett.3c00372
10.1021/acsnano.2c11833
10.1021/prechem.3c00036
10.1002/anie.202211792
10.1021/jacs.8b08648
10.1038/s41563-020-0744-2
10.1021/jacs.9b10152
10.1002/anie.201604551
10.1126/science.1141768
10.1039/C6CS00567E
10.1002/anie.202101851
10.1038/s41467-021-25995-5
10.1038/s41563-019-0549-3
10.1021/acsmacrolett.9b00464
10.1021/acsmacrolett.5b00225
10.1021/acs.jpcc.2c04930
10.1021/ja205887v
10.1021/jacs.2c13049
10.31635/ccschem.020.202000470
10.1021/ma047620v
10.1021/prechem.3c00012
10.1021/acsnano.3c03929
10.1021/ma049469v
10.1021/jacs.1c11507
10.1038/s41586-021-03355-z
10.1038/nature12610
10.1126/science.aba8653
10.1016/j.progpolymsci.2023.101710
10.1002/marc.201800325
10.1039/D0PY00455C
10.1016/S1748-0132(08)70043-4
10.1021/prechem.2c00011
10.1021/acs.macromol.0c02882
10.1021/jacs.1c05363
10.1021/acs.macromol.3c01639
10.1021/acs.macromol.0c01624
10.1021/jacs.6b00800
10.1039/C9CS00725C
10.1002/ange.201710811
10.1038/s41586-020-2205-0
10.1021/jacs.0c08135
10.1002/anie.201607059
10.1002/anie.202213178
10.1021/ja502843f
10.1021/jacs.9b02316
10.1039/c2cs35115c
10.1021/acs.macromol.6b01756
10.1021/acs.macromol.1c02081
10.1002/ange.201809370
10.1007/s10118-023-2946-y
10.1021/jacs.9b06695
10.1002/anie.201911758
10.1039/D0CS00021C
10.1002/pol.20210430
10.1021/acs.langmuir.1c01571
10.1021/acsmacrolett.6b00796
10.1002/ange.200805158
10.1021/acs.macromol.6b02643
10.1021/acsmacrolett.7b00134
10.1021/acsami.7b02966
10.1016/j.nantod.2020.100936
10.1021/acs.macromol.3c00302
10.1002/adfm.201704328
10.1021/prechem.3c00008
10.1021/acsmacrolett.2c00202
ContentType Journal Article
Copyright 2025 Wiley-VCH GmbH
2025 Wiley-VCH GmbH.
Copyright_xml – notice: 2025 Wiley-VCH GmbH
– notice: 2025 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202424666
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 39980473
10_1002_anie_202424666
ANIE202424666
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22201276; 22131010; U24A2072; 52021002
– fundername: National Natural Science Foundation of China
  grantid: 22201276
– fundername: National Natural Science Foundation of China
  grantid: 22131010
– fundername: National Natural Science Foundation of China
  grantid: U24A2072
– fundername: National Natural Science Foundation of China
  grantid: 52021002
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3286-568256ce241d7032e31fbe122129d5c434b89e59755dc23a3c23de453f9c1a653
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:25:02 EDT 2025
Sat Jul 26 14:40:34 EDT 2025
Mon Jul 21 06:08:28 EDT 2025
Thu Aug 14 00:13:30 EDT 2025
Sun Jul 06 04:45:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords π–π stacking interactions
polymerization-induced self-assembly
nano-copolymers
nanoparticle assembly
periodic sequence
Language English
License 2025 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3286-568256ce241d7032e31fbe122129d5c434b89e59755dc23a3c23de453f9c1a653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5295-4741
PMID 39980473
PQID 3228969690
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_3169180516
proquest_journals_3228969690
pubmed_primary_39980473
crossref_primary_10_1002_anie_202424666
wiley_primary_10_1002_anie_202424666_ANIE202424666
PublicationCentury 2000
PublicationDate May 12, 2025
PublicationDateYYYYMMDD 2025-05-12
PublicationDate_xml – month: 05
  year: 2025
  text: May 12, 2025
  day: 12
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2019; 13
2023; 145
2017; 46
2023; 143
2020; 369
2019; 19
2020; 59
2023; 1
2018; 40
2008; 3
2020; 11
2014; 136
2017; 9
2020; 19
2021; 37
2020; 53
2009; 121
2020; 49
2021; 591
2005; 38
2016; 49
2022; 126
2019; 8
2021; 3
2015; 4
2023; 56
2023; 12
2023; 17
2020; 580
2020; 142
2013; 503
2020; 35
2017; 130
2021; 143
2019; 141
2011; 133
2016; 55
2022; 144
2016; 5
2017; 50
2021; 59
2023; 41
2021; 54
2007; 317
2021; 12
2022; 61
2016; 138
2022; 11
2022; 55
2021; 60
2025; 43
2012; 41
2019; 131
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_83_1
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_11_1
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
Ma X. (e_1_2_7_29_2) 2019; 13
e_1_2_7_71_2
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_75_2
e_1_2_7_52_1
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_77_2
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_40_2
e_1_2_7_14_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_72_2
e_1_2_7_70_2
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_76_2
e_1_2_7_74_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_57_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_78_1
e_1_2_7_36_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – volume: 17
  start-page: 3047
  year: 2023
  publication-title: ACS Nano
– volume: 143
  year: 2023
  publication-title: Prog. Polym. Sci.
– volume: 9
  start-page: 15086
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 145
  start-page: 5824
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 14
  year: 2023
  publication-title: Precis. Chem.
– volume: 141
  start-page: 7917
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 3510
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 41
  start-page: 768
  year: 2023
  publication-title: Chinese. J. Polym. Sci.
– volume: 56
  start-page: 10254
  year: 2023
  publication-title: Macromolecules
– volume: 38
  start-page: 3550
  year: 2005
  publication-title: Macromolecules
– volume: 1
  start-page: 468
  year: 2023
  publication-title: Precis. Chem.
– volume: 1
  start-page: 3
  year: 2023
  publication-title: Precis. Chem.
– volume: 53
  start-page: 8982
  year: 2020
  publication-title: Macromolecules
– volume: 144
  start-page: 7531
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 8368
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 13234
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1045
  year: 2023
  publication-title: ACS Macro Lett.
– volume: 8
  start-page: 1029
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 5
  start-page: 1327
  year: 2016
  end-page: 1331
  publication-title: ACS Macro Lett.
– volume: 369
  start-page: 1369
  year: 2020
  publication-title: Science
– volume: 56
  start-page: 3296
  year: 2023
  end-page: 3303
  publication-title: Macromolecules
– volume: 37
  start-page: 12007
  year: 2021
  publication-title: Langmuir
– volume: 17
  start-page: 12788
  year: 2023
  publication-title: ACS Nano
– volume: 59
  start-page: 1874
  year: 2021
  publication-title: J. Polym. Sci.
– volume: 1
  start-page: 272
  year: 2023
  publication-title: Precis. Chem.
– volume: 55
  start-page: 11392
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 298
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 121
  start-page: 2790
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 1354
  year: 2020
  publication-title: Nat. Mater.
– volume: 49
  start-page: 4681
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 2104
  year: 2021
  publication-title: CCS Chem.
– volume: 580
  start-page: 487
  year: 2020
  end-page: 490
  publication-title: Nature
– volume: 126
  start-page: 14017
  year: 2022
  publication-title: J. Phys. Chem. C.
– volume: 317
  start-page: 647
  year: 2007
  publication-title: Science
– volume: 133
  start-page: 15707
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 8167
  year: 2016
  publication-title: Macromolecules
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 38
  start-page: 188
  year: 2005
  publication-title: Macromolecules
– volume: 60
  start-page: 12955
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 591
  start-page: 586
  year: 2021
  publication-title: Nature
– volume: 11
  start-page: 3673
  year: 2020
  publication-title: Polym. Chem.
– volume: 40
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 503
  start-page: 247
  year: 2013
  publication-title: Nature
– volume: 142
  start-page: 17282
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 781
  year: 2019
  publication-title: Nat. Mater.
– volume: 41
  start-page: 5969
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 132
  year: 2025
  publication-title: Chinese. J. Polym. Sci.
– volume: 141
  start-page: 20234
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 38
  year: 2008
  publication-title: Nano Today
– volume: 54
  start-page: 2729
  year: 2021
  end-page: 2739
  publication-title: Macromolecules
– volume: 55
  start-page: 12522
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 5682
  year: 2021
  publication-title: Nat. Commun.
– volume: 136
  start-page: 10174
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1968
  year: 2019
  publication-title: ACS Nano
– volume: 55
  start-page: 1139
  year: 2022
  publication-title: Macromolecules
– volume: 130
  start-page: 1065
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 2742
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 3205
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 1482
  year: 2017
  publication-title: Macromolecules
– volume: 138
  start-page: 3904
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 465
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 687
  year: 2022
  publication-title: ACS Macro Lett.
– volume: 35
  year: 2020
  publication-title: Nano Today
– volume: 4
  start-page: 495
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 143
  start-page: 12943
  year: 2021
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_44_2
  doi: 10.1007/s10118-024-3198-1
– ident: e_1_2_7_59_2
  doi: 10.1021/acsmacrolett.3c00372
– ident: e_1_2_7_19_2
  doi: 10.1021/acsnano.2c11833
– ident: e_1_2_7_21_2
  doi: 10.1021/prechem.3c00036
– ident: e_1_2_7_49_2
  doi: 10.1002/anie.202211792
– ident: e_1_2_7_68_2
  doi: 10.1021/jacs.8b08648
– ident: e_1_2_7_11_1
– ident: e_1_2_7_28_2
  doi: 10.1038/s41563-020-0744-2
– ident: e_1_2_7_64_2
  doi: 10.1021/jacs.9b10152
– ident: e_1_2_7_34_2
  doi: 10.1002/anie.201604551
– ident: e_1_2_7_38_2
  doi: 10.1126/science.1141768
– ident: e_1_2_7_74_1
– ident: e_1_2_7_2_2
  doi: 10.1039/C6CS00567E
– ident: e_1_2_7_55_2
  doi: 10.1002/anie.202101851
– ident: e_1_2_7_25_2
  doi: 10.1038/s41467-021-25995-5
– ident: e_1_2_7_33_1
– ident: e_1_2_7_17_2
  doi: 10.1038/s41563-019-0549-3
– ident: e_1_2_7_47_2
  doi: 10.1021/acsmacrolett.9b00464
– ident: e_1_2_7_70_2
  doi: 10.1021/acsmacrolett.5b00225
– ident: e_1_2_7_4_1
– ident: e_1_2_7_7_2
  doi: 10.1021/acs.jpcc.2c04930
– ident: e_1_2_7_71_2
  doi: 10.1021/ja205887v
– ident: e_1_2_7_39_1
– ident: e_1_2_7_52_1
– ident: e_1_2_7_65_2
  doi: 10.1021/jacs.2c13049
– ident: e_1_2_7_8_1
– ident: e_1_2_7_50_2
  doi: 10.31635/ccschem.020.202000470
– ident: e_1_2_7_76_2
  doi: 10.1021/ma047620v
– ident: e_1_2_7_18_2
  doi: 10.1021/prechem.3c00012
– ident: e_1_2_7_27_2
  doi: 10.1021/acsnano.3c03929
– ident: e_1_2_7_30_1
– ident: e_1_2_7_81_1
  doi: 10.1021/ma049469v
– ident: e_1_2_7_3_2
  doi: 10.1021/jacs.1c11507
– ident: e_1_2_7_46_1
– ident: e_1_2_7_9_2
  doi: 10.1038/s41586-021-03355-z
– ident: e_1_2_7_26_2
  doi: 10.1038/nature12610
– ident: e_1_2_7_16_2
  doi: 10.1126/science.aba8653
– ident: e_1_2_7_31_2
  doi: 10.1016/j.progpolymsci.2023.101710
– ident: e_1_2_7_51_2
  doi: 10.1002/marc.201800325
– ident: e_1_2_7_48_2
  doi: 10.1039/D0PY00455C
– ident: e_1_2_7_42_2
  doi: 10.1016/S1748-0132(08)70043-4
– ident: e_1_2_7_20_2
  doi: 10.1021/prechem.2c00011
– ident: e_1_2_7_61_1
  doi: 10.1021/acs.macromol.0c02882
– ident: e_1_2_7_15_2
  doi: 10.1021/jacs.1c05363
– ident: e_1_2_7_37_2
  doi: 10.1021/acs.macromol.3c01639
– ident: e_1_2_7_14_1
– ident: e_1_2_7_66_2
  doi: 10.1021/acs.macromol.0c01624
– ident: e_1_2_7_78_1
  doi: 10.1021/jacs.6b00800
– ident: e_1_2_7_32_2
  doi: 10.1039/C9CS00725C
– ident: e_1_2_7_60_2
  doi: 10.1002/ange.201710811
– ident: e_1_2_7_5_2
  doi: 10.1038/s41586-020-2205-0
– ident: e_1_2_7_13_2
  doi: 10.1021/jacs.0c08135
– ident: e_1_2_7_36_2
  doi: 10.1002/anie.201607059
– ident: e_1_2_7_75_2
  doi: 10.1002/anie.202213178
– ident: e_1_2_7_53_2
  doi: 10.1021/ja502843f
– ident: e_1_2_7_67_1
– ident: e_1_2_7_24_2
  doi: 10.1021/jacs.9b02316
– ident: e_1_2_7_73_1
  doi: 10.1039/c2cs35115c
– ident: e_1_2_7_79_1
  doi: 10.1021/acs.macromol.6b01756
– ident: e_1_2_7_1_1
– ident: e_1_2_7_56_2
  doi: 10.1021/acs.macromol.1c02081
– ident: e_1_2_7_63_1
– ident: e_1_2_7_82_1
  doi: 10.1002/ange.201809370
– ident: e_1_2_7_45_2
  doi: 10.1007/s10118-023-2946-y
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.9b06695
– ident: e_1_2_7_54_2
  doi: 10.1002/anie.201911758
– ident: e_1_2_7_43_2
  doi: 10.1039/D0CS00021C
– ident: e_1_2_7_41_2
  doi: 10.1002/pol.20210430
– ident: e_1_2_7_58_1
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.langmuir.1c01571
– volume: 13
  start-page: 1968
  year: 2019
  ident: e_1_2_7_29_2
  publication-title: ACS Nano
– ident: e_1_2_7_57_1
  doi: 10.1021/acsmacrolett.6b00796
– ident: e_1_2_7_80_1
– ident: e_1_2_7_77_2
  doi: 10.1002/ange.200805158
– ident: e_1_2_7_69_2
  doi: 10.1021/acs.macromol.6b02643
– ident: e_1_2_7_72_2
  doi: 10.1021/acsmacrolett.7b00134
– ident: e_1_2_7_83_1
  doi: 10.1021/acsami.7b02966
– ident: e_1_2_7_40_2
  doi: 10.1016/j.nantod.2020.100936
– ident: e_1_2_7_62_1
  doi: 10.1021/acs.macromol.3c00302
– ident: e_1_2_7_10_2
  doi: 10.1002/adfm.201704328
– ident: e_1_2_7_22_2
  doi: 10.1021/prechem.3c00008
– ident: e_1_2_7_23_1
– ident: e_1_2_7_35_2
  doi: 10.1021/acsmacrolett.2c00202
SSID ssj0028806
Score 2.4832983
Snippet Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202424666
SubjectTerms Block copolymers
Catalysis
Compartments
Copolymerization
Copolymers
nano-copolymers
nanoparticle assembly
Nanoparticles
periodic sequence
Polymerization
polymerization-induced self-assembly
Self-assembly
π–π stacking interactions
Title Preparation of Peapod‐Like Nano‐Copolymers with Periodic Sequence via Polymerization‐Induced Morphology Differentiation and Fusion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202424666
https://www.ncbi.nlm.nih.gov/pubmed/39980473
https://www.proquest.com/docview/3228969690
https://www.proquest.com/docview/3169180516
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7Ei17cl7oxguAp2swSk6NUi4qKuIC3MFugCInUVtCTR4_-Rn-J72WSaPUg6KWkdCaZzvLNey_zvo-QLc4ljywXAY90FIjQ6EDFEpwVJkwWAirLUhvw7Dw6uhEnt_L2Sxa_54doAm64Mkq8xgWu9MPuJ2koZmCDf4fpDWCCAwjjgS20ii4b_igGk9OnF3EeoAp9zdrYZruj1Ud3pR-m5qjlWm493Wmi6kb7Eyd3O8OB3jHP3_gc__OvZshUZZfSfT-RZsmYy-fIRKeWg5snrxd953nCi5wWGQUsvS_s-8vbae_OUQDpAq47KLnwhKFwigFeKNTvFbZn6FV1Yps-9hS98GWqDFCohvohxll6VsCol3F-elAJtwz81KEqt7Q7xNDeArnpHl53joJKxiEwnMVRICPwQlF4TIQW8IU5HmbahQw2zcRKI7jQceLAsZHSGsYVhw_rhORZYkIVSb5IxvMid8uEZonkJtExvi4WSZxpywFCRAJuKlNgGLbIdj2M6b1n60g9LzNLsWfTpmdbZK0e5bRatQ8pgFuMbEFJu0U2m5-hn_ElispdMYQyyC4UA5TBLZb87GgeBcZe3BZ70AxWjvEvbUj3z48Pm28rf6m0SiYZChIjnSxbI-OD_tCtg5U00BvlSvgA1woMAg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VeoBLaaGPUFoWCYmTId6HsY8oJQoliRAPqTfL-7AUIdkoTZDgxJEjv5Ff0hmv7SrlUKm9WLa8a693dmdnxjvfB7ArhBKRFTIQkY4CGRodZLFCZ4VLk4eolVXFDTgaR4Mr-f2HanYTUi6Mx4doA240Myp9TROcAtIHv1FDKQUbHTzKb0AbfAleE6135VWdtwhSHIenTzASIiAe-ga3scsPFusvrksvjM1F27VafPproJtm-z0n1_vzmd43938gOv7Xd72FN7Vpyo78WHoHr1yxDiu9hhFuAx7Pps5DhZcFK3OG6vSmtM8PT8PJtWOop0s87xHrwh1FwxnFeLHQdFLaiWEX9aZtdjvJ2JkvUyeBYjWiEDHOslGJgq9C_exbzd0y86OHZYVl_TlF997DVf_4sjcIaiaHwAgeR4GK0BEl7jEZWlQx3Ikw1y7kuG4mVhkppI4Th76NUtZwkQk8WCeVyBMTZpESH2C5KAv3CVieKGESHdMfY5nEubYCtYhM0FPlGdqGHdhr5JjeeMCO1EMz85R6Nm17tgNbjZjTeuL-TFG_xQQYlHQ7sNPexn6m_yhZ4co5liGAoRi1GT7iox8e7avQ3ou78hCbwSsh_6UN6dH45Li92vyXStuwMrgcDdPhyfj0M6xy4icmdFm-Bcuz6dx9QaNppr9W0-IXiGcQHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21VKJcSgu03UKpkZA4BTb-CM4R7bICCqsVFIlblNiOtEJKVstuJTj1yLG_sb-kM3GSdttDJXqJEsVOHHs8nhln3gPYFUKJyAoZiCiLAhmaLEi1QmeFS5OHqJVVxQ14MYxOruXZjbr5LYvf40O0ATeaGZW-pgk-sfnBL9BQysBG_47SG9AEfw4vZNTVJNf9yxZAiqN0-vwiIQKioW9gG7v8YLH-4rL0l625aLpWa89gFdKm1f6Xk9v9-SzbNw9_ADr-z2e9hle1YcqOvCS9gWeuWIOXvYYPbh0eR1PngcLLgpU5Q2U6Ke2Pb9_Px7eOoZYu8bxHnAv3FAtnFOHFQtNxaceGXdW_bLOv45SNfJk6BRSrEYGIcZZdlDjsVaCf9WvmlpmXHZYWlg3mFNvbgOvB8ZfeSVDzOARGcB0FKkI3lJjHZGhRwXAnwjxzIcdVM7bKSCEzHTv0bJSyhotU4ME6qUQemzCNlHgLS0VZuPfA8lgJE2ea9otlrPPMCtQhMkY_ladoGXZgrxnGZOLhOhIPzMwT6tmk7dkObDWjnNTT9i5B7aYJLijudmCnvY39TLsoaeHKOZYheCGNugwf8c5LR_sqtPZ0Vx5iM3g1xv9oQ3I0PD1urz48pdInWB71B8n56fDzJqxwIicmaFm-BUuz6dx9RItplm1Xk-InarwO1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Peapod-Like+Nano-Copolymers+with+Periodic+Sequence+via+Polymerization-Induced+Morphology+Differentiation+and+Fusion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yin%2C+De-Peng&rft.au=Zhao%2C+Xin-Yue&rft.au=Cheng%2C+Jia-Min&rft.au=Zhu%2C+Ren-Man&rft.date=2025-05-12&rft.eissn=1521-3773&rft.volume=64&rft.issue=20&rft.spage=e202424666&rft_id=info:doi/10.1002%2Fanie.202424666&rft_id=info%3Apmid%2F39980473&rft.externalDocID=39980473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon