Preparation of Peapod‐Like Nano‐Copolymers with Periodic Sequence via Polymerization‐Induced Morphology Differentiation and Fusion
Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparti...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 20; pp. e202424666 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
12.05.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod‐like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization‐induced self‐assembly (PISA) and can be viewed as nanoscale monomers (“nanomers”). The subsequent copolymerization of these nanomers is completed in one‐pot, which greatly simplifies the preparation of nanomers and peapod‐like nano‐copolymers. It is demonstrated that appropriate π–π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano‐copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod‐like nano‐copolymers will open new directions toward development of artificial organelle and on‐demand catalysis in different compartments within the same nano‐object.
We report a novel strategy for constructing peapod‐like nano‐copolymers with periodic sequence through fusion of vesicles and porous spheres. The generation and assembly of vesicles and porous spheres are achieved via polymerization‐induced self‐assembly (PISA) in one‐pot. The aggregation unit numbers of peapod‐like nano‐copolymers are affected by the length of solvophobic block and collision probability of vesicles and porous spheres. |
---|---|
AbstractList | Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod‐like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization‐induced self‐assembly (PISA) and can be viewed as nanoscale monomers (“nanomers”). The subsequent copolymerization of these nanomers is completed in one‐pot, which greatly simplifies the preparation of nanomers and peapod‐like nano‐copolymers. It is demonstrated that appropriate π–π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano‐copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod‐like nano‐copolymers will open new directions toward development of artificial organelle and on‐demand catalysis in different compartments within the same nano‐object.
We report a novel strategy for constructing peapod‐like nano‐copolymers with periodic sequence through fusion of vesicles and porous spheres. The generation and assembly of vesicles and porous spheres are achieved via polymerization‐induced self‐assembly (PISA) in one‐pot. The aggregation unit numbers of peapod‐like nano‐copolymers are affected by the length of solvophobic block and collision probability of vesicles and porous spheres. Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod-like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization-induced self-assembly (PISA) and can be viewed as nanoscale monomers ("nanomers"). The subsequent copolymerization of these nanomers is completed in one-pot, which greatly simplifies the preparation of nanomers and peapod-like nano-copolymers. It is demonstrated that appropriate π-π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano-copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod-like nano-copolymers will open new directions toward development of artificial organelle and on-demand catalysis in different compartments within the same nano-object. Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod-like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization-induced self-assembly (PISA) and can be viewed as nanoscale monomers ("nanomers"). The subsequent copolymerization of these nanomers is completed in one-pot, which greatly simplifies the preparation of nanomers and peapod-like nano-copolymers. It is demonstrated that appropriate π-π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano-copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod-like nano-copolymers will open new directions toward development of artificial organelle and on-demand catalysis in different compartments within the same nano-object.Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod-like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization-induced self-assembly (PISA) and can be viewed as nanoscale monomers ("nanomers"). The subsequent copolymerization of these nanomers is completed in one-pot, which greatly simplifies the preparation of nanomers and peapod-like nano-copolymers. It is demonstrated that appropriate π-π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano-copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod-like nano-copolymers will open new directions toward development of artificial organelle and on-demand catalysis in different compartments within the same nano-object. |
Author | Zhao, Xin‐Yue Liu, Chao Zhu, Ren‐Man Yin, De‐Peng Cheng, Jia‐Min Hong, Chun‐Yan |
Author_xml | – sequence: 1 givenname: De‐Peng surname: Yin fullname: Yin, De‐Peng organization: University of Science and Technology of China – sequence: 2 givenname: Xin‐Yue surname: Zhao fullname: Zhao, Xin‐Yue organization: University of Science and Technology of China – sequence: 3 givenname: Jia‐Min surname: Cheng fullname: Cheng, Jia‐Min organization: University of Science and Technology of China – sequence: 4 givenname: Ren‐Man surname: Zhu fullname: Zhu, Ren‐Man organization: University of Science and Technology of China – sequence: 5 givenname: Chao surname: Liu fullname: Liu, Chao email: liuchao216@ustc.edu.cn organization: University of Science and Technology of China – sequence: 6 givenname: Chun‐Yan orcidid: 0000-0002-5295-4741 surname: Hong fullname: Hong, Chun‐Yan email: hongcy@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39980473$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1vFDEQhi0UlC_SUiJLNDR7-GPtXZfRJYGTjnASSW357FnisGcv9i3RUVFS8hv5JThsCBINsjR-i-edGc17hPZCDIDQc0pmlBD22gQPM0ZYzWop5RN0SAWjFW8avld0zXnVtIIeoKOcbwvftkTuowOuVEvqhh-i76sEg0lm62PAscMrMEN0P7_9WPpPgC9NiEXP4xD73QZSxnd-e1Og5KPzFn-AzyMEC_iLN3g1Mf7r72bFtghutODwu5iGm9jHjzt85rsOEoStnyaa4PDFmIt8hp52ps9w8vAfo-uL86v522r5_s1ifrqsLGetrIRsmZAWWE1dQzgDTrs1UMYoU07YmtfrVoFQjRDOMm54KQ5qwTtlqZGCH6NXU98hxbJ83uqNzxb63gSIY9acSkVbIqgs6Mt_0Ns4plC205yxVsnySKFePFDjegNOD8lvTNrpPzcuwGwCbIo5J-geEUr0fYj6PkT9GGIxqMlw53vY_YfWp5eL87_eX9Q8o8Q |
Cites_doi | 10.1007/s10118-024-3198-1 10.1021/acsmacrolett.3c00372 10.1021/acsnano.2c11833 10.1021/prechem.3c00036 10.1002/anie.202211792 10.1021/jacs.8b08648 10.1038/s41563-020-0744-2 10.1021/jacs.9b10152 10.1002/anie.201604551 10.1126/science.1141768 10.1039/C6CS00567E 10.1002/anie.202101851 10.1038/s41467-021-25995-5 10.1038/s41563-019-0549-3 10.1021/acsmacrolett.9b00464 10.1021/acsmacrolett.5b00225 10.1021/acs.jpcc.2c04930 10.1021/ja205887v 10.1021/jacs.2c13049 10.31635/ccschem.020.202000470 10.1021/ma047620v 10.1021/prechem.3c00012 10.1021/acsnano.3c03929 10.1021/ma049469v 10.1021/jacs.1c11507 10.1038/s41586-021-03355-z 10.1038/nature12610 10.1126/science.aba8653 10.1016/j.progpolymsci.2023.101710 10.1002/marc.201800325 10.1039/D0PY00455C 10.1016/S1748-0132(08)70043-4 10.1021/prechem.2c00011 10.1021/acs.macromol.0c02882 10.1021/jacs.1c05363 10.1021/acs.macromol.3c01639 10.1021/acs.macromol.0c01624 10.1021/jacs.6b00800 10.1039/C9CS00725C 10.1002/ange.201710811 10.1038/s41586-020-2205-0 10.1021/jacs.0c08135 10.1002/anie.201607059 10.1002/anie.202213178 10.1021/ja502843f 10.1021/jacs.9b02316 10.1039/c2cs35115c 10.1021/acs.macromol.6b01756 10.1021/acs.macromol.1c02081 10.1002/ange.201809370 10.1007/s10118-023-2946-y 10.1021/jacs.9b06695 10.1002/anie.201911758 10.1039/D0CS00021C 10.1002/pol.20210430 10.1021/acs.langmuir.1c01571 10.1021/acsmacrolett.6b00796 10.1002/ange.200805158 10.1021/acs.macromol.6b02643 10.1021/acsmacrolett.7b00134 10.1021/acsami.7b02966 10.1016/j.nantod.2020.100936 10.1021/acs.macromol.3c00302 10.1002/adfm.201704328 10.1021/prechem.3c00008 10.1021/acsmacrolett.2c00202 |
ContentType | Journal Article |
Copyright | 2025 Wiley-VCH GmbH 2025 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley-VCH GmbH – notice: 2025 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202424666 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 39980473 10_1002_anie_202424666 ANIE202424666 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22201276; 22131010; U24A2072; 52021002 – fundername: National Natural Science Foundation of China grantid: 22201276 – fundername: National Natural Science Foundation of China grantid: 22131010 – fundername: National Natural Science Foundation of China grantid: U24A2072 – fundername: National Natural Science Foundation of China grantid: 52021002 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3286-568256ce241d7032e31fbe122129d5c434b89e59755dc23a3c23de453f9c1a653 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:25:02 EDT 2025 Sat Jul 26 14:40:34 EDT 2025 Mon Jul 21 06:08:28 EDT 2025 Thu Aug 14 00:13:30 EDT 2025 Sun Jul 06 04:45:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | π–π stacking interactions polymerization-induced self-assembly nano-copolymers nanoparticle assembly periodic sequence |
Language | English |
License | 2025 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3286-568256ce241d7032e31fbe122129d5c434b89e59755dc23a3c23de453f9c1a653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5295-4741 |
PMID | 39980473 |
PQID | 3228969690 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3169180516 proquest_journals_3228969690 pubmed_primary_39980473 crossref_primary_10_1002_anie_202424666 wiley_primary_10_1002_anie_202424666_ANIE202424666 |
PublicationCentury | 2000 |
PublicationDate | May 12, 2025 |
PublicationDateYYYYMMDD | 2025-05-12 |
PublicationDate_xml | – month: 05 year: 2025 text: May 12, 2025 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2019; 13 2023; 145 2017; 46 2023; 143 2020; 369 2019; 19 2020; 59 2023; 1 2018; 40 2008; 3 2020; 11 2014; 136 2017; 9 2020; 19 2021; 37 2020; 53 2009; 121 2020; 49 2021; 591 2005; 38 2016; 49 2022; 126 2019; 8 2021; 3 2015; 4 2023; 56 2023; 12 2023; 17 2020; 580 2020; 142 2013; 503 2020; 35 2017; 130 2021; 143 2019; 141 2011; 133 2016; 55 2022; 144 2016; 5 2017; 50 2021; 59 2023; 41 2021; 54 2007; 317 2021; 12 2022; 61 2016; 138 2022; 11 2022; 55 2021; 60 2025; 43 2012; 41 2019; 131 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_83_1 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_11_1 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 Ma X. (e_1_2_7_29_2) 2019; 13 e_1_2_7_71_2 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_75_2 e_1_2_7_52_1 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_77_2 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_72_2 e_1_2_7_70_2 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_76_2 e_1_2_7_74_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_78_1 e_1_2_7_36_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – volume: 17 start-page: 3047 year: 2023 publication-title: ACS Nano – volume: 143 year: 2023 publication-title: Prog. Polym. Sci. – volume: 9 start-page: 15086 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 145 start-page: 5824 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 14 year: 2023 publication-title: Precis. Chem. – volume: 141 start-page: 7917 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 3510 year: 2017 publication-title: Chem. Soc. Rev. – volume: 41 start-page: 768 year: 2023 publication-title: Chinese. J. Polym. Sci. – volume: 56 start-page: 10254 year: 2023 publication-title: Macromolecules – volume: 38 start-page: 3550 year: 2005 publication-title: Macromolecules – volume: 1 start-page: 468 year: 2023 publication-title: Precis. Chem. – volume: 1 start-page: 3 year: 2023 publication-title: Precis. Chem. – volume: 53 start-page: 8982 year: 2020 publication-title: Macromolecules – volume: 144 start-page: 7531 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 8368 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 13234 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1045 year: 2023 publication-title: ACS Macro Lett. – volume: 8 start-page: 1029 year: 2019 publication-title: ACS Macro Lett. – volume: 5 start-page: 1327 year: 2016 end-page: 1331 publication-title: ACS Macro Lett. – volume: 369 start-page: 1369 year: 2020 publication-title: Science – volume: 56 start-page: 3296 year: 2023 end-page: 3303 publication-title: Macromolecules – volume: 37 start-page: 12007 year: 2021 publication-title: Langmuir – volume: 17 start-page: 12788 year: 2023 publication-title: ACS Nano – volume: 59 start-page: 1874 year: 2021 publication-title: J. Polym. Sci. – volume: 1 start-page: 272 year: 2023 publication-title: Precis. Chem. – volume: 55 start-page: 11392 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 298 year: 2017 publication-title: ACS Macro Lett. – volume: 121 start-page: 2790 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 1354 year: 2020 publication-title: Nat. Mater. – volume: 49 start-page: 4681 year: 2020 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 2104 year: 2021 publication-title: CCS Chem. – volume: 580 start-page: 487 year: 2020 end-page: 490 publication-title: Nature – volume: 126 start-page: 14017 year: 2022 publication-title: J. Phys. Chem. C. – volume: 317 start-page: 647 year: 2007 publication-title: Science – volume: 133 start-page: 15707 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 8167 year: 2016 publication-title: Macromolecules – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 38 start-page: 188 year: 2005 publication-title: Macromolecules – volume: 60 start-page: 12955 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 591 start-page: 586 year: 2021 publication-title: Nature – volume: 11 start-page: 3673 year: 2020 publication-title: Polym. Chem. – volume: 40 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 503 start-page: 247 year: 2013 publication-title: Nature – volume: 142 start-page: 17282 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 781 year: 2019 publication-title: Nat. Mater. – volume: 41 start-page: 5969 year: 2012 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 132 year: 2025 publication-title: Chinese. J. Polym. Sci. – volume: 141 start-page: 20234 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 38 year: 2008 publication-title: Nano Today – volume: 54 start-page: 2729 year: 2021 end-page: 2739 publication-title: Macromolecules – volume: 55 start-page: 12522 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 5682 year: 2021 publication-title: Nat. Commun. – volume: 136 start-page: 10174 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1968 year: 2019 publication-title: ACS Nano – volume: 55 start-page: 1139 year: 2022 publication-title: Macromolecules – volume: 130 start-page: 1065 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 2742 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 3205 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 1482 year: 2017 publication-title: Macromolecules – volume: 138 start-page: 3904 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 465 year: 2020 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 687 year: 2022 publication-title: ACS Macro Lett. – volume: 35 year: 2020 publication-title: Nano Today – volume: 4 start-page: 495 year: 2015 publication-title: ACS Macro Lett. – volume: 143 start-page: 12943 year: 2021 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_44_2 doi: 10.1007/s10118-024-3198-1 – ident: e_1_2_7_59_2 doi: 10.1021/acsmacrolett.3c00372 – ident: e_1_2_7_19_2 doi: 10.1021/acsnano.2c11833 – ident: e_1_2_7_21_2 doi: 10.1021/prechem.3c00036 – ident: e_1_2_7_49_2 doi: 10.1002/anie.202211792 – ident: e_1_2_7_68_2 doi: 10.1021/jacs.8b08648 – ident: e_1_2_7_11_1 – ident: e_1_2_7_28_2 doi: 10.1038/s41563-020-0744-2 – ident: e_1_2_7_64_2 doi: 10.1021/jacs.9b10152 – ident: e_1_2_7_34_2 doi: 10.1002/anie.201604551 – ident: e_1_2_7_38_2 doi: 10.1126/science.1141768 – ident: e_1_2_7_74_1 – ident: e_1_2_7_2_2 doi: 10.1039/C6CS00567E – ident: e_1_2_7_55_2 doi: 10.1002/anie.202101851 – ident: e_1_2_7_25_2 doi: 10.1038/s41467-021-25995-5 – ident: e_1_2_7_33_1 – ident: e_1_2_7_17_2 doi: 10.1038/s41563-019-0549-3 – ident: e_1_2_7_47_2 doi: 10.1021/acsmacrolett.9b00464 – ident: e_1_2_7_70_2 doi: 10.1021/acsmacrolett.5b00225 – ident: e_1_2_7_4_1 – ident: e_1_2_7_7_2 doi: 10.1021/acs.jpcc.2c04930 – ident: e_1_2_7_71_2 doi: 10.1021/ja205887v – ident: e_1_2_7_39_1 – ident: e_1_2_7_52_1 – ident: e_1_2_7_65_2 doi: 10.1021/jacs.2c13049 – ident: e_1_2_7_8_1 – ident: e_1_2_7_50_2 doi: 10.31635/ccschem.020.202000470 – ident: e_1_2_7_76_2 doi: 10.1021/ma047620v – ident: e_1_2_7_18_2 doi: 10.1021/prechem.3c00012 – ident: e_1_2_7_27_2 doi: 10.1021/acsnano.3c03929 – ident: e_1_2_7_30_1 – ident: e_1_2_7_81_1 doi: 10.1021/ma049469v – ident: e_1_2_7_3_2 doi: 10.1021/jacs.1c11507 – ident: e_1_2_7_46_1 – ident: e_1_2_7_9_2 doi: 10.1038/s41586-021-03355-z – ident: e_1_2_7_26_2 doi: 10.1038/nature12610 – ident: e_1_2_7_16_2 doi: 10.1126/science.aba8653 – ident: e_1_2_7_31_2 doi: 10.1016/j.progpolymsci.2023.101710 – ident: e_1_2_7_51_2 doi: 10.1002/marc.201800325 – ident: e_1_2_7_48_2 doi: 10.1039/D0PY00455C – ident: e_1_2_7_42_2 doi: 10.1016/S1748-0132(08)70043-4 – ident: e_1_2_7_20_2 doi: 10.1021/prechem.2c00011 – ident: e_1_2_7_61_1 doi: 10.1021/acs.macromol.0c02882 – ident: e_1_2_7_15_2 doi: 10.1021/jacs.1c05363 – ident: e_1_2_7_37_2 doi: 10.1021/acs.macromol.3c01639 – ident: e_1_2_7_14_1 – ident: e_1_2_7_66_2 doi: 10.1021/acs.macromol.0c01624 – ident: e_1_2_7_78_1 doi: 10.1021/jacs.6b00800 – ident: e_1_2_7_32_2 doi: 10.1039/C9CS00725C – ident: e_1_2_7_60_2 doi: 10.1002/ange.201710811 – ident: e_1_2_7_5_2 doi: 10.1038/s41586-020-2205-0 – ident: e_1_2_7_13_2 doi: 10.1021/jacs.0c08135 – ident: e_1_2_7_36_2 doi: 10.1002/anie.201607059 – ident: e_1_2_7_75_2 doi: 10.1002/anie.202213178 – ident: e_1_2_7_53_2 doi: 10.1021/ja502843f – ident: e_1_2_7_67_1 – ident: e_1_2_7_24_2 doi: 10.1021/jacs.9b02316 – ident: e_1_2_7_73_1 doi: 10.1039/c2cs35115c – ident: e_1_2_7_79_1 doi: 10.1021/acs.macromol.6b01756 – ident: e_1_2_7_1_1 – ident: e_1_2_7_56_2 doi: 10.1021/acs.macromol.1c02081 – ident: e_1_2_7_63_1 – ident: e_1_2_7_82_1 doi: 10.1002/ange.201809370 – ident: e_1_2_7_45_2 doi: 10.1007/s10118-023-2946-y – ident: e_1_2_7_12_2 doi: 10.1021/jacs.9b06695 – ident: e_1_2_7_54_2 doi: 10.1002/anie.201911758 – ident: e_1_2_7_43_2 doi: 10.1039/D0CS00021C – ident: e_1_2_7_41_2 doi: 10.1002/pol.20210430 – ident: e_1_2_7_58_1 – ident: e_1_2_7_6_2 doi: 10.1021/acs.langmuir.1c01571 – volume: 13 start-page: 1968 year: 2019 ident: e_1_2_7_29_2 publication-title: ACS Nano – ident: e_1_2_7_57_1 doi: 10.1021/acsmacrolett.6b00796 – ident: e_1_2_7_80_1 – ident: e_1_2_7_77_2 doi: 10.1002/ange.200805158 – ident: e_1_2_7_69_2 doi: 10.1021/acs.macromol.6b02643 – ident: e_1_2_7_72_2 doi: 10.1021/acsmacrolett.7b00134 – ident: e_1_2_7_83_1 doi: 10.1021/acsami.7b02966 – ident: e_1_2_7_40_2 doi: 10.1016/j.nantod.2020.100936 – ident: e_1_2_7_62_1 doi: 10.1021/acs.macromol.3c00302 – ident: e_1_2_7_10_2 doi: 10.1002/adfm.201704328 – ident: e_1_2_7_22_2 doi: 10.1021/prechem.3c00008 – ident: e_1_2_7_23_1 – ident: e_1_2_7_35_2 doi: 10.1021/acsmacrolett.2c00202 |
SSID | ssj0028806 |
Score | 2.4832983 |
Snippet | Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202424666 |
SubjectTerms | Block copolymers Catalysis Compartments Copolymerization Copolymers nano-copolymers nanoparticle assembly Nanoparticles periodic sequence Polymerization polymerization-induced self-assembly Self-assembly π–π stacking interactions |
Title | Preparation of Peapod‐Like Nano‐Copolymers with Periodic Sequence via Polymerization‐Induced Morphology Differentiation and Fusion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202424666 https://www.ncbi.nlm.nih.gov/pubmed/39980473 https://www.proquest.com/docview/3228969690 https://www.proquest.com/docview/3169180516 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7Ei17cl7oxguAp2swSk6NUi4qKuIC3MFugCInUVtCTR4_-Rn-J72WSaPUg6KWkdCaZzvLNey_zvo-QLc4ljywXAY90FIjQ6EDFEpwVJkwWAirLUhvw7Dw6uhEnt_L2Sxa_54doAm64Mkq8xgWu9MPuJ2koZmCDf4fpDWCCAwjjgS20ii4b_igGk9OnF3EeoAp9zdrYZruj1Ud3pR-m5qjlWm493Wmi6kb7Eyd3O8OB3jHP3_gc__OvZshUZZfSfT-RZsmYy-fIRKeWg5snrxd953nCi5wWGQUsvS_s-8vbae_OUQDpAq47KLnwhKFwigFeKNTvFbZn6FV1Yps-9hS98GWqDFCohvohxll6VsCol3F-elAJtwz81KEqt7Q7xNDeArnpHl53joJKxiEwnMVRICPwQlF4TIQW8IU5HmbahQw2zcRKI7jQceLAsZHSGsYVhw_rhORZYkIVSb5IxvMid8uEZonkJtExvi4WSZxpywFCRAJuKlNgGLbIdj2M6b1n60g9LzNLsWfTpmdbZK0e5bRatQ8pgFuMbEFJu0U2m5-hn_ElispdMYQyyC4UA5TBLZb87GgeBcZe3BZ70AxWjvEvbUj3z48Pm28rf6m0SiYZChIjnSxbI-OD_tCtg5U00BvlSvgA1woMAg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VeoBLaaGPUFoWCYmTId6HsY8oJQoliRAPqTfL-7AUIdkoTZDgxJEjv5Ff0hmv7SrlUKm9WLa8a693dmdnxjvfB7ArhBKRFTIQkY4CGRodZLFCZ4VLk4eolVXFDTgaR4Mr-f2HanYTUi6Mx4doA240Myp9TROcAtIHv1FDKQUbHTzKb0AbfAleE6135VWdtwhSHIenTzASIiAe-ga3scsPFusvrksvjM1F27VafPproJtm-z0n1_vzmd43938gOv7Xd72FN7Vpyo78WHoHr1yxDiu9hhFuAx7Pps5DhZcFK3OG6vSmtM8PT8PJtWOop0s87xHrwh1FwxnFeLHQdFLaiWEX9aZtdjvJ2JkvUyeBYjWiEDHOslGJgq9C_exbzd0y86OHZYVl_TlF997DVf_4sjcIaiaHwAgeR4GK0BEl7jEZWlQx3Ikw1y7kuG4mVhkppI4Th76NUtZwkQk8WCeVyBMTZpESH2C5KAv3CVieKGESHdMfY5nEubYCtYhM0FPlGdqGHdhr5JjeeMCO1EMz85R6Nm17tgNbjZjTeuL-TFG_xQQYlHQ7sNPexn6m_yhZ4co5liGAoRi1GT7iox8e7avQ3ou78hCbwSsh_6UN6dH45Li92vyXStuwMrgcDdPhyfj0M6xy4icmdFm-Bcuz6dx9QaNppr9W0-IXiGcQHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21VKJcSgu03UKpkZA4BTb-CM4R7bICCqsVFIlblNiOtEJKVstuJTj1yLG_sb-kM3GSdttDJXqJEsVOHHs8nhln3gPYFUKJyAoZiCiLAhmaLEi1QmeFS5OHqJVVxQ14MYxOruXZjbr5LYvf40O0ATeaGZW-pgk-sfnBL9BQysBG_47SG9AEfw4vZNTVJNf9yxZAiqN0-vwiIQKioW9gG7v8YLH-4rL0l625aLpWa89gFdKm1f6Xk9v9-SzbNw9_ADr-z2e9hle1YcqOvCS9gWeuWIOXvYYPbh0eR1PngcLLgpU5Q2U6Ke2Pb9_Px7eOoZYu8bxHnAv3FAtnFOHFQtNxaceGXdW_bLOv45SNfJk6BRSrEYGIcZZdlDjsVaCf9WvmlpmXHZYWlg3mFNvbgOvB8ZfeSVDzOARGcB0FKkI3lJjHZGhRwXAnwjxzIcdVM7bKSCEzHTv0bJSyhotU4ME6qUQemzCNlHgLS0VZuPfA8lgJE2ea9otlrPPMCtQhMkY_ladoGXZgrxnGZOLhOhIPzMwT6tmk7dkObDWjnNTT9i5B7aYJLijudmCnvY39TLsoaeHKOZYheCGNugwf8c5LR_sqtPZ0Vx5iM3g1xv9oQ3I0PD1urz48pdInWB71B8n56fDzJqxwIicmaFm-BUuz6dx9RItplm1Xk-InarwO1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Peapod-Like+Nano-Copolymers+with+Periodic+Sequence+via+Polymerization-Induced+Morphology+Differentiation+and+Fusion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yin%2C+De-Peng&rft.au=Zhao%2C+Xin-Yue&rft.au=Cheng%2C+Jia-Min&rft.au=Zhu%2C+Ren-Man&rft.date=2025-05-12&rft.eissn=1521-3773&rft.volume=64&rft.issue=20&rft.spage=e202424666&rft_id=info:doi/10.1002%2Fanie.202424666&rft_id=info%3Apmid%2F39980473&rft.externalDocID=39980473 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |