Hydrothermal Valorization of Biosugars with Heterogeneous Catalysts: Advances, Catalyst Deactivation, Mitigation Strategies and Perspectives
Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance catalysts. To assist the next‐stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent adva...
Saved in:
Published in | ChemSusChem Vol. 18; no. 2; pp. e202401405 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
14.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance catalysts. To assist the next‐stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state‐of‐the‐art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long‐term and efficient hydrothermal upgrading of biosugars.
This graphic illustrates purposefully designing heterogeneous catalysts based on the relationships between reactions, catalysts, and deactivation mechanisms instead of adopting the conventional trial‐and‐error methodology for the hydrothermal valorization of biosugars. |
---|---|
AbstractList | Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance catalysts. To assist the next‐stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state‐of‐the‐art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long‐term and efficient hydrothermal upgrading of biosugars. Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance catalysts. To assist the next‐stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state‐of‐the‐art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long‐term and efficient hydrothermal upgrading of biosugars. This graphic illustrates purposefully designing heterogeneous catalysts based on the relationships between reactions, catalysts, and deactivation mechanisms instead of adopting the conventional trial‐and‐error methodology for the hydrothermal valorization of biosugars. Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high-performance catalysts. To assist the next-stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state-of-the-art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long-term and efficient hydrothermal upgrading of biosugars.Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high-performance catalysts. To assist the next-stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state-of-the-art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long-term and efficient hydrothermal upgrading of biosugars. |
Author | Lin, Richen Shen, Feng Xu, Siyu Liu, Juan Chun‐Ho Lam, Jason Jiang, Yujing Shuai, Li Zhu, Wenlei Song, Bing |
Author_xml | – sequence: 1 givenname: Siyu orcidid: 0009-0003-1117-0558 surname: Xu fullname: Xu, Siyu organization: Nanjing University – sequence: 2 givenname: Yujing orcidid: 0000-0002-5420-7010 surname: Jiang fullname: Jiang, Yujing organization: Nanjing University – sequence: 3 givenname: Juan orcidid: 0000-0002-5221-2481 surname: Liu fullname: Liu, Juan organization: Nanjing University – sequence: 4 givenname: Jason orcidid: 0000-0003-3085-1634 surname: Chun‐Ho Lam fullname: Chun‐Ho Lam, Jason organization: Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) – sequence: 5 givenname: Richen orcidid: 0000-0001-6861-8542 surname: Lin fullname: Lin, Richen organization: University College Cork – sequence: 6 givenname: Li orcidid: 0000-0002-7404-815X surname: Shuai fullname: Shuai, Li organization: Fujian Agriculture and Forestry University – sequence: 7 givenname: Feng orcidid: 0000-0002-6292-0094 surname: Shen fullname: Shen, Feng email: shenfeng@caas.cn organization: Ministry of Agriculture and Rural Affairs – sequence: 8 givenname: Wenlei orcidid: 0000-0001-6110-993X surname: Zhu fullname: Zhu, Wenlei email: wenleizhu@nju.edu.cn organization: Nanjing University – sequence: 9 givenname: Bing orcidid: 0000-0003-4791-083X surname: Song fullname: Song, Bing email: bing.song@scionresearch.com organization: University of New South Wales |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39138129$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URD_gyhFZ4tJDk_pza3MrWyBIRSAFEDfLtcepq8062N5W4Tfwo9k0bZC4cJrR6Hlfzcx7iPb61ANCLymZUkLYqSvFTRlhglBB5BN0QFUjJrIRP_Z2Paf76LCUG0IaopvmGdrnmnJFmT5Av2drn1O9hry0Hf5uu5TjL1tj6nEK-G1MZVjYXPBdrNd4BhVyWkAPaSi4tdV261LLG3zub23voJzshvgCrKvx9t7qBH-KNS62tvOabYVFhIJt7_EXyGUFGxTKc_Q02K7Ai4d6hL69f_e1nU0uP3_42J5fThxnSk7cmff2TPjAxxO09FJx6RnwoJVTlgXrJdcsCOdEI69YYFIIxSAo1gjOHeFH6Hjru8rp5wClmmUsDrrO3l9mONFMNXpUjejrf9CbNOR-3M5wunmt1lSP1KsHarhagjerHJc2r83jn0dgugVcTqVkCDuEErMJ0myCNLsgR4HeCu5iB-v_0Kadz9u_2j_YWqOA |
Cites_doi | 10.1039/C8GC02466A 10.1016/j.cej.2021.132261 10.1016/S0167-2991(99)80570-9 10.1016/j.renene.2023.05.058 10.1021/acs.chemrev.3c00801 10.1038/s41467-024-45278-z 10.1016/j.renene.2022.09.050 10.1016/j.rser.2018.03.066 10.1016/j.scitotenv.2021.146037 10.1016/j.renene.2018.02.085 10.1016/j.cej.2021.132325 10.1016/j.apcatb.2019.117799 10.1021/acssuschemeng.9b00292 10.1016/j.apcatb.2018.08.022 10.1016/j.fuproc.2022.107318 10.1002/cctc.202301590 10.1016/j.ijbiomac.2023.124196 10.1016/j.jclepro.2022.131144 10.1021/acscatal.8b01759 10.1016/j.cattod.2020.04.025 10.1021/acscatal.9b03455 10.1039/D3GC00587A 10.1039/C7CS00213K 10.1016/j.apsusc.2022.152849 10.1039/D1CY02078A 10.1039/c1cc11016k 10.1016/j.cattod.2013.10.018 10.1016/j.fuel.2018.05.154 10.1002/cssc.201501148 10.1016/j.cej.2020.127548 10.1016/j.apcata.2018.10.023 10.1016/j.jece.2022.107198 10.1002/anie.201503595 10.1016/j.mtchem.2019.07.002 10.1039/C9SE00982E 10.1007/s10311-021-01284-x 10.1016/j.jcat.2015.05.018 10.1016/j.scitotenv.2024.173834 10.1116/1.4816548 10.1016/j.cej.2019.122914 10.1016/j.apcatb.2024.124095 10.3390/catal10111236 10.1002/adsc.200390024 10.1039/C9DT00985J 10.1021/jacsau.3c00396 10.1016/j.apcata.2018.07.023 10.1016/j.rser.2023.113219 10.1016/j.gee.2021.11.010 10.1016/j.cej.2017.07.020 10.1016/j.gee.2022.04.003 10.1039/D1GC03637H 10.1016/j.jclepro.2020.120292 10.1039/C8NR08143C 10.1007/s10562-016-1893-4 10.1016/j.xinn.2021.100127 10.1016/j.energy.2021.120533 10.1016/j.gee.2021.10.004 10.1039/D2NJ00142J 10.1021/ef700292p 10.1021/acscatal.3c02272 10.1002/anie.200301652 10.1038/s41929-019-0364-x 10.1021/cr000668w 10.1039/C9GC01210A 10.1021/acscatal.8b03230 10.1016/j.fuproc.2023.107662 10.1039/C8RA04353A 10.1016/j.cej.2023.146006 10.1002/anie.202009811 10.1002/cssc.201902887 10.1039/C8RA05940C 10.1016/j.apcatb.2023.123443 10.1016/j.biombioe.2021.106261 10.1016/j.ces.2013.06.002 10.1016/j.rser.2020.110370 10.1021/acssuschemeng.1c07483 10.1039/C9GC01225G 10.1002/cvde.201502013 10.1021/acs.energyfuels.1c02672 10.1038/s41929-022-00842-y 10.1039/D3GC01860A 10.1002/anie.201914703 10.1021/acsomega.8b02982 10.1016/j.apcatb.2021.119997 10.1039/c2cs35188a 10.1021/acssuschemeng.1c07832 10.1016/j.fuel.2022.127308 10.1021/acs.iecr.8b01334 10.1016/j.scitotenv.2021.146276 10.1039/D1CS00039J 10.1002/cctc.201700089 10.1016/j.cej.2022.140415 10.1016/j.fuel.2018.03.193 10.59717/j.xinn-mater.2024.100046 10.1021/acscatal.0c01569 10.1021/acssuschemeng.2c04940 10.1007/s11244-017-0774-4 10.1016/j.apcatb.2021.120564 10.1016/j.cclet.2023.108278 10.1002/cssc.202000690 10.1016/j.fuel.2022.123255 10.1016/j.micromeso.2024.113157 10.1021/acscatal.0c02238 10.1039/C8CS00452H 10.1021/acs.iecr.3c03808 10.1126/science.1246748 10.3390/molecules21070937 10.1021/acscatal.1c00197 10.1016/j.eehl.2022.11.005 10.1016/j.scitotenv.2023.162154 10.1039/D2GC02568J |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. 2025 Wiley-VCH GmbH |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. – notice: 2025 Wiley-VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202401405 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | n/a |
ExternalDocumentID | 39138129 10_1002_cssc_202401405 CSSC202401405 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Carbon Peaking and Carbon Neutrality Technological Innovation Foundation of Jiangsu Province funderid: BE2022861 – fundername: National Natural Science Foundation of China funderid: 22176086 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20210189 – fundername: Fundamental Research Funds for the Central Universities funderid: 021114380214 – fundername: Ministry of Business, Innovation and Employment – fundername: Fundamental Research Funds for the Central Universities grantid: 021114380214 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20210189 – fundername: Carbon Peaking and Carbon Neutrality Technological Innovation Foundation of Jiangsu Province grantid: BE2022861 – fundername: National Natural Science Foundation of China grantid: 22176086 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3285-c7dda74df312995d5835d2e3f98c8a2fad5392f4cc465b2f254482ef826433c03 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 16:07:06 EDT 2025 Sat Jul 12 03:28:34 EDT 2025 Thu Apr 03 07:02:49 EDT 2025 Wed Aug 13 23:56:12 EDT 2025 Fri Jan 17 09:36:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Heterogeneous catalysis Hydrothermal treatment Catalyst deactivation Biomass valorization Biosugars |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3285-c7dda74df312995d5835d2e3f98c8a2fad5392f4cc465b2f254482ef826433c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6861-8542 0000-0002-5420-7010 0009-0003-1117-0558 0000-0001-6110-993X 0000-0003-3085-1634 0000-0002-5221-2481 0000-0002-7404-815X 0000-0002-6292-0094 0000-0003-4791-083X |
PMID | 39138129 |
PQID | 3156319919 |
PQPubID | 986333 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_3092869448 proquest_journals_3156319919 pubmed_primary_39138129 crossref_primary_10_1002_cssc_202401405 wiley_primary_10_1002_cssc_202401405_CSSC202401405 |
PublicationCentury | 2000 |
PublicationDate | January 14, 2025 |
PublicationDateYYYYMMDD | 2025-01-14 |
PublicationDate_xml | – month: 01 year: 2025 text: January 14, 2025 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 288 2019; 11 2018; 564 2019; 14 2016; 146 2022; 24 2020; 13 2024; 342 2020; 10 2019; 569 2018; 47 2017; 328 2018; 8 2019; 21 2023; 454 2023; 212 2023; 178 2024; 2 2024; 353 2008; 22 2021; 154 2023; 338 2003; 42 2022; 199 2019; 7 2019; 9 2019; 4 2017; 60 2020; 383 2018; 226 2019; 2 2015; 54 2024; 124 2021; 50 2024; 15 2024; 16 2022; 234 2018; 232 2021; 135 2022; 5 2018; 239 2022; 7 2021; 777 2021; 413 2019; 48 2021; 778 2016; 21 2022; 12 2018; 90 2024; 374 2022; 1 2022; 10 2021; 60 2003; 345 2022; 346 2016; 9 2012; 41 2022; 587 2023; 34 2024; 942 2021; 367 2023; 8 2018; 125 1999; 120 2020; 59 2023; 3 2017; 9 2021; 35 2020; 4 2023; 25 2013; 99 2002; 102 2015; 330 2024; 63 2020; 256 2021; 9 2023; 13 2023; 11 2021; 2 2021; 228 2023; 242 2022; 46 2014; 232 2022; 316 2021; 11 2023; 872 2023; 474 2013; 31 2021; 19 2015; 21 2023; 237 2019; 256 2022; 429 2021; 298 2011; 47 2014; 343 2018; 57 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 120 start-page: 715 year: 1999 end-page: 750 publication-title: Stud. Surf. Sci. Catal. – volume: 21 start-page: 1267 issue: 6 year: 2019 end-page: 1281 publication-title: Green Chem. – volume: 10 start-page: 1236 issue: 11 year: 2020 publication-title: Catalysts – volume: 63 start-page: 4771 issue: 11 year: 2024 end-page: 4781 publication-title: Ind. Eng. Chem. Res. – volume: 54 start-page: 13186 issue: 45 year: 2015 end-page: 13197 publication-title: Angew. Chem. Int. Ed. – volume: 298 year: 2021 publication-title: Appl. Catal. B – volume: 41 start-page: 8075 issue: 24 year: 2012 end-page: 8098 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 4026 issue: 16 year: 2020 end-page: 4034 publication-title: ChemSusChem – volume: 2 start-page: 955 issue: 11 year: 2019 end-page: 970 publication-title: Nat. Catal. – volume: 237 year: 2023 publication-title: Int. J. Biol. Macromol. – volume: 13 start-page: 11204 issue: 17 year: 2023 end-page: 11231 publication-title: ACS Catal. – volume: 9 start-page: 133 issue: 2 year: 2016 end-page: 155 publication-title: ChemSusChem – volume: 343 start-page: 277 issue: 6168 year: 2014 end-page: 280 publication-title: Science – volume: 60 start-page: 12204 issue: 22 year: 2021 end-page: 12223 publication-title: Angew. Chem. Int. Ed. – volume: 10 issue: 2 year: 2022 publication-title: J. Environ. Chem. Eng. – volume: 60 start-page: 666 issue: 9–11 year: 2017 end-page: 676 publication-title: Top. Catal. – volume: 228 year: 2021 publication-title: Energy – volume: 24 start-page: 6657 issue: 17 year: 2022 end-page: 6670 publication-title: Green Chem. – volume: 48 start-page: 9161 issue: 25 year: 2019 end-page: 9172 publication-title: Dalton Trans. – volume: 3 start-page: 2586 issue: 9 year: 2023 end-page: 2596 publication-title: JACS Au – volume: 8 start-page: 32423 issue: 57 year: 2018 end-page: 32433 publication-title: RSC Adv. – volume: 942 start-page: 173834 year: 2024 end-page: 173834 publication-title: Sci. Total Environ. – volume: 47 start-page: 9024 issue: 32 year: 2011 end-page: 9035 publication-title: Chem. Commun. – volume: 7 start-page: 900 issue: 5 year: 2022 end-page: 932 publication-title: Green Energy & Environ. – volume: 16 issue: 9 year: 2024 publication-title: ChemCatChem – volume: 11 start-page: 5248 issue: 9 year: 2021 end-page: 5270 publication-title: ACS Catal. – volume: 454 year: 2023 publication-title: Chem. Eng. J. – volume: 212 start-page: 97 year: 2023 end-page: 110 publication-title: Renewable Energy – volume: 25 start-page: 5741 issue: 14 year: 2023 end-page: 5755 publication-title: Green Chem. – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 47 start-page: 1351 issue: 4 year: 2018 end-page: 1390 publication-title: Chem. Soc. Rev. – volume: 239 start-page: 300 year: 2018 end-page: 308 publication-title: Appl. Catal. B – volume: 21 start-page: 937 issue: 7 year: 2016 publication-title: Molecules – volume: 8 start-page: 842 issue: 3 year: 2023 end-page: 851 publication-title: Green Energy & Environ. – volume: 15 start-page: 1141 issue: 1 year: 2024 publication-title: Nat. Commun. – volume: 10 start-page: 1986 issue: 6 year: 2022 end-page: 1993 publication-title: ACS Sustainable Chem. Eng. – volume: 10 start-page: 7630 issue: 14 year: 2020 end-page: 7656 publication-title: ACS Catal. – volume: 4 start-page: 1383 issue: 3 year: 2020 end-page: 1395 publication-title: Sustain. Energy Fuels – volume: 777 year: 2021 publication-title: Sci. Total Environ. – volume: 569 start-page: 93 year: 2019 end-page: 100 publication-title: Appl. Catal. A – volume: 383 year: 2020 publication-title: Chem. Eng. J. – volume: 778 year: 2021 publication-title: Sci. Total Environ. – volume: 22 start-page: 46 issue: 1 year: 2008 end-page: 60 publication-title: Energy Fuels – volume: 34 issue: 8 year: 2023 publication-title: Chin. Chem. Lett. – volume: 1 start-page: 259 issue: 4 year: 2022 end-page: 279 publication-title: Eco-Environment and Health (Online) – volume: 21 start-page: 216 issue: 10–12 year: 2015 end-page: 240 publication-title: Chem. Vap. Deposition – volume: 5 start-page: 854 issue: 10 year: 2022 end-page: 866 publication-title: Nat. Catal. – volume: 256 year: 2019 publication-title: Appl. Catal. B – volume: 50 start-page: 11270 issue: 20 year: 2021 end-page: 11292 publication-title: Chem. Soc. Rev. – volume: 154 year: 2021 publication-title: Biomass Bioenergy – volume: 338 year: 2023 publication-title: Fuel – volume: 346 year: 2022 publication-title: J. Cleaner Prod. – volume: 8 start-page: 7131 issue: 8 year: 2018 end-page: 7140 publication-title: ACS Catal. – volume: 178 year: 2023 publication-title: Renewable Sustainable Energy Rev. – volume: 19 start-page: 4119 issue: 6 year: 2021 end-page: 4136 publication-title: Environ. Chem. Lett. – volume: 124 start-page: 3416 issue: 6 year: 2024 end-page: 3493 publication-title: Chem. Rev. – volume: 413 year: 2021 publication-title: Chem. Eng. J. – volume: 9 start-page: 1923 issue: 3 year: 2019 end-page: 1930 publication-title: ACS Catal. – volume: 13 start-page: 688 issue: 4 year: 2020 end-page: 692 publication-title: ChemSusChem – volume: 99 start-page: 171 year: 2013 end-page: 176 publication-title: Chem. Eng. Sci. – volume: 102 start-page: 2725 issue: 8 year: 2002 end-page: 2750 publication-title: Chem. Rev. – volume: 872 year: 2023 publication-title: Sci. Total Environ. – volume: 8 start-page: 1719 issue: 6 year: 2023 end-page: 1727 publication-title: Green Energy & Environ. – volume: 330 start-page: 323 year: 2015 end-page: 329 publication-title: J. Catal. – volume: 21 start-page: 3715 issue: 14 year: 2019 end-page: 3743 publication-title: Green Chem. – volume: 46 start-page: 6756 issue: 14 year: 2022 end-page: 6764 publication-title: New J. Chem. – volume: 2 issue: 1 year: 2024 publication-title: The Innovation Materials – volume: 242 year: 2023 publication-title: Fuel Process. Technol. – volume: 9 start-page: 17186 issue: 51 year: 2021 end-page: 17206 publication-title: ACS Sustainable Chem. Eng. – volume: 10 start-page: 10932 issue: 19 year: 2020 end-page: 10945 publication-title: ACS Catal. – volume: 21 start-page: 3930 issue: 14 year: 2019 end-page: 3939 publication-title: Green Chem. – volume: 8 start-page: 30106 issue: 53 year: 2018 end-page: 30114 publication-title: RSC Adv. – volume: 7 start-page: 8512 issue: 9 year: 2019 end-page: 8521 publication-title: ACS Sustainable Chem. Eng. – volume: 135 year: 2021 publication-title: Renewable Sustainable Energy Rev. – volume: 342 year: 2024 publication-title: Appl. Catal. B – volume: 374 year: 2024 publication-title: Microporous Mesoporous Mater. – volume: 125 start-page: 327 year: 2018 end-page: 333 publication-title: Renewable Energy – volume: 316 year: 2022 publication-title: Fuel – volume: 35 start-page: 14462 issue: 18 year: 2021 end-page: 14483 publication-title: Energy Fuels – volume: 9 start-page: 2797 issue: 14 year: 2017 end-page: 2806 publication-title: ChemCatChem – volume: 226 start-page: 417 year: 2018 end-page: 422 publication-title: Fuel – volume: 57 start-page: 8655 issue: 26 year: 2018 end-page: 8663 publication-title: Ind. Eng. Chem. Res. – volume: 12 start-page: 1313 issue: 4 year: 2022 end-page: 1323 publication-title: Catal. Sci. Technol. – volume: 234 year: 2022 publication-title: Fuel Process. Technol. – volume: 345 start-page: 289 issue: 1–2 year: 2003 end-page: 299 publication-title: Adv. Synth. Catal. – volume: 232 start-page: 317 year: 2018 end-page: 322 publication-title: Fuel – volume: 474 year: 2023 publication-title: Chem. Eng. J. – volume: 587 year: 2022 publication-title: Appl. Surf. Sci. – volume: 31 issue: 5 year: 2013 publication-title: J. Vac. Sci. Technol. A – volume: 564 start-page: 113 year: 2018 end-page: 122 publication-title: Appl. Catal. A – volume: 367 start-page: 228 year: 2021 end-page: 238 publication-title: Catal. Today – volume: 328 start-page: 246 year: 2017 end-page: 273 publication-title: Chem. Eng. J. – volume: 288 year: 2021 publication-title: Appl. Catal. B – volume: 11 start-page: 1326 issue: 3 year: 2019 end-page: 1334 publication-title: Nanoscale – volume: 4 start-page: 1053 issue: 1 year: 2019 end-page: 1059 publication-title: ACS Omega – volume: 48 start-page: 2366 issue: 8 year: 2019 end-page: 2421 publication-title: Chem. Soc. Rev. – volume: 199 start-page: 1629 year: 2022 end-page: 1638 publication-title: Renewable Energy – volume: 256 year: 2020 publication-title: J. Cleaner Prod. – volume: 232 start-page: 99 year: 2014 end-page: 107 publication-title: Catal. Today – volume: 24 start-page: 315 issue: 1 year: 2022 end-page: 324 publication-title: Green Chem. – volume: 25 start-page: 4565 issue: 11 year: 2023 end-page: 4576 publication-title: Green Chem. – volume: 146 start-page: 2606 issue: 12 year: 2016 end-page: 2613 publication-title: Catal. Lett. – volume: 42 start-page: 5548 issue: 45 year: 2003 end-page: 5554 publication-title: Angew. Chem. Int. Ed. – volume: 353 year: 2024 publication-title: Appl. Catal. B – volume: 59 start-page: 11704 issue: 29 year: 2020 end-page: 11716 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 11568 issue: 12 year: 2019 end-page: 11578 publication-title: ACS Catal. – volume: 11 start-page: 921 issue: 3 year: 2023 end-page: 930 publication-title: ACS Sustainable Chem. Eng. – volume: 14 year: 2019 publication-title: Mater. Today Chem. – volume: 90 start-page: 120 year: 2018 end-page: 130 publication-title: Renewable Sustainable Energy Rev. – volume: 2 issue: 3 year: 2021 publication-title: Innovation-Amsterdam – ident: e_1_2_10_75_1 doi: 10.1039/C8GC02466A – ident: e_1_2_10_89_1 doi: 10.1016/j.cej.2021.132261 – ident: e_1_2_10_98_1 doi: 10.1016/S0167-2991(99)80570-9 – ident: e_1_2_10_53_1 doi: 10.1016/j.renene.2023.05.058 – ident: e_1_2_10_39_1 doi: 10.1021/acs.chemrev.3c00801 – ident: e_1_2_10_10_1 doi: 10.1038/s41467-024-45278-z – ident: e_1_2_10_85_1 doi: 10.1016/j.renene.2022.09.050 – ident: e_1_2_10_8_1 doi: 10.1016/j.rser.2018.03.066 – ident: e_1_2_10_67_1 doi: 10.1016/j.scitotenv.2021.146037 – ident: e_1_2_10_80_1 doi: 10.1016/j.renene.2018.02.085 – ident: e_1_2_10_31_1 doi: 10.1016/j.cej.2021.132325 – ident: e_1_2_10_78_1 doi: 10.1016/j.apcatb.2019.117799 – ident: e_1_2_10_66_1 doi: 10.1021/acssuschemeng.9b00292 – ident: e_1_2_10_81_1 doi: 10.1016/j.apcatb.2018.08.022 – ident: e_1_2_10_72_1 doi: 10.1016/j.fuproc.2022.107318 – ident: e_1_2_10_69_1 doi: 10.1002/cctc.202301590 – ident: e_1_2_10_104_1 doi: 10.1016/j.ijbiomac.2023.124196 – ident: e_1_2_10_35_1 doi: 10.1016/j.jclepro.2022.131144 – ident: e_1_2_10_46_1 doi: 10.1021/acscatal.8b01759 – ident: e_1_2_10_44_1 doi: 10.1016/j.cattod.2020.04.025 – ident: e_1_2_10_83_1 doi: 10.1021/acscatal.9b03455 – ident: e_1_2_10_90_1 doi: 10.1039/D3GC00587A – ident: e_1_2_10_20_1 doi: 10.1039/C7CS00213K – ident: e_1_2_10_49_1 doi: 10.1016/j.apsusc.2022.152849 – ident: e_1_2_10_54_1 doi: 10.1039/D1CY02078A – ident: e_1_2_10_48_1 doi: 10.1039/c1cc11016k – ident: e_1_2_10_43_1 doi: 10.1016/j.cattod.2013.10.018 – ident: e_1_2_10_18_1 doi: 10.1016/j.fuel.2018.05.154 – ident: e_1_2_10_15_1 doi: 10.1002/cssc.201501148 – ident: e_1_2_10_51_1 doi: 10.1016/j.cej.2020.127548 – ident: e_1_2_10_63_1 doi: 10.1016/j.apcata.2018.10.023 – ident: e_1_2_10_30_1 doi: 10.1016/j.jece.2022.107198 – ident: e_1_2_10_25_1 doi: 10.1002/anie.201503595 – ident: e_1_2_10_107_1 doi: 10.1016/j.mtchem.2019.07.002 – ident: e_1_2_10_88_1 doi: 10.1039/C9SE00982E – ident: e_1_2_10_42_1 doi: 10.1007/s10311-021-01284-x – ident: e_1_2_10_55_1 doi: 10.1016/j.jcat.2015.05.018 – ident: e_1_2_10_41_1 doi: 10.1016/j.scitotenv.2024.173834 – ident: e_1_2_10_97_1 doi: 10.1116/1.4816548 – ident: e_1_2_10_65_1 doi: 10.1016/j.cej.2019.122914 – ident: e_1_2_10_36_1 doi: 10.1016/j.apcatb.2024.124095 – ident: e_1_2_10_62_1 doi: 10.3390/catal10111236 – ident: e_1_2_10_91_1 doi: 10.1002/adsc.200390024 – ident: e_1_2_10_61_1 doi: 10.1039/C9DT00985J – ident: e_1_2_10_101_1 doi: 10.1021/jacsau.3c00396 – ident: e_1_2_10_74_1 doi: 10.1016/j.apcata.2018.07.023 – ident: e_1_2_10_40_1 doi: 10.1016/j.rser.2023.113219 – ident: e_1_2_10_33_1 doi: 10.1016/j.gee.2021.11.010 – ident: e_1_2_10_7_1 doi: 10.1016/j.cej.2017.07.020 – ident: e_1_2_10_38_1 doi: 10.1016/j.gee.2022.04.003 – ident: e_1_2_10_6_1 – ident: e_1_2_10_29_1 doi: 10.1039/D1GC03637H – ident: e_1_2_10_17_1 doi: 10.1016/j.jclepro.2020.120292 – ident: e_1_2_10_56_1 doi: 10.1039/C8NR08143C – ident: e_1_2_10_100_1 doi: 10.1007/s10562-016-1893-4 – ident: e_1_2_10_2_1 doi: 10.1016/j.xinn.2021.100127 – ident: e_1_2_10_1_1 doi: 10.1016/j.energy.2021.120533 – ident: e_1_2_10_23_1 doi: 10.1016/j.gee.2021.10.004 – ident: e_1_2_10_73_1 doi: 10.1039/D2NJ00142J – ident: e_1_2_10_13_1 doi: 10.1021/ef700292p – ident: e_1_2_10_9_1 doi: 10.1021/acscatal.3c02272 – ident: e_1_2_10_96_1 doi: 10.1002/anie.200301652 – ident: e_1_2_10_102_1 doi: 10.1038/s41929-019-0364-x – ident: e_1_2_10_14_1 doi: 10.1021/cr000668w – ident: e_1_2_10_99_1 doi: 10.1039/C9GC01210A – ident: e_1_2_10_103_1 doi: 10.1021/acscatal.8b03230 – ident: e_1_2_10_93_1 doi: 10.1016/j.fuproc.2023.107662 – ident: e_1_2_10_76_1 doi: 10.1039/C8RA04353A – ident: e_1_2_10_37_1 doi: 10.1016/j.cej.2023.146006 – ident: e_1_2_10_28_1 doi: 10.1002/anie.202009811 – ident: e_1_2_10_32_1 doi: 10.1002/cssc.201902887 – ident: e_1_2_10_71_1 doi: 10.1039/C8RA05940C – ident: e_1_2_10_106_1 doi: 10.1016/j.apcatb.2023.123443 – ident: e_1_2_10_58_1 doi: 10.1016/j.biombioe.2021.106261 – ident: e_1_2_10_82_1 doi: 10.1016/j.ces.2013.06.002 – ident: e_1_2_10_5_1 doi: 10.1016/j.rser.2020.110370 – ident: e_1_2_10_110_1 doi: 10.1021/acssuschemeng.1c07483 – ident: e_1_2_10_60_1 doi: 10.1039/C9GC01225G – ident: e_1_2_10_95_1 doi: 10.1002/cvde.201502013 – ident: e_1_2_10_108_1 doi: 10.1021/acs.energyfuels.1c02672 – ident: e_1_2_10_24_1 doi: 10.1038/s41929-022-00842-y – ident: e_1_2_10_64_1 doi: 10.1039/D3GC01860A – ident: e_1_2_10_19_1 doi: 10.1002/anie.201914703 – ident: e_1_2_10_59_1 doi: 10.1021/acsomega.8b02982 – ident: e_1_2_10_94_1 doi: 10.1016/j.apcatb.2021.119997 – ident: e_1_2_10_16_1 doi: 10.1039/c2cs35188a – ident: e_1_2_10_34_1 doi: 10.1021/acssuschemeng.1c07832 – ident: e_1_2_10_111_1 doi: 10.1016/j.fuel.2022.127308 – ident: e_1_2_10_92_1 doi: 10.1021/acs.iecr.8b01334 – ident: e_1_2_10_112_1 doi: 10.1016/j.scitotenv.2021.146276 – ident: e_1_2_10_22_1 doi: 10.1039/D1CS00039J – ident: e_1_2_10_77_1 doi: 10.1002/cctc.201700089 – ident: e_1_2_10_50_1 doi: 10.1016/j.cej.2022.140415 – ident: e_1_2_10_52_1 doi: 10.1016/j.fuel.2018.03.193 – ident: e_1_2_10_12_1 doi: 10.59717/j.xinn-mater.2024.100046 – ident: e_1_2_10_26_1 doi: 10.1021/acscatal.0c01569 – ident: e_1_2_10_86_1 doi: 10.1021/acssuschemeng.2c04940 – ident: e_1_2_10_79_1 doi: 10.1007/s11244-017-0774-4 – ident: e_1_2_10_87_1 doi: 10.1016/j.apcatb.2021.120564 – ident: e_1_2_10_109_1 doi: 10.1016/j.cclet.2023.108278 – ident: e_1_2_10_21_1 doi: 10.1002/cssc.202000690 – ident: e_1_2_10_84_1 doi: 10.1016/j.fuel.2022.123255 – ident: e_1_2_10_45_1 doi: 10.1016/j.micromeso.2024.113157 – ident: e_1_2_10_57_1 doi: 10.1021/acscatal.0c02238 – ident: e_1_2_10_47_1 doi: 10.1039/C8CS00452H – ident: e_1_2_10_70_1 doi: 10.1021/acs.iecr.3c03808 – ident: e_1_2_10_11_1 doi: 10.1126/science.1246748 – ident: e_1_2_10_27_1 doi: 10.3390/molecules21070937 – ident: e_1_2_10_105_1 doi: 10.1021/acscatal.1c00197 – ident: e_1_2_10_3_1 doi: 10.1016/j.eehl.2022.11.005 – ident: e_1_2_10_4_1 doi: 10.1016/j.scitotenv.2023.162154 – ident: e_1_2_10_68_1 doi: 10.1039/D2GC02568J |
SSID | ssj0060966 |
Score | 2.4437816 |
SecondaryResourceType | review_article |
Snippet | Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance... Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high-performance... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202401405 |
SubjectTerms | Biofuels Biomass valorization Biosugars Catalyst deactivation Catalysts Catalytic converters Chemical reactions Deactivation Durability Heterogeneous catalysis Hydrothermal treatment Lignocellulose Physiochemistry |
Title | Hydrothermal Valorization of Biosugars with Heterogeneous Catalysts: Advances, Catalyst Deactivation, Mitigation Strategies and Perspectives |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202401405 https://www.ncbi.nlm.nih.gov/pubmed/39138129 https://www.proquest.com/docview/3156319919 https://www.proquest.com/docview/3092869448 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQF7i0tPSxhVZGqtQLgcSPrMONhqIVElVVSsUt8hMhxKbCuwf6G_qjOxNvQrccKpVjHo6d8Uzm82TmMyHvc2mUkbbMvC1NJjRzmQ5gV4p5kYM5KdWVj51-Lifn4uRCXvxRxZ_4IYaAG1pG971GA9cm7t-ThtoYkYIQPBKsEbDKHBO2EBV9HfijSsDnXXmRKkUmS170rI05219uvuyVHkDNZeTauZ7jp0T3g04ZJ9d785nZsz__4nN8zFttkCcLXEoPkyI9Iyt--pys1f12cJvk1-TO3XblWjdw33eNmXuphJO2gX68auP8EhbJFAO7dIJJNi3opm_nkdYYIrqLs3hAD1PKQdwdTtIjj7UVKTK8S0-vEukHPLYnzvWR6qmjX-7LQuMLcn786Vs9yRZbOWSWMyUzO3ZOj4ULHPBFJZ0E4OeY56FSVmkWtJMA1IKwVpTSsIDEaaAuARY_gnOb85dkddpO_WtCgwCXipFbVQnkvtFc5g6Ap5HajD3jI_Khn8rmR2LsaBI3M2tQus0g3RHZ7me6WVhubHiBigKouRqRneEyyBp_pOhObA3PK6ZK7H5EXiUNGbriVQEgiEFr1s3zP8bQ1Gdn9XD05n8abZF1hpsS50VWiG2yOrud-7eAlGbmXWcNvwG_Zgx- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqFN2WhgJGQuDRt4kfW4VYCVYBuhWiLuEV-BVWIDap3D-U38KOZsTepFg5IcMzDseOZiT9PZr4h5HkujTLSlpm3pcmEZi7THdiVYl7kYE5KxfSx2VHZnIp3n-UQTYi5MIkfYnS4oWXE7zUaODqk9y5ZQ20IyEEISxJsEuRVcg3Lesdd1ceRQaoEhB4TjFQpMlnyYuBtzNneevv1dekPsLmOXePic3CTmGHYKebk6-5yYXbtj98YHf_rvW6RGytoSveTLt0mV_z8Dtmsh4pwd8nP5sKdx4ytb3DfJ43BeymLk_YdfXXWh-UX2CdT9O3SBuNselBP3y8DrdFLdBEW4SXdT1EHYWc8SV97TK9IzuEdOjtLvB_w2IE71weq545-uMwMDffI6cGbk7rJVtUcMsuZkpmdOqenwnUcIEYlnQTs55jnXaWs0qzTTgJW64S1IEfDOuROA43pYP8jOLc5v0825v3cPyC0E7CqovNWVQLpbzSXuQPsaaQ2U8_4hLwYZNl-T6QdbaJnZi3ObjvO7oRsD6JuV8YbWl6gpgBwribk2XgZ5hr_peg4bS3PK6ZK7H5CtpKKjF3xqgAcxKA1i4L-yxja-vi4Ho8e_kujp2SzOZkdtodvj94_ItcZ1ijOi6wQ22Rjcb70jwE4LcyTaBq_AH3bEJk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL78dCASMhcWnaxK91uJUsq-XRqqIU9RY5fqAKsanq3UP5DfxoxvEmZeGABMc8HDvjmcznycxngBe5aFQjjMyckU3GNbWZ9mhXijqeozkp1ZWP7e3L2RF_dyyOf6niT_wQQ8AtWkb3vY4Gfmr9zgVpqAkhUhCiR8I1grgMV7jMVdTryceBQEoiQO_qi5TkmZCs6Gkbc7qz3n7dLf2BNdeha-d7pjdB96NOKSdft5eLZtt8_43Q8X9e6xbcWAFTsps06TZccvM7cK3q94O7Cz9m5_asq9f6hvd91jF1L9VwktaT1ydtWH7BVTKJkV0yi1k2LSqna5eBVDFGdB4W4RXZTTkHYWs4SSYuFlek0PAW2TtJrB_42J451wWi55YcXNSFhntwNH3zqZplq70cMsOoEpkZW6vH3HqGAKMUViDys9QxXyqjNPXaCkRqnhvDpWioj8xpqC8eVz-cMZOz-7Axb-fuIRDP0afG0K0qeSS_0UzkFpFnI3QzdpSN4GU_lfVpouyoEzkzraN060G6I9jsZ7pemW6oWREVBWFzOYLnw2WUdfyTojux1SwvqZKx-xE8SBoydMXKAlEQxda0m-e_jKGuDg-r4ejRvzR6BlcPJtP6w9v994_hOo0bFOdFVvBN2FicLd0TRE2L5mlnGD8BWmMPUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermal+Valorization+of+Biosugars+with+Heterogeneous+Catalysts%3A+Advances%2C+Catalyst+Deactivation%2C+Mitigation+Strategies+and+Perspectives&rft.jtitle=ChemSusChem&rft.au=Xu%2C+Siyu&rft.au=Jiang%2C+Yujing&rft.au=Liu%2C+Juan&rft.au=Chun-Ho+Lam%2C+Jason&rft.date=2025-01-14&rft.eissn=1864-564X&rft.volume=18&rft.issue=2&rft.spage=e202401405&rft_id=info:doi/10.1002%2Fcssc.202401405&rft_id=info%3Apmid%2F39138129&rft.externalDocID=39138129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |