Hydrothermal Valorization of Biosugars with Heterogeneous Catalysts: Advances, Catalyst Deactivation, Mitigation Strategies and Perspectives

Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance catalysts. To assist the next‐stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent adva...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 18; no. 2; pp. e202401405 - n/a
Main Authors Xu, Siyu, Jiang, Yujing, Liu, Juan, Chun‐Ho Lam, Jason, Lin, Richen, Shuai, Li, Shen, Feng, Zhu, Wenlei, Song, Bing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 14.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance catalysts. To assist the next‐stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state‐of‐the‐art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long‐term and efficient hydrothermal upgrading of biosugars. This graphic illustrates purposefully designing heterogeneous catalysts based on the relationships between reactions, catalysts, and deactivation mechanisms instead of adopting the conventional trial‐and‐error methodology for the hydrothermal valorization of biosugars.
AbstractList Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance catalysts. To assist the next‐stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state‐of‐the‐art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long‐term and efficient hydrothermal upgrading of biosugars.
Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance catalysts. To assist the next‐stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state‐of‐the‐art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long‐term and efficient hydrothermal upgrading of biosugars. This graphic illustrates purposefully designing heterogeneous catalysts based on the relationships between reactions, catalysts, and deactivation mechanisms instead of adopting the conventional trial‐and‐error methodology for the hydrothermal valorization of biosugars.
Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high-performance catalysts. To assist the next-stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state-of-the-art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long-term and efficient hydrothermal upgrading of biosugars.Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high-performance catalysts. To assist the next-stage catalyst design for hydrothermal treatment of biosugars, this paper provides a critical review of (1) recent advances in biosugar hydrothermal valorization using heterogeneous catalysts, (2) the deactivation process of catalysts based on recycling tests of representative biosugar hydrothermal treatments, (3) state-of-the-art understandings of the deactivation mechanisms of heterogeneous catalysts, and (4) strategies for preparing durable catalysts and the regeneration of deactivated catalysts. Based on the review, challenges and perspectives are proposed. Some remarkable achievements in heterogeneous catalysis of biosugars are highlighted. The understanding of catalyst durability needs to be further enhanced based on full examination of the catalytic performance based on the conversion of substrates, the yield, and selectivity of products. Further, a full examination of the physiochemical changes based on multiple characterization techniques is required to eclucidate the relationships between treatment variables and catalyst durability. Collectively, a clear understanding of the relationships between chemical reaction pathways, treatment variables, and the physiochemistry of catalysts is encouraged to be gained to advise the development of heterogeneous catalysts for long-term and efficient hydrothermal upgrading of biosugars.
Author Lin, Richen
Shen, Feng
Xu, Siyu
Liu, Juan
Chun‐Ho Lam, Jason
Jiang, Yujing
Shuai, Li
Zhu, Wenlei
Song, Bing
Author_xml – sequence: 1
  givenname: Siyu
  orcidid: 0009-0003-1117-0558
  surname: Xu
  fullname: Xu, Siyu
  organization: Nanjing University
– sequence: 2
  givenname: Yujing
  orcidid: 0000-0002-5420-7010
  surname: Jiang
  fullname: Jiang, Yujing
  organization: Nanjing University
– sequence: 3
  givenname: Juan
  orcidid: 0000-0002-5221-2481
  surname: Liu
  fullname: Liu, Juan
  organization: Nanjing University
– sequence: 4
  givenname: Jason
  orcidid: 0000-0003-3085-1634
  surname: Chun‐Ho Lam
  fullname: Chun‐Ho Lam, Jason
  organization: Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
– sequence: 5
  givenname: Richen
  orcidid: 0000-0001-6861-8542
  surname: Lin
  fullname: Lin, Richen
  organization: University College Cork
– sequence: 6
  givenname: Li
  orcidid: 0000-0002-7404-815X
  surname: Shuai
  fullname: Shuai, Li
  organization: Fujian Agriculture and Forestry University
– sequence: 7
  givenname: Feng
  orcidid: 0000-0002-6292-0094
  surname: Shen
  fullname: Shen, Feng
  email: shenfeng@caas.cn
  organization: Ministry of Agriculture and Rural Affairs
– sequence: 8
  givenname: Wenlei
  orcidid: 0000-0001-6110-993X
  surname: Zhu
  fullname: Zhu, Wenlei
  email: wenleizhu@nju.edu.cn
  organization: Nanjing University
– sequence: 9
  givenname: Bing
  orcidid: 0000-0003-4791-083X
  surname: Song
  fullname: Song, Bing
  email: bing.song@scionresearch.com
  organization: University of New South Wales
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39138129$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URD_gyhFZ4tJDk_pza3MrWyBIRSAFEDfLtcepq8062N5W4Tfwo9k0bZC4cJrR6Hlfzcx7iPb61ANCLymZUkLYqSvFTRlhglBB5BN0QFUjJrIRP_Z2Paf76LCUG0IaopvmGdrnmnJFmT5Av2drn1O9hry0Hf5uu5TjL1tj6nEK-G1MZVjYXPBdrNd4BhVyWkAPaSi4tdV261LLG3zub23voJzshvgCrKvx9t7qBH-KNS62tvOabYVFhIJt7_EXyGUFGxTKc_Q02K7Ai4d6hL69f_e1nU0uP3_42J5fThxnSk7cmff2TPjAxxO09FJx6RnwoJVTlgXrJdcsCOdEI69YYFIIxSAo1gjOHeFH6Hjru8rp5wClmmUsDrrO3l9mONFMNXpUjejrf9CbNOR-3M5wunmt1lSP1KsHarhagjerHJc2r83jn0dgugVcTqVkCDuEErMJ0myCNLsgR4HeCu5iB-v_0Kadz9u_2j_YWqOA
Cites_doi 10.1039/C8GC02466A
10.1016/j.cej.2021.132261
10.1016/S0167-2991(99)80570-9
10.1016/j.renene.2023.05.058
10.1021/acs.chemrev.3c00801
10.1038/s41467-024-45278-z
10.1016/j.renene.2022.09.050
10.1016/j.rser.2018.03.066
10.1016/j.scitotenv.2021.146037
10.1016/j.renene.2018.02.085
10.1016/j.cej.2021.132325
10.1016/j.apcatb.2019.117799
10.1021/acssuschemeng.9b00292
10.1016/j.apcatb.2018.08.022
10.1016/j.fuproc.2022.107318
10.1002/cctc.202301590
10.1016/j.ijbiomac.2023.124196
10.1016/j.jclepro.2022.131144
10.1021/acscatal.8b01759
10.1016/j.cattod.2020.04.025
10.1021/acscatal.9b03455
10.1039/D3GC00587A
10.1039/C7CS00213K
10.1016/j.apsusc.2022.152849
10.1039/D1CY02078A
10.1039/c1cc11016k
10.1016/j.cattod.2013.10.018
10.1016/j.fuel.2018.05.154
10.1002/cssc.201501148
10.1016/j.cej.2020.127548
10.1016/j.apcata.2018.10.023
10.1016/j.jece.2022.107198
10.1002/anie.201503595
10.1016/j.mtchem.2019.07.002
10.1039/C9SE00982E
10.1007/s10311-021-01284-x
10.1016/j.jcat.2015.05.018
10.1016/j.scitotenv.2024.173834
10.1116/1.4816548
10.1016/j.cej.2019.122914
10.1016/j.apcatb.2024.124095
10.3390/catal10111236
10.1002/adsc.200390024
10.1039/C9DT00985J
10.1021/jacsau.3c00396
10.1016/j.apcata.2018.07.023
10.1016/j.rser.2023.113219
10.1016/j.gee.2021.11.010
10.1016/j.cej.2017.07.020
10.1016/j.gee.2022.04.003
10.1039/D1GC03637H
10.1016/j.jclepro.2020.120292
10.1039/C8NR08143C
10.1007/s10562-016-1893-4
10.1016/j.xinn.2021.100127
10.1016/j.energy.2021.120533
10.1016/j.gee.2021.10.004
10.1039/D2NJ00142J
10.1021/ef700292p
10.1021/acscatal.3c02272
10.1002/anie.200301652
10.1038/s41929-019-0364-x
10.1021/cr000668w
10.1039/C9GC01210A
10.1021/acscatal.8b03230
10.1016/j.fuproc.2023.107662
10.1039/C8RA04353A
10.1016/j.cej.2023.146006
10.1002/anie.202009811
10.1002/cssc.201902887
10.1039/C8RA05940C
10.1016/j.apcatb.2023.123443
10.1016/j.biombioe.2021.106261
10.1016/j.ces.2013.06.002
10.1016/j.rser.2020.110370
10.1021/acssuschemeng.1c07483
10.1039/C9GC01225G
10.1002/cvde.201502013
10.1021/acs.energyfuels.1c02672
10.1038/s41929-022-00842-y
10.1039/D3GC01860A
10.1002/anie.201914703
10.1021/acsomega.8b02982
10.1016/j.apcatb.2021.119997
10.1039/c2cs35188a
10.1021/acssuschemeng.1c07832
10.1016/j.fuel.2022.127308
10.1021/acs.iecr.8b01334
10.1016/j.scitotenv.2021.146276
10.1039/D1CS00039J
10.1002/cctc.201700089
10.1016/j.cej.2022.140415
10.1016/j.fuel.2018.03.193
10.59717/j.xinn-mater.2024.100046
10.1021/acscatal.0c01569
10.1021/acssuschemeng.2c04940
10.1007/s11244-017-0774-4
10.1016/j.apcatb.2021.120564
10.1016/j.cclet.2023.108278
10.1002/cssc.202000690
10.1016/j.fuel.2022.123255
10.1016/j.micromeso.2024.113157
10.1021/acscatal.0c02238
10.1039/C8CS00452H
10.1021/acs.iecr.3c03808
10.1126/science.1246748
10.3390/molecules21070937
10.1021/acscatal.1c00197
10.1016/j.eehl.2022.11.005
10.1016/j.scitotenv.2023.162154
10.1039/D2GC02568J
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
2025 Wiley-VCH GmbH
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
– notice: 2025 Wiley-VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202401405
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID 39138129
10_1002_cssc_202401405
CSSC202401405
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Carbon Peaking and Carbon Neutrality Technological Innovation Foundation of Jiangsu Province
  funderid: BE2022861
– fundername: National Natural Science Foundation of China
  funderid: 22176086
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20210189
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 021114380214
– fundername: Ministry of Business, Innovation and Employment
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 021114380214
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20210189
– fundername: Carbon Peaking and Carbon Neutrality Technological Innovation Foundation of Jiangsu Province
  grantid: BE2022861
– fundername: National Natural Science Foundation of China
  grantid: 22176086
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3285-c7dda74df312995d5835d2e3f98c8a2fad5392f4cc465b2f254482ef826433c03
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 16:07:06 EDT 2025
Sat Jul 12 03:28:34 EDT 2025
Thu Apr 03 07:02:49 EDT 2025
Wed Aug 13 23:56:12 EDT 2025
Fri Jan 17 09:36:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Heterogeneous catalysis
Hydrothermal treatment
Catalyst deactivation
Biomass valorization
Biosugars
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3285-c7dda74df312995d5835d2e3f98c8a2fad5392f4cc465b2f254482ef826433c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6861-8542
0000-0002-5420-7010
0009-0003-1117-0558
0000-0001-6110-993X
0000-0003-3085-1634
0000-0002-5221-2481
0000-0002-7404-815X
0000-0002-6292-0094
0000-0003-4791-083X
PMID 39138129
PQID 3156319919
PQPubID 986333
PageCount 20
ParticipantIDs proquest_miscellaneous_3092869448
proquest_journals_3156319919
pubmed_primary_39138129
crossref_primary_10_1002_cssc_202401405
wiley_primary_10_1002_cssc_202401405_CSSC202401405
PublicationCentury 2000
PublicationDate January 14, 2025
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 01
  year: 2025
  text: January 14, 2025
  day: 14
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 288
2019; 11
2018; 564
2019; 14
2016; 146
2022; 24
2020; 13
2024; 342
2020; 10
2019; 569
2018; 47
2017; 328
2018; 8
2019; 21
2023; 454
2023; 212
2023; 178
2024; 2
2024; 353
2008; 22
2021; 154
2023; 338
2003; 42
2022; 199
2019; 7
2019; 9
2019; 4
2017; 60
2020; 383
2018; 226
2019; 2
2015; 54
2024; 124
2021; 50
2024; 15
2024; 16
2022; 234
2018; 232
2021; 135
2022; 5
2018; 239
2022; 7
2021; 777
2021; 413
2019; 48
2021; 778
2016; 21
2022; 12
2018; 90
2024; 374
2022; 1
2022; 10
2021; 60
2003; 345
2022; 346
2016; 9
2012; 41
2022; 587
2023; 34
2024; 942
2021; 367
2023; 8
2018; 125
1999; 120
2020; 59
2023; 3
2017; 9
2021; 35
2020; 4
2023; 25
2013; 99
2002; 102
2015; 330
2024; 63
2020; 256
2021; 9
2023; 13
2023; 11
2021; 2
2021; 228
2023; 242
2022; 46
2014; 232
2022; 316
2021; 11
2023; 872
2023; 474
2013; 31
2021; 19
2015; 21
2023; 237
2019; 256
2022; 429
2021; 298
2011; 47
2014; 343
2018; 57
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 120
  start-page: 715
  year: 1999
  end-page: 750
  publication-title: Stud. Surf. Sci. Catal.
– volume: 21
  start-page: 1267
  issue: 6
  year: 2019
  end-page: 1281
  publication-title: Green Chem.
– volume: 10
  start-page: 1236
  issue: 11
  year: 2020
  publication-title: Catalysts
– volume: 63
  start-page: 4771
  issue: 11
  year: 2024
  end-page: 4781
  publication-title: Ind. Eng. Chem. Res.
– volume: 54
  start-page: 13186
  issue: 45
  year: 2015
  end-page: 13197
  publication-title: Angew. Chem. Int. Ed.
– volume: 298
  year: 2021
  publication-title: Appl. Catal. B
– volume: 41
  start-page: 8075
  issue: 24
  year: 2012
  end-page: 8098
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 4026
  issue: 16
  year: 2020
  end-page: 4034
  publication-title: ChemSusChem
– volume: 2
  start-page: 955
  issue: 11
  year: 2019
  end-page: 970
  publication-title: Nat. Catal.
– volume: 237
  year: 2023
  publication-title: Int. J. Biol. Macromol.
– volume: 13
  start-page: 11204
  issue: 17
  year: 2023
  end-page: 11231
  publication-title: ACS Catal.
– volume: 9
  start-page: 133
  issue: 2
  year: 2016
  end-page: 155
  publication-title: ChemSusChem
– volume: 343
  start-page: 277
  issue: 6168
  year: 2014
  end-page: 280
  publication-title: Science
– volume: 60
  start-page: 12204
  issue: 22
  year: 2021
  end-page: 12223
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  issue: 2
  year: 2022
  publication-title: J. Environ. Chem. Eng.
– volume: 60
  start-page: 666
  issue: 9–11
  year: 2017
  end-page: 676
  publication-title: Top. Catal.
– volume: 228
  year: 2021
  publication-title: Energy
– volume: 24
  start-page: 6657
  issue: 17
  year: 2022
  end-page: 6670
  publication-title: Green Chem.
– volume: 48
  start-page: 9161
  issue: 25
  year: 2019
  end-page: 9172
  publication-title: Dalton Trans.
– volume: 3
  start-page: 2586
  issue: 9
  year: 2023
  end-page: 2596
  publication-title: JACS Au
– volume: 8
  start-page: 32423
  issue: 57
  year: 2018
  end-page: 32433
  publication-title: RSC Adv.
– volume: 942
  start-page: 173834
  year: 2024
  end-page: 173834
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 9024
  issue: 32
  year: 2011
  end-page: 9035
  publication-title: Chem. Commun.
– volume: 7
  start-page: 900
  issue: 5
  year: 2022
  end-page: 932
  publication-title: Green Energy & Environ.
– volume: 16
  issue: 9
  year: 2024
  publication-title: ChemCatChem
– volume: 11
  start-page: 5248
  issue: 9
  year: 2021
  end-page: 5270
  publication-title: ACS Catal.
– volume: 454
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 212
  start-page: 97
  year: 2023
  end-page: 110
  publication-title: Renewable Energy
– volume: 25
  start-page: 5741
  issue: 14
  year: 2023
  end-page: 5755
  publication-title: Green Chem.
– volume: 429
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 1351
  issue: 4
  year: 2018
  end-page: 1390
  publication-title: Chem. Soc. Rev.
– volume: 239
  start-page: 300
  year: 2018
  end-page: 308
  publication-title: Appl. Catal. B
– volume: 21
  start-page: 937
  issue: 7
  year: 2016
  publication-title: Molecules
– volume: 8
  start-page: 842
  issue: 3
  year: 2023
  end-page: 851
  publication-title: Green Energy & Environ.
– volume: 15
  start-page: 1141
  issue: 1
  year: 2024
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1986
  issue: 6
  year: 2022
  end-page: 1993
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  start-page: 7630
  issue: 14
  year: 2020
  end-page: 7656
  publication-title: ACS Catal.
– volume: 4
  start-page: 1383
  issue: 3
  year: 2020
  end-page: 1395
  publication-title: Sustain. Energy Fuels
– volume: 777
  year: 2021
  publication-title: Sci. Total Environ.
– volume: 569
  start-page: 93
  year: 2019
  end-page: 100
  publication-title: Appl. Catal. A
– volume: 383
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 778
  year: 2021
  publication-title: Sci. Total Environ.
– volume: 22
  start-page: 46
  issue: 1
  year: 2008
  end-page: 60
  publication-title: Energy Fuels
– volume: 34
  issue: 8
  year: 2023
  publication-title: Chin. Chem. Lett.
– volume: 1
  start-page: 259
  issue: 4
  year: 2022
  end-page: 279
  publication-title: Eco-Environment and Health (Online)
– volume: 21
  start-page: 216
  issue: 10–12
  year: 2015
  end-page: 240
  publication-title: Chem. Vap. Deposition
– volume: 5
  start-page: 854
  issue: 10
  year: 2022
  end-page: 866
  publication-title: Nat. Catal.
– volume: 256
  year: 2019
  publication-title: Appl. Catal. B
– volume: 50
  start-page: 11270
  issue: 20
  year: 2021
  end-page: 11292
  publication-title: Chem. Soc. Rev.
– volume: 154
  year: 2021
  publication-title: Biomass Bioenergy
– volume: 338
  year: 2023
  publication-title: Fuel
– volume: 346
  year: 2022
  publication-title: J. Cleaner Prod.
– volume: 8
  start-page: 7131
  issue: 8
  year: 2018
  end-page: 7140
  publication-title: ACS Catal.
– volume: 178
  year: 2023
  publication-title: Renewable Sustainable Energy Rev.
– volume: 19
  start-page: 4119
  issue: 6
  year: 2021
  end-page: 4136
  publication-title: Environ. Chem. Lett.
– volume: 124
  start-page: 3416
  issue: 6
  year: 2024
  end-page: 3493
  publication-title: Chem. Rev.
– volume: 413
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 1923
  issue: 3
  year: 2019
  end-page: 1930
  publication-title: ACS Catal.
– volume: 13
  start-page: 688
  issue: 4
  year: 2020
  end-page: 692
  publication-title: ChemSusChem
– volume: 99
  start-page: 171
  year: 2013
  end-page: 176
  publication-title: Chem. Eng. Sci.
– volume: 102
  start-page: 2725
  issue: 8
  year: 2002
  end-page: 2750
  publication-title: Chem. Rev.
– volume: 872
  year: 2023
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 1719
  issue: 6
  year: 2023
  end-page: 1727
  publication-title: Green Energy & Environ.
– volume: 330
  start-page: 323
  year: 2015
  end-page: 329
  publication-title: J. Catal.
– volume: 21
  start-page: 3715
  issue: 14
  year: 2019
  end-page: 3743
  publication-title: Green Chem.
– volume: 46
  start-page: 6756
  issue: 14
  year: 2022
  end-page: 6764
  publication-title: New J. Chem.
– volume: 2
  issue: 1
  year: 2024
  publication-title: The Innovation Materials
– volume: 242
  year: 2023
  publication-title: Fuel Process. Technol.
– volume: 9
  start-page: 17186
  issue: 51
  year: 2021
  end-page: 17206
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  start-page: 10932
  issue: 19
  year: 2020
  end-page: 10945
  publication-title: ACS Catal.
– volume: 21
  start-page: 3930
  issue: 14
  year: 2019
  end-page: 3939
  publication-title: Green Chem.
– volume: 8
  start-page: 30106
  issue: 53
  year: 2018
  end-page: 30114
  publication-title: RSC Adv.
– volume: 7
  start-page: 8512
  issue: 9
  year: 2019
  end-page: 8521
  publication-title: ACS Sustainable Chem. Eng.
– volume: 135
  year: 2021
  publication-title: Renewable Sustainable Energy Rev.
– volume: 342
  year: 2024
  publication-title: Appl. Catal. B
– volume: 374
  year: 2024
  publication-title: Microporous Mesoporous Mater.
– volume: 125
  start-page: 327
  year: 2018
  end-page: 333
  publication-title: Renewable Energy
– volume: 316
  year: 2022
  publication-title: Fuel
– volume: 35
  start-page: 14462
  issue: 18
  year: 2021
  end-page: 14483
  publication-title: Energy Fuels
– volume: 9
  start-page: 2797
  issue: 14
  year: 2017
  end-page: 2806
  publication-title: ChemCatChem
– volume: 226
  start-page: 417
  year: 2018
  end-page: 422
  publication-title: Fuel
– volume: 57
  start-page: 8655
  issue: 26
  year: 2018
  end-page: 8663
  publication-title: Ind. Eng. Chem. Res.
– volume: 12
  start-page: 1313
  issue: 4
  year: 2022
  end-page: 1323
  publication-title: Catal. Sci. Technol.
– volume: 234
  year: 2022
  publication-title: Fuel Process. Technol.
– volume: 345
  start-page: 289
  issue: 1–2
  year: 2003
  end-page: 299
  publication-title: Adv. Synth. Catal.
– volume: 232
  start-page: 317
  year: 2018
  end-page: 322
  publication-title: Fuel
– volume: 474
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 587
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 31
  issue: 5
  year: 2013
  publication-title: J. Vac. Sci. Technol. A
– volume: 564
  start-page: 113
  year: 2018
  end-page: 122
  publication-title: Appl. Catal. A
– volume: 367
  start-page: 228
  year: 2021
  end-page: 238
  publication-title: Catal. Today
– volume: 328
  start-page: 246
  year: 2017
  end-page: 273
  publication-title: Chem. Eng. J.
– volume: 288
  year: 2021
  publication-title: Appl. Catal. B
– volume: 11
  start-page: 1326
  issue: 3
  year: 2019
  end-page: 1334
  publication-title: Nanoscale
– volume: 4
  start-page: 1053
  issue: 1
  year: 2019
  end-page: 1059
  publication-title: ACS Omega
– volume: 48
  start-page: 2366
  issue: 8
  year: 2019
  end-page: 2421
  publication-title: Chem. Soc. Rev.
– volume: 199
  start-page: 1629
  year: 2022
  end-page: 1638
  publication-title: Renewable Energy
– volume: 256
  year: 2020
  publication-title: J. Cleaner Prod.
– volume: 232
  start-page: 99
  year: 2014
  end-page: 107
  publication-title: Catal. Today
– volume: 24
  start-page: 315
  issue: 1
  year: 2022
  end-page: 324
  publication-title: Green Chem.
– volume: 25
  start-page: 4565
  issue: 11
  year: 2023
  end-page: 4576
  publication-title: Green Chem.
– volume: 146
  start-page: 2606
  issue: 12
  year: 2016
  end-page: 2613
  publication-title: Catal. Lett.
– volume: 42
  start-page: 5548
  issue: 45
  year: 2003
  end-page: 5554
  publication-title: Angew. Chem. Int. Ed.
– volume: 353
  year: 2024
  publication-title: Appl. Catal. B
– volume: 59
  start-page: 11704
  issue: 29
  year: 2020
  end-page: 11716
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 11568
  issue: 12
  year: 2019
  end-page: 11578
  publication-title: ACS Catal.
– volume: 11
  start-page: 921
  issue: 3
  year: 2023
  end-page: 930
  publication-title: ACS Sustainable Chem. Eng.
– volume: 14
  year: 2019
  publication-title: Mater. Today Chem.
– volume: 90
  start-page: 120
  year: 2018
  end-page: 130
  publication-title: Renewable Sustainable Energy Rev.
– volume: 2
  issue: 3
  year: 2021
  publication-title: Innovation-Amsterdam
– ident: e_1_2_10_75_1
  doi: 10.1039/C8GC02466A
– ident: e_1_2_10_89_1
  doi: 10.1016/j.cej.2021.132261
– ident: e_1_2_10_98_1
  doi: 10.1016/S0167-2991(99)80570-9
– ident: e_1_2_10_53_1
  doi: 10.1016/j.renene.2023.05.058
– ident: e_1_2_10_39_1
  doi: 10.1021/acs.chemrev.3c00801
– ident: e_1_2_10_10_1
  doi: 10.1038/s41467-024-45278-z
– ident: e_1_2_10_85_1
  doi: 10.1016/j.renene.2022.09.050
– ident: e_1_2_10_8_1
  doi: 10.1016/j.rser.2018.03.066
– ident: e_1_2_10_67_1
  doi: 10.1016/j.scitotenv.2021.146037
– ident: e_1_2_10_80_1
  doi: 10.1016/j.renene.2018.02.085
– ident: e_1_2_10_31_1
  doi: 10.1016/j.cej.2021.132325
– ident: e_1_2_10_78_1
  doi: 10.1016/j.apcatb.2019.117799
– ident: e_1_2_10_66_1
  doi: 10.1021/acssuschemeng.9b00292
– ident: e_1_2_10_81_1
  doi: 10.1016/j.apcatb.2018.08.022
– ident: e_1_2_10_72_1
  doi: 10.1016/j.fuproc.2022.107318
– ident: e_1_2_10_69_1
  doi: 10.1002/cctc.202301590
– ident: e_1_2_10_104_1
  doi: 10.1016/j.ijbiomac.2023.124196
– ident: e_1_2_10_35_1
  doi: 10.1016/j.jclepro.2022.131144
– ident: e_1_2_10_46_1
  doi: 10.1021/acscatal.8b01759
– ident: e_1_2_10_44_1
  doi: 10.1016/j.cattod.2020.04.025
– ident: e_1_2_10_83_1
  doi: 10.1021/acscatal.9b03455
– ident: e_1_2_10_90_1
  doi: 10.1039/D3GC00587A
– ident: e_1_2_10_20_1
  doi: 10.1039/C7CS00213K
– ident: e_1_2_10_49_1
  doi: 10.1016/j.apsusc.2022.152849
– ident: e_1_2_10_54_1
  doi: 10.1039/D1CY02078A
– ident: e_1_2_10_48_1
  doi: 10.1039/c1cc11016k
– ident: e_1_2_10_43_1
  doi: 10.1016/j.cattod.2013.10.018
– ident: e_1_2_10_18_1
  doi: 10.1016/j.fuel.2018.05.154
– ident: e_1_2_10_15_1
  doi: 10.1002/cssc.201501148
– ident: e_1_2_10_51_1
  doi: 10.1016/j.cej.2020.127548
– ident: e_1_2_10_63_1
  doi: 10.1016/j.apcata.2018.10.023
– ident: e_1_2_10_30_1
  doi: 10.1016/j.jece.2022.107198
– ident: e_1_2_10_25_1
  doi: 10.1002/anie.201503595
– ident: e_1_2_10_107_1
  doi: 10.1016/j.mtchem.2019.07.002
– ident: e_1_2_10_88_1
  doi: 10.1039/C9SE00982E
– ident: e_1_2_10_42_1
  doi: 10.1007/s10311-021-01284-x
– ident: e_1_2_10_55_1
  doi: 10.1016/j.jcat.2015.05.018
– ident: e_1_2_10_41_1
  doi: 10.1016/j.scitotenv.2024.173834
– ident: e_1_2_10_97_1
  doi: 10.1116/1.4816548
– ident: e_1_2_10_65_1
  doi: 10.1016/j.cej.2019.122914
– ident: e_1_2_10_36_1
  doi: 10.1016/j.apcatb.2024.124095
– ident: e_1_2_10_62_1
  doi: 10.3390/catal10111236
– ident: e_1_2_10_91_1
  doi: 10.1002/adsc.200390024
– ident: e_1_2_10_61_1
  doi: 10.1039/C9DT00985J
– ident: e_1_2_10_101_1
  doi: 10.1021/jacsau.3c00396
– ident: e_1_2_10_74_1
  doi: 10.1016/j.apcata.2018.07.023
– ident: e_1_2_10_40_1
  doi: 10.1016/j.rser.2023.113219
– ident: e_1_2_10_33_1
  doi: 10.1016/j.gee.2021.11.010
– ident: e_1_2_10_7_1
  doi: 10.1016/j.cej.2017.07.020
– ident: e_1_2_10_38_1
  doi: 10.1016/j.gee.2022.04.003
– ident: e_1_2_10_6_1
– ident: e_1_2_10_29_1
  doi: 10.1039/D1GC03637H
– ident: e_1_2_10_17_1
  doi: 10.1016/j.jclepro.2020.120292
– ident: e_1_2_10_56_1
  doi: 10.1039/C8NR08143C
– ident: e_1_2_10_100_1
  doi: 10.1007/s10562-016-1893-4
– ident: e_1_2_10_2_1
  doi: 10.1016/j.xinn.2021.100127
– ident: e_1_2_10_1_1
  doi: 10.1016/j.energy.2021.120533
– ident: e_1_2_10_23_1
  doi: 10.1016/j.gee.2021.10.004
– ident: e_1_2_10_73_1
  doi: 10.1039/D2NJ00142J
– ident: e_1_2_10_13_1
  doi: 10.1021/ef700292p
– ident: e_1_2_10_9_1
  doi: 10.1021/acscatal.3c02272
– ident: e_1_2_10_96_1
  doi: 10.1002/anie.200301652
– ident: e_1_2_10_102_1
  doi: 10.1038/s41929-019-0364-x
– ident: e_1_2_10_14_1
  doi: 10.1021/cr000668w
– ident: e_1_2_10_99_1
  doi: 10.1039/C9GC01210A
– ident: e_1_2_10_103_1
  doi: 10.1021/acscatal.8b03230
– ident: e_1_2_10_93_1
  doi: 10.1016/j.fuproc.2023.107662
– ident: e_1_2_10_76_1
  doi: 10.1039/C8RA04353A
– ident: e_1_2_10_37_1
  doi: 10.1016/j.cej.2023.146006
– ident: e_1_2_10_28_1
  doi: 10.1002/anie.202009811
– ident: e_1_2_10_32_1
  doi: 10.1002/cssc.201902887
– ident: e_1_2_10_71_1
  doi: 10.1039/C8RA05940C
– ident: e_1_2_10_106_1
  doi: 10.1016/j.apcatb.2023.123443
– ident: e_1_2_10_58_1
  doi: 10.1016/j.biombioe.2021.106261
– ident: e_1_2_10_82_1
  doi: 10.1016/j.ces.2013.06.002
– ident: e_1_2_10_5_1
  doi: 10.1016/j.rser.2020.110370
– ident: e_1_2_10_110_1
  doi: 10.1021/acssuschemeng.1c07483
– ident: e_1_2_10_60_1
  doi: 10.1039/C9GC01225G
– ident: e_1_2_10_95_1
  doi: 10.1002/cvde.201502013
– ident: e_1_2_10_108_1
  doi: 10.1021/acs.energyfuels.1c02672
– ident: e_1_2_10_24_1
  doi: 10.1038/s41929-022-00842-y
– ident: e_1_2_10_64_1
  doi: 10.1039/D3GC01860A
– ident: e_1_2_10_19_1
  doi: 10.1002/anie.201914703
– ident: e_1_2_10_59_1
  doi: 10.1021/acsomega.8b02982
– ident: e_1_2_10_94_1
  doi: 10.1016/j.apcatb.2021.119997
– ident: e_1_2_10_16_1
  doi: 10.1039/c2cs35188a
– ident: e_1_2_10_34_1
  doi: 10.1021/acssuschemeng.1c07832
– ident: e_1_2_10_111_1
  doi: 10.1016/j.fuel.2022.127308
– ident: e_1_2_10_92_1
  doi: 10.1021/acs.iecr.8b01334
– ident: e_1_2_10_112_1
  doi: 10.1016/j.scitotenv.2021.146276
– ident: e_1_2_10_22_1
  doi: 10.1039/D1CS00039J
– ident: e_1_2_10_77_1
  doi: 10.1002/cctc.201700089
– ident: e_1_2_10_50_1
  doi: 10.1016/j.cej.2022.140415
– ident: e_1_2_10_52_1
  doi: 10.1016/j.fuel.2018.03.193
– ident: e_1_2_10_12_1
  doi: 10.59717/j.xinn-mater.2024.100046
– ident: e_1_2_10_26_1
  doi: 10.1021/acscatal.0c01569
– ident: e_1_2_10_86_1
  doi: 10.1021/acssuschemeng.2c04940
– ident: e_1_2_10_79_1
  doi: 10.1007/s11244-017-0774-4
– ident: e_1_2_10_87_1
  doi: 10.1016/j.apcatb.2021.120564
– ident: e_1_2_10_109_1
  doi: 10.1016/j.cclet.2023.108278
– ident: e_1_2_10_21_1
  doi: 10.1002/cssc.202000690
– ident: e_1_2_10_84_1
  doi: 10.1016/j.fuel.2022.123255
– ident: e_1_2_10_45_1
  doi: 10.1016/j.micromeso.2024.113157
– ident: e_1_2_10_57_1
  doi: 10.1021/acscatal.0c02238
– ident: e_1_2_10_47_1
  doi: 10.1039/C8CS00452H
– ident: e_1_2_10_70_1
  doi: 10.1021/acs.iecr.3c03808
– ident: e_1_2_10_11_1
  doi: 10.1126/science.1246748
– ident: e_1_2_10_27_1
  doi: 10.3390/molecules21070937
– ident: e_1_2_10_105_1
  doi: 10.1021/acscatal.1c00197
– ident: e_1_2_10_3_1
  doi: 10.1016/j.eehl.2022.11.005
– ident: e_1_2_10_4_1
  doi: 10.1016/j.scitotenv.2023.162154
– ident: e_1_2_10_68_1
  doi: 10.1039/D2GC02568J
SSID ssj0060966
Score 2.4437816
SecondaryResourceType review_article
Snippet Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high‐performance...
Sustainable production of valuable biochemicals and biofuels from lignocellulosic biomass necessitates the development of durable and high-performance...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202401405
SubjectTerms Biofuels
Biomass valorization
Biosugars
Catalyst deactivation
Catalysts
Catalytic converters
Chemical reactions
Deactivation
Durability
Heterogeneous catalysis
Hydrothermal treatment
Lignocellulose
Physiochemistry
Title Hydrothermal Valorization of Biosugars with Heterogeneous Catalysts: Advances, Catalyst Deactivation, Mitigation Strategies and Perspectives
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202401405
https://www.ncbi.nlm.nih.gov/pubmed/39138129
https://www.proquest.com/docview/3156319919
https://www.proquest.com/docview/3092869448
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQF7i0tPSxhVZGqtQLgcSPrMONhqIVElVVSsUt8hMhxKbCuwf6G_qjOxNvQrccKpVjHo6d8Uzm82TmMyHvc2mUkbbMvC1NJjRzmQ5gV4p5kYM5KdWVj51-Lifn4uRCXvxRxZ_4IYaAG1pG971GA9cm7t-ThtoYkYIQPBKsEbDKHBO2EBV9HfijSsDnXXmRKkUmS170rI05219uvuyVHkDNZeTauZ7jp0T3g04ZJ9d785nZsz__4nN8zFttkCcLXEoPkyI9Iyt--pys1f12cJvk1-TO3XblWjdw33eNmXuphJO2gX68auP8EhbJFAO7dIJJNi3opm_nkdYYIrqLs3hAD1PKQdwdTtIjj7UVKTK8S0-vEukHPLYnzvWR6qmjX-7LQuMLcn786Vs9yRZbOWSWMyUzO3ZOj4ULHPBFJZ0E4OeY56FSVmkWtJMA1IKwVpTSsIDEaaAuARY_gnOb85dkddpO_WtCgwCXipFbVQnkvtFc5g6Ap5HajD3jI_Khn8rmR2LsaBI3M2tQus0g3RHZ7me6WVhubHiBigKouRqRneEyyBp_pOhObA3PK6ZK7H5EXiUNGbriVQEgiEFr1s3zP8bQ1Gdn9XD05n8abZF1hpsS50VWiG2yOrud-7eAlGbmXWcNvwG_Zgx-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqFN2WhgJGQuDRt4kfW4VYCVYBuhWiLuEV-BVWIDap3D-U38KOZsTepFg5IcMzDseOZiT9PZr4h5HkujTLSlpm3pcmEZi7THdiVYl7kYE5KxfSx2VHZnIp3n-UQTYi5MIkfYnS4oWXE7zUaODqk9y5ZQ20IyEEISxJsEuRVcg3Lesdd1ceRQaoEhB4TjFQpMlnyYuBtzNneevv1dekPsLmOXePic3CTmGHYKebk6-5yYXbtj98YHf_rvW6RGytoSveTLt0mV_z8Dtmsh4pwd8nP5sKdx4ytb3DfJ43BeymLk_YdfXXWh-UX2CdT9O3SBuNselBP3y8DrdFLdBEW4SXdT1EHYWc8SV97TK9IzuEdOjtLvB_w2IE71weq545-uMwMDffI6cGbk7rJVtUcMsuZkpmdOqenwnUcIEYlnQTs55jnXaWs0qzTTgJW64S1IEfDOuROA43pYP8jOLc5v0825v3cPyC0E7CqovNWVQLpbzSXuQPsaaQ2U8_4hLwYZNl-T6QdbaJnZi3ObjvO7oRsD6JuV8YbWl6gpgBwribk2XgZ5hr_peg4bS3PK6ZK7H5CtpKKjF3xqgAcxKA1i4L-yxja-vi4Ho8e_kujp2SzOZkdtodvj94_ItcZ1ijOi6wQ22Rjcb70jwE4LcyTaBq_AH3bEJk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL78dCASMhcWnaxK91uJUsq-XRqqIU9RY5fqAKsanq3UP5DfxoxvEmZeGABMc8HDvjmcznycxngBe5aFQjjMyckU3GNbWZ9mhXijqeozkp1ZWP7e3L2RF_dyyOf6niT_wQQ8AtWkb3vY4Gfmr9zgVpqAkhUhCiR8I1grgMV7jMVdTryceBQEoiQO_qi5TkmZCs6Gkbc7qz3n7dLf2BNdeha-d7pjdB96NOKSdft5eLZtt8_43Q8X9e6xbcWAFTsps06TZccvM7cK3q94O7Cz9m5_asq9f6hvd91jF1L9VwktaT1ydtWH7BVTKJkV0yi1k2LSqna5eBVDFGdB4W4RXZTTkHYWs4SSYuFlek0PAW2TtJrB_42J451wWi55YcXNSFhntwNH3zqZplq70cMsOoEpkZW6vH3HqGAKMUViDys9QxXyqjNPXaCkRqnhvDpWioj8xpqC8eVz-cMZOz-7Axb-fuIRDP0afG0K0qeSS_0UzkFpFnI3QzdpSN4GU_lfVpouyoEzkzraN060G6I9jsZ7pemW6oWREVBWFzOYLnw2WUdfyTojux1SwvqZKx-xE8SBoydMXKAlEQxda0m-e_jKGuDg-r4ejRvzR6BlcPJtP6w9v994_hOo0bFOdFVvBN2FicLd0TRE2L5mlnGD8BWmMPUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermal+Valorization+of+Biosugars+with+Heterogeneous+Catalysts%3A+Advances%2C+Catalyst+Deactivation%2C+Mitigation+Strategies+and+Perspectives&rft.jtitle=ChemSusChem&rft.au=Xu%2C+Siyu&rft.au=Jiang%2C+Yujing&rft.au=Liu%2C+Juan&rft.au=Chun-Ho+Lam%2C+Jason&rft.date=2025-01-14&rft.eissn=1864-564X&rft.volume=18&rft.issue=2&rft.spage=e202401405&rft_id=info:doi/10.1002%2Fcssc.202401405&rft_id=info%3Apmid%2F39138129&rft.externalDocID=39138129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon