Mechanistic Insights into the N‐Hydroxylations Catalyzed by the Binuclear Iron Domain of SznF Enzyme: Key Piece in the Synthesis of Streptozotocin

SznF, a member of the emerging family of heme‐oxygenase‐like (HO‐like) di‐iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω‐methyl‐L‐arginine (L‐NMA) into N‐nitroso‐containing product, which can subsequently be transformed into streptozotocin. Using unrestri...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 16; pp. e202303845 - n/a
Main Authors Li, Rui‐Ning, Chen, Shi‐Lu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 15.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SznF, a member of the emerging family of heme‐oxygenase‐like (HO‐like) di‐iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω‐methyl‐L‐arginine (L‐NMA) into N‐nitroso‐containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L‐NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O−O bond dissociation, forming Fe(IV)=O, induced by the H+/e− introduction to the FeA side of μ‐1,2‐peroxo‐Fe2(III/III), the substrate hydrogen ion by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H+/e− to the FeB side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O−O bond dissociation (mechanism A) and the addition of H2O as a co‐substrate (mechanism D), have been ruled out. Enzyme catalysis: The consecutive hydroxylation mechanism of Nω‐methyl‐L‐arginine (L‐NMA) catalyzed by SznF's di‐iron domain is presented. Initiated by the peroxo‐Fe2(III/III) intermediate, the reaction involves proton/electron (H+/e−) addition on either side of this intermediate facilitating the generation of Nδ‐hydroxy‐Nω‐methyl‐L‐arginine (L‐HMA) and Nδ‐hydroxy‐Nω‐hydroxy‐Nω‐methyl‐L‐arginine (L–DHMA).
AbstractList Abstract SznF, a member of the emerging family of heme‐oxygenase‐like (HO‐like) di‐iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of N ω ‐methyl‐L‐arginine (L‐NMA) into N‐nitroso‐containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L‐NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O−O bond dissociation, forming Fe(IV)=O, induced by the H + /e − introduction to the Fe A side of μ‐1,2‐peroxo‐Fe 2 (III/III), the substrate hydrogen abstraction by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H + /e − to the Fe B side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O−O bond dissociation (mechanism A) and the addition of H 2 O as a co‐substrate (mechanism D), have been ruled out.
SznF, a member of the emerging family of heme‐oxygenase‐like (HO‐like) di‐iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω‐methyl‐L‐arginine (L‐NMA) into N‐nitroso‐containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L‐NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O−O bond dissociation, forming Fe(IV)=O, induced by the H+/e− introduction to the FeA side of μ‐1,2‐peroxo‐Fe2(III/III), the substrate hydrogen abstraction by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H+/e− to the FeB side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O−O bond dissociation (mechanism A) and the addition of H2O as a co‐substrate (mechanism D), have been ruled out.
SznF, a member of the emerging family of heme-oxygenase-like (HO-like) di-iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω-methyl-L-arginine (L-NMA) into N-nitroso-containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L-NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O-O bond dissociation, forming Fe(IV)=O, induced by the H+/e- introduction to the FeA side of μ-1,2-peroxo-Fe2(III/III), the substrate hydrogen abstraction by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H+/e- to the FeB side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O-O bond dissociation (mechanism A) and the addition of H2O as a co-substrate (mechanism D), have been ruled out.
SznF, a member of the emerging family of heme-oxygenase-like (HO-like) di-iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of N -methyl-L-arginine (L-NMA) into N-nitroso-containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L-NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O-O bond dissociation, forming Fe(IV)=O, induced by the H /e introduction to the Fe side of μ-1,2-peroxo-Fe (III/III), the substrate hydrogen abstraction by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H /e to the Fe side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O-O bond dissociation (mechanism A) and the addition of H O as a co-substrate (mechanism D), have been ruled out.
SznF, a member of the emerging family of heme‐oxygenase‐like (HO‐like) di‐iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω‐methyl‐L‐arginine (L‐NMA) into N‐nitroso‐containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L‐NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O−O bond dissociation, forming Fe(IV)=O, induced by the H+/e− introduction to the FeA side of μ‐1,2‐peroxo‐Fe2(III/III), the substrate hydrogen ion by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H+/e− to the FeB side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O−O bond dissociation (mechanism A) and the addition of H2O as a co‐substrate (mechanism D), have been ruled out. Enzyme catalysis: The consecutive hydroxylation mechanism of Nω‐methyl‐L‐arginine (L‐NMA) catalyzed by SznF's di‐iron domain is presented. Initiated by the peroxo‐Fe2(III/III) intermediate, the reaction involves proton/electron (H+/e−) addition on either side of this intermediate facilitating the generation of Nδ‐hydroxy‐Nω‐methyl‐L‐arginine (L‐HMA) and Nδ‐hydroxy‐Nω‐hydroxy‐Nω‐methyl‐L‐arginine (L–DHMA).
Author Chen, Shi‐Lu
Li, Rui‐Ning
Author_xml – sequence: 1
  givenname: Rui‐Ning
  surname: Li
  fullname: Li, Rui‐Ning
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Shi‐Lu
  orcidid: 0000-0002-7187-9062
  surname: Chen
  fullname: Chen, Shi‐Lu
  email: shlchen@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38212866$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFv0zAUB3ALbWLd4MoRWeKySzrHju2EG3QdrdgAaXCOXOeZekrsYjuC9MRH4MAn5JOQtmNIXDi9d_i9v570P0VHzjtA6FlOpjkh9EKvoZtSQhlhZcEfoUnOaZ4xKfgRmpCqkJngrDpBpzHeEUIqwdhjdMJKmtNSiAn6eQN6rZyNyWq8dNF-XqeIrUsepzXgd7--_1gMTfDfhlYl613EM5VUO2yhwathb15b1-sWVMDL4B2-9J2yDnuDb7fuCs_ddujgJX4LA_5gQcMYvj-7Hdw4oo17mgJskt_65LV1T9CxUW2Ep_fzDH26mn-cLbLr92-Ws1fXmWa05JkiwJSgppFVyRjlnDC54pRILQg3BkpSVsoUoBtK5W4VQoAxDCRRqqGKnaHzQ-4m-C89xFR3NmpoW-XA97GmVV7JouBFOdIX_9A73wc3fjcqSUlBZb5T04PSwccYwNSbYDsVhjon9a6vetdX_dDXePD8PrZfddA88D8FjaA6gK-2heE_cfVsMb_5G_4bupKl2Q
Cites_doi 10.1002/chem.201501593
10.1021/ja511649n
10.1002/(SICI)1521-3773(19991203)38:23<3510::AID-ANIE3510>3.0.CO;2-#
10.1021/jp991564w
10.1038/s41586-019-0894-z
10.1021/jp054088k
10.1002/chem.200390006
10.1021/acscatal.1c00898
10.1021/ja00994a053
10.1021/cr030722j
10.1021/bi801695d
10.1002/0471435139.tox055.pub2
10.1021/jacs.0c01786
10.1021/acschemneuro.0c00615
10.1002/jcc.20495
10.1063/1.464304
10.1021/ja036506
10.1021/acscatal.1c05116
10.1021/ja0370387
10.1063/1.464913
10.1021/jacs.0c03431
10.1021/ja107514f
10.1016/S0969-2126(01)00695-5
10.1002/chem.202202995
10.1021/ja049106a
10.1002/chem.201700405
10.1073/pnas.2015931118
10.1021/bi035198p
10.1021/jacs.9b02659
10.1038/nature21681
10.1021/ja9604370
10.1021/acscatal.3c00174
10.1021/jacs.6b06987
10.1021/jacs.6b03846
10.1021/acs.est.8b00601
10.1063/1.477096
10.1038/s41598-022-26607-y
10.1039/D0CP03598J
10.1016/S0039-6109(05)70141-9
10.1126/science.287.5450.122
10.1021/cr9904009
10.1126/science.1078020
10.1002/ange.200803740
10.1021/cr020436s
10.1038/nature11880
10.1021/acscatal.9b00456
10.1021/ja00105a033
10.1126/science.1134697
10.1021/acs.inorgchem.1c00057
10.1002/1096-987X(20001115)21:14<1243::AID-JCC3>3.0.CO;2-M
10.1021/ct8000409
10.1007/s00214-010-0827-2
10.1021/bi701577q
10.1021/ct5005214
10.1103/PhysRevB.37.785
10.1039/C7CP02687K
10.1021/ja025707v
10.1002/cphc.202000025
10.1021/ja980129x
10.1016/0045-2068(79)90041-5
10.1021/ja991839l
10.1016/j.jcat.2021.04.010
10.1002/ange.202112063
10.1002/chem.202300957
10.1002/(SICI)1097-0134(199710)29:2<141::AID-PROT2>3.0.CO;2-G
10.1021/acscatal.1c01502
10.1016/j.jcat.2023.02.021
10.1021/ja067103n
10.1021/acscatal.0c03349
10.1021/jacs.9b06093
10.1126/science.275.5299.515
10.1063/1.3382344
10.1038/nature12304
10.1021/jacs.7b09560
10.1017/S0033583502003827
10.1002/anie.202112063
10.1021/jp9716997
10.1063/1.481336
10.1038/s41598-022-20297-2
10.1021/ja311078s
10.1021/ja801251q
10.1021/cr400388t
10.1021/ic701194b
10.1002/anie.200803740
10.1039/a809385g
10.1016/j.str.2015.03.002
10.1021/jacs.7b05389
10.1038/nature14160
10.1002/jcc.20502
10.1021/bi981838q
10.1002/anie.200503841
10.1073/pnas.0904553106
10.1038/s41387-022-00225-z
10.1074/jbc.M401268200
10.1021/jacs.1c01180
10.1021/ja207065v
10.1021/ja405047b
10.1016/S0898-8838(08)60070-7
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202303845
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 10_1002_chem_202303845
38212866
CHEM202303845
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22173007
– fundername: National Natural Science Foundation of China
  grantid: 22173007
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3285-a0e3a62fd79833255037b5207c605ffe8089af4ecd22789af666eff3e70aad2a3
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Sat Aug 17 05:54:12 EDT 2024
Fri Sep 13 09:11:51 EDT 2024
Fri Aug 23 02:07:36 EDT 2024
Tue Aug 27 13:53:17 EDT 2024
Sat Aug 24 00:50:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords di-iron cluster
SznF
density functional calculations
streptozotocin
N-hydroxylation
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3285-a0e3a62fd79833255037b5207c605ffe8089af4ecd22789af666eff3e70aad2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7187-9062
PMID 38212866
PQID 2972042718
PQPubID 986340
PageCount 13
ParticipantIDs proquest_miscellaneous_2919744548
proquest_journals_2972042718
crossref_primary_10_1002_chem_202303845
pubmed_primary_38212866
wiley_primary_10_1002_chem_202303845_CHEM202303845
PublicationCentury 2000
PublicationDate March 15, 2024
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: March 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 126
1988; 37
2023; 420
1997; 275
2002; 10
2019; 566
2008 2008; 47 120
2008; 4
2009; 48
2022 2022; 61 134
2011; 128
2015; 137
2023; 29
2021; 398
2006; 27
2005; 105
1982; 66
2021; 118
2003; 9
2005; 109
2000; 122
2000; 287
2003; 125
2003; 42
1979; 8
1998; 120
2014; 10
2019; 9
1994; 116
2023; 13
2007; 129
2020; 142
1967; 89
2000; 21
2017; 23
1997; 29
2003; 36
1999; 103
1992; 38
2000; 112
2021; 143
2019; 141
2003; 299
2014; 114
2011; 133
2017; 139
1999
2001; 81
2015; 23
1998; 37
2007; 316
2021; 12
2004; 279
2021; 11
2002; 124
1993; 98
1999; 38
2015; 21
2022; 12
2008; 47
2010; 132
2013; 499
2015; 518
1998; 109
2013; 135
2017; 19
2018; 52
2016; 138
2020; 22
2013; 494
2020; 21
2021; 60
2003; 103
1998; 102
2008; 130
2017; 544
1996; 118
2009; 106
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_9_2
e_1_2_8_5_1
e_1_2_8_87_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_117_2
e_1_2_8_83_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_113_2
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_109_2
e_1_2_8_34_2
e_1_2_8_15_1
e_1_2_8_57_2
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_120_2
Weiss R. B. (e_1_2_8_3_2) 1982; 66
e_1_2_8_99_2
e_1_2_8_30_2
e_1_2_8_105_2
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_101_1
e_1_2_8_72_1
e_1_2_8_124_2
e_1_2_8_29_1
e_1_2_8_25_2
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_2
e_1_2_8_6_2
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_86_2
e_1_2_8_118_2
e_1_2_8_63_1
e_1_2_8_40_2
e_1_2_8_114_2
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_37_1
e_1_2_8_90_2
e_1_2_8_94_1
e_1_2_8_121_2
e_1_2_8_98_2
e_1_2_8_10_1
e_1_2_8_106_1
e_1_2_8_33_2
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_125_2
e_1_2_8_71_1
e_1_2_8_28_2
e_1_2_8_24_2
e_1_2_8_119_2
e_1_2_8_47_2
e_1_2_8_89_2
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_115_2
e_1_2_8_43_2
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_17_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_55_3
e_1_2_8_36_2
e_1_2_8_78_2
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_2
e_1_2_8_107_2
e_1_2_8_74_1
e_1_2_8_51_2
e_1_2_8_93_2
e_1_2_8_103_2
e_1_2_8_27_2
e_1_2_8_46_2
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_116_2
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_112_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_108_2
e_1_2_8_58_3
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_104_2
e_1_2_8_77_1
e_1_2_8_50_2
e_1_2_8_123_2
e_1_2_8_73_1
e_1_2_8_92_2
References_xml – volume: 142
  start-page: 11818
  year: 2020
  end-page: 11828
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 11898
  year: 1994
  end-page: 11914
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 1878
  year: 2009
  end-page: 1887
  publication-title: Biochemistry
– volume: 130
  start-page: 9441
  year: 2008
  end-page: 9450
  publication-title: J. Am. Chem. Soc.
– volume: 125
  start-page: 15822
  year: 2003
  end-page: 15830
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 15872
  year: 2022
  publication-title: Sci. Rep.
– volume: 398
  start-page: 44
  year: 2021
  end-page: 53
  publication-title: J. Catal.
– volume: 141
  start-page: 14510
  year: 2019
  end-page: 14514
  publication-title: J. Am. Chem. Soc.
– volume: 47 120
  start-page: 9071 9211
  year: 2008 2008
  end-page: 9074 9214
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 106
  year: 2003
  end-page: 115
  publication-title: Chem. Eur. J.
– volume: 109
  start-page: 4852
  year: 1998
  end-page: 4863
  publication-title: J. Chem. Phys.
– volume: 135
  start-page: 15801
  year: 2013
  end-page: 15812
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 14814
  year: 2009
  end-page: 14819
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 10
  start-page: 3871
  year: 2014
  end-page: 3884
  publication-title: J. Chem. Theory Comput.
– volume: 126
  start-page: 2978
  year: 2004
  end-page: 2990
  publication-title: J. Am. Chem. Soc.
– volume: 299
  start-page: 1039
  year: 2003
  end-page: 1042
  publication-title: Science
– volume: 11
  start-page: 6141
  year: 2021
  end-page: 6152
  publication-title: ACS Catal.
– volume: 133
  start-page: 17824
  year: 2011
  end-page: 17831
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 7496
  year: 2013
  end-page: 7502
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 3601
  year: 2014
  end-page: 3658
  publication-title: Chem. Rev.
– volume: 105
  start-page: 2999
  year: 2005
  end-page: 3094
  publication-title: Chem. Rev.
– volume: 13
  start-page: 5808
  year: 2023
  end-page: 5818
  publication-title: ACS Catal.
– volume: 103
  start-page: 2421
  year: 2003
  end-page: 2456
  publication-title: Chem. Rev.
– volume: 124
  start-page: 4966
  year: 2002
  end-page: 4967
  publication-title: J. Am. Chem. Soc.
– volume: 566
  start-page: 94
  year: 2019
  end-page: 99
  publication-title: Nature
– volume: 9
  start-page: 4345
  year: 2019
  end-page: 4359
  publication-title: ACS Catal.
– volume: 142
  start-page: 10412
  year: 2020
  end-page: 10423
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1950
  year: 2006
  end-page: 1961
  publication-title: J. Comput. Chem.
– volume: 10
  start-page: 93
  year: 2002
  end-page: 103
  publication-title: Structure
– volume: 120
  start-page: 5674
  year: 1998
  end-page: 5690
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 91
  year: 2003
  end-page: 145
  publication-title: Q. Rev. Biophys.
– start-page: 399
  year: 1999
  end-page: 410
  publication-title: J. Chem. Soc. Perkin Trans. 2
– volume: 60
  start-page: 7719
  year: 2021
  end-page: 7731
  publication-title: Inorg. Chem.
– volume: 52
  start-page: 4422
  year: 2018
  end-page: 4431
  publication-title: Environ. Sci. Technol.
– volume: 12
  start-page: 46
  year: 2022
  publication-title: Nutr. Diabetes
– volume: 98
  start-page: 5648
  year: 1993
  end-page: 5652
  publication-title: J. Chem. Phys.
– volume: 133
  start-page: 3869
  year: 2011
  end-page: 3882
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2009
  year: 2022
  end-page: 2022
  publication-title: ACS Catal.
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 179
  publication-title: J. Comput. Chem.
– volume: 19
  start-page: 20188
  year: 2017
  end-page: 20197
  publication-title: Phys. Chem. Chem. Phys.
– volume: 98
  start-page: 1372
  year: 1993
  end-page: 1377
  publication-title: J. Chem. Phys.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 385
  year: 2020
  end-page: 396
  publication-title: ChemPhysChem
– volume: 139
  start-page: 18024
  year: 2017
  end-page: 18033
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 6560
  year: 2021
  end-page: 6577
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  publication-title: Phys. Rev. B
– volume: 102
  start-page: 1995
  year: 1998
  end-page: 2001
  publication-title: J. Phys. Chem. A
– volume: 137
  start-page: 1608
  year: 2015
  end-page: 1617
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 22736
  year: 2020
  end-page: 22745
  publication-title: Phys. Chem. Chem. Phys.
– volume: 139
  start-page: 10472
  year: 2017
  end-page: 10485
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1578
  year: 2021
  end-page: 1592
  publication-title: ACS Catal.
– volume: 122
  start-page: 3255
  year: 2000
  end-page: 3261
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 18821
  year: 2015
  end-page: 18827
  publication-title: Chem. Eur. J.
– volume: 89
  start-page: 4808
  year: 1967
  end-page: 4809
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1029
  year: 2008
  end-page: 1031
  publication-title: J. Chem. Theory Comput.
– volume: 38
  start-page: 3418
  year: 1999
  end-page: 3438
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 109
  year: 2021
  end-page: 122
  publication-title: ACS Chem. Neurosci.
– volume: 23
  start-page: 882
  year: 2015
  end-page: 892
  publication-title: Structure
– volume: 494
  start-page: 380
  year: 2013
  end-page: 384
  publication-title: Nature
– volume: 279
  start-page: 29320
  year: 2004
  end-page: 29324
  publication-title: J. Biol. Chem.
– volume: 287
  start-page: 122
  year: 2000
  end-page: 125
  publication-title: Science
– volume: 8
  start-page: 97
  year: 1979
  end-page: 137
  publication-title: Bioorg. Chem.
– volume: 42
  start-page: 13269
  year: 2003
  end-page: 13279
  publication-title: Biochemistry
– volume: 275
  start-page: 515
  year: 1997
  end-page: 518
  publication-title: Science
– volume: 138
  start-page: 10485
  year: 2016
  end-page: 10495
  publication-title: J. Am. Chem. Soc.
– volume: 518
  start-page: 431
  year: 2015
  end-page: 434
  publication-title: Nature
– volume: 112
  start-page: 7374
  year: 2000
  end-page: 7383
  publication-title: J. Chem. Phys.
– volume: 420
  start-page: 123
  year: 2023
  end-page: 133
  publication-title: J. Catal.
– volume: 118
  start-page: 4914
  year: 1996
  end-page: 4915
  publication-title: J. Am. Chem. Soc.
– volume: 544
  start-page: 191
  year: 2017
  end-page: 195
  publication-title: Nature
– volume: 138
  start-page: 14623
  year: 2016
  end-page: 14638
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 527
  year: 2001
  end-page: 542
  publication-title: Surg. Clin. North Am.
– volume: 128
  start-page: 137
  year: 2011
  end-page: 146
  publication-title: Theor. Chem. Acc.
– volume: 29
  start-page: 141
  year: 1997
  end-page: 152
  publication-title: Proteins
– volume: 141
  start-page: 9284
  year: 2019
  end-page: 9291
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 2279
  year: 2005
  end-page: 2328
  publication-title: Chem. Rev.
– volume: 47
  start-page: 1031
  year: 2008
  end-page: 1042
  publication-title: Biochemistry
– volume: 12
  start-page: 21878
  year: 2022
  publication-title: Sci. Rep.
– volume: 29
  year: 2023
  publication-title: Chem. Eur. J.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 126
  start-page: 8842
  year: 2004
  end-page: 8855
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 2975
  year: 2008
  end-page: 2986
  publication-title: Inorg. Chem.
– volume: 21
  start-page: 1243
  year: 2000
  end-page: 1250
  publication-title: J. Comput. Chem.
– volume: 37
  start-page: 14659
  year: 1998
  end-page: 14663
  publication-title: Biochemistry
– volume: 38
  start-page: 423
  year: 1992
  end-page: 470
  publication-title: Adv. Inorg. Chem.
– volume: 23
  start-page: 7545
  year: 2017
  end-page: 7557
  publication-title: Chem. Eur. J.
– volume: 129
  start-page: 1378
  year: 2007
  end-page: 1385
  publication-title: J. Am. Chem. Soc.
– volume: 316
  start-page: 453
  year: 2007
  end-page: 457
  publication-title: Science
– volume: 66
  start-page: 427
  year: 1982
  end-page: 438
  publication-title: Cancer Treat. Rep.
– volume: 499
  start-page: 320
  year: 2013
  end-page: 323
  publication-title: Nature
– volume: 109
  start-page: 10795
  year: 2005
  end-page: 10797
  publication-title: J. Phys. Chem. A
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 103
  start-page: 9100
  year: 1999
  end-page: 9108
  publication-title: J. Phys. Chem. A
– ident: e_1_2_8_119_2
  doi: 10.1002/chem.201501593
– ident: e_1_2_8_37_1
– ident: e_1_2_8_87_2
  doi: 10.1021/ja511649n
– ident: e_1_2_8_111_1
– ident: e_1_2_8_112_2
  doi: 10.1002/(SICI)1521-3773(19991203)38:23<3510::AID-ANIE3510>3.0.CO;2-#
– ident: e_1_2_8_104_2
  doi: 10.1021/jp991564w
– ident: e_1_2_8_14_1
  doi: 10.1038/s41586-019-0894-z
– ident: e_1_2_8_85_1
– ident: e_1_2_8_51_2
  doi: 10.1021/jp054088k
– ident: e_1_2_8_69_1
  doi: 10.1002/chem.200390006
– ident: e_1_2_8_95_1
  doi: 10.1021/acscatal.1c00898
– ident: e_1_2_8_1_1
  doi: 10.1021/ja00994a053
– ident: e_1_2_8_10_1
– ident: e_1_2_8_97_1
– ident: e_1_2_8_56_2
  doi: 10.1021/cr030722j
– ident: e_1_2_8_62_2
  doi: 10.1021/bi801695d
– ident: e_1_2_8_12_2
  doi: 10.1002/0471435139.tox055.pub2
– ident: e_1_2_8_52_1
  doi: 10.1021/jacs.0c01786
– ident: e_1_2_8_8_2
  doi: 10.1021/acschemneuro.0c00615
– ident: e_1_2_8_98_2
  doi: 10.1002/jcc.20495
– ident: e_1_2_8_38_2
  doi: 10.1063/1.464304
– ident: e_1_2_8_83_2
  doi: 10.1021/ja036506
– ident: e_1_2_8_94_1
  doi: 10.1021/acscatal.1c05116
– ident: e_1_2_8_23_1
– ident: e_1_2_8_53_1
– ident: e_1_2_8_36_2
  doi: 10.1021/ja0370387
– ident: e_1_2_8_39_2
  doi: 10.1063/1.464913
– ident: e_1_2_8_22_1
  doi: 10.1021/jacs.0c03431
– ident: e_1_2_8_71_1
  doi: 10.1021/ja107514f
– ident: e_1_2_8_57_2
  doi: 10.1016/S0969-2126(01)00695-5
– ident: e_1_2_8_48_1
– ident: e_1_2_8_121_2
  doi: 10.1002/chem.202202995
– ident: e_1_2_8_28_2
  doi: 10.1021/ja049106a
– ident: e_1_2_8_110_2
  doi: 10.1002/chem.201700405
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.2015931118
– ident: e_1_2_8_27_2
  doi: 10.1021/bi035198p
– ident: e_1_2_8_65_2
  doi: 10.1021/jacs.9b02659
– ident: e_1_2_8_80_1
  doi: 10.1038/nature21681
– ident: e_1_2_8_24_2
  doi: 10.1021/ja9604370
– ident: e_1_2_8_63_1
  doi: 10.1021/acscatal.3c00174
– ident: e_1_2_8_82_1
– ident: e_1_2_8_84_2
  doi: 10.1021/jacs.6b06987
– ident: e_1_2_8_120_2
  doi: 10.1021/jacs.6b03846
– ident: e_1_2_8_123_2
  doi: 10.1021/acs.est.8b00601
– ident: e_1_2_8_50_2
  doi: 10.1063/1.477096
– ident: e_1_2_8_9_2
  doi: 10.1038/s41598-022-26607-y
– ident: e_1_2_8_46_2
  doi: 10.1039/D0CP03598J
– ident: e_1_2_8_4_2
  doi: 10.1016/S0039-6109(05)70141-9
– ident: e_1_2_8_78_2
  doi: 10.1126/science.287.5450.122
– ident: e_1_2_8_60_1
– ident: e_1_2_8_19_1
– ident: e_1_2_8_41_1
– ident: e_1_2_8_105_2
  doi: 10.1021/cr9904009
– ident: e_1_2_8_73_1
  doi: 10.1126/science.1078020
– ident: e_1_2_8_55_3
  doi: 10.1002/ange.200803740
– ident: e_1_2_8_107_2
  doi: 10.1021/cr020436s
– ident: e_1_2_8_34_2
  doi: 10.1038/nature11880
– ident: e_1_2_8_96_1
  doi: 10.1021/acscatal.9b00456
– ident: e_1_2_8_43_2
  doi: 10.1021/ja00105a033
– ident: e_1_2_8_45_1
– ident: e_1_2_8_72_1
  doi: 10.1126/science.1134697
– ident: e_1_2_8_17_2
  doi: 10.1021/acs.inorgchem.1c00057
– ident: e_1_2_8_114_2
  doi: 10.1002/1096-987X(20001115)21:14<1243::AID-JCC3>3.0.CO;2-M
– ident: e_1_2_8_101_1
  doi: 10.1021/ct8000409
– ident: e_1_2_8_117_2
  doi: 10.1007/s00214-010-0827-2
– ident: e_1_2_8_70_1
  doi: 10.1021/bi701577q
– ident: e_1_2_8_44_2
  doi: 10.1021/ct5005214
– ident: e_1_2_8_40_2
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_8_67_1
  doi: 10.1039/C7CP02687K
– ident: e_1_2_8_32_1
– ident: e_1_2_8_74_1
  doi: 10.1021/ja025707v
– ident: e_1_2_8_66_2
  doi: 10.1002/cphc.202000025
– ident: e_1_2_8_25_2
  doi: 10.1021/ja980129x
– ident: e_1_2_8_11_2
  doi: 10.1016/0045-2068(79)90041-5
– ident: e_1_2_8_77_1
– ident: e_1_2_8_35_2
  doi: 10.1021/ja991839l
– ident: e_1_2_8_16_2
  doi: 10.1016/j.jcat.2021.04.010
– ident: e_1_2_8_58_3
  doi: 10.1002/ange.202112063
– ident: e_1_2_8_13_2
  doi: 10.1002/chem.202300957
– ident: e_1_2_8_33_2
  doi: 10.1002/(SICI)1097-0134(199710)29:2<141::AID-PROT2>3.0.CO;2-G
– ident: e_1_2_8_88_1
– ident: e_1_2_8_91_1
– ident: e_1_2_8_125_2
  doi: 10.1021/acscatal.1c01502
– ident: e_1_2_8_76_1
  doi: 10.1016/j.jcat.2023.02.021
– ident: e_1_2_8_118_2
  doi: 10.1021/ja067103n
– ident: e_1_2_8_15_1
– ident: e_1_2_8_68_1
  doi: 10.1021/acscatal.0c03349
– ident: e_1_2_8_64_1
– ident: e_1_2_8_21_2
  doi: 10.1021/jacs.9b06093
– ident: e_1_2_8_29_1
– ident: e_1_2_8_90_2
  doi: 10.1126/science.275.5299.515
– ident: e_1_2_8_99_2
  doi: 10.1063/1.3382344
– ident: e_1_2_8_102_1
– ident: e_1_2_8_26_1
– ident: e_1_2_8_54_2
  doi: 10.1038/nature12304
– ident: e_1_2_8_92_2
  doi: 10.1021/jacs.7b09560
– ident: e_1_2_8_100_1
– ident: e_1_2_8_109_2
  doi: 10.1017/S0033583502003827
– ident: e_1_2_8_58_2
  doi: 10.1002/anie.202112063
– ident: e_1_2_8_103_2
  doi: 10.1021/jp9716997
– ident: e_1_2_8_106_1
– ident: e_1_2_8_61_2
  doi: 10.1063/1.481336
– ident: e_1_2_8_6_2
  doi: 10.1038/s41598-022-20297-2
– ident: e_1_2_8_59_2
  doi: 10.1021/ja311078s
– ident: e_1_2_8_79_2
  doi: 10.1021/ja801251q
– ident: e_1_2_8_108_2
  doi: 10.1021/cr400388t
– ident: e_1_2_8_47_2
  doi: 10.1021/ic701194b
– ident: e_1_2_8_55_2
  doi: 10.1002/anie.200803740
– ident: e_1_2_8_113_2
  doi: 10.1039/a809385g
– ident: e_1_2_8_31_2
  doi: 10.1016/j.str.2015.03.002
– ident: e_1_2_8_86_2
  doi: 10.1021/jacs.7b05389
– ident: e_1_2_8_2_1
– ident: e_1_2_8_5_1
– ident: e_1_2_8_89_2
  doi: 10.1038/nature14160
– ident: e_1_2_8_116_2
  doi: 10.1002/jcc.20502
– ident: e_1_2_8_75_1
  doi: 10.1021/bi981838q
– ident: e_1_2_8_124_2
  doi: 10.1002/anie.200503841
– ident: e_1_2_8_30_2
  doi: 10.1073/pnas.0904553106
– ident: e_1_2_8_122_1
– volume: 66
  start-page: 427
  year: 1982
  ident: e_1_2_8_3_2
  publication-title: Cancer Treat. Rep.
  contributor:
    fullname: Weiss R. B.
– ident: e_1_2_8_7_2
  doi: 10.1038/s41387-022-00225-z
– ident: e_1_2_8_20_2
  doi: 10.1074/jbc.M401268200
– ident: e_1_2_8_49_1
– ident: e_1_2_8_93_2
  doi: 10.1021/jacs.1c01180
– ident: e_1_2_8_115_2
  doi: 10.1021/ja207065v
– ident: e_1_2_8_81_1
  doi: 10.1021/ja405047b
– ident: e_1_2_8_42_2
  doi: 10.1016/S0898-8838(08)60070-7
SSID ssj0009633
Score 2.4811194
Snippet SznF, a member of the emerging family of heme‐oxygenase‐like (HO‐like) di‐iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion...
SznF, a member of the emerging family of heme-oxygenase-like (HO-like) di-iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion...
Abstract SznF, a member of the emerging family of heme‐oxygenase‐like (HO‐like) di‐iron oxidases and oxygenases, employs two distinct domains to catalyze the...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202303845
SubjectTerms Catalysis
density functional calculations
Density functional theory
di-iron cluster
Hydroxylation
Iron
Iron - chemistry
N-hydroxylation
Oxygenases - chemistry
Stochasticity
Streptozocin
streptozotocin
Substrates
SznF
Title Mechanistic Insights into the N‐Hydroxylations Catalyzed by the Binuclear Iron Domain of SznF Enzyme: Key Piece in the Synthesis of Streptozotocin
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202303845
https://www.ncbi.nlm.nih.gov/pubmed/38212866
https://www.proquest.com/docview/2972042718/abstract/
https://search.proquest.com/docview/2919744548
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3CB8k4pyEhInNJmbefFrSxdbUGtEKVSb5GdjKUI1UGb7CE58RM48Av5JZ1JNikLByQ4JVHsxI-ZzDeO5xvGXlnQaZwnxpdKWl-ZXPlJLgofYoA0TNHmWopGPj2Llhfq_WV4-UsU_8APMS24kWb032tScG3qwxvSUOwTRZIjhJaJoihzYtMjVPTphj8KpWvIJa9inzhYR9bGQBxuV9-2Sn9AzW3k2puexT2mx0YPO06-HKwbc5B3v_E5_k-vdtndDS7lR4Mg3We3wD1gt-djOriH7McpUJBwz-vMT1xNTn3NS9dUHDEkP_v57fuyLaiJm911fE4rQ20HBTdtX-Zt6Yg9Wa_4yapy_F11pUvHK8vPO7fgx65rr-AN_wAt_1hCDvjwvtp56_BQl3VflGg4m6qrGpQq94hdLI4_z5f-JqWDn0uRhL4OQOpI2CJOEynRnQlkbEIRxDm6VdZCEiSptgryog_R1Ra9K7BWQhxoXQgtH7MdVzl4ynisIi3NTJgoliqUkCIywW-IRUQWFCaVHns9Tmn2dWDuyAaOZpHRKGfTKHtsf5zxbKPBdSZSSt8j0HR77OV0G8ecfqhoB9WayszQHVPo9HnsySAp06tQGNH0R5HHRD_ff2lDRgwY09Xev1R6xu7guaINcrNwn-00qzU8R8TUmBe9VlwDJhsPJw
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF9yNQwEhInNJmbefFDZaudml3hWgrcYvsZCxFqA7aZA_JiZ_AgV_IL2HsbFItHJDgFCWxEz9mMt84nm8IeaVBpnGeKJ8Lrn2hcuEnOSt8iAHSMEWbq2008nIVzS_Eh8_hsJvQxsL0_BDjgpvVDPe9tgpuF6SPrlhDsVM2lBwxNE9EeJ3cQJ0PnVf16YpBCuWrzyYvYt-ysA68jQE72q2_a5f-AJu72NUZn9ltooZm93tOvhxuGnWYd78xOv5Xv-6QW1toSt_2snSXXANzj-xPh4xw98mPJdg4YUftTBemtn59TUvTVBRhJF39_PZ93ha2jdsNdnRqF4faDgqqWlfmXWksgbJc08W6MvR9dSlLQytNzzozo8emay_hDT2Bln4sIQd8uKt21ho81GXtilomzqbqqgYFyzwgF7Pj8-nc32Z18HPOktCXAXAZMV3EacI5ejQBj1XIgjhHz0prSIIklVpAXrgoXanRwQKtOcSBlAWT_CHZM5WBx4TGIpJcTZiKYi5CDimCE_yMaARlQaFS7pHXw5xmX3vyjqynaWaZHeVsHGWPHAxTnm2VuM5YajP4MLTeHnk53sYxt_9UpIFqY8tM0CMT6Pd55FEvKuOreIK4IIkijzA34X9pQ2ZJMMazJ_9S6QXZn58vT7PTxerkKbmJ14XdLzcJD8hes97AMwRQjXruVOQXJNETSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70KggJGQOKXN2s6LG-x2tUvpqqJU6i1ykrEUoTrVJntITvwEDvxCfgnjZDdl4YAEpyiJnfgxk_nG8XwD8FqjisMsSl0hhXZlmkk3ynjuYogY-zHZXG2jkY8XwexMfjj3z3-J4u_5IYYFN6sZ3ffaKvhlrg-uSEOpTzaSnCC0iKR_HW7IQHAr15NPVwRSJF59MnkZupaEdUPb6PGD7frbZukPrLkNXTvbM70LatPqfsvJl_1Vne5n7W-Ejv_TrXtwZw1M2bteku7DNTQP4NZ4kw_uIXw_Rhsl3BE7s7mprFdfscLUJSMQyRY_vn6bNblt4np7HRvbpaGmxZylTVfmfWEsfbJasvmyNGxSXqjCsFKz09ZM2aFpmwt8y46wYScFZkgP76qdNoYOVVF1RS0PZ122ZU1iZR7B2fTw83jmrnM6uJngke8qD4UKuM7DOBKC_BlPhKnPvTAjv0prjLwoVlpilncxukqTe4VaCww9pXKuxC7smNLgE2ChDJRIRzwNQiF9gTFBE_qIaIJkXp7GwoE3mylNLnvqjqQnaeaJHeVkGGUH9jYznqxVuEp4bPP3cLLdDrwabtOY2z8qymC5smVG5I9J8voceNxLyvAqEREqiILAAd7N91_akFgKjOHs6b9Uegk3TybT5ON8cfQMbtNlaTfLjfw92KmXK3xO6KlOX3QK8hPaSRH4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Insights+into+the+N%E2%80%90Hydroxylations+Catalyzed+by+the+Binuclear+Iron+Domain+of+SznF+Enzyme%3A+Key+Piece+in+the+Synthesis+of+Streptozotocin&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Rui%E2%80%90Ning+Li&rft.au=Shi%E2%80%90Lu+Chen&rft.date=2024-03-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=16&rft_id=info:doi/10.1002%2Fchem.202303845&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon