Skin microcirculatory responses: A potential marker for early diabetic neuropathy assessment using a low‐cost portable diffuse optical spectrometry device
Diffuse optical measurement is an evolving optical modality providing a fast and portable solution for microcirculation assessment. Diffuse optics in static and dynamic modalities are combined here in a system to assess hemodynamics in skin tissues of control and diabetic subjects. The in‐house deve...
Saved in:
Published in | Journal of biophotonics Vol. 17; no. 3; pp. e202300335 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.03.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diffuse optical measurement is an evolving optical modality providing a fast and portable solution for microcirculation assessment. Diffuse optics in static and dynamic modalities are combined here in a system to assess hemodynamics in skin tissues of control and diabetic subjects. The in‐house developed system consists of a laser source, fiber optic probe, a low‐cost avalanche photodiode, a finite element model (FEM) derived static optical property estimator, and a software correlator for continuous flow monitoring through microvasculature. The studies demonstrated that the system quantifies the changes in blood flow rate in the immediate skin subsurface. The system is calibrated with in vitro flow models and a proof‐of‐concept was demonstrated on a limited number of subjects in a clinical environment. The flow changes in response to vasoconstrictive and vasodilative stimuli were analyzed and used to classify different stages of diabetes, including diabetic neuropathy.
The system is proposed and demonstrated for estimating skin perfusion at lower extremities subjects with varying stages of diabetes mellitus. The novel concept of employing diffuse correlation spectroscopy at short source to detector separation and utilization of a static parameter estimator from a pre‐defined look‐up table modelled from human skin tissue parameters using FEM provides a viable alternative to detect the onset of diabetic neuropathy via assessing microcirculation. |
---|---|
AbstractList | Diffuse optical measurement is an evolving optical modality providing a fast and portable solution for microcirculation assessment. Diffuse optics in static and dynamic modalities are combined here in a system to assess hemodynamics in skin tissues of control and diabetic subjects. The in‐house developed system consists of a laser source, fiber optic probe, a low‐cost avalanche photodiode, a finite element model (FEM) derived static optical property estimator, and a software correlator for continuous flow monitoring through microvasculature. The studies demonstrated that the system quantifies the changes in blood flow rate in the immediate skin subsurface. The system is calibrated with in vitro flow models and a proof‐of‐concept was demonstrated on a limited number of subjects in a clinical environment. The flow changes in response to vasoconstrictive and vasodilative stimuli were analyzed and used to classify different stages of diabetes, including diabetic neuropathy.
The system is proposed and demonstrated for estimating skin perfusion at lower extremities subjects with varying stages of diabetes mellitus. The novel concept of employing diffuse correlation spectroscopy at short source to detector separation and utilization of a static parameter estimator from a pre‐defined look‐up table modelled from human skin tissue parameters using FEM provides a viable alternative to detect the onset of diabetic neuropathy via assessing microcirculation. Diffuse optical measurement is an evolving optical modality providing a fast and portable solution for microcirculation assessment. Diffuse optics in static and dynamic modalities are combined here in a system to assess hemodynamics in skin tissues of control and diabetic subjects. The in-house developed system consists of a laser source, fiber optic probe, a low-cost avalanche photodiode, a finite element model (FEM) derived static optical property estimator, and a software correlator for continuous flow monitoring through microvasculature. The studies demonstrated that the system quantifies the changes in blood flow rate in the immediate skin subsurface. The system is calibrated with in vitro flow models and a proof-of-concept was demonstrated on a limited number of subjects in a clinical environment. The flow changes in response to vasoconstrictive and vasodilative stimuli were analyzed and used to classify different stages of diabetes, including diabetic neuropathy.Diffuse optical measurement is an evolving optical modality providing a fast and portable solution for microcirculation assessment. Diffuse optics in static and dynamic modalities are combined here in a system to assess hemodynamics in skin tissues of control and diabetic subjects. The in-house developed system consists of a laser source, fiber optic probe, a low-cost avalanche photodiode, a finite element model (FEM) derived static optical property estimator, and a software correlator for continuous flow monitoring through microvasculature. The studies demonstrated that the system quantifies the changes in blood flow rate in the immediate skin subsurface. The system is calibrated with in vitro flow models and a proof-of-concept was demonstrated on a limited number of subjects in a clinical environment. The flow changes in response to vasoconstrictive and vasodilative stimuli were analyzed and used to classify different stages of diabetes, including diabetic neuropathy. Diffuse optical measurement is an evolving optical modality providing a fast and portable solution for microcirculation assessment. Diffuse optics in static and dynamic modalities are combined here in a system to assess hemodynamics in skin tissues of control and diabetic subjects. The in‐house developed system consists of a laser source, fiber optic probe, a low‐cost avalanche photodiode, a finite element model (FEM) derived static optical property estimator, and a software correlator for continuous flow monitoring through microvasculature. The studies demonstrated that the system quantifies the changes in blood flow rate in the immediate skin subsurface. The system is calibrated with in vitro flow models and a proof‐of‐concept was demonstrated on a limited number of subjects in a clinical environment. The flow changes in response to vasoconstrictive and vasodilative stimuli were analyzed and used to classify different stages of diabetes, including diabetic neuropathy. |
Author | Unni, Sujatha Narayanan Vasudevan, Vysakh |
Author_xml | – sequence: 1 givenname: Vysakh orcidid: 0000-0001-5421-0925 surname: Vasudevan fullname: Vasudevan, Vysakh organization: Department of Applied Mechanics and Biomedical Engineering, IIT Madras – sequence: 2 givenname: Sujatha Narayanan orcidid: 0000-0002-7607-8192 surname: Unni fullname: Unni, Sujatha Narayanan email: nsujatha@iitm.ac.in organization: Department of Applied Mechanics and Biomedical Engineering, IIT Madras |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38116917$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1uFDEURi2UiCQLLSWyREOzy7U9Px66EAEJipQCkOhGtucOeOMZD7aHaDoegQfg6XiSONpkkWio7i3O-Wzd74QcjH5EQp4x2DAA_mqrrd9w4AJAiPIROWayKtZQFfJgv4svR-Qkxi1ABaIUj8mRkIxVDauPye-P13akgzXBGxvM7FTyYaEB4-THiPE1PaWTTzgmqxwdVLjGQHsfKKrgFtpZpTFZQ0ecg59U-rZQFbMXh6zQOdrxK1XU-Zs_P38ZH1MOC0lph1nt-zki9VP2c3ac0KTgB0z5_Q5_WINPyGGvXMSn93NFPr97--nsfH159f7i7PRybQSX5Zp3CioppUYpKgmCa92Jkuuaga45B9VxoWSpuAZAplXdF6xoirqWUFasMWJFXu5yp-C_zxhTO9ho0Dk1op9jyxsoWFk3ssjoi3_QrZ_DmH-XqVrkSJHHijy_p2Y9YNdOwebTLe3D3TOw2QH57jEG7PcIg_au2Pau2HZfbBaanXBjHS7_odsPby6u_rq3bYyqJA |
Cites_doi | 10.1002/cnm.3546 10.3389/fmed.2019.00050 10.1088/0034-4885/73/7/076701 10.1016/j.diabres.2019.107843 10.1007/s11892-014-0541-x 10.2337/dc10-1303 10.1159/000081810 10.1002/dmrr.1004 10.1007/BF00250890 10.1364/OL.30.002915 10.3390/app10082850 10.18287/JBPE16.02.030201 10.3389/fphys.2018.00001 10.1161/CIRCIMAGING.114.002123 10.1038/nature03875 10.1117/12.3007924 10.1002/mrm.1910300314 10.1117/12.2621523 10.1364/BOE.8.003993 10.1177/000331979204300606 10.1152/ajpregu.00177.2019 10.1111/j.1464-5491.1995.tb00480.x 10.1007/s10103-007-0524-0 10.1117/1.JBO.21.9.095003 10.1364/AO.34.000022 10.1016/j.diabres.2020.108072 10.1117/12.2502071 10.1364/JOSAA.14.000192 10.1111/micc.12254 10.1002/mrm.1910230106 10.2174/157340512803759875 10.1007/BF00410286 10.1111/j.1464-5491.2008.02609.x 10.2337/dc12-s064 10.1007/BF02374471 10.2337/diabetes.51.4.1214 10.1161/CIR.0000000000000708 10.1111/srt.12919 10.1177/1932296814551044 10.1016/j.neuroimage.2013.06.017 10.1117/1.JBO.19.7.077002 10.2337/diacare.24.2.250 10.14326/abe.6.53 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
DOI | 10.1002/jbio.202300335 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Biotechnology Research Abstracts Technology Research Database Electronics & Communications Abstracts ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1864-0648 |
EndPage | n/a |
ExternalDocumentID | 38116917 10_1002_jbio_202300335 JBIO202300335 |
Genre | researchArticle Journal Article |
GroupedDBID | --- 05W 0R~ 1OC 31~ 33P 3SF 4.4 52U 52V 53G 5DZ 5GY 66C 8-0 8-1 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F5P FEDTE FUBAC G-S GODZA HGLYW HVGLF HZ~ IX1 KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WOHZO WXSBR XV2 ZZTAW AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
ID | FETCH-LOGICAL-c3285-2da06888be8368032bbd352b710b7220ad23a85a2b00e1ba7f4149477805619c3 |
IEDL.DBID | DR2 |
ISSN | 1864-063X 1864-0648 |
IngestDate | Thu Jul 10 18:52:32 EDT 2025 Fri Jul 25 12:08:05 EDT 2025 Mon Jul 21 05:45:30 EDT 2025 Tue Jul 01 01:55:10 EDT 2025 Wed Aug 20 07:25:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | finite element modelling diffuse reflectance spectroscopy diabetic neuropathy diffuse correlation spectroscopy microcirculation Diabetes mellitus |
Language | English |
License | 2023 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3285-2da06888be8368032bbd352b710b7220ad23a85a2b00e1ba7f4149477805619c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7607-8192 0000-0001-5421-0925 |
PMID | 38116917 |
PQID | 2973780397 |
PQPubID | 1006377 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2904157984 proquest_journals_2973780397 pubmed_primary_38116917 crossref_primary_10_1002_jbio_202300335 wiley_primary_10_1002_jbio_202300335_JBIO202300335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-Mar 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany – name: Jena |
PublicationTitle | Journal of biophotonics |
PublicationTitleAlternate | J Biophotonics |
PublicationYear | 2024 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2017; 6 2021; 27 2017; 8 2020; 162 1995; 38 2002; 51 1995; 34 2017; 10059 2020; 10 2023; 3 2018; 108200 1993; 36 2018; 9 2009; 2009 1997; 14 1993; 30 2005; 30 2019; 157 2014; 14 2014; 19 1992; 43 2014; 7 2022; 38 2010; 73 1983; 25 2010; 33 2004; 41 2009; 25 2009; 24 2019; 6 2023; 1260811 1995; 12 2005; 436 2004 2014; 2014 2019; 140 2014; 85 2015; 9 2012; 35 2001; 24 2011; 6 2022; 1214709 2009; 26 1991; 6 2014; 81 2016; 2 2016; 21 1992; 23 2020; 318 2016; 23 2012; 8 2020; 29 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 Farzam P. (e_1_2_9_46_1) 2014 e_1_2_9_10_1 Yodh A. G. (e_1_2_9_30_1) 2009; 2009 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 Diabetes D. O. F. (e_1_2_9_48_1) 2012; 35 Vysakh V. (e_1_2_9_37_1) 2020; 29 Dougherty R. L. (e_1_2_9_42_1) 1991; 6 e_1_2_9_14_1 Durduran T. (e_1_2_9_44_1) 2004 e_1_2_9_16_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 General Assembly of the World Medical Association (e_1_2_9_47_1) 2014; 81 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 Jayanthy A. K. (e_1_2_9_20_1) 2011; 6 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Parthasarathy A. B. (e_1_2_9_28_1) 2017; 10059 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Vasudevan V. (e_1_2_9_39_1) 2023; 3 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 10059 start-page: 1 year: 2017 publication-title: Spectroscopy – volume: 19 year: 2014 publication-title: J. Biomed. Opt. – volume: 1214709 start-page: 13 year: 2022 publication-title: Tissue Opt. Photonics II – volume: 436 start-page: 193 year: 2005 publication-title: Nature – volume: 14 start-page: 541 year: 2014 publication-title: Curr. Diab. Rep. – volume: 27 start-page: 138 year: 2021 publication-title: Skin Res. Technol. – volume: 6 start-page: 1991 year: 1991 publication-title: AIAA 26th Thermophys. Conf. – volume: 36 start-page: 907 year: 1993 publication-title: Diabetologia – volume: 25 start-page: 604 year: 2009 publication-title: Diabetes Metab. Res. Rev. – volume: 38 start-page: 474 year: 1995 publication-title: Diabetologia – volume: 30 start-page: 2915 year: 2005 publication-title: Opt. Lett. – volume: 30 start-page: 361 year: 1993 publication-title: Magn. Reson. Med. – volume: 51 start-page: 1214 year: 2002 publication-title: Diabetes – volume: 73 year: 2010 publication-title: Rep. Prog. Phys. – volume: 2014 year: 2014 – volume: 3 start-page: 434 year: 2023 publication-title: Int. Electr. Eng. Congr. – volume: 23 start-page: 44 year: 2016 publication-title: Microcirculation – volume: 9 start-page: 1 year: 2018 publication-title: Front. Physiol. – volume: 24 start-page: 269 year: 2009 publication-title: Lasers Med. Sci. – volume: 2009 start-page: 1991 year: 2009 publication-title: EMBC – volume: 35 start-page: S64 year: 2012 publication-title: Diabetes Care – volume: 34 start-page: 22 year: 1995 publication-title: Appl. Opt. – year: 2004 – volume: 162 start-page: 108072 year: 2020 publication-title: Diabetes Res. Clin. Pract. – volume: 157 start-page: 107843 year: 2019 publication-title: Diabetes Res. Clin. Pract. – volume: 10 start-page: 1 year: 2020 publication-title: Appl. Sci. – volume: 6 start-page: 53 year: 2017 publication-title: Adv. Biomed. Eng. – volume: 14 start-page: 192 year: 1997 publication-title: J. Opt. Soc. Am. A – volume: 6 start-page: 1 year: 2019 publication-title: Front. Med. – volume: 38 start-page: 18 year: 2022 publication-title: Int. J. Numer. Method. Biomed. Eng. – volume: 81 start-page: 14 year: 2014 publication-title: J. Am. Coll. Dent. – volume: 2 year: 2016 publication-title: J. Biomed. Photonics Eng. – volume: 26 start-page: 83 year: 2009 publication-title: Diabet. Med. – volume: 8 start-page: 3993 year: 2017 publication-title: Biomed. Opt. Express – volume: 108200 start-page: 24 year: 2018 publication-title: Opt. Health Care Biomed. Opt. VIII – volume: 9 start-page: 123 year: 2015 publication-title: J. Diabetes Sci. Technol. – volume: 318 start-page: R57 year: 2020 publication-title: Am. J. Physiol. Integr. Comp. Physiol. – volume: 140 year: 2019 publication-title: Circulation – volume: 25 start-page: 73 year: 1983 publication-title: Diabetologia – volume: 85 start-page: 51 year: 2014 publication-title: Neuroimage – volume: 33 start-page: 2285 year: 2010 publication-title: Diabetes Care – volume: 23 start-page: 37 year: 1992 publication-title: Magn. Reson. Med. – volume: 1260811 start-page: 36 year: 2023 publication-title: Biomed. Imaging Sens. Conf. – volume: 12 start-page: 298 year: 1995 publication-title: Diabet. Med. – volume: 29 start-page: 115 year: 2020 publication-title: Asian J. Phys. – volume: 41 start-page: 535 year: 2004 publication-title: J. Vasc. Res. – volume: 6 start-page: 203 year: 2011 publication-title: Int. J. Recent Res. Appl. Stud. – volume: 43 start-page: 490 year: 1992 publication-title: Angiology – volume: 7 start-page: 836 year: 2014 publication-title: Circ. Cardiovasc. Imaging – volume: 21 year: 2016 publication-title: J. Biomed. Opt. – volume: 24 start-page: 250 year: 2001 publication-title: Diabetes Care – volume: 8 start-page: 194 year: 2012 publication-title: Curr. Med. Imaging Rev. – ident: e_1_2_9_41_1 doi: 10.1002/cnm.3546 – volume: 81 start-page: 14 year: 2014 ident: e_1_2_9_47_1 publication-title: J. Am. Coll. Dent. – ident: e_1_2_9_18_1 doi: 10.3389/fmed.2019.00050 – ident: e_1_2_9_29_1 doi: 10.1088/0034-4885/73/7/076701 – ident: e_1_2_9_2_1 doi: 10.1016/j.diabres.2019.107843 – volume-title: ICFO Inst. Photonic Sci year: 2014 ident: e_1_2_9_46_1 – ident: e_1_2_9_5_1 doi: 10.1007/s11892-014-0541-x – ident: e_1_2_9_4_1 doi: 10.2337/dc10-1303 – ident: e_1_2_9_8_1 doi: 10.1159/000081810 – ident: e_1_2_9_13_1 doi: 10.1002/dmrr.1004 – ident: e_1_2_9_53_1 doi: 10.1007/BF00250890 – ident: e_1_2_9_31_1 doi: 10.1364/OL.30.002915 – ident: e_1_2_9_35_1 doi: 10.3390/app10082850 – volume: 3 start-page: 434 year: 2023 ident: e_1_2_9_39_1 publication-title: Int. Electr. Eng. Congr. – ident: e_1_2_9_25_1 doi: 10.18287/JBPE16.02.030201 – ident: e_1_2_9_49_1 doi: 10.3389/fphys.2018.00001 – ident: e_1_2_9_17_1 doi: 10.1161/CIRCIMAGING.114.002123 – ident: e_1_2_9_12_1 doi: 10.1038/nature03875 – ident: e_1_2_9_40_1 doi: 10.1117/12.3007924 – ident: e_1_2_9_15_1 doi: 10.1002/mrm.1910300314 – ident: e_1_2_9_38_1 doi: 10.1117/12.2621523 – volume: 10059 start-page: 1 year: 2017 ident: e_1_2_9_28_1 publication-title: Spectroscopy – ident: e_1_2_9_45_1 doi: 10.1364/BOE.8.003993 – ident: e_1_2_9_52_1 doi: 10.1177/000331979204300606 – ident: e_1_2_9_21_1 doi: 10.1152/ajpregu.00177.2019 – ident: e_1_2_9_50_1 doi: 10.1111/j.1464-5491.1995.tb00480.x – volume-title: Non‐invasive Measurements of Tissue Hemodynamics with Hybrid Diffuse Optical Methods year: 2004 ident: e_1_2_9_44_1 – volume: 2009 start-page: 1991 year: 2009 ident: e_1_2_9_30_1 publication-title: EMBC – ident: e_1_2_9_22_1 doi: 10.1007/s10103-007-0524-0 – ident: e_1_2_9_34_1 doi: 10.1117/1.JBO.21.9.095003 – ident: e_1_2_9_32_1 doi: 10.1364/AO.34.000022 – volume: 6 start-page: 203 year: 2011 ident: e_1_2_9_20_1 publication-title: Int. J. Recent Res. Appl. Stud. – ident: e_1_2_9_3_1 doi: 10.1016/j.diabres.2020.108072 – ident: e_1_2_9_23_1 doi: 10.1117/12.2502071 – ident: e_1_2_9_43_1 doi: 10.1364/JOSAA.14.000192 – ident: e_1_2_9_14_1 doi: 10.1111/micc.12254 – volume: 6 start-page: 1991 year: 1991 ident: e_1_2_9_42_1 publication-title: AIAA 26th Thermophys. Conf. – ident: e_1_2_9_16_1 doi: 10.1002/mrm.1910230106 – ident: e_1_2_9_26_1 doi: 10.2174/157340512803759875 – ident: e_1_2_9_51_1 doi: 10.1007/BF00410286 – ident: e_1_2_9_11_1 doi: 10.1111/j.1464-5491.2008.02609.x – volume: 35 start-page: S64 year: 2012 ident: e_1_2_9_48_1 publication-title: Diabetes Care doi: 10.2337/dc12-s064 – ident: e_1_2_9_10_1 doi: 10.1007/BF02374471 – ident: e_1_2_9_9_1 doi: 10.2337/diabetes.51.4.1214 – ident: e_1_2_9_19_1 doi: 10.1161/CIR.0000000000000708 – ident: e_1_2_9_24_1 doi: 10.1111/srt.12919 – ident: e_1_2_9_6_1 doi: 10.1177/1932296814551044 – ident: e_1_2_9_27_1 doi: 10.1016/j.neuroimage.2013.06.017 – volume: 29 start-page: 115 year: 2020 ident: e_1_2_9_37_1 publication-title: Asian J. Phys. – ident: e_1_2_9_36_1 doi: 10.1117/1.JBO.19.7.077002 – ident: e_1_2_9_7_1 doi: 10.2337/diacare.24.2.250 – ident: e_1_2_9_33_1 doi: 10.14326/abe.6.53 |
SSID | ssj0060353 |
Score | 2.3475618 |
Snippet | Diffuse optical measurement is an evolving optical modality providing a fast and portable solution for microcirculation assessment. Diffuse optics in static... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202300335 |
SubjectTerms | Avalanche diodes Blood flow Diabetes mellitus Diabetic neuropathy diffuse correlation spectroscopy diffuse reflectance spectroscopy Fiber optics Finite element method finite element modelling Hemodynamics Mathematical models microcirculation Microvasculature Optic neuropathy Optical measurement Optical properties Optics Photodiodes Portable equipment Skin Spectrometry |
Title | Skin microcirculatory responses: A potential marker for early diabetic neuropathy assessment using a low‐cost portable diffuse optical spectrometry device |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202300335 https://www.ncbi.nlm.nih.gov/pubmed/38116917 https://www.proquest.com/docview/2973780397 https://www.proquest.com/docview/2904157984 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPdEDzwJpCxokpJ7SZp2Xy60gqlIJkKpW2lvkcbxo-9isNlmhcuIn8AP4dfwSZuzd0IUDEtwS5WEn9oy_sT9_A_CSXOL0gRrFBaOROHOFiQ0xkBtkVIxG7DbJkzHffyiOz7OTYT68tYs_6EP0E25iGd5fi4Ebavd_iYZe0Fg27zGETtJUdpkLYUtQ0WmvH1UkqZehHOgii3ksHi5VGxO1v_r46qj0B9RcRa5-6Dm6B2ZZ6cA4udybd7Rnv_ym5_g_X3Uf7i5wKR6GjvQA1tzkIWzcUit8BN8lURdeC4PPjmfCX5UFepwFlq1rX-EhTptO6Ef8pmvh_cyQMTE6EVHGMMs7tuglNCUT8g2aXhcUhYD_CQ1eNZ9_fP1mm7ZDHxrQlUPJ4jJvHTZTP_OOfnuo6Cx0XH7txNltwvnR27M3x_EiuUNsU6XzWNVG8t1ocjrlfpIqoprBIDHioVKpxNQqNTo3iv2CG5ApRxkHc1kpORg46LPpY1ifNBP3FDBRVNvcOgYfHNyR1jUPuLktHBn2T2UZwe6ycatp0PCoglqzquR_V_3_jmBn2fbVwpbbSrJ7cakM3CJ40V9mK5SlFTNxzVzuEamD8kBnETwJfaYvSqpVcFQcgfIt_5c6VCev333sz7b-5aFtuMPHWaDK7cB6N5u7Z4ydOnru7eMnftIUEQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3o9AgUFC4pQ267xcbuVRbUtbJNRKvUUex4sW2s1qNysEJ34CP4Bfxy9hxt4EFg5IcMzTTuwZf2N__gbgCbnE6S01igtGI3HmChMbYiA3yKgYjdhtkidjHhwWw-Ns7yTv2ISyFyboQ_QTbmIZ3l-LgcuE9OZP1dD3NJbde4yhkzTNz8MFSest8vkv3_YKUkWSeiHKgS6ymEfjk063MVGbq8-vjkt_gM1V7OoHn52rQF21A-fkw8aipQ37-TdFx__6rmtwZQlNcTv0petwzk1uwOVfBAtvwjfJ1YVnQuKz45lQWGWNHmeBaOvmz3Abp00rDCR-05lQf2bIsBid6ChjmOgdW_QqmpIM-ROaXhoUhYP_Dg2eNh-_f_lqm3mLPjqgU4eSyGUxd9hM_eQ7-h2iIrXQcvm1E393C453Xh29GMbL_A6xTZXOY1UbSXmjyemUu0qqiGrGg8Sgh0qlElOr1OjcKHYNbkCmHGUcz2WlpGHguM-mt2Ft0kzcXcBEUW1z6xh_cHxHWtc85ua2cGTYRZVlBE-71q2mQcajCoLNqpL_XfX_O4L1rvGrpTnPK0nwxaUydovgcX-ZDVFWV8zENQu5R9QOyi2dRXAndJq-KKlWwYFxBMo3_V_qUO09333TH937l4cewcXh0cF-tb97-Po-XOLzWWDOrcNaO1u4BwylWnrojeUHr8MYLQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-P8JFBgkJE5ps47jZLkVyqotUBCi0t4i23HQQrtZ7WaF4NRH6APwdH2Szti7oQsHJDjm107sGX9jf_4G4JlxiSv6oo4VoZFYOqVjbQjI9aRRdU1u03gy5rt9tXMg94bZ8Nwu_qAP0U24sWV4f80GPqnqzV-ioV_MiDfvEYRO0jS7CJekSvqcvGH7YycgpZLU61D2CiVjGoyHS9nGRGyuPr86LP2BNVehqx97BtdBL2sdKCdfN-at2bA_fhN0_J_PugHXFsAUt0JPugkX3PgWXD0nV3gbfnKmLjxiCp8dTZnAyiv0OA00Wzd7gVs4aVrmH9Gbjpj4M0UCxehYRRnDNO_IotfQ5FTI31F3wqDIDPzPqPGw-XZ6fGKbWYs-NjCHDjmNy3zmsJn4qXf0-0NZaKGl8ivH3u4OHAxef3q1Ey-yO8Q2FUUWi0pzwpvCuCKljpIKYypCg4Ygj8mFSHQlUl1kWpBjcD2j81pSNCdzTsJAUZ9N78LauBm7-4CJMJXNrCP0QdGdKYqKRtzMKmc0Oag8j-D5snHLSRDxKINcsyj5f5fd_45gfdn25cKYZyWn96JSCblF8LS7TGbIayt67Jo538NaB3m_kBHcC32mK4qrpSgsjkD4lv9LHcq9l7vvu6MH__LQE7j8YXtQvt3df_MQrtBpGWhz67DWTufuEeGo1jz2pnIGWB4W3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin+microcirculatory+responses%3A+A+potential+marker+for+early+diabetic+neuropathy+assessment+using+a+low%E2%80%90cost+portable+diffuse+optical+spectrometry+device&rft.jtitle=Journal+of+biophotonics&rft.au=Vasudevan%2C+Vysakh&rft.au=Unni%2C+Sujatha+Narayanan&rft.date=2024-03-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=17&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjbio.202300335&rft.externalDBID=10.1002%252Fjbio.202300335&rft.externalDocID=JBIO202300335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon |