Engineering Detrimental Functional Groups in Conductive Additives Toward High‐Performance All‐Solid‐State Batteries

Conductive additives are of great importance for the adequate utilization of active materials in all‐solid‐state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide el...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 22; pp. e202400074 - n/a
Main Authors Li, Jianqing, Xu, Daren, Yao, Shiyu, Du, Fei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conductive additives are of great importance for the adequate utilization of active materials in all‐solid‐state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide electrolytes, leading to sluggish ion transportation and accelerated performance degradation. Herein, a simple hydrogen thermal reduction process is proposed on a commonly used conductive additive Super P, which effectively removes the surface oxygen functional groups and weakens the interfacial side reactions with sulfide. With a small amount of 1 wt % reduced Super P, ASSLBs demonstrates a competitive capacity of 180.2 mAh g−1, which is much higher than the 130.8 mAh g−1 of untreated Super P. Impressively, reduced Super P based ASSLBs also exhibit a higher capacity retention of 81.8 % than 64.6 % of untreated Super P. The cathode interfacial chemical evolutions reveal that reduced Super P could effectively alleviate the side reactions of sulfide. Reduced Super P shows better reversible capacity compared to reduced carbon nanofiber with almost no loss of capacity retention, due to its more complete conductive network. Our results highlight the importance of oxygen‐containing functional groups for conductive additives, lightening the prospect of low‐cost 0D conductive additives for practical ASSLBs. Hydrogen thermal reduction process removed oxygen‐containing functional groups on the surface of Super P, thereby weakening interface side reactions with sulfide benefits Li‐ion migration. Only 1 wt % reduced Super P based ASSLBs exhibited better reversible capacity of 180.2 mA g−1 at 0.1 C and high capacity retention of 81.8 % after 40 cycles, and 130.8 mAh g−1 64.6 % for Super P.
AbstractList Conductive additives are of great importance for the adequate utilization of active materials in all-solid-state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide electrolytes, leading to sluggish ion transportation and accelerated performance degradation. Herein, a simple hydrogen thermal reduction process is proposed on a commonly used conductive additive Super P, which effectively removes the surface oxygen functional groups and weakens the interfacial side reactions with sulfide. With a small amount of 1 wt % reduced Super P, ASSLBs demonstrates a competitive capacity of 180.2 mAh g , which is much higher than the 130.8 mAh g of untreated Super P. Impressively, reduced Super P based ASSLBs also exhibit a higher capacity retention of 81.8 % than 64.6 % of untreated Super P. The cathode interfacial chemical evolutions reveal that reduced Super P could effectively alleviate the side reactions of sulfide. Reduced Super P shows better reversible capacity compared to reduced carbon nanofiber with almost no loss of capacity retention, due to its more complete conductive network. Our results highlight the importance of oxygen-containing functional groups for conductive additives, lightening the prospect of low-cost 0D conductive additives for practical ASSLBs.
Conductive additives are of great importance for the adequate utilization of active materials in all-solid-state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide electrolytes, leading to sluggish ion transportation and accelerated performance degradation. Herein, a simple hydrogen thermal reduction process is proposed on a commonly used conductive additive Super P, which effectively removes the surface oxygen functional groups and weakens the interfacial side reactions with sulfide. With a small amount of 1 wt % reduced Super P, ASSLBs demonstrates a competitive capacity of 180.2 mAh g-1, which is much higher than the 130.8 mAh g-1 of untreated Super P. Impressively, reduced Super P based ASSLBs also exhibit a higher capacity retention of 81.8 % than 64.6 % of untreated Super P. The cathode interfacial chemical evolutions reveal that reduced Super P could effectively alleviate the side reactions of sulfide. Reduced Super P shows better reversible capacity compared to reduced carbon nanofiber with almost no loss of capacity retention, due to its more complete conductive network. Our results highlight the importance of oxygen-containing functional groups for conductive additives, lightening the prospect of low-cost 0D conductive additives for practical ASSLBs.
Conductive additives are of great importance for the adequate utilization of active materials in all‐solid‐state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide electrolytes, leading to sluggish ion transportation and accelerated performance degradation. Herein, a simple hydrogen thermal reduction process is proposed on a commonly used conductive additive Super P, which effectively removes the surface oxygen functional groups and weakens the interfacial side reactions with sulfide. With a small amount of 1 wt % reduced Super P, ASSLBs demonstrates a competitive capacity of 180.2 mAh g−1, which is much higher than the 130.8 mAh g−1 of untreated Super P. Impressively, reduced Super P based ASSLBs also exhibit a higher capacity retention of 81.8 % than 64.6 % of untreated Super P. The cathode interfacial chemical evolutions reveal that reduced Super P could effectively alleviate the side reactions of sulfide. Reduced Super P shows better reversible capacity compared to reduced carbon nanofiber with almost no loss of capacity retention, due to its more complete conductive network. Our results highlight the importance of oxygen‐containing functional groups for conductive additives, lightening the prospect of low‐cost 0D conductive additives for practical ASSLBs. Hydrogen thermal reduction process removed oxygen‐containing functional groups on the surface of Super P, thereby weakening interface side reactions with sulfide benefits Li‐ion migration. Only 1 wt % reduced Super P based ASSLBs exhibited better reversible capacity of 180.2 mA g−1 at 0.1 C and high capacity retention of 81.8 % after 40 cycles, and 130.8 mAh g−1 64.6 % for Super P.
Abstract Conductive additives are of great importance for the adequate utilization of active materials in all‐solid‐state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide electrolytes, leading to sluggish ion transportation and accelerated performance degradation. Herein, a simple hydrogen thermal reduction process is proposed on a commonly used conductive additive Super P, which effectively removes the surface oxygen functional groups and weakens the interfacial side reactions with sulfide. With a small amount of 1 wt % reduced Super P, ASSLBs demonstrates a competitive capacity of 180.2 mAh g −1 , which is much higher than the 130.8 mAh g −1 of untreated Super P. Impressively, reduced Super P based ASSLBs also exhibit a higher capacity retention of 81.8 % than 64.6 % of untreated Super P. The cathode interfacial chemical evolutions reveal that reduced Super P could effectively alleviate the side reactions of sulfide. Reduced Super P shows better reversible capacity compared to reduced carbon nanofiber with almost no loss of capacity retention, due to its more complete conductive network. Our results highlight the importance of oxygen‐containing functional groups for conductive additives, lightening the prospect of low‐cost 0D conductive additives for practical ASSLBs.
Conductive additives are of great importance for the adequate utilization of active materials in all‐solid‐state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide electrolytes, leading to sluggish ion transportation and accelerated performance degradation. Herein, a simple hydrogen thermal reduction process is proposed on a commonly used conductive additive Super P, which effectively removes the surface oxygen functional groups and weakens the interfacial side reactions with sulfide. With a small amount of 1 wt % reduced Super P, ASSLBs demonstrates a competitive capacity of 180.2 mAh g−1, which is much higher than the 130.8 mAh g−1 of untreated Super P. Impressively, reduced Super P based ASSLBs also exhibit a higher capacity retention of 81.8 % than 64.6 % of untreated Super P. The cathode interfacial chemical evolutions reveal that reduced Super P could effectively alleviate the side reactions of sulfide. Reduced Super P shows better reversible capacity compared to reduced carbon nanofiber with almost no loss of capacity retention, due to its more complete conductive network. Our results highlight the importance of oxygen‐containing functional groups for conductive additives, lightening the prospect of low‐cost 0D conductive additives for practical ASSLBs.
Author Li, Jianqing
Xu, Daren
Yao, Shiyu
Du, Fei
Author_xml – sequence: 1
  givenname: Jianqing
  surname: Li
  fullname: Li, Jianqing
  organization: Jilin University
– sequence: 2
  givenname: Daren
  surname: Xu
  fullname: Xu, Daren
  email: xudaren@jlu.edu.cn
  organization: Jilin University
– sequence: 3
  givenname: Shiyu
  orcidid: 0000-0002-6988-898X
  surname: Yao
  fullname: Yao, Shiyu
  email: yaoshiyu@jlu.edu.cn
  organization: Jilin University
– sequence: 4
  givenname: Fei
  surname: Du
  fullname: Du, Fei
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38366948$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFK0cUiQuXLOM_ceJjWbZdpCKQKGfLcSZbV4m92AnV3vgIfEY-CV5tKRIXTm_09Js30rwzcuKDR0JeUlhSAPbW3uK4ZMAEANTiCVnQitGS17I6IQtQoi5lxdUpOUvpLiNKcv6MnPKGS6lEsyD7td86jxid3xbvcYpuRD-ZobicvZ1c8Hm8imHepcL5YhV8N2f7OxYXXecOQypuwr2JXbFx29tfP35-xtiHOBpvMzMM2fkSBtcddDITFu_MNOVrmJ6Tp70ZEr540HPy9XJ9s9qU15-uPqwurkvLWSPKlvPeoK2BMm6gqk3LKDV1J9uet5aiMFWNppbQtlYZSYXgnIkKZN-qroGGn5M3x9xdDN9mTJMeXbI4DMZjmJNmijVMSAmQ0df_oHdhjvkFSXPgSlIKkmVqeaRsDClF7PUuf83EvaagD6XoQyn6sZS88Oohdm5H7B7xPy1kQB2Bezfg_j9xerVZf_wb_ht08Z45
Cites_doi 10.1002/aenm.201800035
10.1002/aenm.202002689
10.1002/aenm.201500865
10.1016/j.ensm.2018.10.003
10.1021/acsami.2c13150
10.1002/admi.201600270
10.1016/j.jechem.2020.04.004
10.1002/smll.201900235
10.1016/j.ensm.2022.04.022
10.1021/acs.chemrev.5b00563
10.1016/j.jelechem.2022.117032
10.1021/acsami.7b11530
10.1021/acsami.7b01137
10.1039/D1EE00551K
10.1016/j.jpowsour.2013.01.102
10.1002/adma.202000721
10.1039/C9TA04555D
10.1016/j.cej.2019.123529
10.1016/j.joule.2018.02.007
10.1002/aenm.201903360
10.1021/acs.chemmater.0c04454
10.1002/cjoc.200990185
10.1016/j.apmate.2023.100136
10.1021/acs.nanolett.7b00330
10.1016/j.jpowsour.2022.232379
10.1002/anie.201409262
10.1016/j.ssi.2016.11.029
10.1016/j.cclet.2023.108921
10.1016/j.jpowsour.2022.232568
10.1016/j.ensm.2018.02.020
10.1021/acsami.3c05713
10.1021/acsenergylett.9b01693
10.1016/j.ceramint.2014.12.076
10.1016/j.nanoen.2018.04.062
10.1002/aenm.202000904
10.1002/adma.201901131
10.1016/j.nanoen.2021.105858
10.1016/j.jmst.2021.05.074
10.1016/j.joule.2022.02.008
10.1021/acsenergylett.9b01676
10.1021/acsenergylett.0c00256
10.1016/0008-6223(96)00032-2
10.1002/smll.201902138
10.1021/acs.jpcc.2c05336
10.1038/s41563-021-00943-2
10.1039/D3EE01551C
10.1021/ac960890u
10.1021/accountsmr.1c00137
10.1002/aenm.202100881
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202400074
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 10_1002_chem_202400074
38366948
CHEM202400074
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: No. 12274176
– fundername: Fundamental Research Funds for the Center Universities
  funderid: No. 20220201118GX; No. 20210301021GX
– fundername: National Natural Science Foundation of China
  grantid: No. 12274176
– fundername: Fundamental Research Funds for the Center Universities
  grantid: No. 20220201118GX
– fundername: Fundamental Research Funds for the Center Universities
  grantid: No. 20210301021GX
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3284-b33faec70123a057ab211a7d6bf3bc1e4a57ea760bbc9a61443324506fb9d8083
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Sat Aug 17 05:35:10 EDT 2024
Thu Oct 10 17:48:33 EDT 2024
Fri Aug 23 02:07:37 EDT 2024
Sun Oct 13 10:33:04 EDT 2024
Sat Aug 24 00:57:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords oxygen-containing functional groups
conductive additives
sulfide all-solid-state batteries
hydrogen thermal reduction process
interface side reactions
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3284-b33faec70123a057ab211a7d6bf3bc1e4a57ea760bbc9a61443324506fb9d8083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6988-898X
PMID 38366948
PQID 3039611062
PQPubID 986340
PageCount 9
ParticipantIDs proquest_miscellaneous_2928246600
proquest_journals_3039611062
crossref_primary_10_1002_chem_202400074
pubmed_primary_38366948
wiley_primary_10_1002_chem_202400074_CHEM202400074
PublicationCentury 2000
PublicationDate April 16, 2024
PublicationDateYYYYMMDD 2024-04-16
PublicationDate_xml – month: 04
  year: 2024
  text: April 16, 2024
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2023; 10
2019; 4
2021; 20
2015; 5
2021; 3
2019; 31
2023; 15
2019; 10
2023; 16
1997; 69
2019; 15
2015; 54
2019; 18
2020; 11
2023; 2
2020; 10
2023; 928
2017; 9
2018; 49
2022; 49
2009; 27
1996; 34
2021; 14
2018; 8
2020; 5
2018; 2
2021; 33
2016; 3
2021; 11
2017; 17
2020; 51
2022; 6
2021; 17
2015; 41
2020; 391
2013; 233
2023; 557
2023; 555
2022; 14
2016; 116
2022; 32
2021; 83
2017; 300
2022; 126
2018; 14
2022; 102
e_1_2_8_28_1
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_47_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_43_1
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_60_2
e_1_2_8_17_2
e_1_2_8_19_2
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_30_2
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_51_2
e_1_2_8_29_1
Zhao X. X. (e_1_2_8_59_2) 2023; 10
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
Guo J. Z. (e_1_2_8_62_2) 2022; 32
e_1_2_8_8_2
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_2
e_1_2_8_61_2
e_1_2_8_40_2
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_31_2
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 233
  start-page: 209
  year: 2013
  end-page: 215
  publication-title: J. Power Sources
– volume: 391
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 300
  start-page: 78
  year: 2017
  end-page: 85
  publication-title: Solid State Ionics
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 49284
  year: 2022
  end-page: 49294
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 49
  start-page: 236
  year: 2022
  end-page: 245
  publication-title: Energy Storage Mater.
– volume: 54
  start-page: 4440
  year: 2015
  end-page: 4457
  publication-title: Angew. Chem. Int. Ed.
– volume: 557
  year: 2023
  publication-title: J. Power Sources
– volume: 3
  start-page: 21
  year: 2021
  end-page: 32
  publication-title: Acc. Mater. Res.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 17835
  year: 2017
  end-page: 17845
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 636
  year: 2022
  end-page: 646
  publication-title: Joule
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 102
  start-page: 72
  year: 2022
  end-page: 79
  publication-title: J. Mater. Sci. Technol.
– volume: 9
  start-page: 35888
  year: 2017
  end-page: 35896
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 100
  year: 2019
  end-page: 106
  publication-title: Energy Storage Mater.
– volume: 34
  start-page: 983
  year: 1996
  end-page: 998
  publication-title: Carbon
– volume: 27
  start-page: 1110
  year: 2009
  end-page: 1116
  publication-title: Chin. J. Chem.
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 984
  year: 2021
  end-page: 990
  publication-title: Nat. Mater.
– volume: 2
  year: 2023
  publication-title: Adv. Powder Mater.
– volume: 16
  start-page: 4453
  year: 2023
  end-page: 4463
  publication-title: Energy Environ. Sci.
– volume: 41
  start-page: 5066
  year: 2015
  end-page: 5071
  publication-title: Ceram. Int.
– volume: 49
  start-page: 434
  year: 2018
  end-page: 452
  publication-title: Nano Energy
– volume: 4
  start-page: 2418
  year: 2019
  end-page: 2427
  publication-title: ACS Energy Lett.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 83
  year: 2021
  publication-title: Nano Energy
– volume: 5
  start-page: 1243
  year: 2020
  end-page: 1251
  publication-title: ACS Energy Lett.
– volume: 51
  start-page: 396
  year: 2020
  end-page: 404
  publication-title: J. Energy Chem.
– volume: 2
  start-page: 497
  year: 2018
  end-page: 508
  publication-title: Joule
– volume: 14
  start-page: 2577
  year: 2021
  end-page: 2619
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 34931
  year: 2023
  end-page: 34940
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2480
  year: 2019
  end-page: 2488
  publication-title: ACS Energy Lett.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 555
  year: 2023
  publication-title: J. Power Sources
– volume: 928
  year: 2023
  publication-title: J. Electroanal. Chem.
– volume: 116
  start-page: 140
  year: 2016
  end-page: 162
  publication-title: Chem. Rev.
– volume: 126
  start-page: 17482
  year: 2022
  end-page: 17489
  publication-title: J. Phys. Chem. C
– volume: 33
  start-page: 1380
  year: 2021
  end-page: 1393
  publication-title: Chem. Mater.
– volume: 7
  start-page: 20540
  year: 2019
  end-page: 20557
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 58
  year: 2018
  end-page: 74
  publication-title: Energy Storage Mater.
– volume: 69
  start-page: 1827
  year: 1997
  end-page: 1836
  publication-title: Anal. Chem.
– volume: 17
  start-page: 3013
  year: 2017
  end-page: 3020
  publication-title: Nano Lett.
– ident: e_1_2_8_19_2
  doi: 10.1002/aenm.201800035
– ident: e_1_2_8_7_2
  doi: 10.1002/aenm.202002689
– ident: e_1_2_8_13_2
  doi: 10.1002/aenm.201500865
– ident: e_1_2_8_51_2
  doi: 10.1016/j.ensm.2018.10.003
– ident: e_1_2_8_34_2
  doi: 10.1021/acsami.2c13150
– ident: e_1_2_8_44_2
  doi: 10.1002/admi.201600270
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jechem.2020.04.004
– ident: e_1_2_8_42_1
  doi: 10.1002/smll.201900235
– ident: e_1_2_8_32_1
– ident: e_1_2_8_41_2
  doi: 10.1016/j.ensm.2022.04.022
– ident: e_1_2_8_2_2
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_8_56_1
  doi: 10.1016/j.jelechem.2022.117032
– ident: e_1_2_8_33_2
  doi: 10.1021/acsami.7b11530
– ident: e_1_2_8_58_1
– ident: e_1_2_8_10_2
  doi: 10.1021/acsami.7b01137
– ident: e_1_2_8_17_2
  doi: 10.1039/D1EE00551K
– ident: e_1_2_8_40_2
  doi: 10.1016/j.jpowsour.2013.01.102
– ident: e_1_2_8_6_2
  doi: 10.1002/adma.202000721
– ident: e_1_2_8_3_2
  doi: 10.1039/C9TA04555D
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cej.2019.123529
– ident: e_1_2_8_14_1
  doi: 10.1016/j.joule.2018.02.007
– ident: e_1_2_8_25_1
  doi: 10.1002/aenm.201903360
– volume: 10
  year: 2023
  ident: e_1_2_8_59_2
  publication-title: Adv. Sci.
  contributor:
    fullname: Zhao X. X.
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.chemmater.0c04454
– ident: e_1_2_8_9_1
– ident: e_1_2_8_45_2
  doi: 10.1002/cjoc.200990185
– ident: e_1_2_8_27_1
  doi: 10.1016/j.apmate.2023.100136
– ident: e_1_2_8_29_1
– ident: e_1_2_8_50_1
– ident: e_1_2_8_11_2
  doi: 10.1021/acs.nanolett.7b00330
– ident: e_1_2_8_30_2
  doi: 10.1016/j.jpowsour.2022.232379
– ident: e_1_2_8_23_2
  doi: 10.1002/anie.201409262
– ident: e_1_2_8_53_1
  doi: 10.1016/j.ssi.2016.11.029
– ident: e_1_2_8_60_2
  doi: 10.1016/j.cclet.2023.108921
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jpowsour.2022.232568
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ensm.2018.02.020
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.3c05713
– ident: e_1_2_8_39_1
– ident: e_1_2_8_43_1
– ident: e_1_2_8_49_1
  doi: 10.1021/acsenergylett.9b01693
– ident: e_1_2_8_57_1
  doi: 10.1016/j.ceramint.2014.12.076
– ident: e_1_2_8_1_1
– volume: 32
  year: 2022
  ident: e_1_2_8_62_2
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Guo J. Z.
– ident: e_1_2_8_21_1
– ident: e_1_2_8_24_2
  doi: 10.1016/j.nanoen.2018.04.062
– ident: e_1_2_8_4_2
  doi: 10.1002/aenm.202000904
– ident: e_1_2_8_5_1
– ident: e_1_2_8_18_2
  doi: 10.1002/adma.201901131
– ident: e_1_2_8_16_1
– ident: e_1_2_8_20_2
  doi: 10.1016/j.nanoen.2021.105858
– ident: e_1_2_8_61_2
  doi: 10.1016/j.jmst.2021.05.074
– ident: e_1_2_8_22_2
  doi: 10.1016/j.joule.2022.02.008
– ident: e_1_2_8_26_1
  doi: 10.1021/acsenergylett.9b01676
– ident: e_1_2_8_36_1
  doi: 10.1021/acsenergylett.0c00256
– ident: e_1_2_8_46_2
  doi: 10.1016/0008-6223(96)00032-2
– ident: e_1_2_8_12_2
  doi: 10.1002/smll.201902138
– ident: e_1_2_8_31_2
  doi: 10.1021/acs.jpcc.2c05336
– ident: e_1_2_8_8_2
  doi: 10.1038/s41563-021-00943-2
– ident: e_1_2_8_54_1
  doi: 10.1039/D3EE01551C
– ident: e_1_2_8_47_2
  doi: 10.1021/ac960890u
– ident: e_1_2_8_35_2
  doi: 10.1021/accountsmr.1c00137
– ident: e_1_2_8_52_2
  doi: 10.1002/aenm.202100881
SSID ssj0009633
Score 2.4989817
Snippet Conductive additives are of great importance for the adequate utilization of active materials in all‐solid‐state lithium batteries by establishing conductive...
Conductive additives are of great importance for the adequate utilization of active materials in all-solid-state lithium batteries by establishing conductive...
Abstract Conductive additives are of great importance for the adequate utilization of active materials in all‐solid‐state lithium batteries by establishing...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202400074
SubjectTerms Additives
Batteries
Carbon fibers
Cathodes
conductive additives
Electrolytes
Functional groups
hydrogen thermal reduction process
interface side reactions
Lithium
Lithium batteries
Molten salt electrolytes
Oxygen
oxygen-containing functional groups
Performance degradation
Retention
Side reactions
Solid electrolytes
sulfide all-solid-state batteries
Sulfides
Thermal reduction
Title Engineering Detrimental Functional Groups in Conductive Additives Toward High‐Performance All‐Solid‐State Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400074
https://www.ncbi.nlm.nih.gov/pubmed/38366948
https://www.proquest.com/docview/3039611062
https://search.proquest.com/docview/2928246600
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7CXppLkzZt42QbFCj05MQPSbaPy7bLUmgJ6S7kZiRbgtDFDvHuITn1J_Q35pd0xlp7d9NDoT35hbAeI803o9E3AB_SUCmljfBTi5YOL1Pj61ALPxY6UEUoE9vmT_n6TU7n_MuNuNk6xe_4IXqHG82Mdr2mCa50c7khDcU20UlyioFENYiLMLHpESq63vBHoXS5XPI88YmDtWNtDKLL3eK7WukPqLmLXFvVMzkA1VXaRZz8uFgt9UXx-IzP8X9adQgv17iUjZwgvYI9U72GF-MuHdwRPGwxF7JPlIfLpQVgE9SMzqHIWkdWw24rNq4rIpLFpZSNyrKNT2rYrA3RZRRa8vTz19XmyAIbLRb45nu9uC3pSgCYOeZPNOTfwHzyeTae-uu8DX4Ro7bzdRxbZYqE4JpCPKg0WpkqKaW2sS5Cw5VIjEpkoHWRKbJIY4R1IpBWZ2WKmPAtDKq6MsfAUpvYEi34hAdYzKTKCh3y0gohZGYE9-BjN275naPnyB0Rc5RTV-Z9V3ow7IY1X0_TJkf9nUkEQDLy4Lz_jB1LuyaqMvWqyaMMrVIuERh68M6JQ_8rNO-lzHjqQdQO6l_qkBPNRf908i-FTmGf7mk_K5RDGCzvV-Y9wqKlPmtF_zcrPQf6
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RciiXlkdbUhYwEhKntHnYTnJc7bJaoK0QbCVulp3YUsUqW3V3D-XET-hv7C9hJt5kWTgg0VMUR1b8Gs834_E3AG_zWGttrAhzh5YOr3IbmtiIMBUm0mUsM9fkTzk7l-ML_vGbaKMJ6S6M54foHG4kGc1-TQJODumTNWsodoquklMQJOrBLXiIMi9INodf1gxSuL58NnmehcTC2vI2RsnJZv1NvfQX2NzEro3yGe2BaZvtY06-Hy8X5rj88Qej47369Rh2V9CU9f1aegIPbP0UdgZtRrhncPMbeSEbUiounxmAjVA5ep8ia3xZc3ZZs8GsJi5Z3E1Zv6qaEKU5mzRRuoyiS-5-3n5e31pg_ekUS77OppcVPQkDM0_-ibb8PlyM3k8G43CVuiEsU1R4oUlTp22ZEWLTCAm1QUNTZ5U0LjVlbLkWmdWZjIwpC01GaYrITkTSmaLKERYewHY9q-1zYLnLXIVGfMYjrGZz7YSJeeWEELKwggfwrp04deUZOpTnYk4UDaXqhjKAXjuvaiWpc4UqvJCIgWQSwJvuMw4sHZzo2s6Wc5UUaJhyidgwgEO_HrpfoYUvZcHzAJJmVv_RBkVMF93b0f9Ueg0748nZqTr9cP7pBTyicjreimUPthfXS_sSUdLCvGrk4Berogwa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qRaJseLYQKGAkJFZp87CdZDmaYVReVUVbqTvLjm2pYpSpmJkFrPgEvrFf0nvjSaZTFkhlFcWRFb_vOfb1uQDvylRrbZyIS49Mh9vSxSY1Is6FSXSdysK38VO-HsqDU_7pTJxdu8Uf9CH6DTeaGe16TRP8wvr9lWgo1olukpMPJJrBO3CXyzwj-jX6thKQwuEVgsnzIiYR1k62Mcn21_Ovm6W_sOY6dG1tz_gh6K7UweXk-95ibvbqXzcEHf-nWo_gwRKYskEYSY9hwzVPYGvYxYN7Cj-vSReyEQXiCnEB2BhNY9hRZO1O1oydN2w4bUhJFtdSNrC2dVCasZPWR5eRb8nl7z9HqzsLbDCZYMrxdHJu6UkImAXpT2Ty23A6_nAyPIiXgRviOkdzF5s899rVBeE1jYBQG6SZurDS-NzUqeNaFE4XMjGmrjRR0hxxnUikN5UtERTuwGYzbdxzYKUvvEUKX_AEs7lSe2FSbr0QQlZO8Ajed_2mLoI-hwpKzJmiplR9U0aw23WrWs7TmUIDXklEQDKL4G3_GRuWjk1046aLmcoqpKVcIjKM4FkYDv2vkN9LWfEygqzt1H-UQZHORf_24jaZ3sC9o9FYffl4-Pkl3KdkOttK5S5szn8s3CuESHPzup0FV4LjCsk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Detrimental+Functional+Groups+in+Conductive+Additives+Toward+High%E2%80%90Performance+All%E2%80%90Solid%E2%80%90State+Batteries&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Li%2C+Jianqing&rft.au=Xu%2C+Daren&rft.au=Yao%2C+Shiyu&rft.au=Du%2C+Fei&rft.date=2024-04-16&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fchem.202400074&rft.externalDBID=10.1002%252Fchem.202400074&rft.externalDocID=CHEM202400074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon