Chiral Self‐Assembly of Twisted Prisms, Cuboids, and Polyhedral Capped Cages with Tartrate Ligands
Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including sat...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 52; pp. e2406134 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono‐coordination with half‐sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine‐tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single‐crystal X‐ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage‐like entities, facilitating self‐assembly in complicated multi‐component systems.
Chiral twisted prisms, cuboids, and capped cages are constructed through the full utilization of flexible tartrate ligands. The self‐assembly of different components in varying ratios, coupled with the use of ligands that can accommodate a range of coordination numbers, has enabled the emergence of a rich array of coordination patterns. |
---|---|
AbstractList | Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination-driven self-assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono-coordination with half-sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine-tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single-crystal X-ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage-like entities, facilitating self-assembly in complicated multi-component systems.Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination-driven self-assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono-coordination with half-sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine-tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single-crystal X-ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage-like entities, facilitating self-assembly in complicated multi-component systems. Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono‐coordination with half‐sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine‐tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single‐crystal X‐ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage‐like entities, facilitating self‐assembly in complicated multi‐component systems. Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono‐coordination with half‐sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine‐tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single‐crystal X‐ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage‐like entities, facilitating self‐assembly in complicated multi‐component systems. Chiral twisted prisms, cuboids, and capped cages are constructed through the full utilization of flexible tartrate ligands. The self‐assembly of different components in varying ratios, coupled with the use of ligands that can accommodate a range of coordination numbers, has enabled the emergence of a rich array of coordination patterns. |
Author | Wang, Xin‐Yu Jin, Guo‐Xin Gao, Xiang Mu, Qiu‐Shui |
Author_xml | – sequence: 1 givenname: Qiu‐Shui surname: Mu fullname: Mu, Qiu‐Shui organization: Fudan University Shanghai – sequence: 2 givenname: Xin‐Yu surname: Wang fullname: Wang, Xin‐Yu organization: Fudan University Shanghai – sequence: 3 givenname: Xiang surname: Gao fullname: Gao, Xiang organization: Fudan University Shanghai – sequence: 4 givenname: Guo‐Xin orcidid: 0000-0002-7149-5413 surname: Jin fullname: Jin, Guo‐Xin email: gxjin@fudan.edu.cn organization: Fudan University Shanghai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39370567$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9r2zAUB3BROtYk27XHYuhlhyZ7-hHLPgbTdQOPDZKdjSw_JyqynUo2Ibf9Cfsb-5dUIWkKu_T0nsTnKyS9MblsuxYJuaYwowDsq2-snTFgAmLKxQUZ0VCnccLSy3NP4YqMvX8E4JQJ-ZFc8ZRLmMdyRKpsY5yy0RJt_fz338J7bEq7j7o6Wu2M77GKfjvjG38XZUPZmSo0qg2bnd1vsDpEM7XdBpapNfpoZ_pNtFKud6rHKDfrgP0n8qFW1uPnU52QP9_uV9n3af7r4Ue2yKeas0RMFa1kLVHIklMEJeeaAkMVlhIES9KyVIkGoalO9TxJoWIJB15WtVa6Ds_hE_LleO7WdU8D-r5ojNdorWqxG3zBKeVSJExCoLf_0cducG24XVAiFTKOUxnUzUkNZYNVsXWmUW5fvP5fALMj0K7z3mF9JhSKw4CKw4CK84BCID0Gdsbi_h1dLH_m-Vv2BX9Nk8U |
Cites_doi | 10.1021/jacs.3c12555 10.1039/C8SC05315D 10.1021/acs.chemrev.0c00321 10.1021/jacs.3c11398 10.1021/ja00258a022 10.1021/jacs.5b12237 10.1016/j.ccr.2023.215366 10.1038/s44160-022-00094-5 10.1002/anie.202105718 10.1021/acs.inorgchem.5b02654 10.1021/jacs.2c07586 10.1021/jacs.3c00024 10.1002/anie.202404682 10.1002/asia.202200918 10.1021/jacs.6b12536 10.1021/jacs.3c09359 10.1021/jacs.0c03349 10.1002/anie.202313605 10.1007/s11434-012-5436-0 10.1039/D3CS00926B 10.1021/jacs.0c01563 10.1002/anie.202201258 10.1002/anie.202204732 10.1016/j.chempr.2022.10.025 10.1016/j.jhazmat.2020.124351 10.1021/jacs.3c05563 10.1021/jacs.8b11152 10.1016/j.ccr.2024.215941 10.1016/j.foodchem.2022.134385 10.1039/C9DT04172A 10.1038/s41557-023-01415-7 10.1002/anie.202312323 10.1016/j.jechem.2017.07.020 10.31635/ccschem.024.202303525 10.1021/acs.chemrev.1c00811 10.1002/anie.201814149 10.1038/414879a 10.1002/anie.202407278 10.1021/acs.cgd.6b01576 10.1016/j.chempr.2023.06.020 10.1007/s12274-020-2935-1 10.1002/anie.202208866 10.1002/adfm.202101335 10.1007/s11426-023-1675-0 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202406134 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39370567 10_1002_smll_202406134 SMLL202406134 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: 22031003; 21720102004 – fundername: Shanghai Science Technology Committee funderid: 19DZ2270100 – fundername: National Science Foundation of China grantid: 22031003 – fundername: National Science Foundation of China grantid: 21720102004 – fundername: Shanghai Science Technology Committee grantid: 19DZ2270100 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3284-a1d7f7e47b31e0a75c102ea7b3704289bba8c04c1c9c5890d28303bdfcacf0563 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 11:27:29 EDT 2025 Fri Jul 25 11:55:15 EDT 2025 Wed Feb 19 01:58:38 EST 2025 Tue Jul 01 00:42:01 EDT 2025 Wed Jan 22 17:11:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | chiral cage coordination diversity topology self‐assembly |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3284-a1d7f7e47b31e0a75c102ea7b3704289bba8c04c1c9c5890d28303bdfcacf0563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7149-5413 |
PMID | 39370567 |
PQID | 3149476697 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3113748270 proquest_journals_3149476697 pubmed_primary_39370567 crossref_primary_10_1002_smll_202406134 wiley_primary_10_1002_smll_202406134_SMLL202406134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 407 2018; 140 2020; 142 2020; 120 2019; 10 1987; 109 2023; 145 2023; 9 2019; 58 2023; 403 2024; 53 2024; 146 2012; 57 2016; 17 2024; 16 2018; 27 2017; 139 2016; 55 2022; 122 2022; 144 2021; 14 2023; 62 2021; 31 2023; 66 2024; 6 2022; 61 2024; 514 2022; 8 2023; 495 2020; 49 2024; 63 2016; 138 2022; 1 2021; 60 2022; 17 2001; 414 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 14 start-page: 546 year: 2021 publication-title: Nano Res. – volume: 1 start-page: 635 year: 2022 publication-title: Nat. Synth. – volume: 16 start-page: 584 year: 2024 publication-title: Nat. Chem. – volume: 145 start-page: 7446 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 1668 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 403 year: 2023 publication-title: Food Chem. – volume: 8 start-page: 2909 year: 2022 publication-title: Chem. – volume: 10 start-page: 3529 year: 2019 publication-title: Chem. Sci. – volume: 66 start-page: 2885 year: 2023 publication-title: Sci. China Chem. – volume: 120 start-page: 6288 year: 2020 publication-title: Chem. Rev. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 17 year: 2022 publication-title: Chem.‐Asian J. – volume: 407 year: 2021 publication-title: J. Hazard. Mater. – volume: 57 start-page: 4272 year: 2012 publication-title: Chin. Sci. Bull. – volume: 17 start-page: 347 year: 2016 publication-title: Cryst. Growth Des. – volume: 514 year: 2024 publication-title: Coord. Chem. Rev. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 7382 year: 1987 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2655 year: 2023 publication-title: Chem – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 2673 year: 2016 publication-title: Inorg. Chem. – volume: 58 start-page: 4200 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 122 year: 2022 publication-title: Chem. Rev. – volume: 146 start-page: 6638 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 913 year: 2018 publication-title: J. Energy Chem. – volume: 414 start-page: 879 year: 2001 publication-title: Nature – volume: 53 start-page: 3167 year: 2024 publication-title: Chem. Soc. Rev. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 1747 year: 2020 publication-title: Dalton Trans. – volume: 495 year: 2023 publication-title: Coord. Chem. Rev. – volume: 139 start-page: 5067 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2000 year: 2024 publication-title: CCS Chem. – ident: e_1_2_7_26_1 doi: 10.1021/jacs.3c12555 – ident: e_1_2_7_3_1 doi: 10.1039/C8SC05315D – ident: e_1_2_7_37_1 doi: 10.1021/acs.chemrev.0c00321 – ident: e_1_2_7_16_1 doi: 10.1021/jacs.3c11398 – ident: e_1_2_7_40_1 doi: 10.1021/ja00258a022 – ident: e_1_2_7_4_1 doi: 10.1021/jacs.5b12237 – ident: e_1_2_7_11_1 doi: 10.1016/j.ccr.2023.215366 – ident: e_1_2_7_34_1 doi: 10.1038/s44160-022-00094-5 – ident: e_1_2_7_39_1 doi: 10.1002/anie.202105718 – ident: e_1_2_7_42_1 doi: 10.1021/acs.inorgchem.5b02654 – ident: e_1_2_7_8_1 doi: 10.1021/jacs.2c07586 – ident: e_1_2_7_14_1 doi: 10.1021/jacs.3c00024 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202404682 – ident: e_1_2_7_44_1 doi: 10.1002/asia.202200918 – ident: e_1_2_7_22_1 doi: 10.1021/jacs.6b12536 – ident: e_1_2_7_23_1 doi: 10.1021/jacs.3c09359 – ident: e_1_2_7_15_1 doi: 10.1021/jacs.0c03349 – ident: e_1_2_7_17_1 doi: 10.1002/anie.202313605 – ident: e_1_2_7_29_1 doi: 10.1007/s11434-012-5436-0 – ident: e_1_2_7_12_1 doi: 10.1039/D3CS00926B – ident: e_1_2_7_25_1 doi: 10.1021/jacs.0c01563 – ident: e_1_2_7_2_1 doi: 10.1002/anie.202201258 – ident: e_1_2_7_5_1 doi: 10.1002/anie.202204732 – ident: e_1_2_7_18_1 doi: 10.1016/j.chempr.2022.10.025 – ident: e_1_2_7_32_1 doi: 10.1016/j.jhazmat.2020.124351 – ident: e_1_2_7_35_1 doi: 10.1021/jacs.3c05563 – ident: e_1_2_7_28_1 doi: 10.1021/jacs.8b11152 – ident: e_1_2_7_13_1 doi: 10.1016/j.ccr.2024.215941 – ident: e_1_2_7_30_1 doi: 10.1016/j.foodchem.2022.134385 – ident: e_1_2_7_43_1 doi: 10.1039/C9DT04172A – ident: e_1_2_7_20_1 doi: 10.1038/s41557-023-01415-7 – ident: e_1_2_7_19_1 doi: 10.1002/anie.202312323 – ident: e_1_2_7_31_1 doi: 10.1016/j.jechem.2017.07.020 – ident: e_1_2_7_38_1 doi: 10.31635/ccschem.024.202303525 – ident: e_1_2_7_6_1 doi: 10.1021/acs.chemrev.1c00811 – ident: e_1_2_7_1_1 doi: 10.1002/anie.201814149 – ident: e_1_2_7_33_1 doi: 10.1038/414879a – ident: e_1_2_7_10_1 doi: 10.1002/anie.202407278 – ident: e_1_2_7_41_1 doi: 10.1021/acs.cgd.6b01576 – ident: e_1_2_7_24_1 doi: 10.1016/j.chempr.2023.06.020 – ident: e_1_2_7_9_1 doi: 10.1007/s12274-020-2935-1 – ident: e_1_2_7_7_1 doi: 10.1002/anie.202208866 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.202101335 – ident: e_1_2_7_36_1 doi: 10.1007/s11426-023-1675-0 |
SSID | ssj0031247 |
Score | 2.4582558 |
Snippet | Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate... Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination-driven self-assembly. Typical tartrate... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2406134 |
SubjectTerms | Apexes Cages Chelation chiral cage coordination diversity Coordination numbers Dichroism Hydrogen bonding Iridium Ligands Magnetic induction NMR Nuclear magnetic resonance Prisms Rhodium Self-assembly topology |
Title | Chiral Self‐Assembly of Twisted Prisms, Cuboids, and Polyhedral Capped Cages with Tartrate Ligands |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406134 https://www.ncbi.nlm.nih.gov/pubmed/39370567 https://www.proquest.com/docview/3149476697 https://www.proquest.com/docview/3113748270 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hnsoBaHmFlmqRkLjgdu21vesjsqiqKkWIJFJv1j5p1MSO4kRVOfET-hv7S5ixE7ehB6Ry27Vn5PHOzM7s61tCPkpvbMi4CowyMoiTLAlkxnigvJEudSxVFgeKZ9_Sk1F8ep6c3zvF3-JDdBNu6BlNf40OrnR9dAcaWk8nuHTQRiQEBMUNW5gV_ejwozgEr-Z2FaAIEHhrjdrIoqNN9s2o9CDV3Mxcm9Bz_JyotdDtjpPLw-VCH5pff-E5_s9fvSDPVnkp_dIa0g554spd8vQeWuFLYvOL8RxoBm7ib3_f4HLxVE-uaeXp8AqtxdLviEhYf6b5UldjCwVVwsNqcn3hLLLmajYDshw6sZriFDAdgukiWgXtj3_iqeNXZHT8dZifBKtLGgLDIbQFKrTCCxcLzUPHlEgMpCxOQVXgcCzTWknDYhOazCRgBhYRx7i2HozDQ_bFX5OtsirdW0KZliz10KtI6WLHuIysEFr4VLrEuzjqkU9rJRWzFoujaFGXowLbrejarUf21zosVj5ZFxwGg7FI00z0yIfuNXgTLpGo0lVLpAkRjycSrEfetLrvPoXQgSAwcEeNBv8hQzE46_e72rvHMO2RbSy3u2f2ydZivnTvIQda6IPGzv8Ale_-PQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoOVAO5Vm6UMBISFxI68RJ7BxRoFogWyG6lbhFftIV22TV3RUqJ34Cv5FfwkyyCSwckNpb7MwoE8-MZ_z6TMhz6Y0NGVeBUUYGcZIlgcwYD5Q30qWOpcriQHF0lA5P4nefkm43IZ6FafEh-gk39Iymv0YHxwnpg9-oofOzKa4dtCEp3iDX8VpvhM9__bFHkOIQvpr7VYAkQOitDreRRQfr_Otx6Z9kcz13bYLP4S2iO7HbPSdf9pcLvW--_YXoeKX_uk22V6kpfdXa0h1yzVV3yc0_AAvvEZufTs6B5thN_c_vP3DF-ExPL2jt6fgrGoylHxCUcP6S5ktdTyw8qAoq6-nFqbPImqvZDMhy6MfmFGeB6RisFwEraDH5jAeP75OTwzfjfBis7mkIDIfoFqjQCi9cLDQPHVMiMZC1OAVFgSOyTGslDYtNaDKTgCVYBB3j2nqwDw8JGN8hm1VduV1CmZYs9dCxSOlix7iMrBBa-FS6xLs4GpAXnZbKWQvHUbbAy1GJ7Vb27TYge50Sy5VbzksO48FYpGkmBuRZ_xocCldJVOXqJdKECMkTCTYgD1rl959C9EAQGLijRoX_kaE8HhVFX3p4Gaan5MZwPCrK4u3R-0dkC-vbzTR7ZHNxvnSPISVa6CeN0f8Cf_ICaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOvAtbChgJiQtpndiJnSNKWRXYVhXdSr1FftIV22TV3VVVTvyE_sb-EmaS3dCFAxLcYmdGmXhmPOPXZ0LeqGBdzLiOrLYqEmmeRipnPNLBKp95lmmHA8W9_Wz3SHw6To-vneJv8SG6CTf0jKa_RgefuLD9CzR0ejrGpYM2Iomb5JbIWI6XN-x86QCkOESv5noVIIkQeWsJ28iS7VX-1bD0R665mro2sad_n-il1O2Wk29b85nZst9_A3T8n996QO4tElP6vrWkh-SGrx6Ru9fgCh8TV5yMzoDm0I_D1Y9LXC8-NeMLWgc6PEdzcfQAIQmn72gxN_XIwYOuoLIeX5x4h6yFnkyArIBebEpxDpgOwXYRroIORl_x2PETctT_MCx2o8UtDZHlENsiHTsZpBfS8NgzLVMLOYvXUJQ4HsuN0coyYWOb2xTswCHkGDcugHUESL_4Olmr6so_I5QZxbIA3YpSXnjGVeKkNDJkyqfBi6RH3i6VVE5aMI6yhV1OSmy3smu3Htlc6rBcOOW05DAaFDLLctkjr7vX4E64RqIrX8-RJkZAnkSyHnna6r77FGIHgsDAnTQa_IsM5eHeYNCVNv6F6RW5fbDTLwcf9z8_J3ewut1Js0nWZmdz_wLyoZl52Zj8T3LaARc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Self-Assembly+of+Twisted+Prisms%2C+Cuboids%2C+and+Polyhedral+Capped+Cages+with+Tartrate+Ligands&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Mu%2C+Qiu-Shui&rft.au=Wang%2C+Xin-Yu&rft.au=Gao%2C+Xiang&rft.au=Jin%2C+Guo-Xin&rft.date=2024-12-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=52&rft.spage=e2406134&rft_id=info:doi/10.1002%2Fsmll.202406134&rft_id=info%3Apmid%2F39370567&rft.externalDocID=39370567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |