Chiral Self‐Assembly of Twisted Prisms, Cuboids, and Polyhedral Capped Cages with Tartrate Ligands

Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including sat...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 52; pp. e2406134 - n/a
Main Authors Mu, Qiu‐Shui, Wang, Xin‐Yu, Gao, Xiang, Jin, Guo‐Xin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono‐coordination with half‐sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine‐tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single‐crystal X‐ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage‐like entities, facilitating self‐assembly in complicated multi‐component systems. Chiral twisted prisms, cuboids, and capped cages are constructed through the full utilization of flexible tartrate ligands. The self‐assembly of different components in varying ratios, coupled with the use of ligands that can accommodate a range of coordination numbers, has enabled the emergence of a rich array of coordination patterns.
AbstractList Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination-driven self-assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono-coordination with half-sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine-tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single-crystal X-ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage-like entities, facilitating self-assembly in complicated multi-component systems.Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination-driven self-assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono-coordination with half-sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine-tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single-crystal X-ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage-like entities, facilitating self-assembly in complicated multi-component systems.
Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono‐coordination with half‐sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine‐tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single‐crystal X‐ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage‐like entities, facilitating self‐assembly in complicated multi‐component systems.
Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate ligands demonstrated notable torsional flexibility and variable coordination numbers, allowing for diverse coordination patterns, including saturated chelation and terminal mono‐coordination with half‐sandwich rhodium and iridium fragments. The ligand lengths, molar ratios, and metal vertices are meticulously designed and fine‐tuned to yield chiral cages with entirely distinct architectures. Tartrate ligand exhibits abundant hydrogen bonding interactions and chiral induction capabilities, these supramolecular assemblies are characterized by single‐crystal X‐ray diffraction, nuclear magnetic resonance, and circular dichroism spectroscopy. An efficient method is developed for constructing chiral structurally versatile cage‐like entities, facilitating self‐assembly in complicated multi‐component systems. Chiral twisted prisms, cuboids, and capped cages are constructed through the full utilization of flexible tartrate ligands. The self‐assembly of different components in varying ratios, coupled with the use of ligands that can accommodate a range of coordination numbers, has enabled the emergence of a rich array of coordination patterns.
Author Wang, Xin‐Yu
Jin, Guo‐Xin
Gao, Xiang
Mu, Qiu‐Shui
Author_xml – sequence: 1
  givenname: Qiu‐Shui
  surname: Mu
  fullname: Mu, Qiu‐Shui
  organization: Fudan University Shanghai
– sequence: 2
  givenname: Xin‐Yu
  surname: Wang
  fullname: Wang, Xin‐Yu
  organization: Fudan University Shanghai
– sequence: 3
  givenname: Xiang
  surname: Gao
  fullname: Gao, Xiang
  organization: Fudan University Shanghai
– sequence: 4
  givenname: Guo‐Xin
  orcidid: 0000-0002-7149-5413
  surname: Jin
  fullname: Jin, Guo‐Xin
  email: gxjin@fudan.edu.cn
  organization: Fudan University Shanghai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39370567$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9r2zAUB3BROtYk27XHYuhlhyZ7-hHLPgbTdQOPDZKdjSw_JyqynUo2Ibf9Cfsb-5dUIWkKu_T0nsTnKyS9MblsuxYJuaYwowDsq2-snTFgAmLKxQUZ0VCnccLSy3NP4YqMvX8E4JQJ-ZFc8ZRLmMdyRKpsY5yy0RJt_fz338J7bEq7j7o6Wu2M77GKfjvjG38XZUPZmSo0qg2bnd1vsDpEM7XdBpapNfpoZ_pNtFKud6rHKDfrgP0n8qFW1uPnU52QP9_uV9n3af7r4Ue2yKeas0RMFa1kLVHIklMEJeeaAkMVlhIES9KyVIkGoalO9TxJoWIJB15WtVa6Ds_hE_LleO7WdU8D-r5ojNdorWqxG3zBKeVSJExCoLf_0cducG24XVAiFTKOUxnUzUkNZYNVsXWmUW5fvP5fALMj0K7z3mF9JhSKw4CKw4CK84BCID0Gdsbi_h1dLH_m-Vv2BX9Nk8U
Cites_doi 10.1021/jacs.3c12555
10.1039/C8SC05315D
10.1021/acs.chemrev.0c00321
10.1021/jacs.3c11398
10.1021/ja00258a022
10.1021/jacs.5b12237
10.1016/j.ccr.2023.215366
10.1038/s44160-022-00094-5
10.1002/anie.202105718
10.1021/acs.inorgchem.5b02654
10.1021/jacs.2c07586
10.1021/jacs.3c00024
10.1002/anie.202404682
10.1002/asia.202200918
10.1021/jacs.6b12536
10.1021/jacs.3c09359
10.1021/jacs.0c03349
10.1002/anie.202313605
10.1007/s11434-012-5436-0
10.1039/D3CS00926B
10.1021/jacs.0c01563
10.1002/anie.202201258
10.1002/anie.202204732
10.1016/j.chempr.2022.10.025
10.1016/j.jhazmat.2020.124351
10.1021/jacs.3c05563
10.1021/jacs.8b11152
10.1016/j.ccr.2024.215941
10.1016/j.foodchem.2022.134385
10.1039/C9DT04172A
10.1038/s41557-023-01415-7
10.1002/anie.202312323
10.1016/j.jechem.2017.07.020
10.31635/ccschem.024.202303525
10.1021/acs.chemrev.1c00811
10.1002/anie.201814149
10.1038/414879a
10.1002/anie.202407278
10.1021/acs.cgd.6b01576
10.1016/j.chempr.2023.06.020
10.1007/s12274-020-2935-1
10.1002/anie.202208866
10.1002/adfm.202101335
10.1007/s11426-023-1675-0
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202406134
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39370567
10_1002_smll_202406134
SMLL202406134
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 22031003; 21720102004
– fundername: Shanghai Science Technology Committee
  funderid: 19DZ2270100
– fundername: National Science Foundation of China
  grantid: 22031003
– fundername: National Science Foundation of China
  grantid: 21720102004
– fundername: Shanghai Science Technology Committee
  grantid: 19DZ2270100
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3284-a1d7f7e47b31e0a75c102ea7b3704289bba8c04c1c9c5890d28303bdfcacf0563
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:27:29 EDT 2025
Fri Jul 25 11:55:15 EDT 2025
Wed Feb 19 01:58:38 EST 2025
Tue Jul 01 00:42:01 EDT 2025
Wed Jan 22 17:11:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords chiral cage
coordination diversity
topology
self‐assembly
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3284-a1d7f7e47b31e0a75c102ea7b3704289bba8c04c1c9c5890d28303bdfcacf0563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7149-5413
PMID 39370567
PQID 3149476697
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_3113748270
proquest_journals_3149476697
pubmed_primary_39370567
crossref_primary_10_1002_smll_202406134
wiley_primary_10_1002_smll_202406134_SMLL202406134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 407
2018; 140
2020; 142
2020; 120
2019; 10
1987; 109
2023; 145
2023; 9
2019; 58
2023; 403
2024; 53
2024; 146
2012; 57
2016; 17
2024; 16
2018; 27
2017; 139
2016; 55
2022; 122
2022; 144
2021; 14
2023; 62
2021; 31
2023; 66
2024; 6
2022; 61
2024; 514
2022; 8
2023; 495
2020; 49
2024; 63
2016; 138
2022; 1
2021; 60
2022; 17
2001; 414
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 14
  start-page: 546
  year: 2021
  publication-title: Nano Res.
– volume: 1
  start-page: 635
  year: 2022
  publication-title: Nat. Synth.
– volume: 16
  start-page: 584
  year: 2024
  publication-title: Nat. Chem.
– volume: 145
  start-page: 7446
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 1668
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 403
  year: 2023
  publication-title: Food Chem.
– volume: 8
  start-page: 2909
  year: 2022
  publication-title: Chem.
– volume: 10
  start-page: 3529
  year: 2019
  publication-title: Chem. Sci.
– volume: 66
  start-page: 2885
  year: 2023
  publication-title: Sci. China Chem.
– volume: 120
  start-page: 6288
  year: 2020
  publication-title: Chem. Rev.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  year: 2022
  publication-title: Chem.‐Asian J.
– volume: 407
  year: 2021
  publication-title: J. Hazard. Mater.
– volume: 57
  start-page: 4272
  year: 2012
  publication-title: Chin. Sci. Bull.
– volume: 17
  start-page: 347
  year: 2016
  publication-title: Cryst. Growth Des.
– volume: 514
  year: 2024
  publication-title: Coord. Chem. Rev.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 7382
  year: 1987
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2655
  year: 2023
  publication-title: Chem
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 2673
  year: 2016
  publication-title: Inorg. Chem.
– volume: 58
  start-page: 4200
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  year: 2022
  publication-title: Chem. Rev.
– volume: 146
  start-page: 6638
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 913
  year: 2018
  publication-title: J. Energy Chem.
– volume: 414
  start-page: 879
  year: 2001
  publication-title: Nature
– volume: 53
  start-page: 3167
  year: 2024
  publication-title: Chem. Soc. Rev.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 1747
  year: 2020
  publication-title: Dalton Trans.
– volume: 495
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 139
  start-page: 5067
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 2000
  year: 2024
  publication-title: CCS Chem.
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.3c12555
– ident: e_1_2_7_3_1
  doi: 10.1039/C8SC05315D
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.chemrev.0c00321
– ident: e_1_2_7_16_1
  doi: 10.1021/jacs.3c11398
– ident: e_1_2_7_40_1
  doi: 10.1021/ja00258a022
– ident: e_1_2_7_4_1
  doi: 10.1021/jacs.5b12237
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ccr.2023.215366
– ident: e_1_2_7_34_1
  doi: 10.1038/s44160-022-00094-5
– ident: e_1_2_7_39_1
  doi: 10.1002/anie.202105718
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.inorgchem.5b02654
– ident: e_1_2_7_8_1
  doi: 10.1021/jacs.2c07586
– ident: e_1_2_7_14_1
  doi: 10.1021/jacs.3c00024
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202404682
– ident: e_1_2_7_44_1
  doi: 10.1002/asia.202200918
– ident: e_1_2_7_22_1
  doi: 10.1021/jacs.6b12536
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.3c09359
– ident: e_1_2_7_15_1
  doi: 10.1021/jacs.0c03349
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.202313605
– ident: e_1_2_7_29_1
  doi: 10.1007/s11434-012-5436-0
– ident: e_1_2_7_12_1
  doi: 10.1039/D3CS00926B
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.0c01563
– ident: e_1_2_7_2_1
  doi: 10.1002/anie.202201258
– ident: e_1_2_7_5_1
  doi: 10.1002/anie.202204732
– ident: e_1_2_7_18_1
  doi: 10.1016/j.chempr.2022.10.025
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jhazmat.2020.124351
– ident: e_1_2_7_35_1
  doi: 10.1021/jacs.3c05563
– ident: e_1_2_7_28_1
  doi: 10.1021/jacs.8b11152
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ccr.2024.215941
– ident: e_1_2_7_30_1
  doi: 10.1016/j.foodchem.2022.134385
– ident: e_1_2_7_43_1
  doi: 10.1039/C9DT04172A
– ident: e_1_2_7_20_1
  doi: 10.1038/s41557-023-01415-7
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.202312323
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jechem.2017.07.020
– ident: e_1_2_7_38_1
  doi: 10.31635/ccschem.024.202303525
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.chemrev.1c00811
– ident: e_1_2_7_1_1
  doi: 10.1002/anie.201814149
– ident: e_1_2_7_33_1
  doi: 10.1038/414879a
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.202407278
– ident: e_1_2_7_41_1
  doi: 10.1021/acs.cgd.6b01576
– ident: e_1_2_7_24_1
  doi: 10.1016/j.chempr.2023.06.020
– ident: e_1_2_7_9_1
  doi: 10.1007/s12274-020-2935-1
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.202208866
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.202101335
– ident: e_1_2_7_36_1
  doi: 10.1007/s11426-023-1675-0
SSID ssj0031247
Score 2.4582558
Snippet Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination‐driven self‐assembly. Typical tartrate...
Homochiral triangular prisms, cuboid cages, and capped polyhedral cages are successfully synthesized via coordination-driven self-assembly. Typical tartrate...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2406134
SubjectTerms Apexes
Cages
Chelation
chiral cage
coordination diversity
Coordination numbers
Dichroism
Hydrogen bonding
Iridium
Ligands
Magnetic induction
NMR
Nuclear magnetic resonance
Prisms
Rhodium
Self-assembly
topology
Title Chiral Self‐Assembly of Twisted Prisms, Cuboids, and Polyhedral Capped Cages with Tartrate Ligands
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406134
https://www.ncbi.nlm.nih.gov/pubmed/39370567
https://www.proquest.com/docview/3149476697
https://www.proquest.com/docview/3113748270
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hnsoBaHmFlmqRkLjgdu21vesjsqiqKkWIJFJv1j5p1MSO4kRVOfET-hv7S5ixE7ehB6Ry27Vn5PHOzM7s61tCPkpvbMi4CowyMoiTLAlkxnigvJEudSxVFgeKZ9_Sk1F8ep6c3zvF3-JDdBNu6BlNf40OrnR9dAcaWk8nuHTQRiQEBMUNW5gV_ejwozgEr-Z2FaAIEHhrjdrIoqNN9s2o9CDV3Mxcm9Bz_JyotdDtjpPLw-VCH5pff-E5_s9fvSDPVnkp_dIa0g554spd8vQeWuFLYvOL8RxoBm7ib3_f4HLxVE-uaeXp8AqtxdLviEhYf6b5UldjCwVVwsNqcn3hLLLmajYDshw6sZriFDAdgukiWgXtj3_iqeNXZHT8dZifBKtLGgLDIbQFKrTCCxcLzUPHlEgMpCxOQVXgcCzTWknDYhOazCRgBhYRx7i2HozDQ_bFX5OtsirdW0KZliz10KtI6WLHuIysEFr4VLrEuzjqkU9rJRWzFoujaFGXowLbrejarUf21zosVj5ZFxwGg7FI00z0yIfuNXgTLpGo0lVLpAkRjycSrEfetLrvPoXQgSAwcEeNBv8hQzE46_e72rvHMO2RbSy3u2f2ydZivnTvIQda6IPGzv8Ale_-PQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoOVAO5Vm6UMBISFxI68RJ7BxRoFogWyG6lbhFftIV22TV3RUqJ34Cv5FfwkyyCSwckNpb7MwoE8-MZ_z6TMhz6Y0NGVeBUUYGcZIlgcwYD5Q30qWOpcriQHF0lA5P4nefkm43IZ6FafEh-gk39Iymv0YHxwnpg9-oofOzKa4dtCEp3iDX8VpvhM9__bFHkOIQvpr7VYAkQOitDreRRQfr_Otx6Z9kcz13bYLP4S2iO7HbPSdf9pcLvW--_YXoeKX_uk22V6kpfdXa0h1yzVV3yc0_AAvvEZufTs6B5thN_c_vP3DF-ExPL2jt6fgrGoylHxCUcP6S5ktdTyw8qAoq6-nFqbPImqvZDMhy6MfmFGeB6RisFwEraDH5jAeP75OTwzfjfBis7mkIDIfoFqjQCi9cLDQPHVMiMZC1OAVFgSOyTGslDYtNaDKTgCVYBB3j2nqwDw8JGN8hm1VduV1CmZYs9dCxSOlix7iMrBBa-FS6xLs4GpAXnZbKWQvHUbbAy1GJ7Vb27TYge50Sy5VbzksO48FYpGkmBuRZ_xocCldJVOXqJdKECMkTCTYgD1rl959C9EAQGLijRoX_kaE8HhVFX3p4Gaan5MZwPCrK4u3R-0dkC-vbzTR7ZHNxvnSPISVa6CeN0f8Cf_ICaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOvAtbChgJiQtpndiJnSNKWRXYVhXdSr1FftIV22TV3VVVTvyE_sb-EmaS3dCFAxLcYmdGmXhmPOPXZ0LeqGBdzLiOrLYqEmmeRipnPNLBKp95lmmHA8W9_Wz3SHw6To-vneJv8SG6CTf0jKa_RgefuLD9CzR0ejrGpYM2Iomb5JbIWI6XN-x86QCkOESv5noVIIkQeWsJ28iS7VX-1bD0R665mro2sad_n-il1O2Wk29b85nZst9_A3T8n996QO4tElP6vrWkh-SGrx6Ru9fgCh8TV5yMzoDm0I_D1Y9LXC8-NeMLWgc6PEdzcfQAIQmn72gxN_XIwYOuoLIeX5x4h6yFnkyArIBebEpxDpgOwXYRroIORl_x2PETctT_MCx2o8UtDZHlENsiHTsZpBfS8NgzLVMLOYvXUJQ4HsuN0coyYWOb2xTswCHkGDcugHUESL_4Olmr6so_I5QZxbIA3YpSXnjGVeKkNDJkyqfBi6RH3i6VVE5aMI6yhV1OSmy3smu3Htlc6rBcOOW05DAaFDLLctkjr7vX4E64RqIrX8-RJkZAnkSyHnna6r77FGIHgsDAnTQa_IsM5eHeYNCVNv6F6RW5fbDTLwcf9z8_J3ewut1Js0nWZmdz_wLyoZl52Zj8T3LaARc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Self-Assembly+of+Twisted+Prisms%2C+Cuboids%2C+and+Polyhedral+Capped+Cages+with+Tartrate+Ligands&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Mu%2C+Qiu-Shui&rft.au=Wang%2C+Xin-Yu&rft.au=Gao%2C+Xiang&rft.au=Jin%2C+Guo-Xin&rft.date=2024-12-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=52&rft.spage=e2406134&rft_id=info:doi/10.1002%2Fsmll.202406134&rft_id=info%3Apmid%2F39370567&rft.externalDocID=39370567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon