Discovery and Engineering of a Bacterial (+)‐Pulegone Reductase for Efficient (−)‐Menthol Biosynthesis

The biosynthesis of valuable plant‐derived monoterpene (−)‐menthol from readily available feedstocks (e. g., (−)‐limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)‐pulegone into (−)‐menthone, the (−)‐menthol precursor, through (+)‐pule...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 17; no. 23; pp. e202400704 - n/a
Main Authors Wu, Qiong, Li, Hai‐Peng, Liu, Ya, Shou, Chao, Chen, Qi, Xu, Jian‐He, Li, Chun‐Xiu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.12.2024
Subjects
Online AccessGet full text
ISSN1864-5631
1864-564X
1864-564X
DOI10.1002/cssc.202400704

Cover

Loading…
Abstract The biosynthesis of valuable plant‐derived monoterpene (−)‐menthol from readily available feedstocks (e. g., (−)‐limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)‐pulegone into (−)‐menthone, the (−)‐menthol precursor, through (+)‐pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (kcat/Km) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGRM2‐1 (A50 V/G53 W), was obtained, showing respective 20‐fold and 204‐fold improvements in specific activity and catalytic efficiency. PrPGRM2‐1 was employed to bioreduce (+)‐pulegone, resulting in 4.4‐fold and 35‐fold enhancements in (−)‐menthone titers compared with the bioreductions catalyzed by wild‐type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole‐cell biocatalyst containing PrPGRM2‐1, MpMMR, and BstFDH was constructed and achieved the highest (−)‐menthol titer reported to date without externally supplemented NADPH/NADP+. Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (−)‐menthol biosynthesis. A bacterial (+)‐pulegone reductase with excellent catalytic performance was discovered, and structure‐guided mutagenesis was employed to enhance its activity for efficient (−)‐menthol biosynthesis.
AbstractList The biosynthesis of valuable plant‐derived monoterpene (−)‐menthol from readily available feedstocks (e. g., (−)‐limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)‐pulegone into (−)‐menthone, the (−)‐menthol precursor, through (+)‐pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (kcat/Km) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGRM2‐1 (A50 V/G53 W), was obtained, showing respective 20‐fold and 204‐fold improvements in specific activity and catalytic efficiency. PrPGRM2‐1 was employed to bioreduce (+)‐pulegone, resulting in 4.4‐fold and 35‐fold enhancements in (−)‐menthone titers compared with the bioreductions catalyzed by wild‐type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole‐cell biocatalyst containing PrPGRM2‐1, MpMMR, and BstFDH was constructed and achieved the highest (−)‐menthol titer reported to date without externally supplemented NADPH/NADP+. Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (−)‐menthol biosynthesis.
The biosynthesis of valuable plant-derived monoterpene (-)-menthol from readily available feedstocks (e. g., (-)-limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)-pulegone into (-)-menthone, the (-)-menthol precursor, through (+)-pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (k /K ) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGR (A50 V/G53 W), was obtained, showing respective 20-fold and 204-fold improvements in specific activity and catalytic efficiency. PrPGR was employed to bioreduce (+)-pulegone, resulting in 4.4-fold and 35-fold enhancements in (-)-menthone titers compared with the bioreductions catalyzed by wild-type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole-cell biocatalyst containing PrPGR , MpMMR, and BstFDH was constructed and achieved the highest (-)-menthol titer reported to date without externally supplemented NADPH/NADP . Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (-)-menthol biosynthesis.
The biosynthesis of valuable plant‐derived monoterpene (−)‐menthol from readily available feedstocks (e. g., (−)‐limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)‐pulegone into (−)‐menthone, the (−)‐menthol precursor, through (+)‐pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (kcat/Km) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGRM2‐1 (A50 V/G53 W), was obtained, showing respective 20‐fold and 204‐fold improvements in specific activity and catalytic efficiency. PrPGRM2‐1 was employed to bioreduce (+)‐pulegone, resulting in 4.4‐fold and 35‐fold enhancements in (−)‐menthone titers compared with the bioreductions catalyzed by wild‐type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole‐cell biocatalyst containing PrPGRM2‐1, MpMMR, and BstFDH was constructed and achieved the highest (−)‐menthol titer reported to date without externally supplemented NADPH/NADP+. Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (−)‐menthol biosynthesis. A bacterial (+)‐pulegone reductase with excellent catalytic performance was discovered, and structure‐guided mutagenesis was employed to enhance its activity for efficient (−)‐menthol biosynthesis.
The biosynthesis of valuable plant‐derived monoterpene (−)‐menthol from readily available feedstocks ( e. g ., (−)‐limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)‐pulegone into (−)‐menthone, the (−)‐menthol precursor, through (+)‐pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency ( k cat / K m ) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans ( Pr PGR) was identified, and the most successful variant, Pr PGR M2‐1 (A50 V/G53 W), was obtained, showing respective 20‐fold and 204‐fold improvements in specific activity and catalytic efficiency. Pr PGR M2‐1 was employed to bioreduce (+)‐pulegone, resulting in 4.4‐fold and 35‐fold enhancements in (−)‐menthone titers compared with the bioreductions catalyzed by wild‐type (WT) Pr PGR and Mp PGR, respectively. Furthermore, a whole‐cell biocatalyst containing Pr PGR M2‐1 , Mp MMR, and Bst FDH was constructed and achieved the highest (−)‐menthol titer reported to date without externally supplemented NADPH/NADP + . Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (−)‐menthol biosynthesis.
The biosynthesis of valuable plant-derived monoterpene (-)-menthol from readily available feedstocks (e. g., (-)-limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)-pulegone into (-)-menthone, the (-)-menthol precursor, through (+)-pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (kcat/Km) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGRM2-1 (A50 V/G53 W), was obtained, showing respective 20-fold and 204-fold improvements in specific activity and catalytic efficiency. PrPGRM2-1 was employed to bioreduce (+)-pulegone, resulting in 4.4-fold and 35-fold enhancements in (-)-menthone titers compared with the bioreductions catalyzed by wild-type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole-cell biocatalyst containing PrPGRM2-1, MpMMR, and BstFDH was constructed and achieved the highest (-)-menthol titer reported to date without externally supplemented NADPH/NADP+. Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (-)-menthol biosynthesis.The biosynthesis of valuable plant-derived monoterpene (-)-menthol from readily available feedstocks (e. g., (-)-limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)-pulegone into (-)-menthone, the (-)-menthol precursor, through (+)-pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (kcat/Km) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGRM2-1 (A50 V/G53 W), was obtained, showing respective 20-fold and 204-fold improvements in specific activity and catalytic efficiency. PrPGRM2-1 was employed to bioreduce (+)-pulegone, resulting in 4.4-fold and 35-fold enhancements in (-)-menthone titers compared with the bioreductions catalyzed by wild-type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole-cell biocatalyst containing PrPGRM2-1, MpMMR, and BstFDH was constructed and achieved the highest (-)-menthol titer reported to date without externally supplemented NADPH/NADP+. Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (-)-menthol biosynthesis.
Author Wu, Qiong
Li, Hai‐Peng
Shou, Chao
Xu, Jian‐He
Chen, Qi
Li, Chun‐Xiu
Liu, Ya
Author_xml – sequence: 1
  givenname: Qiong
  surname: Wu
  fullname: Wu, Qiong
  organization: East China University of Science and Technology
– sequence: 2
  givenname: Hai‐Peng
  surname: Li
  fullname: Li, Hai‐Peng
  organization: East China University of Science and Technology
– sequence: 3
  givenname: Ya
  surname: Liu
  fullname: Liu, Ya
  organization: East China University of Science and Technology
– sequence: 4
  givenname: Chao
  surname: Shou
  fullname: Shou, Chao
  organization: East China University of Science and Technology
– sequence: 5
  givenname: Qi
  surname: Chen
  fullname: Chen, Qi
  email: chenqi_angela@163.com
  organization: East China University of Science and Technology
– sequence: 6
  givenname: Jian‐He
  surname: Xu
  fullname: Xu, Jian‐He
  email: jianhexu@ecust.edu.cn
  organization: East China University of Science and Technology
– sequence: 7
  givenname: Chun‐Xiu
  orcidid: 0000-0002-6633-5626
  surname: Li
  fullname: Li, Chun‐Xiu
  email: chunxiuli@ecust.edu.cn
  organization: East China University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38860330$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLVDEQhYOMOA_dupSAmxbptvK4ubnLmbZ9wIjiKLgLmaRum-F2MiZ9ld65dCn-xPklpumxBTeuqgq-U9Spc0wOYopIyEMGMwbAn7lS3IwDlwAtyDvkiGklp42Snw72vWCH5LiUKwAFnVL3yKHQWoEQcESG56G49BXzhtro6SIuQ0TMIS5p6qmlZ9at62gHOnn65Ob7z3fjgMt6An2PfnRrW5D2KdNF3wcXMK7p5ObHry34pg6f00DPQiqb2mIJ5T6529uh4IPbekI-vlh8mL-anr99-Xp-ej51gms51Q5c67xuFEcmq82OWe472biWa95fuhatbKBvnVCqkcJLL1vVK-Ya7a324oRMdnuvc_oyYlmbVXWJw2AjprEYAUq1HTTAKvr4H_QqjTnW64xgkmvgim-pR7fUeLlCb65zWNm8MX_-WIHZDnA5lZKx3yMMzDYosw3K7IOqgm4n-BYG3PyHNvOLi_lf7W-AUpeH
Cites_doi 10.1016/j.bioorg.2007.08.005
10.1021/cs300709m
10.1002/jcc.21334
10.1021/acssynbio.5b00092
10.1002/ejoc.201200776
10.1002/ffj.3699
10.1021/acs.jafc.9b01856
10.1016/j.phytochem.2013.08.005
10.1016/S0003-9861(03)00390-4
10.1073/pnas.1111558108
10.1002/cctc.202200844
10.1038/s41929-023-01049-5
10.1016/j.ymben.2013.05.004
10.1186/s13068-021-01998-8
10.1002/anie.202309284
10.1016/j.molcatb.2009.02.009
10.1016/j.ijbiomac.2017.08.080
10.1104/pp.104.053298
10.1007/s00114-005-0055-0
10.1126/science.1191652
10.1021/acscatal.3c00503
10.1007/s12010-020-03317-7
10.3390/molecules29010279
10.3389/fpls.2021.780970
10.1002/adsc.202100368
10.1021/acscatal.7b04115
10.1002/anie.201504318
10.1002/anie.202012658
10.1002/cssc.202101741
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202400704
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID 38860330
10_1002_cssc_202400704
CSSC202400704
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2019YFA09005000; 2022YFC2105900
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA09005000
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC2105900
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3284-8c0c7cd8562e1410091a2d945c7282fbc7ea450f7c366543d4d476f61c58da8d3
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Thu Jul 10 19:12:42 EDT 2025
Fri Jul 25 12:12:41 EDT 2025
Mon Jul 21 06:01:00 EDT 2025
Tue Jul 01 00:36:26 EDT 2025
Wed Jan 22 17:12:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords whole-cell biocatalysts
(−)-menthol
bacterial (+)-pulegone reductase
molecular dynamics
structure-guided mutagenesis
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3284-8c0c7cd8562e1410091a2d945c7282fbc7ea450f7c366543d4d476f61c58da8d3
Notes contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6633-5626
PMID 38860330
PQID 3142802621
PQPubID 986333
PageCount 7
ParticipantIDs proquest_miscellaneous_3066790501
proquest_journals_3142802621
pubmed_primary_38860330
crossref_primary_10_1002_cssc_202400704
wiley_primary_10_1002_cssc_202400704_CSSC202400704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 6, 2024
PublicationDateYYYYMMDD 2024-12-06
PublicationDate_xml – month: 12
  year: 2024
  text: December 6, 2024
  day: 06
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2003; 418
2010; 31
2013; 3
2023; 13
2012; 2012
2015; 4
2018; 106
2023; 6
2005; 137
2015; 54
2008; 36
2021; 363
2013; 19
2021; 14
2018; 8
2023; 63
2011; 108
2021; 12
2020; 192
2019; 67
2013; 96
2010; 330
2022; 14
2022; 37
2022; 15
2005; 92
2021; 60
2024; 29
2009; 59
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 108
  start-page: 16944
  issue: 41
  year: 2011
  end-page: 16949
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2012
  start-page: 4963
  issue: 26
  year: 2012
  end-page: 4968
  publication-title: Eur. J. Org. Chem.
– volume: 67
  start-page: 6867
  issue: 24
  year: 2019
  end-page: 6873
  publication-title: J. Agric. Food Chem.
– volume: 63
  issue: 4
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 7407
  issue: 11
  year: 2023
  end-page: 7416
  publication-title: ACS Catal.
– volume: 14
  issue: 23
  year: 2022
  publication-title: ChemCatChem
– volume: 14
  start-page: 147
  issue: 1
  year: 2021
  publication-title: Biotechnol. Biofuels
– volume: 54
  start-page: 9158
  issue: 32
  year: 2015
  end-page: 9160
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 3481
  issue: 7
  year: 2021
  end-page: 3486
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  issue: 9
  year: 2022
  publication-title: ChemSusChem
– volume: 3
  start-page: 370
  issue: 3
  year: 2013
  end-page: 379
  publication-title: ACS Catal.
– volume: 8
  start-page: 2012
  issue: 3
  year: 2018
  end-page: 2020
  publication-title: ACS Catal.
– volume: 59
  start-page: 158
  issue: 1–3
  year: 2009
  end-page: 162
  publication-title: J. Mol. Catal. B-Enzym.
– volume: 12
  year: 2021
  publication-title: Front. Plant Sci.
– volume: 19
  start-page: 33
  year: 2013
  end-page: 41
  publication-title: Metab. Eng.
– volume: 4
  start-page: 1112
  issue: 10
  year: 2015
  end-page: 1123
  publication-title: ACS Synth. Biol.
– volume: 36
  start-page: 23
  issue: 1
  year: 2008
  end-page: 28
  publication-title: Bioorg. Chem.
– volume: 192
  start-page: 530
  issue: 2
  year: 2020
  end-page: 543
  publication-title: Appl. Biochem. Biotechnol.
– volume: 330
  start-page: 70
  issue: 6000
  year: 2010
  end-page: 74
  publication-title: Science
– volume: 6
  start-page: 1016
  issue: 11
  year: 2023
  end-page: 1029
  publication-title: Nat. Catal.
– volume: 92
  start-page: 562
  issue: 12
  year: 2005
  end-page: 577
  publication-title: Naturwissenschaften
– volume: 29
  start-page: 279
  issue: 1
  year: 2024
  publication-title: Molecules
– volume: 96
  start-page: 15
  year: 2013
  end-page: 25
  publication-title: Phytochemistry
– volume: 37
  start-page: 195
  issue: 4
  year: 2022
  end-page: 209
  publication-title: Flavour Fragrance J.
– volume: 363
  start-page: 3973
  issue: 16
  year: 2021
  end-page: 3982
  publication-title: Adv. Synth. Catal.
– volume: 137
  start-page: 863
  issue: 3
  year: 2005
  end-page: 872
  publication-title: Plant Physiol.
– volume: 31
  start-page: 455
  issue: 2
  year: 2010
  end-page: 461
  publication-title: J. Comput. Chem.
– volume: 418
  start-page: 80
  issue: 1
  year: 2003
  end-page: 92
  publication-title: Biochem. Biophys.
– volume: 106
  start-page: 803
  year: 2018
  end-page: 822
  publication-title: Int. J. Biol. Macromol.
– ident: e_1_2_7_22_1
  doi: 10.1016/j.bioorg.2007.08.005
– ident: e_1_2_7_20_1
  doi: 10.1021/cs300709m
– ident: e_1_2_7_27_1
  doi: 10.1002/jcc.21334
– ident: e_1_2_7_5_1
  doi: 10.1021/acssynbio.5b00092
– ident: e_1_2_7_18_1
  doi: 10.1002/ejoc.201200776
– ident: e_1_2_7_8_1
  doi: 10.1002/ffj.3699
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.jafc.9b01856
– ident: e_1_2_7_4_1
  doi: 10.1016/j.phytochem.2013.08.005
– ident: e_1_2_7_13_1
  doi: 10.1016/S0003-9861(03)00390-4
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.1111558108
– ident: e_1_2_7_26_1
  doi: 10.1002/cctc.202200844
– ident: e_1_2_7_15_1
  doi: 10.1038/s41929-023-01049-5
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ymben.2013.05.004
– ident: e_1_2_7_3_1
  doi: 10.1186/s13068-021-01998-8
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.202309284
– ident: e_1_2_7_19_1
  doi: 10.1016/j.molcatb.2009.02.009
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ijbiomac.2017.08.080
– ident: e_1_2_7_12_1
  doi: 10.1104/pp.104.053298
– ident: e_1_2_7_11_1
  doi: 10.1007/s00114-005-0055-0
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1191652
– ident: e_1_2_7_24_1
  doi: 10.1021/acscatal.3c00503
– ident: e_1_2_7_23_1
  doi: 10.1007/s12010-020-03317-7
– ident: e_1_2_7_1_1
  doi: 10.3390/molecules29010279
– ident: e_1_2_7_21_1
  doi: 10.3389/fpls.2021.780970
– ident: e_1_2_7_9_1
  doi: 10.1002/adsc.202100368
– ident: e_1_2_7_7_1
  doi: 10.1021/acscatal.7b04115
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201504318
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.202012658
– ident: e_1_2_7_17_1
  doi: 10.1002/cssc.202101741
SSID ssj0060966
Score 2.4344668
Snippet The biosynthesis of valuable plant‐derived monoterpene (−)‐menthol from readily available feedstocks (e. g., (−)‐limonene) is of great significance because of...
The biosynthesis of valuable plant‐derived monoterpene (−)‐menthol from readily available feedstocks ( e. g ., (−)‐limonene) is of great significance because...
The biosynthesis of valuable plant-derived monoterpene (-)-menthol from readily available feedstocks (e. g., (-)-limonene) is of great significance because of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202400704
SubjectTerms (−)-menthol
bacterial (+)-pulegone reductase
Biocatalysis
Biosynthesis
Catalysis
Cyclohexane Monoterpenes - metabolism
Efficiency
Menthol
Menthol - metabolism
molecular dynamics
Monoterpenes - metabolism
Oxidoreductases - metabolism
Protein Engineering
Pseudomonas - enzymology
Pseudomonas - metabolism
Reductases
Stereoisomerism
structure-guided mutagenesis
whole-cell biocatalysts
Title Discovery and Engineering of a Bacterial (+)‐Pulegone Reductase for Efficient (−)‐Menthol Biosynthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202400704
https://www.ncbi.nlm.nih.gov/pubmed/38860330
https://www.proquest.com/docview/3142802621
https://www.proquest.com/docview/3066790501
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMeDeNGL78fqKhEEFammTZumR10VERTxAd5KmqSyKF2xuwc9efQofsT9JM602-rqQdBbS5M2TSaZf9rJL4SsR6kRqKSdiBmYoBifOVEQwMQ1MtxyZb2E4eLk0zNxfO2f3AQ3X1bxl3yI-oMb9oxivMYOrpJ89xMaqvMcEYQYAxkWQFAM2EJVdFHzowTo82J5kRS-EwjuVtRG5u0OZx_2Sj-k5rByLVzP0SRRVaHLiJO7nV432dHP33iO_3mrKTIx0KV0rzSkaTJisxky1qq2g5sl9wftXGO85xNVmaFfOIa0k1JF90vsM9xjc3ur__J23ru3t53M0guEw3bBWVLQx_SwQFaAp6Ob_dd3TIgUIRiC6X67kz_Boc3b-Ry5Pjq8ah07g60aHM3BwTlSMx1qI0FNWYwcBRWiPBP5gQ5hTpcmOrTKD1gaao7bHXMDVhGKVLg6kEZJw-fJaAZlWiSUu67QiWJuYqSvXSutUBxkmVIwXiSRbpCNqqnih5LIEZfsZS_G2ovr2muQZtWS8aBn5jFHxBxMPD23Qdbqy1CX-KNEZbbTgzQY-RuxgEGahdIC6kdxKQXjnDWIV7TjL2WIW5eXrfps6S-Zlsk4HhcxNKJJRruPPbsCSqibrBbW_gGVEwCt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hONALLfTBUihGqlSqKuDEieMcYQtaykMVD6m3yLGdagXKVs3uAU4cOVb9ifwSZpJNYOkBqdzysBPHHnu-cWa-AfiY5FYSkvYSbtFAsSH3kihCwzWxwgntgoxTcPLhkeydhd9-RI03IcXC1PwQ7YYbzYxqvaYJThvSm_esoaYsiYOQnCBjYgSdobTelVV13DJISUToVYCRkqEXSeE3vI082JysP6mX_gGbk9i1Uj67LyFrml37nJxvjIbZhrl6xOj4rO96BXNjaMq2almahylXLMBst8kI9xouvvZLQy6fl0wXlj2gMmSDnGm2XTM_4zPWv3y-vf7zfXThfg4Kx46JH3aI-pIhRGY7FWsFKju2fnvzlwoSkRCuwmy7Pygv8dCV_fINnO3unHZ73jhbg2cE6jhPGW5iYxUCKkfOowhEdGCTMDIxmnV5ZmKnw4jnsRGU8VhYFIxY5tI3kbJaWfEWpgts0yIw4fvSZJr7mVWh8Z1yUgtEZlrjkpElpgOfmrFKf9WkHGlNvxyk1Htp23sdWG6GMh1PzjIVxDKHtmfgd2CtvY19Sf9KdOEGIyxDzr8JjziWeVeLQPsqoZTkQvAOBNVAPtGGtHty0m3Plv6n0irM9k4PD9KDvaP99_CCrlcuNXIZpoe_R24FgdEw-1CJ_h2dRATI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT9wwEIZHiEq0F1poCwsUXKlSqaqAEyeOcyy7rOgXQlAkbpFjO2gFyiKye4ATR45VfyK_pDPJJrDtoRK95cNJHHvseZ2MHwO8S3IrSUl7Cbc4QLEh95IowoFrYoUT2gUZp8nJ3_fl3nH45SQ6eTCLv-ZDtB_cqGVU_TU18Aubb99DQ01ZEoKQYiBjAoI-CSVXZNe9wxYgJVGgV_OLlAy9SAq_wTbyYHv6-mm39JfWnJaule_pPwfd5LoOOTnbGo-yLXP9B9Dxf17rBcxPhCn7VFvSAsy4YhGedpv14F7CeW9QGgr4vGK6sOwByJANc6bZTs19xntsfvxwd_PzYHzuToeFY4dEhx2ht2QokNluxaxAV8c2725_UULCCGEfzHYGw_IKN105KF_BcX_3R3fPm6zV4BmBHs5ThpvYWIVyylHoKMoQHdgkjEyMg7o8M7HTYcTz2Aha71hYNItY5tI3kbJaWfEaZgvM0zIw4fvSZJr7mVWh8Z1yUgvUZVpjh5ElpgPvm6pKL2okR1rDl4OUSi9tS68Da01NppOmWaaCGHM48gz8DrxtT2NZ0p8SXbjhGNNQ6G_CI45plmoLaB8llJJcCN6BoKrHf-Qh7R4dddu9lcdctAFzB71--u3z_tdVeEaHq3gauQazo8uxe4OqaJStV4b_G6SVA4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+and+Engineering+of+a+Bacterial+%28%2B%29-Pulegone+Reductase+for+Efficient+%28-%29-Menthol+Biosynthesis&rft.jtitle=ChemSusChem&rft.au=Wu%2C+Qiong&rft.au=Li%2C+Hai-Peng&rft.au=Liu%2C+Ya&rft.au=Shou%2C+Chao&rft.date=2024-12-06&rft.eissn=1864-564X&rft.volume=17&rft.issue=23&rft.spage=e202400704&rft_id=info:doi/10.1002%2Fcssc.202400704&rft_id=info%3Apmid%2F38860330&rft.externalDocID=38860330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon