High‐Valence Co Stabilized by In‐Situ Growth of ZIF‐67 on NiCo‐LDH for Enhanced Performance in Oxygen Evolution Reaction
The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. I...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 3; pp. e2407443 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy‐hydroxides to obtain ZIF‐67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF‐67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec−1, and a charge transfer resistance of 3.9 Ω, with long‐term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm−2. This work on binder‐free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost‐effective and controllable production of MOF‐based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.
A multi‐architecture oxygen evolution reaction (OER) catalyst is designed. NiCo‐layered double hydroxide (NiCo‐LDH) and zeolitic imidazolate frameworks‐67 (ZIF‐67) are grown on the surface of nickel foam by alternating cathodic and anodic electrodeposition, so as to realize the in situ growth of metal–organic framework without binder and to mildly product the low‐cost controllable MOF‐based catalysts. |
---|---|
AbstractList | The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy-hydroxides to obtain ZIF-67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co
by ZIF-67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η
) of 293 mV, a Tafel slope of 25.8 mV dec
, and a charge transfer resistance of 3.9 Ω, with long-term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm
. This work on binder-free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost-effective and controllable production of MOF-based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials. The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy‐hydroxides to obtain ZIF‐67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co 4+ by ZIF‐67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η 100 ) of 293 mV, a Tafel slope of 25.8 mV dec −1 , and a charge transfer resistance of 3.9 Ω, with long‐term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm −2 . This work on binder‐free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost‐effective and controllable production of MOF‐based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials. The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy-hydroxides to obtain ZIF-67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF-67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec-1, and a charge transfer resistance of 3.9 Ω, with long-term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm-2. This work on binder-free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost-effective and controllable production of MOF-based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy-hydroxides to obtain ZIF-67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF-67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec-1, and a charge transfer resistance of 3.9 Ω, with long-term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm-2. This work on binder-free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost-effective and controllable production of MOF-based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials. The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy‐hydroxides to obtain ZIF‐67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF‐67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec−1, and a charge transfer resistance of 3.9 Ω, with long‐term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm−2. This work on binder‐free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost‐effective and controllable production of MOF‐based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials. The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy‐hydroxides to obtain ZIF‐67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF‐67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec−1, and a charge transfer resistance of 3.9 Ω, with long‐term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm−2. This work on binder‐free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost‐effective and controllable production of MOF‐based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials. A multi‐architecture oxygen evolution reaction (OER) catalyst is designed. NiCo‐layered double hydroxide (NiCo‐LDH) and zeolitic imidazolate frameworks‐67 (ZIF‐67) are grown on the surface of nickel foam by alternating cathodic and anodic electrodeposition, so as to realize the in situ growth of metal–organic framework without binder and to mildly product the low‐cost controllable MOF‐based catalysts. |
Author | Feng, Han Lv, Luo‐Tian Ye, Kai‐Hang Li, Tong Tang, Tong‐Xin Huang, Yan‐Kai Wang, Yong‐Qing Lin, Zhan |
Author_xml | – sequence: 1 givenname: Yan‐Kai orcidid: 0009-0006-0721-7968 surname: Huang fullname: Huang, Yan‐Kai organization: Sun Yat‐sen University – sequence: 2 givenname: Tong surname: Li fullname: Li, Tong organization: Sun Yat‐sen University – sequence: 3 givenname: Han surname: Feng fullname: Feng, Han organization: Sun Yat‐sen University – sequence: 4 givenname: Luo‐Tian surname: Lv fullname: Lv, Luo‐Tian organization: Sun Yat‐sen University – sequence: 5 givenname: Tong‐Xin surname: Tang fullname: Tang, Tong‐Xin organization: Guangdong University of Technology – sequence: 6 givenname: Zhan surname: Lin fullname: Lin, Zhan organization: Guangdong University of Technology – sequence: 7 givenname: Kai‐Hang surname: Ye fullname: Ye, Kai‐Hang email: yekh@gdut.edu.cn organization: Chemical Engineering Guangdong Laboratory, Jieyang Branch of Chemistry – sequence: 8 givenname: Yong‐Qing orcidid: 0000-0002-0480-5477 surname: Wang fullname: Wang, Yong‐Qing email: wangyq223@mail.sysu.edu.cn organization: Sun Yat‐sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39544157$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS3Uiv7AliWyxIZNgv_G41mikDaRhrYiwILNyOOxG1ceu7VnKGHVR-AZeRIcpQ0SG1b3Ht_vXFn3nIADH7wG4BVGU4wQeZd656YEEYZKxugzcIw5phMuSHWw7zE6Aicp3SBEMWHlc3BEq4IxXJTH4GFhr9e_H359lU57peEswNUgW-vsT93BdgOXPk9XdhjheQz3wxoGA78tz_IjL2Hw8MLOQhb1hwU0IcK5X8u8p4NXOmbdbwW0Hl7-2FxrD-ffgxsHm32ftFTb5gU4NNIl_fKxnoIvZ_PPs8Wkvjxfzt7XE0WJoBPJ2oJTgY2mjDHSKYkVx23FmaamkwILLJVhqq0Ex2XLSdUxU7JKo44aKTg9BW93e29juBt1GpreJqWdk16HMTX5NEIQRiuU0Tf_oDdhjD7_LlNFWfGCYZKp14_U2Pa6a26j7WXcNE-3zcB0B6gYUora7BGMmm14zTa8Zh9eNlQ7w711evMfull9rOu_3j9UgZ-K |
Cites_doi | 10.1016/j.ijhydene.2023.03.088 10.1002/aenm.201902535 10.1002/adfm.201803291 10.1002/adma.201506197 10.1016/j.nanoen.2014.11.021 10.1038/s41467-021-23390-8 10.1016/j.jallcom.2022.163701 10.1016/j.electacta.2016.10.002 10.1016/j.electacta.2016.02.145 10.1002/adfm.201702317 10.1002/aenm.202000892 10.1016/j.apcatb.2022.121247 10.1038/s41560-019-0407-1 10.1021/jacs.7b12420 10.1021/acs.inorgchem.1c02254 10.1039/C4NR02399D 10.1039/C6CP07294A 10.1016/j.apcatb.2022.122265 10.1021/acsami.7b10338 10.3390/ma16155461 10.1002/aenm.201800980 10.1002/cctc.201801253 10.1002/ange.201812601 10.1016/j.ssi.2007.12.052 10.1039/C8TA06529B 10.1039/C8EE03208D 10.1039/C9TA03762D 10.1021/ar5002022 10.1002/aenm.201902104 10.1002/smll.201904252 10.1002/anie.202117178 10.1016/j.jallcom.2019.05.023 10.1016/j.electacta.2020.136053 10.1016/j.nanoen.2017.05.022 10.1021/acsami.9b03365 10.1039/D1QI00613D 10.1073/pnas.0603395103 10.1039/C8TA03128B 10.1038/nchem.141 10.1039/C8TA08149B 10.1016/j.foodchem.2023.136648 10.1126/science.1230444 10.1021/jacs.0c04867 10.1002/cssc.202001230 10.1016/j.molstruc.2022.132768 10.1002/adma.202107072 10.1016/j.ijhydene.2016.06.056 10.1002/smll.202100129 10.1002/admi.202202349 10.1039/C8CC03223H 10.1021/acsaem.9b01135 10.1039/C6MH00344C 10.1016/j.jallcom.2020.155628 10.1002/eem2.12024 10.1002/adfm.202006484 10.1002/aenm.201803918 10.1002/celc.201600563 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202407443 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39544157 10_1002_smll_202407443 SMLL202407443 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program Nanotechnology Specific Project funderid: 2020YFA0210900 – fundername: National Natural Science Foundation of China funderid: 22108042; 51972348 – fundername: National Natural Science Foundation of China grantid: 22108042 – fundername: National Natural Science Foundation of China grantid: 51972348 – fundername: National Key Research and Development Program Nanotechnology Specific Project grantid: 2020YFA0210900 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ 53G AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3283-a4b56381fe34442dca1c61b964e3fda8181acf4cb98617b629d4f749e0d3fa863 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 08:18:54 EDT 2025 Tue Jul 22 18:41:47 EDT 2025 Thu Apr 03 07:08:35 EDT 2025 Tue Jul 01 05:25:08 EDT 2025 Thu Jan 23 09:59:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Electro‐deposition MOFs Co(IV) OER Multi‐architecture |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3283-a4b56381fe34442dca1c61b964e3fda8181acf4cb98617b629d4f749e0d3fa863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0480-5477 0009-0006-0721-7968 |
PMID | 39544157 |
PQID | 3157965412 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3128824390 proquest_journals_3157965412 pubmed_primary_39544157 crossref_primary_10_1002_smll_202407443 wiley_primary_10_1002_smll_202407443_SMLL202407443 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2023; 10 2019; 9 2019; 4 2018 2017 2019; 10 42 12 2018; 140 2017; 4 2009 2006; 1 103 2019; 2 2019; 11 2020; 341 2017; 27 2023; 16 2015; 11 2014; 47 2020; 13 2013; 341 2020; 10 2018 2017; 28 37 2017; 9 2018; 6 2021; 12 2014 2016; 6 28 2016; 219 2018 2018; 6 54 2023; 48 2022; 61 2021; 17 2022 2022; 1259 903 2022; 34 2019 2022 2020 2023; 309 142 324 2019; 796 2017; 19 2021 2023 2021; 31 427 8 2008; 179 2021; 60 2020; 838 2019 2018 2020; 131 8 16 2016; 197 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_38_3 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_32_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_44_3 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_2 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_2 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_33_3 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_2 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 197 start-page: 228 year: 2016 publication-title: Electrochim. Acta – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 start-page: 20 year: 2017 publication-title: Mater. Horiz. – volume: 10 42 12 start-page: 4888 5560 739 year: 2018 2017 2019 publication-title: ChemCatChem Int. J. Hydrogen Energy Energy Environmen. Sci. – volume: 1 103 start-page: 7 year: 2009 2006 publication-title: Nat. Chem. Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 430 year: 2019 publication-title: Nat. Energy – volume: 6 54 start-page: 6204 year: 2018 2018 publication-title: J. Mater. Chem. A Chem. Commun. – volume: 796 start-page: 111 year: 2019 publication-title: J. Alloys Compd. – volume: 13 start-page: 5647 year: 2020 publication-title: ChemSusChem. – volume: 309 142 324 year: 2022 2020 2023 publication-title: Appl. Catal. B: Environmen. J. Am. Chem. Soc. Appl. Catal. B‐Environmen. – volume: 179 start-page: 222 year: 2008 publication-title: Solid State Ionics – volume: 11 start-page: 333 year: 2015 publication-title: Nano Energy – volume: 17 year: 2021 publication-title: Small – volume: 140 start-page: 2610 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 1259 903 year: 2022 2022 publication-title: J. Mol. Struct. J. Alloys Compd. – volume: 48 year: 2023 publication-title: Int. J. Hydrogen Energy – volume: 28 37 start-page: 136 year: 2018 2017 publication-title: Adv. Funct. Mater. Nano Energy – volume: 60 year: 2021 publication-title: Inorg. Chem. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 2 start-page: 6071 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 2 start-page: 18 year: 2019 publication-title: Energy Environmen. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 61 year: 2022 publication-title: Angew. Chem. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – start-page: 82 year: 2019 – volume: 219 start-page: 623 year: 2016 publication-title: Electrochim. Acta – volume: 341 year: 2013 publication-title: Science – volume: 16 start-page: 5461 year: 2023 publication-title: Materials – volume: 4 start-page: 20 year: 2017 publication-title: ChemElectroChem. – volume: 10 year: 2023 publication-title: Adv. Mater. Interfaces – volume: 12 start-page: 3036 year: 2021 publication-title: Nat. Commun. – volume: 131 8 16 start-page: 4233 year: 2019 2018 2020 publication-title: Angew. Chem. Adv. Energy Mater. Small – volume: 31 427 8 start-page: 4324 year: 2021 2023 2021 publication-title: Adv. Funct. Mater. Food Chem. Inorg. Chem. Front. – volume: 838 year: 2020 publication-title: J. Alloys Compd. – volume: 47 start-page: 2671 year: 2014 publication-title: Acc. Chem. Res. – volume: 19 start-page: 2104 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 341 year: 2020 publication-title: Electrochim. Acta – volume: 6 28 start-page: 9930 3777 year: 2014 2016 publication-title: Nanoscale Adv. Mater. (Weinheim, Ger.) – ident: e_1_2_8_40_1 doi: 10.1016/j.ijhydene.2023.03.088 – ident: e_1_2_8_7_1 doi: 10.1002/aenm.201902535 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.201803291 – ident: e_1_2_8_42_2 doi: 10.1002/adma.201506197 – ident: e_1_2_8_17_1 doi: 10.1016/j.nanoen.2014.11.021 – ident: e_1_2_8_41_1 doi: 10.1038/s41467-021-23390-8 – ident: e_1_2_8_31_2 doi: 10.1016/j.jallcom.2022.163701 – ident: e_1_2_8_18_1 doi: 10.1016/j.electacta.2016.10.002 – ident: e_1_2_8_27_1 doi: 10.1016/j.electacta.2016.02.145 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.201702317 – ident: e_1_2_8_43_1 doi: 10.1002/aenm.202000892 – ident: e_1_2_8_38_1 doi: 10.1016/j.apcatb.2022.121247 – ident: e_1_2_8_4_1 doi: 10.1038/s41560-019-0407-1 – ident: e_1_2_8_36_1 doi: 10.1021/jacs.7b12420 – ident: e_1_2_8_20_1 doi: 10.1021/acs.inorgchem.1c02254 – ident: e_1_2_8_42_1 doi: 10.1039/C4NR02399D – ident: e_1_2_8_16_1 doi: 10.1039/C6CP07294A – ident: e_1_2_8_38_3 doi: 10.1016/j.apcatb.2022.122265 – ident: e_1_2_8_19_1 doi: 10.1021/acsami.7b10338 – ident: e_1_2_8_29_1 doi: 10.3390/ma16155461 – ident: e_1_2_8_33_2 doi: 10.1002/aenm.201800980 – ident: e_1_2_8_44_1 doi: 10.1002/cctc.201801253 – ident: e_1_2_8_33_1 doi: 10.1002/ange.201812601 – ident: e_1_2_8_39_1 doi: 10.1016/j.ssi.2007.12.052 – ident: e_1_2_8_9_1 doi: 10.1039/C8TA06529B – ident: e_1_2_8_44_3 doi: 10.1039/C8EE03208D – ident: e_1_2_8_10_1 doi: 10.1039/C9TA03762D – ident: e_1_2_8_35_1 doi: 10.1021/ar5002022 – ident: e_1_2_8_11_1 doi: 10.1002/aenm.201902104 – ident: e_1_2_8_33_3 doi: 10.1002/smll.201904252 – ident: e_1_2_8_45_1 doi: 10.1002/anie.202117178 – ident: e_1_2_8_13_1 doi: 10.1016/j.jallcom.2019.05.023 – ident: e_1_2_8_22_1 doi: 10.1016/j.electacta.2020.136053 – ident: e_1_2_8_3_2 doi: 10.1016/j.nanoen.2017.05.022 – ident: e_1_2_8_21_1 doi: 10.1021/acsami.9b03365 – ident: e_1_2_8_28_3 doi: 10.1039/D1QI00613D – ident: e_1_2_8_1_2 doi: 10.1073/pnas.0603395103 – ident: e_1_2_8_32_1 doi: 10.1039/C8TA03128B – ident: e_1_2_8_1_1 doi: 10.1038/nchem.141 – ident: e_1_2_8_34_1 doi: 10.1039/C8TA08149B – ident: e_1_2_8_28_2 doi: 10.1016/j.foodchem.2023.136648 – ident: e_1_2_8_25_1 doi: 10.1126/science.1230444 – ident: e_1_2_8_38_2 doi: 10.1021/jacs.0c04867 – ident: e_1_2_8_2_1 – ident: e_1_2_8_12_1 doi: 10.1002/cssc.202001230 – ident: e_1_2_8_31_1 doi: 10.1016/j.molstruc.2022.132768 – ident: e_1_2_8_26_1 doi: 10.1002/adma.202107072 – ident: e_1_2_8_44_2 doi: 10.1016/j.ijhydene.2016.06.056 – ident: e_1_2_8_6_1 doi: 10.1002/smll.202100129 – ident: e_1_2_8_14_1 doi: 10.1002/admi.202202349 – ident: e_1_2_8_32_2 doi: 10.1039/C8CC03223H – ident: e_1_2_8_37_1 doi: 10.1021/acsaem.9b01135 – ident: e_1_2_8_23_1 doi: 10.1039/C6MH00344C – ident: e_1_2_8_30_1 doi: 10.1016/j.jallcom.2020.155628 – ident: e_1_2_8_15_1 doi: 10.1002/eem2.12024 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.202006484 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.201803918 – ident: e_1_2_8_5_1 doi: 10.1002/celc.201600563 |
SSID | ssj0031247 |
Score | 2.4661846 |
Snippet | The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical... The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2407443 |
SubjectTerms | Catalysis Catalysts Charge transfer Chemical synthesis Co(IV) Controllability Corrosion Corrosion tests Electrical resistivity Electrocatalysts Electrochemical corrosion Electro‐deposition Heterostructures Hydroxides Metal-organic frameworks MOFs Multi‐architecture OER Oxygen evolution reactions Performance enhancement Stability tests Surface area |
Title | High‐Valence Co Stabilized by In‐Situ Growth of ZIF‐67 on NiCo‐LDH for Enhanced Performance in Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202407443 https://www.ncbi.nlm.nih.gov/pubmed/39544157 https://www.proquest.com/docview/3157965412 https://www.proquest.com/docview/3128824390 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQp3Log75CKZpKlXoKxI845IiW3S7VQisoFeol8iti1ZJU3SwCTvyE_sb-ko6d3cDSA1J7ieQ4Thx7xvPZnvlMyFuTb8skUyqmDi9CqDTOeUpjLXXq6dZKFbZi9g_k8Fh8OElPbkXxt_wQ3YKb14wwXnsFV3qydUMaOjn77rcO_IwE34mDsHfY8qjosOOP4mi8wukqaLNiT7w1Z21M2NZi8UWr9BfUXESuwfQMHhE1r3TrcfJtc9roTXN1h8_xf_7qMXk4w6Ww0wrSE7LkqlWycout8Cm59j4hv69_fVEhUAl6NSBU9c61V86CvoS9CnOPxs0U3uPkvjmFuoSvewO8KTOoKzgY92pMjHaHgFAZ-tVpcD-ATzfBCzCu4OPFJUo19M9nWgGHro2-eEaOB_3PvWE8O8AhNhxhS6yETlG_aem4EIJZo6iRVOdSOF5ahViBKlMKo1FgaKYly60oM5G7xKKQbEv-nCxXdeVeEmDcUMNKIy0iPGuZzjzXm8itFDicJzIi7-YdWPxoeTqKlpGZFb5Ni65NI7I-799ipq-TglMfk5sKyiLypstGTfPbJ6py9dQ_w3A6ggAuiciLVi66T_Hcn-WWZhFhoXfvqUNxtD8adam1fyn0ijxg_ijisBq0Tpabn1P3GvFRozeCDvwBMFgJPA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_qGBAkZC4pQ2dhynOaLtLruQXVB_EOolsh1HXVESRLOI9tRH4Bl5EmaSTcrCAQkukRzHiWPP2J_tmW8AnttkWwWx1j53eJFSR34SRtw3ykREt1bo5ihmOlPjA_n6Q9RZE5IvTMsP0W-4kWY04zUpOG1Ib12whp58OqazA1qS4EsvwxUK6030-Tu7PYNUiNNXE18FZy2fqLc63sZAbK2WX52X_gCbq9i1mXxGN8F01W5tTj5uLmqzac9-Y3T8r_-6BTeW0JS9bGXpNlxy5R24_gth4V04J7OQH-ff3-vGV4kNKoZolexrz1zOzCmblJi7N68X7BWu7-sjVhXscDLCmypmVclm80GFiXRnzBAts2F51FggsHcX_gtsXrK3305RsNnw61Ix2K5rHTDuwcFouD8Y-8sYDr4NEbn4WpoIVZwXLpRSitxqbhU3iZIuLHKNcIFrW0hrUGZ4bJRIclnEMnFBjnKyrcL7sFZWpVsHJkLLrSisyrGb81yYmOjeZJIriSN6oDx40fVg9rml6shaUmaRUZtmfZt6sNF1cLZU2ZMs5OSWG0kuPHjWZ6Oy0QmKLl21oGcErkgQwwUePGgFo_9UmFA4tyj2QDTd-5c6ZHvTNO1TD_-l0FO4Ot6fplk6mb15BNcERSZuNoc2YK3-snCPES7V5kmjED8BvUsNWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExClt_IjTHNE-2IXtUrUUVVwiv6KugKSiWUR76k_gN_JLGDu7aRcOSHCJ5DhOHHvG8_kx3wC8MPmWTDKlYurwIoRK45ynNNZSp55urVRhK2Z7Kkf74s1BenDBi7_lh-gW3LxmhPHaK_iRLTfPSUOPv3z2Wwd-RoLvvAxXhExyH7yhv9sRSHG0XiG8Chqt2DNvLWkbE7a5Wn7VLP2BNVeha7A9w5uglrVuj5x82pg3esOc_kbo-D-_dQtuLIApedVK0m245Ko7cP0CXeFdOPOHQn6e_figgqcS6dUEsao_XXvqLNEnZFxh7t6smZPXOLtvDkldko_jId6UGakrMp31akxM-iOCWJkMqsNw_oDsnHsvkFlF3n0_QbEmg28LtSC7rnW_uAf7w8H73iheRHCIDUfcEiuhU1RwWjouhGDWKGok1bkUjpdWIVigypTCaJQYmmnJcivKTOQusSglW5Lfh7WqrtxDIIwbalhppEWIZy3TmSd7E7mVAsfzREbwctmBxVFL1FG0lMys8G1adG0awfqyf4uFwh4XnHqn3FRQFsHzLhtVze-fqMrVc_8Mw_kIIrgkggetXHSf4rkP5pZmEbDQu3-pQ7G3PZl0qUf_UugZXN3pD4vJePr2MVxjPixxWBlah7Xm69w9QazU6KdBHX4Bi64MBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Valence+Co+Stabilized+by+In-Situ+Growth+of+ZIF-67+on+NiCo-LDH+for+Enhanced+Performance+in+Oxygen+Evolution+Reaction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Huang%2C+Yan-Kai&rft.au=Li%2C+Tong&rft.au=Feng%2C+Han&rft.au=Lv%2C+Luo-Tian&rft.date=2025-01-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.spage=e2407443&rft_id=info:doi/10.1002%2Fsmll.202407443&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |