High‐Valence Co Stabilized by In‐Situ Growth of ZIF‐67 on NiCo‐LDH for Enhanced Performance in Oxygen Evolution Reaction

The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. I...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 3; pp. e2407443 - n/a
Main Authors Huang, Yan‐Kai, Li, Tong, Feng, Han, Lv, Luo‐Tian, Tang, Tong‐Xin, Lin, Zhan, Ye, Kai‐Hang, Wang, Yong‐Qing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy‐hydroxides to obtain ZIF‐67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF‐67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec−1, and a charge transfer resistance of 3.9 Ω, with long‐term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm−2. This work on binder‐free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost‐effective and controllable production of MOF‐based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials. A multi‐architecture oxygen evolution reaction (OER) catalyst is designed. NiCo‐layered double hydroxide (NiCo‐LDH) and zeolitic imidazolate frameworks‐67 (ZIF‐67) are grown on the surface of nickel foam by alternating cathodic and anodic electrodeposition, so as to realize the in situ growth of metal–organic framework without binder and to mildly product the low‐cost controllable MOF‐based catalysts.
AbstractList The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy-hydroxides to obtain ZIF-67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co by ZIF-67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η ) of 293 mV, a Tafel slope of 25.8 mV dec , and a charge transfer resistance of 3.9 Ω, with long-term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm . This work on binder-free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost-effective and controllable production of MOF-based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.
The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy‐hydroxides to obtain ZIF‐67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co 4+ by ZIF‐67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η 100 ) of 293 mV, a Tafel slope of 25.8 mV dec −1 , and a charge transfer resistance of 3.9 Ω, with long‐term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm −2 . This work on binder‐free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost‐effective and controllable production of MOF‐based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.
The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy-hydroxides to obtain ZIF-67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF-67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec-1, and a charge transfer resistance of 3.9 Ω, with long-term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm-2. This work on binder-free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost-effective and controllable production of MOF-based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy-hydroxides to obtain ZIF-67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF-67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec-1, and a charge transfer resistance of 3.9 Ω, with long-term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm-2. This work on binder-free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost-effective and controllable production of MOF-based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.
The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy‐hydroxides to obtain ZIF‐67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF‐67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec−1, and a charge transfer resistance of 3.9 Ω, with long‐term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm−2. This work on binder‐free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost‐effective and controllable production of MOF‐based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.
The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy‐hydroxides to obtain ZIF‐67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF‐67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec−1, and a charge transfer resistance of 3.9 Ω, with long‐term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm−2. This work on binder‐free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost‐effective and controllable production of MOF‐based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials. A multi‐architecture oxygen evolution reaction (OER) catalyst is designed. NiCo‐layered double hydroxide (NiCo‐LDH) and zeolitic imidazolate frameworks‐67 (ZIF‐67) are grown on the surface of nickel foam by alternating cathodic and anodic electrodeposition, so as to realize the in situ growth of metal–organic framework without binder and to mildly product the low‐cost controllable MOF‐based catalysts.
Author Feng, Han
Lv, Luo‐Tian
Ye, Kai‐Hang
Li, Tong
Tang, Tong‐Xin
Huang, Yan‐Kai
Wang, Yong‐Qing
Lin, Zhan
Author_xml – sequence: 1
  givenname: Yan‐Kai
  orcidid: 0009-0006-0721-7968
  surname: Huang
  fullname: Huang, Yan‐Kai
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Tong
  surname: Li
  fullname: Li, Tong
  organization: Sun Yat‐sen University
– sequence: 3
  givenname: Han
  surname: Feng
  fullname: Feng, Han
  organization: Sun Yat‐sen University
– sequence: 4
  givenname: Luo‐Tian
  surname: Lv
  fullname: Lv, Luo‐Tian
  organization: Sun Yat‐sen University
– sequence: 5
  givenname: Tong‐Xin
  surname: Tang
  fullname: Tang, Tong‐Xin
  organization: Guangdong University of Technology
– sequence: 6
  givenname: Zhan
  surname: Lin
  fullname: Lin, Zhan
  organization: Guangdong University of Technology
– sequence: 7
  givenname: Kai‐Hang
  surname: Ye
  fullname: Ye, Kai‐Hang
  email: yekh@gdut.edu.cn
  organization: Chemical Engineering Guangdong Laboratory, Jieyang Branch of Chemistry
– sequence: 8
  givenname: Yong‐Qing
  orcidid: 0000-0002-0480-5477
  surname: Wang
  fullname: Wang, Yong‐Qing
  email: wangyq223@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39544157$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS3Uiv7AliWyxIZNgv_G41mikDaRhrYiwILNyOOxG1ceu7VnKGHVR-AZeRIcpQ0SG1b3Ht_vXFn3nIADH7wG4BVGU4wQeZd656YEEYZKxugzcIw5phMuSHWw7zE6Aicp3SBEMWHlc3BEq4IxXJTH4GFhr9e_H359lU57peEswNUgW-vsT93BdgOXPk9XdhjheQz3wxoGA78tz_IjL2Hw8MLOQhb1hwU0IcK5X8u8p4NXOmbdbwW0Hl7-2FxrD-ffgxsHm32ftFTb5gU4NNIl_fKxnoIvZ_PPs8Wkvjxfzt7XE0WJoBPJ2oJTgY2mjDHSKYkVx23FmaamkwILLJVhqq0Ex2XLSdUxU7JKo44aKTg9BW93e29juBt1GpreJqWdk16HMTX5NEIQRiuU0Tf_oDdhjD7_LlNFWfGCYZKp14_U2Pa6a26j7WXcNE-3zcB0B6gYUora7BGMmm14zTa8Zh9eNlQ7w711evMfull9rOu_3j9UgZ-K
Cites_doi 10.1016/j.ijhydene.2023.03.088
10.1002/aenm.201902535
10.1002/adfm.201803291
10.1002/adma.201506197
10.1016/j.nanoen.2014.11.021
10.1038/s41467-021-23390-8
10.1016/j.jallcom.2022.163701
10.1016/j.electacta.2016.10.002
10.1016/j.electacta.2016.02.145
10.1002/adfm.201702317
10.1002/aenm.202000892
10.1016/j.apcatb.2022.121247
10.1038/s41560-019-0407-1
10.1021/jacs.7b12420
10.1021/acs.inorgchem.1c02254
10.1039/C4NR02399D
10.1039/C6CP07294A
10.1016/j.apcatb.2022.122265
10.1021/acsami.7b10338
10.3390/ma16155461
10.1002/aenm.201800980
10.1002/cctc.201801253
10.1002/ange.201812601
10.1016/j.ssi.2007.12.052
10.1039/C8TA06529B
10.1039/C8EE03208D
10.1039/C9TA03762D
10.1021/ar5002022
10.1002/aenm.201902104
10.1002/smll.201904252
10.1002/anie.202117178
10.1016/j.jallcom.2019.05.023
10.1016/j.electacta.2020.136053
10.1016/j.nanoen.2017.05.022
10.1021/acsami.9b03365
10.1039/D1QI00613D
10.1073/pnas.0603395103
10.1039/C8TA03128B
10.1038/nchem.141
10.1039/C8TA08149B
10.1016/j.foodchem.2023.136648
10.1126/science.1230444
10.1021/jacs.0c04867
10.1002/cssc.202001230
10.1016/j.molstruc.2022.132768
10.1002/adma.202107072
10.1016/j.ijhydene.2016.06.056
10.1002/smll.202100129
10.1002/admi.202202349
10.1039/C8CC03223H
10.1021/acsaem.9b01135
10.1039/C6MH00344C
10.1016/j.jallcom.2020.155628
10.1002/eem2.12024
10.1002/adfm.202006484
10.1002/aenm.201803918
10.1002/celc.201600563
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202407443
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39544157
10_1002_smll_202407443
SMLL202407443
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program Nanotechnology Specific Project
  funderid: 2020YFA0210900
– fundername: National Natural Science Foundation of China
  funderid: 22108042; 51972348
– fundername: National Natural Science Foundation of China
  grantid: 22108042
– fundername: National Natural Science Foundation of China
  grantid: 51972348
– fundername: National Key Research and Development Program Nanotechnology Specific Project
  grantid: 2020YFA0210900
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
53G
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3283-a4b56381fe34442dca1c61b964e3fda8181acf4cb98617b629d4f749e0d3fa863
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 08:18:54 EDT 2025
Tue Jul 22 18:41:47 EDT 2025
Thu Apr 03 07:08:35 EDT 2025
Tue Jul 01 05:25:08 EDT 2025
Thu Jan 23 09:59:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Electro‐deposition
MOFs
Co(IV)
OER
Multi‐architecture
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3283-a4b56381fe34442dca1c61b964e3fda8181acf4cb98617b629d4f749e0d3fa863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0480-5477
0009-0006-0721-7968
PMID 39544157
PQID 3157965412
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_3128824390
proquest_journals_3157965412
pubmed_primary_39544157
crossref_primary_10_1002_smll_202407443
wiley_primary_10_1002_smll_202407443_SMLL202407443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2023; 10
2019; 9
2019; 4
2018 2017 2019; 10 42 12
2018; 140
2017; 4
2009 2006; 1 103
2019; 2
2019; 11
2020; 341
2017; 27
2023; 16
2015; 11
2014; 47
2020; 13
2013; 341
2020; 10
2018 2017; 28 37
2017; 9
2018; 6
2021; 12
2014 2016; 6 28
2016; 219
2018 2018; 6 54
2023; 48
2022; 61
2021; 17
2022 2022; 1259 903
2022; 34
2019
2022 2020 2023; 309 142 324
2019; 796
2017; 19
2021 2023 2021; 31 427 8
2008; 179
2021; 60
2020; 838
2019 2018 2020; 131 8 16
2016; 197
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_38_3
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_32_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_44_3
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_2
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_2
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_33_3
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_2
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 197
  start-page: 228
  year: 2016
  publication-title: Electrochim. Acta
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 20
  year: 2017
  publication-title: Mater. Horiz.
– volume: 10 42 12
  start-page: 4888 5560 739
  year: 2018 2017 2019
  publication-title: ChemCatChem Int. J. Hydrogen Energy Energy Environmen. Sci.
– volume: 1 103
  start-page: 7
  year: 2009 2006
  publication-title: Nat. Chem. Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 430
  year: 2019
  publication-title: Nat. Energy
– volume: 6 54
  start-page: 6204
  year: 2018 2018
  publication-title: J. Mater. Chem. A Chem. Commun.
– volume: 796
  start-page: 111
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 13
  start-page: 5647
  year: 2020
  publication-title: ChemSusChem.
– volume: 309 142 324
  year: 2022 2020 2023
  publication-title: Appl. Catal. B: Environmen. J. Am. Chem. Soc. Appl. Catal. B‐Environmen.
– volume: 179
  start-page: 222
  year: 2008
  publication-title: Solid State Ionics
– volume: 11
  start-page: 333
  year: 2015
  publication-title: Nano Energy
– volume: 17
  year: 2021
  publication-title: Small
– volume: 140
  start-page: 2610
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 1259 903
  year: 2022 2022
  publication-title: J. Mol. Struct. J. Alloys Compd.
– volume: 48
  year: 2023
  publication-title: Int. J. Hydrogen Energy
– volume: 28 37
  start-page: 136
  year: 2018 2017
  publication-title: Adv. Funct. Mater. Nano Energy
– volume: 60
  year: 2021
  publication-title: Inorg. Chem.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 2
  start-page: 6071
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 2
  start-page: 18
  year: 2019
  publication-title: Energy Environmen. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  year: 2022
  publication-title: Angew. Chem.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 82
  year: 2019
– volume: 219
  start-page: 623
  year: 2016
  publication-title: Electrochim. Acta
– volume: 341
  year: 2013
  publication-title: Science
– volume: 16
  start-page: 5461
  year: 2023
  publication-title: Materials
– volume: 4
  start-page: 20
  year: 2017
  publication-title: ChemElectroChem.
– volume: 10
  year: 2023
  publication-title: Adv. Mater. Interfaces
– volume: 12
  start-page: 3036
  year: 2021
  publication-title: Nat. Commun.
– volume: 131 8 16
  start-page: 4233
  year: 2019 2018 2020
  publication-title: Angew. Chem. Adv. Energy Mater. Small
– volume: 31 427 8
  start-page: 4324
  year: 2021 2023 2021
  publication-title: Adv. Funct. Mater. Food Chem. Inorg. Chem. Front.
– volume: 838
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 47
  start-page: 2671
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 19
  start-page: 2104
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 341
  year: 2020
  publication-title: Electrochim. Acta
– volume: 6 28
  start-page: 9930 3777
  year: 2014 2016
  publication-title: Nanoscale Adv. Mater. (Weinheim, Ger.)
– ident: e_1_2_8_40_1
  doi: 10.1016/j.ijhydene.2023.03.088
– ident: e_1_2_8_7_1
  doi: 10.1002/aenm.201902535
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.201803291
– ident: e_1_2_8_42_2
  doi: 10.1002/adma.201506197
– ident: e_1_2_8_17_1
  doi: 10.1016/j.nanoen.2014.11.021
– ident: e_1_2_8_41_1
  doi: 10.1038/s41467-021-23390-8
– ident: e_1_2_8_31_2
  doi: 10.1016/j.jallcom.2022.163701
– ident: e_1_2_8_18_1
  doi: 10.1016/j.electacta.2016.10.002
– ident: e_1_2_8_27_1
  doi: 10.1016/j.electacta.2016.02.145
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.201702317
– ident: e_1_2_8_43_1
  doi: 10.1002/aenm.202000892
– ident: e_1_2_8_38_1
  doi: 10.1016/j.apcatb.2022.121247
– ident: e_1_2_8_4_1
  doi: 10.1038/s41560-019-0407-1
– ident: e_1_2_8_36_1
  doi: 10.1021/jacs.7b12420
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.inorgchem.1c02254
– ident: e_1_2_8_42_1
  doi: 10.1039/C4NR02399D
– ident: e_1_2_8_16_1
  doi: 10.1039/C6CP07294A
– ident: e_1_2_8_38_3
  doi: 10.1016/j.apcatb.2022.122265
– ident: e_1_2_8_19_1
  doi: 10.1021/acsami.7b10338
– ident: e_1_2_8_29_1
  doi: 10.3390/ma16155461
– ident: e_1_2_8_33_2
  doi: 10.1002/aenm.201800980
– ident: e_1_2_8_44_1
  doi: 10.1002/cctc.201801253
– ident: e_1_2_8_33_1
  doi: 10.1002/ange.201812601
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ssi.2007.12.052
– ident: e_1_2_8_9_1
  doi: 10.1039/C8TA06529B
– ident: e_1_2_8_44_3
  doi: 10.1039/C8EE03208D
– ident: e_1_2_8_10_1
  doi: 10.1039/C9TA03762D
– ident: e_1_2_8_35_1
  doi: 10.1021/ar5002022
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.201902104
– ident: e_1_2_8_33_3
  doi: 10.1002/smll.201904252
– ident: e_1_2_8_45_1
  doi: 10.1002/anie.202117178
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jallcom.2019.05.023
– ident: e_1_2_8_22_1
  doi: 10.1016/j.electacta.2020.136053
– ident: e_1_2_8_3_2
  doi: 10.1016/j.nanoen.2017.05.022
– ident: e_1_2_8_21_1
  doi: 10.1021/acsami.9b03365
– ident: e_1_2_8_28_3
  doi: 10.1039/D1QI00613D
– ident: e_1_2_8_1_2
  doi: 10.1073/pnas.0603395103
– ident: e_1_2_8_32_1
  doi: 10.1039/C8TA03128B
– ident: e_1_2_8_1_1
  doi: 10.1038/nchem.141
– ident: e_1_2_8_34_1
  doi: 10.1039/C8TA08149B
– ident: e_1_2_8_28_2
  doi: 10.1016/j.foodchem.2023.136648
– ident: e_1_2_8_25_1
  doi: 10.1126/science.1230444
– ident: e_1_2_8_38_2
  doi: 10.1021/jacs.0c04867
– ident: e_1_2_8_2_1
– ident: e_1_2_8_12_1
  doi: 10.1002/cssc.202001230
– ident: e_1_2_8_31_1
  doi: 10.1016/j.molstruc.2022.132768
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.202107072
– ident: e_1_2_8_44_2
  doi: 10.1016/j.ijhydene.2016.06.056
– ident: e_1_2_8_6_1
  doi: 10.1002/smll.202100129
– ident: e_1_2_8_14_1
  doi: 10.1002/admi.202202349
– ident: e_1_2_8_32_2
  doi: 10.1039/C8CC03223H
– ident: e_1_2_8_37_1
  doi: 10.1021/acsaem.9b01135
– ident: e_1_2_8_23_1
  doi: 10.1039/C6MH00344C
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jallcom.2020.155628
– ident: e_1_2_8_15_1
  doi: 10.1002/eem2.12024
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.202006484
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.201803918
– ident: e_1_2_8_5_1
  doi: 10.1002/celc.201600563
SSID ssj0031247
Score 2.4661846
Snippet The application of metal–organic frameworks (MOFs) in the electro‐catalysis of heterogeneous structures is limited by the problems of low electrical...
The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2407443
SubjectTerms Catalysis
Catalysts
Charge transfer
Chemical synthesis
Co(IV)
Controllability
Corrosion
Corrosion tests
Electrical resistivity
Electrocatalysts
Electrochemical corrosion
Electro‐deposition
Heterostructures
Hydroxides
Metal-organic frameworks
MOFs
Multi‐architecture
OER
Oxygen evolution reactions
Performance enhancement
Stability tests
Surface area
Title High‐Valence Co Stabilized by In‐Situ Growth of ZIF‐67 on NiCo‐LDH for Enhanced Performance in Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202407443
https://www.ncbi.nlm.nih.gov/pubmed/39544157
https://www.proquest.com/docview/3157965412
https://www.proquest.com/docview/3128824390
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQp3Log75CKZpKlXoKxI845IiW3S7VQisoFeol8iti1ZJU3SwCTvyE_sb-ko6d3cDSA1J7ieQ4Thx7xvPZnvlMyFuTb8skUyqmDi9CqDTOeUpjLXXq6dZKFbZi9g_k8Fh8OElPbkXxt_wQ3YKb14wwXnsFV3qydUMaOjn77rcO_IwE34mDsHfY8qjosOOP4mi8wukqaLNiT7w1Z21M2NZi8UWr9BfUXESuwfQMHhE1r3TrcfJtc9roTXN1h8_xf_7qMXk4w6Ww0wrSE7LkqlWycout8Cm59j4hv69_fVEhUAl6NSBU9c61V86CvoS9CnOPxs0U3uPkvjmFuoSvewO8KTOoKzgY92pMjHaHgFAZ-tVpcD-ATzfBCzCu4OPFJUo19M9nWgGHro2-eEaOB_3PvWE8O8AhNhxhS6yETlG_aem4EIJZo6iRVOdSOF5ahViBKlMKo1FgaKYly60oM5G7xKKQbEv-nCxXdeVeEmDcUMNKIy0iPGuZzjzXm8itFDicJzIi7-YdWPxoeTqKlpGZFb5Ni65NI7I-799ipq-TglMfk5sKyiLypstGTfPbJ6py9dQ_w3A6ggAuiciLVi66T_Hcn-WWZhFhoXfvqUNxtD8adam1fyn0ijxg_ijisBq0Tpabn1P3GvFRozeCDvwBMFgJPA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_qGBAkZC4pQ2dhynOaLtLruQXVB_EOolsh1HXVESRLOI9tRH4Bl5EmaSTcrCAQkukRzHiWPP2J_tmW8AnttkWwWx1j53eJFSR34SRtw3ykREt1bo5ihmOlPjA_n6Q9RZE5IvTMsP0W-4kWY04zUpOG1Ib12whp58OqazA1qS4EsvwxUK6030-Tu7PYNUiNNXE18FZy2fqLc63sZAbK2WX52X_gCbq9i1mXxGN8F01W5tTj5uLmqzac9-Y3T8r_-6BTeW0JS9bGXpNlxy5R24_gth4V04J7OQH-ff3-vGV4kNKoZolexrz1zOzCmblJi7N68X7BWu7-sjVhXscDLCmypmVclm80GFiXRnzBAts2F51FggsHcX_gtsXrK3305RsNnw61Ix2K5rHTDuwcFouD8Y-8sYDr4NEbn4WpoIVZwXLpRSitxqbhU3iZIuLHKNcIFrW0hrUGZ4bJRIclnEMnFBjnKyrcL7sFZWpVsHJkLLrSisyrGb81yYmOjeZJIriSN6oDx40fVg9rml6shaUmaRUZtmfZt6sNF1cLZU2ZMs5OSWG0kuPHjWZ6Oy0QmKLl21oGcErkgQwwUePGgFo_9UmFA4tyj2QDTd-5c6ZHvTNO1TD_-l0FO4Ot6fplk6mb15BNcERSZuNoc2YK3-snCPES7V5kmjED8BvUsNWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExClt_IjTHNE-2IXtUrUUVVwiv6KugKSiWUR76k_gN_JLGDu7aRcOSHCJ5DhOHHvG8_kx3wC8MPmWTDKlYurwIoRK45ynNNZSp55urVRhK2Z7Kkf74s1BenDBi7_lh-gW3LxmhPHaK_iRLTfPSUOPv3z2Wwd-RoLvvAxXhExyH7yhv9sRSHG0XiG8Chqt2DNvLWkbE7a5Wn7VLP2BNVeha7A9w5uglrVuj5x82pg3esOc_kbo-D-_dQtuLIApedVK0m245Ko7cP0CXeFdOPOHQn6e_figgqcS6dUEsao_XXvqLNEnZFxh7t6smZPXOLtvDkldko_jId6UGakrMp31akxM-iOCWJkMqsNw_oDsnHsvkFlF3n0_QbEmg28LtSC7rnW_uAf7w8H73iheRHCIDUfcEiuhU1RwWjouhGDWKGok1bkUjpdWIVigypTCaJQYmmnJcivKTOQusSglW5Lfh7WqrtxDIIwbalhppEWIZy3TmSd7E7mVAsfzREbwctmBxVFL1FG0lMys8G1adG0awfqyf4uFwh4XnHqn3FRQFsHzLhtVze-fqMrVc_8Mw_kIIrgkggetXHSf4rkP5pZmEbDQu3-pQ7G3PZl0qUf_UugZXN3pD4vJePr2MVxjPixxWBlah7Xm69w9QazU6KdBHX4Bi64MBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Valence+Co+Stabilized+by+In-Situ+Growth+of+ZIF-67+on+NiCo-LDH+for+Enhanced+Performance+in+Oxygen+Evolution+Reaction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Huang%2C+Yan-Kai&rft.au=Li%2C+Tong&rft.au=Feng%2C+Han&rft.au=Lv%2C+Luo-Tian&rft.date=2025-01-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.spage=e2407443&rft_id=info:doi/10.1002%2Fsmll.202407443&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon