Solubility‐Limited Small Molecule for Stable High‐Capacity Potassium Storage
Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dith...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 6; pp. e2410973 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dithiolene) (NiS4)‐based small molecules are designed with control of various redox‐active substitutional groups for K‐ion batteries anode materials. It is identified that bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g−1 at 0.03 A g−1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility‐limited and conductive small molecule electrode materials with high redox activity for non‐aqueous rechargeable batteries.
A series of Nickel‐bis(dithiolene) (NiS4)‐based small molecules with various redox‐active substitutional groups are designed, synthesized, and applied for K‐ion batteries anode materials. The bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel (Ni[C2S2Py2]2) offers high‐density K‐ion storage sites and low electrolyte solubility, resulting in high reversible capacity, impressive rate capability, and exceptional cycling stability. |
---|---|
AbstractList | Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dithiolene) (NiS4)‐based small molecules are designed with control of various redox‐active substitutional groups for K‐ion batteries anode materials. It is identified that bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g−1 at 0.03 A g−1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility‐limited and conductive small molecule electrode materials with high redox activity for non‐aqueous rechargeable batteries. Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dithiolene) (NiS 4 )‐based small molecules are designed with control of various redox‐active substitutional groups for K‐ion batteries anode materials. It is identified that bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel Ni[C 2 S 2 Py 2 ] 2 demonstrates a high reversible specific capacity (399 mAh g −1 at 0.03 A g −1 ) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS 4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C 2 S 2 Py 2 ] 2 , enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility‐limited and conductive small molecule electrode materials with high redox activity for non‐aqueous rechargeable batteries. Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dithiolene) (NiS4)‐based small molecules are designed with control of various redox‐active substitutional groups for K‐ion batteries anode materials. It is identified that bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g−1 at 0.03 A g−1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility‐limited and conductive small molecule electrode materials with high redox activity for non‐aqueous rechargeable batteries. A series of Nickel‐bis(dithiolene) (NiS4)‐based small molecules with various redox‐active substitutional groups are designed, synthesized, and applied for K‐ion batteries anode materials. The bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel (Ni[C2S2Py2]2) offers high‐density K‐ion storage sites and low electrolyte solubility, resulting in high reversible capacity, impressive rate capability, and exceptional cycling stability. Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni-bis(dithiolene) (NiS )-based small molecules are designed with control of various redox-active substitutional groups for K-ion batteries anode materials. It is identified that bis[1,2-di(pyridine-4-yl) ethylene-1,2-dithiolate] nickel Ni[C S Py ] demonstrates a high reversible specific capacity (399 mAh g at 0.03 A g ) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C S Py ] , enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility-limited and conductive small molecule electrode materials with high redox activity for non-aqueous rechargeable batteries. Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni-bis(dithiolene) (NiS4)-based small molecules are designed with control of various redox-active substitutional groups for K-ion batteries anode materials. It is identified that bis[1,2-di(pyridine-4-yl) ethylene-1,2-dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g-1 at 0.03 A g-1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility-limited and conductive small molecule electrode materials with high redox activity for non-aqueous rechargeable batteries.Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni-bis(dithiolene) (NiS4)-based small molecules are designed with control of various redox-active substitutional groups for K-ion batteries anode materials. It is identified that bis[1,2-di(pyridine-4-yl) ethylene-1,2-dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g-1 at 0.03 A g-1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility-limited and conductive small molecule electrode materials with high redox activity for non-aqueous rechargeable batteries. |
Author | Zuo, Jing‐Lin Xiao, Ji‐Miao Wu, Lei‐Feng Luan, Cui‐Zhou Bin, De‐Shan Xie, Mo Li, Yu‐Yang |
Author_xml | – sequence: 1 givenname: Lei‐Feng surname: Wu fullname: Wu, Lei‐Feng organization: Nanjing University – sequence: 2 givenname: Ji‐Miao surname: Xiao fullname: Xiao, Ji‐Miao organization: Jinan University – sequence: 3 givenname: Cui‐Zhou surname: Luan fullname: Luan, Cui‐Zhou organization: Jinan University – sequence: 4 givenname: Mo surname: Xie fullname: Xie, Mo email: xiemo@jnu.edu.cn organization: Jinan University – sequence: 5 givenname: Yu‐Yang surname: Li fullname: Li, Yu‐Yang email: to-lyy@hotmail.com organization: Nanjing University – sequence: 6 givenname: De‐Shan surname: Bin fullname: Bin, De‐Shan email: bindeshan@jnu.edu.cn organization: Jinan University – sequence: 7 givenname: Jing‐Lin orcidid: 0000-0003-1219-8926 surname: Zuo fullname: Zuo, Jing‐Lin email: zuojl@nju.edu.cn organization: Nanjing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39711281$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0b9OwzAQBnALgSgFVkYUiYWlxWcnjjOiin9SEJUKc-Q4l2Lk1CVOhLrxCDwjT4JRS5FYmHzD7zud_A3J7sItkJAToGOglF34xtoxoywGmqV8hxyAAD4SkmW72xnogAy9f6GUA4vTfTLgWQrAJByQ6czZvjTWdKvP94_cNKbDKpo1ytro3lnUvcWodm0061QZxlszfw5wopZKh0w0dZ3y3vRNAK5Vczwie7WyHo837yF5ur56nNyO8oebu8llPtKcST5KUSaSaqBVLCWqhGpWVlinjAuskpiWac1lpiFhTNC6BJEJ0IJCJVSNlGf8kJyv9y5b99qj74rGeI3WqgW63hccYhlnIpFJoGd_6Ivr20W4LiiRpGmccB7U6Ub1ZYNVsWxNo9pV8fNXAYzXQLfO-xbrLQFafJdRfJdRbMsIgWwdeDMWV__oYnaf57_ZL2jnjcU |
Cites_doi | 10.1002/adfm.201700324 10.1002/aenm.201802986 10.1002/anie.202110373 10.1039/C8SC04350G 10.1021/jacs.1c06797 10.1039/D3TA05959F 10.1002/adma.201903176 10.1002/adma.201801812 10.1039/D3EE00073G 10.1039/C6NR09613A 10.1021/jacs.3c13113 10.1039/c3cp44054k 10.1039/C7CC02026K 10.1016/j.elecom.2017.11.009 10.1021/acs.chemrev.9b00535 10.1002/chem.202301048 10.1016/j.joule.2018.04.022 10.1002/smll.201903194 10.1007/s11426-023-1738-3 10.1002/anie.202304183 10.1002/anie.201913174 10.1016/j.orgel.2018.05.003 10.1002/aenm.201801102 10.1002/chem.202005259 10.1016/j.electacta.2017.09.090 10.1021/jacs.4c01620 10.1002/aenm.201501874 10.1002/aenm.202303051 10.1002/anie.202217710 10.1021/jacs.5b06809 10.1021/jacs.0c09009 10.1007/s40820-023-01239-7 10.1021/jacs.2c01996 10.1002/aenm.202001418 10.1016/j.nanoen.2017.08.002 10.1016/j.orgel.2018.06.027 10.1039/C9TA07605K 10.1126/science.1212741 10.1021/acsami.7b15314 10.1016/j.electacta.2019.06.051 10.1002/anie.202211850 10.1021/acsami.5b08037 10.1038/s41467-018-02889-7 10.1016/0925-8388(94)90113-9 10.1002/anie.202117661 10.1021/acs.nanolett.5b03667 10.1016/j.nanoen.2021.106142 10.1016/j.ensm.2020.02.030 10.1039/C0DT00739K 10.1021/acs.chemrev.9b00463 10.1126/science.291.5502.285 10.1039/C6CC03649J 10.1021/acs.nanolett.2c00847 10.1021/jacs.2c11264 10.1021/acs.chemrev.0c00767 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202410973 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39711281 10_1002_smll_202410973 SMLL202410973 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province funderid: 2022B1515020001; 2024A1515011753 – fundername: National Natural Science Foundation of China funderid: 22275084; 22109052; 22101099 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20243010 – fundername: National Natural Science Foundation of China grantid: 22109052 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province grantid: 2024A1515011753 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province grantid: 2022B1515020001 – fundername: National Natural Science Foundation of China grantid: 22275084 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20243010 – fundername: National Natural Science Foundation of China grantid: 22101099 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 53G AAYXX AGHNM AGYGG CITATION 31~ AANHP AASGY AAYOK ACBWZ ACRPL ACYXJ ADNMO ASPBG AVWKF AZFZN BDRZF EBD EJD EMOBN FEDTE GODZA HVGLF NPM SV3 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3283-7e8580c10d488ea50c2bdef7236ed540b7f389c152260fb16961c601d6afe0393 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 16:52:15 EDT 2025 Tue Jul 22 18:42:03 EDT 2025 Thu Feb 13 03:15:48 EST 2025 Tue Jul 01 00:42:10 EDT 2025 Thu Feb 13 09:32:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | low solubility Ni‐bis(dithiolene) high conductivity small‐molecule electrode K‐ion battery anode |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3283-7e8580c10d488ea50c2bdef7236ed540b7f389c152260fb16961c601d6afe0393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1219-8926 |
PMID | 39711281 |
PQID | 3165774533 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3148496585 proquest_journals_3165774533 pubmed_primary_39711281 crossref_primary_10_1002_smll_202410973 wiley_primary_10_1002_smll_202410973_SMLL202410973 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2011; 334 2017 2019; 253 9 2021; 27 2023; 14 2023; 11 2020; 120 2017 2017; 40 53 2023; 16 2011; 40 2015 2016; 7 52 2018; 62 2024; 146 2021; 121 2020; 10 2022; 22 2021; 143 2023 2020; 62 142 2018; 86 2018 2021 2020; 2 86 28 2015 2016 2015 2017; 137 6 15 27 2022; 144 2023; 62 2020 2021; 120 17 2013; 15 2023; 66 2018 2019; 9 31 2023; 29 2001; 291 2020 2023; 59 16 2019 2018; 10 30 2019; 318 2017 2018; 9 10 2018 1994; 8 210 2021 2023 2022 2023; 60 62 61 145 2018; 59 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_7_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_35_3 e_1_2_7_37_1 e_1_2_7_37_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_22_4 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 137 6 15 27 start-page: 7671 year: 2015 2016 2015 2017 publication-title: J. Am. Chem. Soc. Adv. Energy Mater. Nano Lett. Adv. Funct. Mater. – volume: 62 142 year: 2023 2020 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 59 16 start-page: 3638 1540 year: 2020 2023 publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. – volume: 11 year: 2023 publication-title: J. Mater. Chem. A – volume: 40 53 start-page: 1 6883 year: 2017 2017 publication-title: Nano Energy Chem. Commun. – volume: 29 year: 2023 publication-title: Chem.‐Eur. J. – volume: 86 start-page: 34 year: 2018 publication-title: Electrochem. Commun. – volume: 146 start-page: 9385 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 6131 year: 2021 publication-title: Chem.‐Eur. J. – volume: 15 start-page: 4016 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 9 31 start-page: 576 year: 2018 2019 publication-title: Nat. Commun. Adv. Mater. – volume: 22 start-page: 4115 year: 2022 publication-title: Nano Lett. – volume: 10 30 start-page: 2604 year: 2019 2018 publication-title: Chem. Sci. Adv. Mater. – volume: 16 start-page: 13 year: 2023 publication-title: Nano‐Micro Lett. – volume: 59 start-page: 125 year: 2018 publication-title: Org. Electron. – volume: 120 17 start-page: 6358 year: 2020 2021 publication-title: Chem. Rev. Small – volume: 146 start-page: 6753 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 318 start-page: 262 year: 2019 publication-title: Electrochim. Acta – volume: 14 year: 2023 publication-title: Adv. Energy Mater. – volume: 62 start-page: 536 year: 2018 publication-title: Org. Electron. – volume: 121 start-page: 1623 year: 2021 publication-title: Chem. Rev. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 9 10 start-page: 3646 year: 2017 2018 publication-title: Nanoscale ACS Appl. Mater. Interfaces – volume: 253 9 start-page: 439 year: 2017 2019 publication-title: Electrochim. Acta Adv. Energy Mater. – volume: 2 86 28 start-page: 1534 188 year: 2018 2021 2020 publication-title: Joule Nano Energy Energy Storage Mater. – volume: 66 start-page: 3070 year: 2023 publication-title: Sci. China:Chem. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 120 start-page: 7020 year: 2020 publication-title: Chem. Rev. – volume: 40 start-page: 919 year: 2011 publication-title: Dalton Trans. – volume: 7 52 start-page: 9279 year: 2015 2016 publication-title: ACS Appl. Mater. Interfaces Chem. Commun. – volume: 144 start-page: 8267 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 8 210 start-page: 45 year: 2018 1994 publication-title: Adv. Energy Mater. J. Alloys Compd. – volume: 60 62 61 145 start-page: 5105 year: 2021 2023 2022 2023 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 291 start-page: 285 year: 2001 publication-title: Science – ident: e_1_2_7_5_4 doi: 10.1002/adfm.201700324 – ident: e_1_2_7_11_2 doi: 10.1002/aenm.201802986 – ident: e_1_2_7_22_1 doi: 10.1002/anie.202110373 – ident: e_1_2_7_8_1 doi: 10.1039/C8SC04350G – ident: e_1_2_7_27_1 doi: 10.1021/jacs.1c06797 – ident: e_1_2_7_31_1 doi: 10.1039/D3TA05959F – ident: e_1_2_7_34_2 doi: 10.1002/adma.201903176 – ident: e_1_2_7_8_2 doi: 10.1002/adma.201801812 – ident: e_1_2_7_37_2 doi: 10.1039/D3EE00073G – ident: e_1_2_7_7_1 doi: 10.1039/C6NR09613A – ident: e_1_2_7_36_1 doi: 10.1021/jacs.3c13113 – ident: e_1_2_7_32_1 doi: 10.1039/c3cp44054k – ident: e_1_2_7_9_2 doi: 10.1039/C7CC02026K – ident: e_1_2_7_19_1 doi: 10.1016/j.elecom.2017.11.009 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.9b00535 – ident: e_1_2_7_25_1 doi: 10.1002/chem.202301048 – ident: e_1_2_7_35_1 doi: 10.1016/j.joule.2018.04.022 – ident: e_1_2_7_4_2 doi: 10.1002/smll.201903194 – ident: e_1_2_7_12_1 doi: 10.1007/s11426-023-1738-3 – ident: e_1_2_7_22_2 doi: 10.1002/anie.202304183 – ident: e_1_2_7_37_1 doi: 10.1002/anie.201913174 – ident: e_1_2_7_23_1 doi: 10.1016/j.orgel.2018.05.003 – ident: e_1_2_7_10_1 doi: 10.1002/aenm.201801102 – ident: e_1_2_7_17_1 doi: 10.1002/chem.202005259 – ident: e_1_2_7_11_1 doi: 10.1016/j.electacta.2017.09.090 – ident: e_1_2_7_30_1 doi: 10.1021/jacs.4c01620 – ident: e_1_2_7_5_2 doi: 10.1002/aenm.201501874 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.202303051 – ident: e_1_2_7_20_1 doi: 10.1002/anie.202217710 – ident: e_1_2_7_5_1 doi: 10.1021/jacs.5b06809 – ident: e_1_2_7_26_2 doi: 10.1021/jacs.0c09009 – ident: e_1_2_7_16_1 doi: 10.1007/s40820-023-01239-7 – ident: e_1_2_7_28_1 doi: 10.1021/jacs.2c01996 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.202001418 – ident: e_1_2_7_9_1 doi: 10.1016/j.nanoen.2017.08.002 – ident: e_1_2_7_13_1 doi: 10.1016/j.orgel.2018.06.027 – ident: e_1_2_7_14_1 doi: 10.1039/C9TA07605K – ident: e_1_2_7_1_1 doi: 10.1126/science.1212741 – ident: e_1_2_7_7_2 doi: 10.1021/acsami.7b15314 – ident: e_1_2_7_15_1 doi: 10.1016/j.electacta.2019.06.051 – ident: e_1_2_7_26_1 doi: 10.1002/anie.202211850 – ident: e_1_2_7_6_1 doi: 10.1021/acsami.5b08037 – ident: e_1_2_7_34_1 doi: 10.1038/s41467-018-02889-7 – ident: e_1_2_7_10_2 doi: 10.1016/0925-8388(94)90113-9 – ident: e_1_2_7_22_3 doi: 10.1002/anie.202117661 – ident: e_1_2_7_5_3 doi: 10.1021/acs.nanolett.5b03667 – ident: e_1_2_7_35_2 doi: 10.1016/j.nanoen.2021.106142 – ident: e_1_2_7_35_3 doi: 10.1016/j.ensm.2020.02.030 – ident: e_1_2_7_33_1 doi: 10.1039/C0DT00739K – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.9b00463 – ident: e_1_2_7_24_1 doi: 10.1126/science.291.5502.285 – ident: e_1_2_7_6_2 doi: 10.1039/C6CC03649J – ident: e_1_2_7_21_1 doi: 10.1021/acs.nanolett.2c00847 – ident: e_1_2_7_22_4 doi: 10.1021/jacs.2c11264 – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.0c00767 |
SSID | ssj0031247 |
Score | 2.4630861 |
Snippet | Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges... Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2410973 |
SubjectTerms | Anodes Batteries Charge transfer Cycles Electrode materials Electrodes Electrolytes high conductivity Ion storage K‐ion battery anode Low conductivity low solubility Ni‐bis(dithiolene) Pyridines Rechargeable batteries Simulation small‐molecule electrode Solubility Stability |
Title | Solubility‐Limited Small Molecule for Stable High‐Capacity Potassium Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202410973 https://www.ncbi.nlm.nih.gov/pubmed/39711281 https://www.proquest.com/docview/3165774533 https://www.proquest.com/docview/3148496585 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kJz34fkSrRBA8pU12m9dRiqWIlWIt9BZ2k42IbSo2PejJn-Bv9Jc4k5etHgS9JWSWJLszO9_uzH4DcMYpdoZ-ypDKFbRAYYbvuL6hHM6k7ylPiIzt88bpDltXI3u0cIo_54eoNtzIMrL5mgxcyFnzizR0NhlT6AA9EDHO4CRMCVuEim4r_iiOziurroI-yyDirZK10WTN5ebLXukH1FxGrpnr6WyAKD86zzh5bMxT2Qhfv_E5_uevNmG9wKX6Ra5IW7Cikm1YW2Ar3IE-baFlubQvH2_vxckofTAR47Hey6vsKh0xsI4AVuIlpZCgYBvdcYht9P40RaT-MJ-gACrevdqFYefyrt01ioIMRsgRhhiu8mzPDC0zQrNXwjZDJiMVu4w7KkLoJ90Y8U9oEaYzY2k5vmOFuOKLHBErOgS8B7VkmqgD0F3OYpxMPFdx3pKmFCIKbV-ZAkUtVBANzssBCZ5y3o0gZ1hmAfVRUPWRBvVyvILC_mYBtxwbgS1iWQ1Oq8doORQOEYmazkmm5RFbvmdrsJ-Pc_UqRGkWxRg1YNlo_fINwaB3fV3dHf6l0RGsMiotnCWE16GWPs_VMeKdVJ5kOv0JPM338w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAH9iWsQULilDaxm-2ICqhAihBQiVtkJw5CdEG0OcCJT-Ab-RJmkiZQOCDBLVHGSmLPeJ494zcA-5xiZ-inDKlcQQsUZviO6xvK4Uz6nvKEyNg-L5xmu352axfZhHQWJueHKDfcyDKy-ZoMnDaka5-soYNuh2IH6IKIcmYSpqisN9HnH12VDFIc3VdWXwW9lkHUWwVvo8lq4-3H_dIPsDmOXTPnczIPsvjsPOfkoZoOZTV6-cbo-K__WoC5ETTVD3NdWoQJ1VuC2S-EhctwSbtoWTrt8_vr2-hwlH7dFZ2O3soL7SodYbCOGFbiJWWRoGADPXKEbfTL_hDB-n3aRQHUvTu1Au2T45tG0xjVZDAijkjEcJVne2ZkmTFavhK2GTEZq8Rl3FExoj_pJgiBIotgnZlIy_EdK8JFX-yIRNE54FWo9Po9tQ66y1mC84nnKs7r0pRCxJHtK1OgqIU6osFBMSLhY069EeYkyyykPgrLPtJgqxiwcGSCg5Bbjo3YFuGsBnvlYzQeioiInuqnJFP3iDDfszVYywe6fBUCNYvCjBqwbLh--YbwuhUE5d3GXxrtwnTzphWEwenF-SbMMKo0nOWHb0Fl-JSqbYQ_Q7mTKfgHwED8Dw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2JewBgmJUyCxGyc5opaKpaAKqNRbZCcOQnRBND3AiU_gG_kSZpI2UDggwS1Rxkpiz3iePeM3APucYmfopyylPUkLFGYFwgssLThTga99KTO2zytx2iyft9zWl1P8OT9EseFGlpHN12Tgj3Fy9Eka2u-0KXSAHogYZyZhqizsgIo3VK8LAimO3isrr4JOyyLmrRFto82OxtuPu6UfWHMcuma-pzYPcvTVecrJw-EgVYfRyzdCx__81gLMDYGpeZxr0iJM6O4SzH6hK1yGBu2hZcm0z--vb8OjUeZNR7bb5mVeZlebCIJNRLAKLymHBAUr6I8jbGM2eilC9ftBBwVQ8-70CjRrJ7eVU2tYkcGKOOIQy9O-69uRY8do91q6dsRUrBOPcaFjxH7KSxAARQ6BOjtRjgiEE-GSLxYy0XQKeBVK3V5Xr4PpcZbgbOJ7mvOyspWUceQG2pYo6qCGGHAwGpDwMSfeCHOKZRZSH4VFHxmwNRqvcGiA_ZA7wkVki2DWgL3iMZoOxUNkV_cGJFP2iS7fdw1Yy8e5eBXCNIeCjAawbLR--Ybw5rJeL-42_tJoF6Yb1VpYP7u62IQZRmWGs-TwLSilTwO9jdgnVTuZen8Azqz6vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solubility-Limited+Small+Molecule+for+Stable+High-Capacity+Potassium+Storage&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wu%2C+Lei-Feng&rft.au=Xiao%2C+Ji-Miao&rft.au=Luan%2C+Cui-Zhou&rft.au=Xie%2C+Mo&rft.date=2025-02-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=6&rft.spage=e2410973&rft_id=info:doi/10.1002%2Fsmll.202410973&rft_id=info%3Apmid%2F39711281&rft.externalDocID=39711281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |