Solubility‐Limited Small Molecule for Stable High‐Capacity Potassium Storage

Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dith...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 6; pp. e2410973 - n/a
Main Authors Wu, Lei‐Feng, Xiao, Ji‐Miao, Luan, Cui‐Zhou, Xie, Mo, Li, Yu‐Yang, Bin, De‐Shan, Zuo, Jing‐Lin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dithiolene) (NiS4)‐based small molecules are designed with control of various redox‐active substitutional groups for K‐ion batteries anode materials. It is identified that bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g−1 at 0.03 A g−1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility‐limited and conductive small molecule electrode materials with high redox activity for non‐aqueous rechargeable batteries. A series of Nickel‐bis(dithiolene) (NiS4)‐based small molecules with various redox‐active substitutional groups are designed, synthesized, and applied for K‐ion batteries anode materials. The bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel (Ni[C2S2Py2]2) offers high‐density K‐ion storage sites and low electrolyte solubility, resulting in high reversible capacity, impressive rate capability, and exceptional cycling stability.
AbstractList Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dithiolene) (NiS4)‐based small molecules are designed with control of various redox‐active substitutional groups for K‐ion batteries anode materials. It is identified that bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g−1 at 0.03 A g−1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility‐limited and conductive small molecule electrode materials with high redox activity for non‐aqueous rechargeable batteries.
Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dithiolene) (NiS 4 )‐based small molecules are designed with control of various redox‐active substitutional groups for K‐ion batteries anode materials. It is identified that bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel Ni[C 2 S 2 Py 2 ] 2 demonstrates a high reversible specific capacity (399 mAh g −1 at 0.03 A g −1 ) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS 4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C 2 S 2 Py 2 ] 2 , enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility‐limited and conductive small molecule electrode materials with high redox activity for non‐aqueous rechargeable batteries.
Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni‐bis(dithiolene) (NiS4)‐based small molecules are designed with control of various redox‐active substitutional groups for K‐ion batteries anode materials. It is identified that bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g−1 at 0.03 A g−1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility‐limited and conductive small molecule electrode materials with high redox activity for non‐aqueous rechargeable batteries. A series of Nickel‐bis(dithiolene) (NiS4)‐based small molecules with various redox‐active substitutional groups are designed, synthesized, and applied for K‐ion batteries anode materials. The bis[1,2‐di(pyridine‐4‐yl) ethylene‐1,2‐dithiolate] nickel (Ni[C2S2Py2]2) offers high‐density K‐ion storage sites and low electrolyte solubility, resulting in high reversible capacity, impressive rate capability, and exceptional cycling stability.
Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni-bis(dithiolene) (NiS )-based small molecules are designed with control of various redox-active substitutional groups for K-ion batteries anode materials. It is identified that bis[1,2-di(pyridine-4-yl) ethylene-1,2-dithiolate] nickel Ni[C S Py ] demonstrates a high reversible specific capacity (399 mAh g at 0.03 A g ) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C S Py ] , enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility-limited and conductive small molecule electrode materials with high redox activity for non-aqueous rechargeable batteries.
Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni-bis(dithiolene) (NiS4)-based small molecules are designed with control of various redox-active substitutional groups for K-ion batteries anode materials. It is identified that bis[1,2-di(pyridine-4-yl) ethylene-1,2-dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g-1 at 0.03 A g-1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility-limited and conductive small molecule electrode materials with high redox activity for non-aqueous rechargeable batteries.Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni-bis(dithiolene) (NiS4)-based small molecules are designed with control of various redox-active substitutional groups for K-ion batteries anode materials. It is identified that bis[1,2-di(pyridine-4-yl) ethylene-1,2-dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g-1 at 0.03 A g-1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility-limited and conductive small molecule electrode materials with high redox activity for non-aqueous rechargeable batteries.
Author Zuo, Jing‐Lin
Xiao, Ji‐Miao
Wu, Lei‐Feng
Luan, Cui‐Zhou
Bin, De‐Shan
Xie, Mo
Li, Yu‐Yang
Author_xml – sequence: 1
  givenname: Lei‐Feng
  surname: Wu
  fullname: Wu, Lei‐Feng
  organization: Nanjing University
– sequence: 2
  givenname: Ji‐Miao
  surname: Xiao
  fullname: Xiao, Ji‐Miao
  organization: Jinan University
– sequence: 3
  givenname: Cui‐Zhou
  surname: Luan
  fullname: Luan, Cui‐Zhou
  organization: Jinan University
– sequence: 4
  givenname: Mo
  surname: Xie
  fullname: Xie, Mo
  email: xiemo@jnu.edu.cn
  organization: Jinan University
– sequence: 5
  givenname: Yu‐Yang
  surname: Li
  fullname: Li, Yu‐Yang
  email: to-lyy@hotmail.com
  organization: Nanjing University
– sequence: 6
  givenname: De‐Shan
  surname: Bin
  fullname: Bin, De‐Shan
  email: bindeshan@jnu.edu.cn
  organization: Jinan University
– sequence: 7
  givenname: Jing‐Lin
  orcidid: 0000-0003-1219-8926
  surname: Zuo
  fullname: Zuo, Jing‐Lin
  email: zuojl@nju.edu.cn
  organization: Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39711281$$D View this record in MEDLINE/PubMed
BookMark eNqF0b9OwzAQBnALgSgFVkYUiYWlxWcnjjOiin9SEJUKc-Q4l2Lk1CVOhLrxCDwjT4JRS5FYmHzD7zud_A3J7sItkJAToGOglF34xtoxoywGmqV8hxyAAD4SkmW72xnogAy9f6GUA4vTfTLgWQrAJByQ6czZvjTWdKvP94_cNKbDKpo1ytro3lnUvcWodm0061QZxlszfw5wopZKh0w0dZ3y3vRNAK5Vczwie7WyHo837yF5ur56nNyO8oebu8llPtKcST5KUSaSaqBVLCWqhGpWVlinjAuskpiWac1lpiFhTNC6BJEJ0IJCJVSNlGf8kJyv9y5b99qj74rGeI3WqgW63hccYhlnIpFJoGd_6Ivr20W4LiiRpGmccB7U6Ub1ZYNVsWxNo9pV8fNXAYzXQLfO-xbrLQFafJdRfJdRbMsIgWwdeDMWV__oYnaf57_ZL2jnjcU
Cites_doi 10.1002/adfm.201700324
10.1002/aenm.201802986
10.1002/anie.202110373
10.1039/C8SC04350G
10.1021/jacs.1c06797
10.1039/D3TA05959F
10.1002/adma.201903176
10.1002/adma.201801812
10.1039/D3EE00073G
10.1039/C6NR09613A
10.1021/jacs.3c13113
10.1039/c3cp44054k
10.1039/C7CC02026K
10.1016/j.elecom.2017.11.009
10.1021/acs.chemrev.9b00535
10.1002/chem.202301048
10.1016/j.joule.2018.04.022
10.1002/smll.201903194
10.1007/s11426-023-1738-3
10.1002/anie.202304183
10.1002/anie.201913174
10.1016/j.orgel.2018.05.003
10.1002/aenm.201801102
10.1002/chem.202005259
10.1016/j.electacta.2017.09.090
10.1021/jacs.4c01620
10.1002/aenm.201501874
10.1002/aenm.202303051
10.1002/anie.202217710
10.1021/jacs.5b06809
10.1021/jacs.0c09009
10.1007/s40820-023-01239-7
10.1021/jacs.2c01996
10.1002/aenm.202001418
10.1016/j.nanoen.2017.08.002
10.1016/j.orgel.2018.06.027
10.1039/C9TA07605K
10.1126/science.1212741
10.1021/acsami.7b15314
10.1016/j.electacta.2019.06.051
10.1002/anie.202211850
10.1021/acsami.5b08037
10.1038/s41467-018-02889-7
10.1016/0925-8388(94)90113-9
10.1002/anie.202117661
10.1021/acs.nanolett.5b03667
10.1016/j.nanoen.2021.106142
10.1016/j.ensm.2020.02.030
10.1039/C0DT00739K
10.1021/acs.chemrev.9b00463
10.1126/science.291.5502.285
10.1039/C6CC03649J
10.1021/acs.nanolett.2c00847
10.1021/jacs.2c11264
10.1021/acs.chemrev.0c00767
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202410973
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39711281
10_1002_smll_202410973
SMLL202410973
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2022B1515020001; 2024A1515011753
– fundername: National Natural Science Foundation of China
  funderid: 22275084; 22109052; 22101099
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20243010
– fundername: National Natural Science Foundation of China
  grantid: 22109052
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  grantid: 2024A1515011753
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  grantid: 2022B1515020001
– fundername: National Natural Science Foundation of China
  grantid: 22275084
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20243010
– fundername: National Natural Science Foundation of China
  grantid: 22101099
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
53G
AAYXX
AGHNM
AGYGG
CITATION
31~
AANHP
AASGY
AAYOK
ACBWZ
ACRPL
ACYXJ
ADNMO
ASPBG
AVWKF
AZFZN
BDRZF
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
NPM
SV3
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3283-7e8580c10d488ea50c2bdef7236ed540b7f389c152260fb16961c601d6afe0393
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 16:52:15 EDT 2025
Tue Jul 22 18:42:03 EDT 2025
Thu Feb 13 03:15:48 EST 2025
Tue Jul 01 00:42:10 EDT 2025
Thu Feb 13 09:32:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords low solubility
Ni‐bis(dithiolene)
high conductivity
small‐molecule electrode
K‐ion battery anode
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3283-7e8580c10d488ea50c2bdef7236ed540b7f389c152260fb16961c601d6afe0393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1219-8926
PMID 39711281
PQID 3165774533
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_3148496585
proquest_journals_3165774533
pubmed_primary_39711281
crossref_primary_10_1002_smll_202410973
wiley_primary_10_1002_smll_202410973_SMLL202410973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2011; 334
2017 2019; 253 9
2021; 27
2023; 14
2023; 11
2020; 120
2017 2017; 40 53
2023; 16
2011; 40
2015 2016; 7 52
2018; 62
2024; 146
2021; 121
2020; 10
2022; 22
2021; 143
2023 2020; 62 142
2018; 86
2018 2021 2020; 2 86 28
2015 2016 2015 2017; 137 6 15 27
2022; 144
2023; 62
2020 2021; 120 17
2013; 15
2023; 66
2018 2019; 9 31
2023; 29
2001; 291
2020 2023; 59 16
2019 2018; 10 30
2019; 318
2017 2018; 9 10
2018 1994; 8 210
2021 2023 2022 2023; 60 62 61 145
2018; 59
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_7_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_35_3
e_1_2_7_37_1
e_1_2_7_37_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_22_4
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 137 6 15 27
  start-page: 7671
  year: 2015 2016 2015 2017
  publication-title: J. Am. Chem. Soc. Adv. Energy Mater. Nano Lett. Adv. Funct. Mater.
– volume: 62 142
  year: 2023 2020
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 59 16
  start-page: 3638 1540
  year: 2020 2023
  publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci.
– volume: 11
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 40 53
  start-page: 1 6883
  year: 2017 2017
  publication-title: Nano Energy Chem. Commun.
– volume: 29
  year: 2023
  publication-title: Chem.‐Eur. J.
– volume: 86
  start-page: 34
  year: 2018
  publication-title: Electrochem. Commun.
– volume: 146
  start-page: 9385
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 6131
  year: 2021
  publication-title: Chem.‐Eur. J.
– volume: 15
  start-page: 4016
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9 31
  start-page: 576
  year: 2018 2019
  publication-title: Nat. Commun. Adv. Mater.
– volume: 22
  start-page: 4115
  year: 2022
  publication-title: Nano Lett.
– volume: 10 30
  start-page: 2604
  year: 2019 2018
  publication-title: Chem. Sci. Adv. Mater.
– volume: 16
  start-page: 13
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 59
  start-page: 125
  year: 2018
  publication-title: Org. Electron.
– volume: 120 17
  start-page: 6358
  year: 2020 2021
  publication-title: Chem. Rev. Small
– volume: 146
  start-page: 6753
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 318
  start-page: 262
  year: 2019
  publication-title: Electrochim. Acta
– volume: 14
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 62
  start-page: 536
  year: 2018
  publication-title: Org. Electron.
– volume: 121
  start-page: 1623
  year: 2021
  publication-title: Chem. Rev.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 9 10
  start-page: 3646
  year: 2017 2018
  publication-title: Nanoscale ACS Appl. Mater. Interfaces
– volume: 253 9
  start-page: 439
  year: 2017 2019
  publication-title: Electrochim. Acta Adv. Energy Mater.
– volume: 2 86 28
  start-page: 1534 188
  year: 2018 2021 2020
  publication-title: Joule Nano Energy Energy Storage Mater.
– volume: 66
  start-page: 3070
  year: 2023
  publication-title: Sci. China:Chem.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 120
  start-page: 7020
  year: 2020
  publication-title: Chem. Rev.
– volume: 40
  start-page: 919
  year: 2011
  publication-title: Dalton Trans.
– volume: 7 52
  start-page: 9279
  year: 2015 2016
  publication-title: ACS Appl. Mater. Interfaces Chem. Commun.
– volume: 144
  start-page: 8267
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 8 210
  start-page: 45
  year: 2018 1994
  publication-title: Adv. Energy Mater. J. Alloys Compd.
– volume: 60 62 61 145
  start-page: 5105
  year: 2021 2023 2022 2023
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 291
  start-page: 285
  year: 2001
  publication-title: Science
– ident: e_1_2_7_5_4
  doi: 10.1002/adfm.201700324
– ident: e_1_2_7_11_2
  doi: 10.1002/aenm.201802986
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202110373
– ident: e_1_2_7_8_1
  doi: 10.1039/C8SC04350G
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.1c06797
– ident: e_1_2_7_31_1
  doi: 10.1039/D3TA05959F
– ident: e_1_2_7_34_2
  doi: 10.1002/adma.201903176
– ident: e_1_2_7_8_2
  doi: 10.1002/adma.201801812
– ident: e_1_2_7_37_2
  doi: 10.1039/D3EE00073G
– ident: e_1_2_7_7_1
  doi: 10.1039/C6NR09613A
– ident: e_1_2_7_36_1
  doi: 10.1021/jacs.3c13113
– ident: e_1_2_7_32_1
  doi: 10.1039/c3cp44054k
– ident: e_1_2_7_9_2
  doi: 10.1039/C7CC02026K
– ident: e_1_2_7_19_1
  doi: 10.1016/j.elecom.2017.11.009
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.9b00535
– ident: e_1_2_7_25_1
  doi: 10.1002/chem.202301048
– ident: e_1_2_7_35_1
  doi: 10.1016/j.joule.2018.04.022
– ident: e_1_2_7_4_2
  doi: 10.1002/smll.201903194
– ident: e_1_2_7_12_1
  doi: 10.1007/s11426-023-1738-3
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.202304183
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.201913174
– ident: e_1_2_7_23_1
  doi: 10.1016/j.orgel.2018.05.003
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.201801102
– ident: e_1_2_7_17_1
  doi: 10.1002/chem.202005259
– ident: e_1_2_7_11_1
  doi: 10.1016/j.electacta.2017.09.090
– ident: e_1_2_7_30_1
  doi: 10.1021/jacs.4c01620
– ident: e_1_2_7_5_2
  doi: 10.1002/aenm.201501874
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.202303051
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.202217710
– ident: e_1_2_7_5_1
  doi: 10.1021/jacs.5b06809
– ident: e_1_2_7_26_2
  doi: 10.1021/jacs.0c09009
– ident: e_1_2_7_16_1
  doi: 10.1007/s40820-023-01239-7
– ident: e_1_2_7_28_1
  doi: 10.1021/jacs.2c01996
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.202001418
– ident: e_1_2_7_9_1
  doi: 10.1016/j.nanoen.2017.08.002
– ident: e_1_2_7_13_1
  doi: 10.1016/j.orgel.2018.06.027
– ident: e_1_2_7_14_1
  doi: 10.1039/C9TA07605K
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1212741
– ident: e_1_2_7_7_2
  doi: 10.1021/acsami.7b15314
– ident: e_1_2_7_15_1
  doi: 10.1016/j.electacta.2019.06.051
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202211850
– ident: e_1_2_7_6_1
  doi: 10.1021/acsami.5b08037
– ident: e_1_2_7_34_1
  doi: 10.1038/s41467-018-02889-7
– ident: e_1_2_7_10_2
  doi: 10.1016/0925-8388(94)90113-9
– ident: e_1_2_7_22_3
  doi: 10.1002/anie.202117661
– ident: e_1_2_7_5_3
  doi: 10.1021/acs.nanolett.5b03667
– ident: e_1_2_7_35_2
  doi: 10.1016/j.nanoen.2021.106142
– ident: e_1_2_7_35_3
  doi: 10.1016/j.ensm.2020.02.030
– ident: e_1_2_7_33_1
  doi: 10.1039/C0DT00739K
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.9b00463
– ident: e_1_2_7_24_1
  doi: 10.1126/science.291.5502.285
– ident: e_1_2_7_6_2
  doi: 10.1039/C6CC03649J
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.nanolett.2c00847
– ident: e_1_2_7_22_4
  doi: 10.1021/jacs.2c11264
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.0c00767
SSID ssj0031247
Score 2.4630861
Snippet Small molecule electrode materials with superb redox activity have significant applied implications for K‐ion storage, but they face significant challenges...
Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2410973
SubjectTerms Anodes
Batteries
Charge transfer
Cycles
Electrode materials
Electrodes
Electrolytes
high conductivity
Ion storage
K‐ion battery anode
Low conductivity
low solubility
Ni‐bis(dithiolene)
Pyridines
Rechargeable batteries
Simulation
small‐molecule electrode
Solubility
Stability
Title Solubility‐Limited Small Molecule for Stable High‐Capacity Potassium Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202410973
https://www.ncbi.nlm.nih.gov/pubmed/39711281
https://www.proquest.com/docview/3165774533
https://www.proquest.com/docview/3148496585
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kJz34fkSrRBA8pU12m9dRiqWIlWIt9BZ2k42IbSo2PejJn-Bv9Jc4k5etHgS9JWSWJLszO9_uzH4DcMYpdoZ-ypDKFbRAYYbvuL6hHM6k7ylPiIzt88bpDltXI3u0cIo_54eoNtzIMrL5mgxcyFnzizR0NhlT6AA9EDHO4CRMCVuEim4r_iiOziurroI-yyDirZK10WTN5ebLXukH1FxGrpnr6WyAKD86zzh5bMxT2Qhfv_E5_uevNmG9wKX6Ra5IW7Cikm1YW2Ar3IE-baFlubQvH2_vxckofTAR47Hey6vsKh0xsI4AVuIlpZCgYBvdcYht9P40RaT-MJ-gACrevdqFYefyrt01ioIMRsgRhhiu8mzPDC0zQrNXwjZDJiMVu4w7KkLoJ90Y8U9oEaYzY2k5vmOFuOKLHBErOgS8B7VkmqgD0F3OYpxMPFdx3pKmFCIKbV-ZAkUtVBANzssBCZ5y3o0gZ1hmAfVRUPWRBvVyvILC_mYBtxwbgS1iWQ1Oq8doORQOEYmazkmm5RFbvmdrsJ-Pc_UqRGkWxRg1YNlo_fINwaB3fV3dHf6l0RGsMiotnCWE16GWPs_VMeKdVJ5kOv0JPM338w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAH9iWsQULilDaxm-2ICqhAihBQiVtkJw5CdEG0OcCJT-Ab-RJmkiZQOCDBLVHGSmLPeJ494zcA-5xiZ-inDKlcQQsUZviO6xvK4Uz6nvKEyNg-L5xmu352axfZhHQWJueHKDfcyDKy-ZoMnDaka5-soYNuh2IH6IKIcmYSpqisN9HnH12VDFIc3VdWXwW9lkHUWwVvo8lq4-3H_dIPsDmOXTPnczIPsvjsPOfkoZoOZTV6-cbo-K__WoC5ETTVD3NdWoQJ1VuC2S-EhctwSbtoWTrt8_vr2-hwlH7dFZ2O3soL7SodYbCOGFbiJWWRoGADPXKEbfTL_hDB-n3aRQHUvTu1Au2T45tG0xjVZDAijkjEcJVne2ZkmTFavhK2GTEZq8Rl3FExoj_pJgiBIotgnZlIy_EdK8JFX-yIRNE54FWo9Po9tQ66y1mC84nnKs7r0pRCxJHtK1OgqIU6osFBMSLhY069EeYkyyykPgrLPtJgqxiwcGSCg5Bbjo3YFuGsBnvlYzQeioiInuqnJFP3iDDfszVYywe6fBUCNYvCjBqwbLh--YbwuhUE5d3GXxrtwnTzphWEwenF-SbMMKo0nOWHb0Fl-JSqbYQ_Q7mTKfgHwED8Dw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2JewBgmJUyCxGyc5opaKpaAKqNRbZCcOQnRBND3AiU_gG_kSZpI2UDggwS1Rxkpiz3iePeM3APucYmfopyylPUkLFGYFwgssLThTga99KTO2zytx2iyft9zWl1P8OT9EseFGlpHN12Tgj3Fy9Eka2u-0KXSAHogYZyZhqizsgIo3VK8LAimO3isrr4JOyyLmrRFto82OxtuPu6UfWHMcuma-pzYPcvTVecrJw-EgVYfRyzdCx__81gLMDYGpeZxr0iJM6O4SzH6hK1yGBu2hZcm0z--vb8OjUeZNR7bb5mVeZlebCIJNRLAKLymHBAUr6I8jbGM2eilC9ftBBwVQ8-70CjRrJ7eVU2tYkcGKOOIQy9O-69uRY8do91q6dsRUrBOPcaFjxH7KSxAARQ6BOjtRjgiEE-GSLxYy0XQKeBVK3V5Xr4PpcZbgbOJ7mvOyspWUceQG2pYo6qCGGHAwGpDwMSfeCHOKZRZSH4VFHxmwNRqvcGiA_ZA7wkVki2DWgL3iMZoOxUNkV_cGJFP2iS7fdw1Yy8e5eBXCNIeCjAawbLR--Ybw5rJeL-42_tJoF6Yb1VpYP7u62IQZRmWGs-TwLSilTwO9jdgnVTuZen8Azqz6vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solubility-Limited+Small+Molecule+for+Stable+High-Capacity+Potassium+Storage&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wu%2C+Lei-Feng&rft.au=Xiao%2C+Ji-Miao&rft.au=Luan%2C+Cui-Zhou&rft.au=Xie%2C+Mo&rft.date=2025-02-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=6&rft.spage=e2410973&rft_id=info:doi/10.1002%2Fsmll.202410973&rft_id=info%3Apmid%2F39711281&rft.externalDocID=39711281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon