CMOS‐Integrated Ternary Content Addressable Memory using Nanocavity CBRAMs for High Sensing Margin
The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 34; pp. e2310943 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large data vectors. Compared to traditional static random‐access memory (SRAM) designs, TCAM technology using non‐volatile resistive memories (RRAMs) in two‐transistor‐two‐resistor (2T2R) configurations presents a cost‐efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory‐based TCAMs for large‐scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive‐bridge memories (CBRAMs) integrated with existing complementary metal‐oxide‐semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity‐enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM‐based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits.
Although RRAM‐based TCAM offers the advantage of reduced cell area, its constrained sensing margin can notably impede parallel data search functionality. This study demonstrates that incorporating nanocavity arrays into CBRAM technology using AAO nanotemplate and integrating with 180 nm CMOS FETs in 2T2R configuration can significantly enhance the sensing margin characteristics favorable for TCAM applications. |
---|---|
AbstractList | The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large data vectors. Compared to traditional static random‐access memory (SRAM) designs, TCAM technology using non‐volatile resistive memories (RRAMs) in two‐transistor‐two‐resistor (2T2R) configurations presents a cost‐efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory‐based TCAMs for large‐scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive‐bridge memories (CBRAMs) integrated with existing complementary metal‐oxide‐semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 10 7 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity‐enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 10 5 , thereby closely approximating the sensing metrics observed in SRAM‐based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits. The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large data vectors. Compared to traditional static random‐access memory (SRAM) designs, TCAM technology using non‐volatile resistive memories (RRAMs) in two‐transistor‐two‐resistor (2T2R) configurations presents a cost‐efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory‐based TCAMs for large‐scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive‐bridge memories (CBRAMs) integrated with existing complementary metal‐oxide‐semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity‐enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM‐based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits. The development of data-intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory-centric paradigm. Within this context, ternary content-addressable memory (TCAM) can become an essential platform for high-speed in-memory matching applications of large data vectors. Compared to traditional static random-access memory (SRAM) designs, TCAM technology using non-volatile resistive memories (RRAMs) in two-transistor-two-resistor (2T2R) configurations presents a cost-efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory-based TCAMs for large-scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive-bridge memories (CBRAMs) integrated with existing complementary metal-oxide-semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 10 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity-enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 10 , thereby closely approximating the sensing metrics observed in SRAM-based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits. The development of data-intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory-centric paradigm. Within this context, ternary content-addressable memory (TCAM) can become an essential platform for high-speed in-memory matching applications of large data vectors. Compared to traditional static random-access memory (SRAM) designs, TCAM technology using non-volatile resistive memories (RRAMs) in two-transistor-two-resistor (2T2R) configurations presents a cost-efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory-based TCAMs for large-scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive-bridge memories (CBRAMs) integrated with existing complementary metal-oxide-semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity-enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM-based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits.The development of data-intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory-centric paradigm. Within this context, ternary content-addressable memory (TCAM) can become an essential platform for high-speed in-memory matching applications of large data vectors. Compared to traditional static random-access memory (SRAM) designs, TCAM technology using non-volatile resistive memories (RRAMs) in two-transistor-two-resistor (2T2R) configurations presents a cost-efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory-based TCAMs for large-scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive-bridge memories (CBRAMs) integrated with existing complementary metal-oxide-semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity-enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM-based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits. The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large data vectors. Compared to traditional static random‐access memory (SRAM) designs, TCAM technology using non‐volatile resistive memories (RRAMs) in two‐transistor‐two‐resistor (2T2R) configurations presents a cost‐efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory‐based TCAMs for large‐scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive‐bridge memories (CBRAMs) integrated with existing complementary metal‐oxide‐semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity‐enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM‐based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits. Although RRAM‐based TCAM offers the advantage of reduced cell area, its constrained sensing margin can notably impede parallel data search functionality. This study demonstrates that incorporating nanocavity arrays into CBRAM technology using AAO nanotemplate and integrating with 180 nm CMOS FETs in 2T2R configuration can significantly enhance the sensing margin characteristics favorable for TCAM applications. |
Author | Yoo, Hyungyu Alimkhanuly, Batyrbek Bae, Junseong Lee, Yoonmyung Patil, Shubham Hwang, Youngcheol Kadyrov, Arman Seo, Donguk Lee, Seunghyun Devnath, Anupom Hyun, Gihwan Lee, Minwoo |
Author_xml | – sequence: 1 givenname: Gihwan surname: Hyun fullname: Hyun, Gihwan organization: Kyung Hee University – sequence: 2 givenname: Batyrbek surname: Alimkhanuly fullname: Alimkhanuly, Batyrbek organization: Kyung Hee University – sequence: 3 givenname: Donguk surname: Seo fullname: Seo, Donguk organization: Sungkyunkwan University – sequence: 4 givenname: Minwoo surname: Lee fullname: Lee, Minwoo organization: Kyung Hee University – sequence: 5 givenname: Junseong surname: Bae fullname: Bae, Junseong organization: Kyung Hee University – sequence: 6 givenname: Seunghyun surname: Lee fullname: Lee, Seunghyun organization: Kyung Hee University – sequence: 7 givenname: Shubham surname: Patil fullname: Patil, Shubham organization: Kyung Hee University – sequence: 8 givenname: Youngcheol surname: Hwang fullname: Hwang, Youngcheol organization: Kyung Hee University – sequence: 9 givenname: Arman surname: Kadyrov fullname: Kadyrov, Arman organization: Kyung Hee University – sequence: 10 givenname: Hyungyu surname: Yoo fullname: Yoo, Hyungyu organization: Kyung Hee University – sequence: 11 givenname: Anupom surname: Devnath fullname: Devnath, Anupom organization: Kyung Hee University – sequence: 12 givenname: Yoonmyung surname: Lee fullname: Lee, Yoonmyung email: yoonmyung@skku.edu organization: Sungkyunkwan University – sequence: 13 givenname: Seunghyun orcidid: 0000-0002-4701-2856 surname: Lee fullname: Lee, Seunghyun email: seansl@khu.ac.kr organization: Kyung Hee University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38607261$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1O3DAUBWCrApWfdttlFYkNmxl8fT1xvBxGbUGaFImh68hJbqZBiU3tpIhdH6HPyJPgYWAqdcPKlv0dS77niO1ZZ4mxT8CnwLk4C33XTQUXCFxLfMcOIQWcpJnQe7s98AN2FMIt5whCqvfsALOUK5HCIasX-dXq8c_fSzvQ2puB6uSGvDX-IVm4eGaHZF7XnkIwZUdJTr2LV2No7Tr5bqyrzO92iPb8ep6HpHE-uWjXP5MV2WeSG79u7Qe235gu0MeX9Zj9-PrlZnExWV59u1zMl5MKRYYTKTSUKSmqtFRgFOdSEgJUZKRBhQpqhbVskLjRWmlpZlhmUAlIeVPzEo_Z6fbdO-9-jRSGom9DRV1nLLkxFMgxk1JwnEV68h-9dWP8d7dRejYDxCyL6vOLGsue6uLOt30cTfE6vwimW1B5F4KnZkeAF5uCik1Bxa6gGNDbwH3b0cMbuljly-W_7BOt5ZLY |
Cites_doi | 10.1038/s41928-019-0321-3 10.1002/adma.202003437 10.1038/s41928-019-0220-7 10.1002/inf2.12416 10.3390/electronics9071106 10.1109/JSSC.2013.2292055 10.1109/TCSI.2021.3122278 10.1039/C5NR08735J 10.1038/ncomms5232 10.1038/s41467-022-33629-7 10.1021/cr500002z 10.1109/JPROC.2015.2434888 10.1109/JSSC.2013.2274888 10.3390/mi13050725 10.1007/s12274-018-1983-2 10.1039/C9TC07001J 10.1016/j.jiec.2020.10.041 10.1109/MCD.2005.1388764 10.1002/adma.201104104 10.1038/s41928-017-0006-8 10.1021/nl201443h 10.1038/nature14539 10.1016/j.apsusc.2017.08.003 10.1016/j.mee.2013.06.001 10.1021/nn2043548 10.1021/cm101121c 10.1038/s41563-017-0001-5 10.1016/j.nanoen.2019.104213 10.1109/JSSC.2005.864128 10.1109/TED.2006.884077 10.1088/0957-4484/22/25/254003 10.1021/acsnano.7b00783 10.3390/nano10102069 10.1002/aelm.201600233 10.1109/LED.2012.2210856 10.1021/nl500049g 10.1038/s41565-020-0655-z 10.1021/acs.jpclett.5b00633 10.1109/JSSC.2017.2681458 10.1021/acsami.2c03978 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202310943 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38607261 10_1002_smll_202310943 SMLL202310943 |
Genre | article Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3283-4291b6e7ec9471a70044e311cea4a37371d73d4f3e0a99794a53b81c2160fd0b3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 12:33:28 EDT 2025 Wed Aug 13 06:06:04 EDT 2025 Mon Jul 21 05:46:09 EDT 2025 Thu Jul 24 01:54:50 EDT 2025 Wed Jan 22 17:14:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | anodic aluminum oxide template memory sensing margin CMOS integration ternary content addressable memory conductive bridge random‐access memory |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3283-4291b6e7ec9471a70044e311cea4a37371d73d4f3e0a99794a53b81c2160fd0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4701-2856 |
PMID | 38607261 |
PQID | 3095513388 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3038442035 proquest_journals_3095513388 pubmed_primary_38607261 crossref_primary_10_1002_smll_202310943 wiley_primary_10_1002_smll_202310943_SMLL202310943 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 68 2023; 5 2015; 103 2020; 15 2011; 11 2005; 21 2020; 10 2020; 8 2010; 22 2014; 5 2000 2018; 1 2020; 9 2011; 22 2014; 14 2012; 24 2014; 120 2013; 48 2015; 6 2006; 53 2012 2015; 521 2019; 2 2018; 427 2014; 49 2005 2020; 32 2021; 94 2012; 33 2014; 114 2018; 17 2017; 52 2006; 41 2016; 2 2021 2020 2017; 11 2019 2022; 13 2018 2022; 14 2017 2016 2020; 67 2014 2013 2012; 6 2018; 11 2016; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 6284 year: 2022 publication-title: Nat. Commun. – volume: 33 start-page: 1405 year: 2012 publication-title: IEEE Electron Device Lett. – year: 2005 – volume: 120 start-page: 67 year: 2014 publication-title: Microelectron. Eng. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 14 start-page: 2401 year: 2014 publication-title: Nano Lett. – year: 2021 – volume: 10 start-page: 2069 year: 2020 publication-title: Nanomaterials – volume: 22 year: 2011 publication-title: Nanotechnology – volume: 521 start-page: 436 year: 2015 publication-title: Nature – year: 2018 – year: 2014 – volume: 1 start-page: 22 year: 2018 publication-title: Nat. Electron. – volume: 6 start-page: 1479 year: 2012 publication-title: ACS Nano – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 94 start-page: 233 year: 2021 publication-title: J. Ind. Eng. Chem. – volume: 24 start-page: 1844 year: 2012 publication-title: Adv. Mater. – year: 2019 – volume: 17 start-page: 335 year: 2018 publication-title: Nat. Mater. – volume: 6 start-page: 1919 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 52 start-page: 1664 year: 2017 publication-title: IEEE J. Solid‐State Circuits – volume: 2 start-page: 108 year: 2019 publication-title: Nat. Electron. – volume: 53 start-page: 2816 year: 2006 publication-title: IEEE Trans. Electron Devices – volume: 9 start-page: 1106 year: 2020 publication-title: Electronics – year: 2000 – volume: 11 start-page: 4017 year: 2018 publication-title: Nano Res. – volume: 41 start-page: 712 year: 2006 publication-title: IEEE J. Solid‐State Circuits – volume: 8 year: 2016 publication-title: Nanoscale – year: 2016 – volume: 11 start-page: 3202 year: 2011 publication-title: Nano Lett. – volume: 68 start-page: 4889 year: 2021 publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. – volume: 48 start-page: 2671 year: 2013 publication-title: IEEE J. Solid‐State Circuits – year: 2012 – volume: 5 start-page: 4232 year: 2014 publication-title: Nat. Commun. – volume: 22 start-page: 4111 year: 2010 publication-title: Chem. Mater. – volume: 49 start-page: 896 year: 2014 publication-title: IEEE J. Solid‐State Circuits – volume: 15 start-page: 529 year: 2020 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 725 year: 2022 publication-title: Micromachines – volume: 32 year: 2020 publication-title: Adv. Mater. – year: 2020 – volume: 427 start-page: 854 year: 2018 publication-title: Appl. Surf. Sci. – volume: 2 start-page: 521 year: 2019 publication-title: Nat. Electron. – volume: 114 start-page: 7487 year: 2014 publication-title: Chem. Rev. – volume: 8 start-page: 3897 year: 2020 publication-title: J. Mater. Chem. C – year: 2017 – volume: 103 start-page: 1311 year: 2015 publication-title: Proc. IEEE Inst. Electr. Electron Eng. – volume: 11 start-page: 4097 year: 2017 publication-title: ACS Nano – volume: 21 start-page: 4 year: 2005 publication-title: IEEE Circuits Devices Mag. – volume: 5 year: 2023 publication-title: InfoMat – year: 2013 – ident: e_1_2_8_11_1 doi: 10.1038/s41928-019-0321-3 – ident: e_1_2_8_8_1 doi: 10.1002/adma.202003437 – ident: e_1_2_8_14_1 doi: 10.1038/s41928-019-0220-7 – ident: e_1_2_8_3_1 – ident: e_1_2_8_10_1 doi: 10.1002/inf2.12416 – ident: e_1_2_8_22_1 doi: 10.3390/electronics9071106 – ident: e_1_2_8_51_1 doi: 10.1109/JSSC.2013.2292055 – ident: e_1_2_8_5_1 doi: 10.1109/TCSI.2021.3122278 – ident: e_1_2_8_34_1 doi: 10.1039/C5NR08735J – ident: e_1_2_8_31_1 doi: 10.1038/ncomms5232 – ident: e_1_2_8_28_1 – ident: e_1_2_8_12_1 doi: 10.1038/s41467-022-33629-7 – ident: e_1_2_8_27_1 doi: 10.1021/cr500002z – ident: e_1_2_8_6_1 doi: 10.1109/JPROC.2015.2434888 – ident: e_1_2_8_13_1 doi: 10.1109/JSSC.2013.2274888 – ident: e_1_2_8_32_1 doi: 10.3390/mi13050725 – ident: e_1_2_8_36_1 doi: 10.1007/s12274-018-1983-2 – ident: e_1_2_8_41_1 doi: 10.1039/C9TC07001J – ident: e_1_2_8_39_1 doi: 10.1016/j.jiec.2020.10.041 – ident: e_1_2_8_45_1 doi: 10.1109/MCD.2005.1388764 – ident: e_1_2_8_33_1 doi: 10.1002/adma.201104104 – ident: e_1_2_8_2_1 doi: 10.1038/s41928-017-0006-8 – ident: e_1_2_8_23_1 doi: 10.1021/nl201443h – ident: e_1_2_8_15_1 – ident: e_1_2_8_1_1 doi: 10.1038/nature14539 – ident: e_1_2_8_9_1 – ident: e_1_2_8_26_1 doi: 10.1016/j.apsusc.2017.08.003 – ident: e_1_2_8_53_1 – ident: e_1_2_8_29_1 doi: 10.1016/j.mee.2013.06.001 – ident: e_1_2_8_25_1 doi: 10.1021/nn2043548 – ident: e_1_2_8_24_1 doi: 10.1021/cm101121c – ident: e_1_2_8_17_1 – ident: e_1_2_8_42_1 doi: 10.1038/s41563-017-0001-5 – ident: e_1_2_8_43_1 doi: 10.1016/j.nanoen.2019.104213 – ident: e_1_2_8_44_1 doi: 10.1109/JSSC.2005.864128 – ident: e_1_2_8_47_1 – ident: e_1_2_8_21_1 – ident: e_1_2_8_52_1 doi: 10.1109/TED.2006.884077 – ident: e_1_2_8_7_1 – ident: e_1_2_8_20_1 doi: 10.1088/0957-4484/22/25/254003 – ident: e_1_2_8_46_1 doi: 10.1021/acsnano.7b00783 – ident: e_1_2_8_16_1 – ident: e_1_2_8_18_1 doi: 10.3390/nano10102069 – ident: e_1_2_8_40_1 doi: 10.1002/aelm.201600233 – ident: e_1_2_8_19_1 – ident: e_1_2_8_48_1 doi: 10.1109/LED.2012.2210856 – ident: e_1_2_8_38_1 – ident: e_1_2_8_30_1 doi: 10.1021/nl500049g – ident: e_1_2_8_4_1 doi: 10.1038/s41565-020-0655-z – ident: e_1_2_8_35_1 doi: 10.1021/acs.jpclett.5b00633 – ident: e_1_2_8_49_1 – ident: e_1_2_8_50_1 doi: 10.1109/JSSC.2017.2681458 – ident: e_1_2_8_37_1 doi: 10.1021/acsami.2c03978 |
SSID | ssj0031247 |
Score | 2.4599683 |
Snippet | The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within... The development of data-intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory-centric paradigm. Within... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2310943 |
SubjectTerms | anodic aluminum oxide template Arrays Associative memory CMOS CMOS integration conductive bridge random‐access memory memory sensing margin Static random access memory ternary content addressable memory Transistors |
Title | CMOS‐Integrated Ternary Content Addressable Memory using Nanocavity CBRAMs for High Sensing Margin |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202310943 https://www.ncbi.nlm.nih.gov/pubmed/38607261 https://www.proquest.com/docview/3095513388 https://www.proquest.com/docview/3038442035 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VnOihFPpBClSuVIlTIIntxDkuqyKoSJFYkLhF_gpCQEDs7gFO_Qn9jfwSZpJNYOmhEr0liq0ktmfesz1-A_AdJ8mILFqGknsZChvJUPPUhd55ZA-yUlbQAefiV7p3In6eytNnp_hbfYh-wY0so_HXZODajLefREPHV5e0dUD8JBck90kBW8SKjnr9KI7g1WRXQcwKSXirU22Mku356vOo9BfVnGeuDfTsLoHuPrqNOLnYmk7Mlr1_oef4P3_1Ht7NeCkbtANpGd74egXePlMr_ABuWByOHn7_2e8UJhw7ptXE2zvWaFzVEzZwrsmpYi49KyiG945RYP0ZQyeOoEl5Kthw52hQjBmSZUZBJmxEIfRYhFLuntcf4WT3x_FwL5wlaQgtR2oSIp7FJvWZtzninCa1fOF5HFuvheYZz2KXcScq7iOd52j9WnKjYpvEaVS5yPBPsFBf134VWKyVRQ_ijdIeXUuVV0msK-VUJY2wIgtgs-uk8qbV4ihb1eWkpHYr-3YLYL3rw3Jmk-OSk9oeTclVAN_6x2hNtEWia389pTJcCZFEXAbwue37_lVcpVGGE84AkqYH__EN5ag4OOjvvrym0hos4rVo4w3XYWFyO_UbyIEm5mszzh8Bfkn9jg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6V9gAcoPyUBlowEhKntElsJ85xWVFtYVOk7lbiFvkvVUVJq-7uoZx4BJ6RJ2Em2QSWHpDKMYmtJB7PzDf2-BuANxgko2fRMpTcy1DYSIaapy70ziN6kJWygg44F0fp6ER8-Cy7bEI6C9PyQ_QLbqQZjb0mBacF6f3frKGzr-e0d0AAJRf8DmxQWe8mqjruGaQ4uq-mvgp6rZCotzrexijZX-2_6pdugM1V7No4n4OHYLrPbnNOvuwt5mbPfvuL0fG__msTHiyhKRu0c-kRrPn6Mdz_g7DwCbhh8Wny8_uPw45kwrEpLSheXbOG5qqes4FzTVkVc-5ZQWm814xy608Z2nH0m1Sqgg3fHQ-KGUO8zCjPhE0oix6bUNXds_opnBy8nw5H4bJOQ2g5opMQXVpsUp95m6Or00SYLzyPY-u10DzjWewy7kTFfaTzHA2Altyo2CZxGlUuMnwL1uuL2m8Di7WyaES8UdqjdanyKol1pZyqpBFWZAG87aRUXrZ0HGVLvJyUNG5lP24B7HRCLJdqOSs5Ee5RVK4CeN0_RoWiXRJd-4sFteFKiCTiMoBnrfD7V3GVRhnGnAEkjQj_8Q3lpBiP-6vnt-n0Cu6OpsW4HB8efXwB9_C-aNMPd2B9frXwuwiJ5uZlM-l_AVs_Abg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21VKrKgdIPIC1QV6rUUyCJ7cQ5LgsraDe0YkHiFjm2U1VAQOzugZ74CfzG_pLOJJuULYdK7TGJrSS2Z96zPX4D8AEnyYgsWvqSO-kLE0hf89j6zjpkD7JURtAB5-ww3j8Rn07l6b1T_I0-RLfgRpZR-2sy8Ctbbv8WDR1fnNPWAfGTVPDH8ETEgaJxvXvUCUhxRK86vQqClk_KW61sYxBtz9efh6UHXHOeutbYM3gOuv3qJuTkbGs6KbbMjz8EHf_nt5ZhaUZMWa8ZSS_gkatewuI9ucJXYPvZl9HP27uDVmLCsmNaTry-YbXIVTVhPWvrpCrFuWMZBfHeMIqs_8bQiyNqUqIK1t856mVjhmyZUZQJG1EMPRahnLvfq9dwMtg77u_7sywNvuHITXwEtLCIXeJMikCnSS5fOB6GxmmhecKT0CbcipK7QKcpmr-WvFChicI4KG1Q8BVYqC4rtwYs1MqgC3GF0g59S5mWUahLZVUpC2FE4sHHtpPyq0aMI29kl6Oc2i3v2s2D9bYP85lRjnNOcns0J1cevO8eoznRHomu3OWUynAlRBRw6cFq0_fdq7iKgwRnnB5EdQ_-5RvyUTYcdldv_qXSO3j6dXeQDw8OP7-FZ3hbNLGH67AwuZ66DeRDk2KzHvK_AGq8AHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMOS-Integrated+Ternary+Content+Addressable+Memory+using+Nanocavity+CBRAMs+for+High+Sensing+Margin&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hyun%2C+Gihwan&rft.au=Alimkhanuly%2C+Batyrbek&rft.au=Seo%2C+Donguk&rft.au=Lee%2C+Minwoo&rft.date=2024-08-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=34&rft.spage=e2310943&rft_id=info:doi/10.1002%2Fsmll.202310943&rft_id=info%3Apmid%2F38607261&rft.externalDocID=38607261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |