CMOS‐Integrated Ternary Content Addressable Memory using Nanocavity CBRAMs for High Sensing Margin

The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 34; pp. e2310943 - n/a
Main Authors Hyun, Gihwan, Alimkhanuly, Batyrbek, Seo, Donguk, Lee, Minwoo, Bae, Junseong, Lee, Seunghyun, Patil, Shubham, Hwang, Youngcheol, Kadyrov, Arman, Yoo, Hyungyu, Devnath, Anupom, Lee, Yoonmyung
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large data vectors. Compared to traditional static random‐access memory (SRAM) designs, TCAM technology using non‐volatile resistive memories (RRAMs) in two‐transistor‐two‐resistor (2T2R) configurations presents a cost‐efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory‐based TCAMs for large‐scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive‐bridge memories (CBRAMs) integrated with existing complementary metal‐oxide‐semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity‐enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM‐based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits. Although RRAM‐based TCAM offers the advantage of reduced cell area, its constrained sensing margin can notably impede parallel data search functionality. This study demonstrates that incorporating nanocavity arrays into CBRAM technology using AAO nanotemplate and integrating with 180 nm CMOS FETs in 2T2R configuration can significantly enhance the sensing margin characteristics favorable for TCAM applications.
AbstractList The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large data vectors. Compared to traditional static random‐access memory (SRAM) designs, TCAM technology using non‐volatile resistive memories (RRAMs) in two‐transistor‐two‐resistor (2T2R) configurations presents a cost‐efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory‐based TCAMs for large‐scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive‐bridge memories (CBRAMs) integrated with existing complementary metal‐oxide‐semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 10 7 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity‐enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 10 5 , thereby closely approximating the sensing metrics observed in SRAM‐based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits.
The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large data vectors. Compared to traditional static random‐access memory (SRAM) designs, TCAM technology using non‐volatile resistive memories (RRAMs) in two‐transistor‐two‐resistor (2T2R) configurations presents a cost‐efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory‐based TCAMs for large‐scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive‐bridge memories (CBRAMs) integrated with existing complementary metal‐oxide‐semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity‐enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM‐based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits.
The development of data-intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory-centric paradigm. Within this context, ternary content-addressable memory (TCAM) can become an essential platform for high-speed in-memory matching applications of large data vectors. Compared to traditional static random-access memory (SRAM) designs, TCAM technology using non-volatile resistive memories (RRAMs) in two-transistor-two-resistor (2T2R) configurations presents a cost-efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory-based TCAMs for large-scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive-bridge memories (CBRAMs) integrated with existing complementary metal-oxide-semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 10 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity-enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 10 , thereby closely approximating the sensing metrics observed in SRAM-based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits.
The development of data-intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory-centric paradigm. Within this context, ternary content-addressable memory (TCAM) can become an essential platform for high-speed in-memory matching applications of large data vectors. Compared to traditional static random-access memory (SRAM) designs, TCAM technology using non-volatile resistive memories (RRAMs) in two-transistor-two-resistor (2T2R) configurations presents a cost-efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory-based TCAMs for large-scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive-bridge memories (CBRAMs) integrated with existing complementary metal-oxide-semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity-enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM-based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits.The development of data-intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory-centric paradigm. Within this context, ternary content-addressable memory (TCAM) can become an essential platform for high-speed in-memory matching applications of large data vectors. Compared to traditional static random-access memory (SRAM) designs, TCAM technology using non-volatile resistive memories (RRAMs) in two-transistor-two-resistor (2T2R) configurations presents a cost-efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory-based TCAMs for large-scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive-bridge memories (CBRAMs) integrated with existing complementary metal-oxide-semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity-enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM-based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits.
The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large data vectors. Compared to traditional static random‐access memory (SRAM) designs, TCAM technology using non‐volatile resistive memories (RRAMs) in two‐transistor‐two‐resistor (2T2R) configurations presents a cost‐efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory‐based TCAMs for large‐scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive‐bridge memories (CBRAMs) integrated with existing complementary metal‐oxide‐semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 107 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity‐enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 105, thereby closely approximating the sensing metrics observed in SRAM‐based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits. Although RRAM‐based TCAM offers the advantage of reduced cell area, its constrained sensing margin can notably impede parallel data search functionality. This study demonstrates that incorporating nanocavity arrays into CBRAM technology using AAO nanotemplate and integrating with 180 nm CMOS FETs in 2T2R configuration can significantly enhance the sensing margin characteristics favorable for TCAM applications.
Author Yoo, Hyungyu
Alimkhanuly, Batyrbek
Bae, Junseong
Lee, Yoonmyung
Patil, Shubham
Hwang, Youngcheol
Kadyrov, Arman
Seo, Donguk
Lee, Seunghyun
Devnath, Anupom
Hyun, Gihwan
Lee, Minwoo
Author_xml – sequence: 1
  givenname: Gihwan
  surname: Hyun
  fullname: Hyun, Gihwan
  organization: Kyung Hee University
– sequence: 2
  givenname: Batyrbek
  surname: Alimkhanuly
  fullname: Alimkhanuly, Batyrbek
  organization: Kyung Hee University
– sequence: 3
  givenname: Donguk
  surname: Seo
  fullname: Seo, Donguk
  organization: Sungkyunkwan University
– sequence: 4
  givenname: Minwoo
  surname: Lee
  fullname: Lee, Minwoo
  organization: Kyung Hee University
– sequence: 5
  givenname: Junseong
  surname: Bae
  fullname: Bae, Junseong
  organization: Kyung Hee University
– sequence: 6
  givenname: Seunghyun
  surname: Lee
  fullname: Lee, Seunghyun
  organization: Kyung Hee University
– sequence: 7
  givenname: Shubham
  surname: Patil
  fullname: Patil, Shubham
  organization: Kyung Hee University
– sequence: 8
  givenname: Youngcheol
  surname: Hwang
  fullname: Hwang, Youngcheol
  organization: Kyung Hee University
– sequence: 9
  givenname: Arman
  surname: Kadyrov
  fullname: Kadyrov, Arman
  organization: Kyung Hee University
– sequence: 10
  givenname: Hyungyu
  surname: Yoo
  fullname: Yoo, Hyungyu
  organization: Kyung Hee University
– sequence: 11
  givenname: Anupom
  surname: Devnath
  fullname: Devnath, Anupom
  organization: Kyung Hee University
– sequence: 12
  givenname: Yoonmyung
  surname: Lee
  fullname: Lee, Yoonmyung
  email: yoonmyung@skku.edu
  organization: Sungkyunkwan University
– sequence: 13
  givenname: Seunghyun
  orcidid: 0000-0002-4701-2856
  surname: Lee
  fullname: Lee, Seunghyun
  email: seansl@khu.ac.kr
  organization: Kyung Hee University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38607261$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1O3DAUBWCrApWfdttlFYkNmxl8fT1xvBxGbUGaFImh68hJbqZBiU3tpIhdH6HPyJPgYWAqdcPKlv0dS77niO1ZZ4mxT8CnwLk4C33XTQUXCFxLfMcOIQWcpJnQe7s98AN2FMIt5whCqvfsALOUK5HCIasX-dXq8c_fSzvQ2puB6uSGvDX-IVm4eGaHZF7XnkIwZUdJTr2LV2No7Tr5bqyrzO92iPb8ep6HpHE-uWjXP5MV2WeSG79u7Qe235gu0MeX9Zj9-PrlZnExWV59u1zMl5MKRYYTKTSUKSmqtFRgFOdSEgJUZKRBhQpqhbVskLjRWmlpZlhmUAlIeVPzEo_Z6fbdO-9-jRSGom9DRV1nLLkxFMgxk1JwnEV68h-9dWP8d7dRejYDxCyL6vOLGsue6uLOt30cTfE6vwimW1B5F4KnZkeAF5uCik1Bxa6gGNDbwH3b0cMbuljly-W_7BOt5ZLY
Cites_doi 10.1038/s41928-019-0321-3
10.1002/adma.202003437
10.1038/s41928-019-0220-7
10.1002/inf2.12416
10.3390/electronics9071106
10.1109/JSSC.2013.2292055
10.1109/TCSI.2021.3122278
10.1039/C5NR08735J
10.1038/ncomms5232
10.1038/s41467-022-33629-7
10.1021/cr500002z
10.1109/JPROC.2015.2434888
10.1109/JSSC.2013.2274888
10.3390/mi13050725
10.1007/s12274-018-1983-2
10.1039/C9TC07001J
10.1016/j.jiec.2020.10.041
10.1109/MCD.2005.1388764
10.1002/adma.201104104
10.1038/s41928-017-0006-8
10.1021/nl201443h
10.1038/nature14539
10.1016/j.apsusc.2017.08.003
10.1016/j.mee.2013.06.001
10.1021/nn2043548
10.1021/cm101121c
10.1038/s41563-017-0001-5
10.1016/j.nanoen.2019.104213
10.1109/JSSC.2005.864128
10.1109/TED.2006.884077
10.1088/0957-4484/22/25/254003
10.1021/acsnano.7b00783
10.3390/nano10102069
10.1002/aelm.201600233
10.1109/LED.2012.2210856
10.1021/nl500049g
10.1038/s41565-020-0655-z
10.1021/acs.jpclett.5b00633
10.1109/JSSC.2017.2681458
10.1021/acsami.2c03978
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202310943
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38607261
10_1002_smll_202310943
SMLL202310943
Genre article
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3283-4291b6e7ec9471a70044e311cea4a37371d73d4f3e0a99794a53b81c2160fd0b3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 12:33:28 EDT 2025
Wed Aug 13 06:06:04 EDT 2025
Mon Jul 21 05:46:09 EDT 2025
Thu Jul 24 01:54:50 EDT 2025
Wed Jan 22 17:14:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords anodic aluminum oxide template
memory sensing margin
CMOS integration
ternary content addressable memory
conductive bridge random‐access memory
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3283-4291b6e7ec9471a70044e311cea4a37371d73d4f3e0a99794a53b81c2160fd0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4701-2856
PMID 38607261
PQID 3095513388
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_3038442035
proquest_journals_3095513388
pubmed_primary_38607261
crossref_primary_10_1002_smll_202310943
wiley_primary_10_1002_smll_202310943_SMLL202310943
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 68
2023; 5
2015; 103
2020; 15
2011; 11
2005; 21
2020; 10
2020; 8
2010; 22
2014; 5
2000
2018; 1
2020; 9
2011; 22
2014; 14
2012; 24
2014; 120
2013; 48
2015; 6
2006; 53
2012
2015; 521
2019; 2
2018; 427
2014; 49
2005
2020; 32
2021; 94
2012; 33
2014; 114
2018; 17
2017; 52
2006; 41
2016; 2
2021
2020
2017; 11
2019
2022; 13
2018
2022; 14
2017
2016
2020; 67
2014
2013
2012; 6
2018; 11
2016; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 6284
  year: 2022
  publication-title: Nat. Commun.
– volume: 33
  start-page: 1405
  year: 2012
  publication-title: IEEE Electron Device Lett.
– year: 2005
– volume: 120
  start-page: 67
  year: 2014
  publication-title: Microelectron. Eng.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 14
  start-page: 2401
  year: 2014
  publication-title: Nano Lett.
– year: 2021
– volume: 10
  start-page: 2069
  year: 2020
  publication-title: Nanomaterials
– volume: 22
  year: 2011
  publication-title: Nanotechnology
– volume: 521
  start-page: 436
  year: 2015
  publication-title: Nature
– year: 2018
– year: 2014
– volume: 1
  start-page: 22
  year: 2018
  publication-title: Nat. Electron.
– volume: 6
  start-page: 1479
  year: 2012
  publication-title: ACS Nano
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 94
  start-page: 233
  year: 2021
  publication-title: J. Ind. Eng. Chem.
– volume: 24
  start-page: 1844
  year: 2012
  publication-title: Adv. Mater.
– year: 2019
– volume: 17
  start-page: 335
  year: 2018
  publication-title: Nat. Mater.
– volume: 6
  start-page: 1919
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 52
  start-page: 1664
  year: 2017
  publication-title: IEEE J. Solid‐State Circuits
– volume: 2
  start-page: 108
  year: 2019
  publication-title: Nat. Electron.
– volume: 53
  start-page: 2816
  year: 2006
  publication-title: IEEE Trans. Electron Devices
– volume: 9
  start-page: 1106
  year: 2020
  publication-title: Electronics
– year: 2000
– volume: 11
  start-page: 4017
  year: 2018
  publication-title: Nano Res.
– volume: 41
  start-page: 712
  year: 2006
  publication-title: IEEE J. Solid‐State Circuits
– volume: 8
  year: 2016
  publication-title: Nanoscale
– year: 2016
– volume: 11
  start-page: 3202
  year: 2011
  publication-title: Nano Lett.
– volume: 68
  start-page: 4889
  year: 2021
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
– volume: 48
  start-page: 2671
  year: 2013
  publication-title: IEEE J. Solid‐State Circuits
– year: 2012
– volume: 5
  start-page: 4232
  year: 2014
  publication-title: Nat. Commun.
– volume: 22
  start-page: 4111
  year: 2010
  publication-title: Chem. Mater.
– volume: 49
  start-page: 896
  year: 2014
  publication-title: IEEE J. Solid‐State Circuits
– volume: 15
  start-page: 529
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 725
  year: 2022
  publication-title: Micromachines
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– year: 2020
– volume: 427
  start-page: 854
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 521
  year: 2019
  publication-title: Nat. Electron.
– volume: 114
  start-page: 7487
  year: 2014
  publication-title: Chem. Rev.
– volume: 8
  start-page: 3897
  year: 2020
  publication-title: J. Mater. Chem. C
– year: 2017
– volume: 103
  start-page: 1311
  year: 2015
  publication-title: Proc. IEEE Inst. Electr. Electron Eng.
– volume: 11
  start-page: 4097
  year: 2017
  publication-title: ACS Nano
– volume: 21
  start-page: 4
  year: 2005
  publication-title: IEEE Circuits Devices Mag.
– volume: 5
  year: 2023
  publication-title: InfoMat
– year: 2013
– ident: e_1_2_8_11_1
  doi: 10.1038/s41928-019-0321-3
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202003437
– ident: e_1_2_8_14_1
  doi: 10.1038/s41928-019-0220-7
– ident: e_1_2_8_3_1
– ident: e_1_2_8_10_1
  doi: 10.1002/inf2.12416
– ident: e_1_2_8_22_1
  doi: 10.3390/electronics9071106
– ident: e_1_2_8_51_1
  doi: 10.1109/JSSC.2013.2292055
– ident: e_1_2_8_5_1
  doi: 10.1109/TCSI.2021.3122278
– ident: e_1_2_8_34_1
  doi: 10.1039/C5NR08735J
– ident: e_1_2_8_31_1
  doi: 10.1038/ncomms5232
– ident: e_1_2_8_28_1
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-022-33629-7
– ident: e_1_2_8_27_1
  doi: 10.1021/cr500002z
– ident: e_1_2_8_6_1
  doi: 10.1109/JPROC.2015.2434888
– ident: e_1_2_8_13_1
  doi: 10.1109/JSSC.2013.2274888
– ident: e_1_2_8_32_1
  doi: 10.3390/mi13050725
– ident: e_1_2_8_36_1
  doi: 10.1007/s12274-018-1983-2
– ident: e_1_2_8_41_1
  doi: 10.1039/C9TC07001J
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jiec.2020.10.041
– ident: e_1_2_8_45_1
  doi: 10.1109/MCD.2005.1388764
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201104104
– ident: e_1_2_8_2_1
  doi: 10.1038/s41928-017-0006-8
– ident: e_1_2_8_23_1
  doi: 10.1021/nl201443h
– ident: e_1_2_8_15_1
– ident: e_1_2_8_1_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_9_1
– ident: e_1_2_8_26_1
  doi: 10.1016/j.apsusc.2017.08.003
– ident: e_1_2_8_53_1
– ident: e_1_2_8_29_1
  doi: 10.1016/j.mee.2013.06.001
– ident: e_1_2_8_25_1
  doi: 10.1021/nn2043548
– ident: e_1_2_8_24_1
  doi: 10.1021/cm101121c
– ident: e_1_2_8_17_1
– ident: e_1_2_8_42_1
  doi: 10.1038/s41563-017-0001-5
– ident: e_1_2_8_43_1
  doi: 10.1016/j.nanoen.2019.104213
– ident: e_1_2_8_44_1
  doi: 10.1109/JSSC.2005.864128
– ident: e_1_2_8_47_1
– ident: e_1_2_8_21_1
– ident: e_1_2_8_52_1
  doi: 10.1109/TED.2006.884077
– ident: e_1_2_8_7_1
– ident: e_1_2_8_20_1
  doi: 10.1088/0957-4484/22/25/254003
– ident: e_1_2_8_46_1
  doi: 10.1021/acsnano.7b00783
– ident: e_1_2_8_16_1
– ident: e_1_2_8_18_1
  doi: 10.3390/nano10102069
– ident: e_1_2_8_40_1
  doi: 10.1002/aelm.201600233
– ident: e_1_2_8_19_1
– ident: e_1_2_8_48_1
  doi: 10.1109/LED.2012.2210856
– ident: e_1_2_8_38_1
– ident: e_1_2_8_30_1
  doi: 10.1021/nl500049g
– ident: e_1_2_8_4_1
  doi: 10.1038/s41565-020-0655-z
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.jpclett.5b00633
– ident: e_1_2_8_49_1
– ident: e_1_2_8_50_1
  doi: 10.1109/JSSC.2017.2681458
– ident: e_1_2_8_37_1
  doi: 10.1021/acsami.2c03978
SSID ssj0031247
Score 2.4599683
Snippet The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within...
The development of data-intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory-centric paradigm. Within...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2310943
SubjectTerms anodic aluminum oxide template
Arrays
Associative memory
CMOS
CMOS integration
conductive bridge random‐access memory
memory sensing margin
Static random access memory
ternary content addressable memory
Transistors
Title CMOS‐Integrated Ternary Content Addressable Memory using Nanocavity CBRAMs for High Sensing Margin
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202310943
https://www.ncbi.nlm.nih.gov/pubmed/38607261
https://www.proquest.com/docview/3095513388
https://www.proquest.com/docview/3038442035
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VnOihFPpBClSuVIlTIIntxDkuqyKoSJFYkLhF_gpCQEDs7gFO_Qn9jfwSZpJNYOmhEr0liq0ktmfesz1-A_AdJ8mILFqGknsZChvJUPPUhd55ZA-yUlbQAefiV7p3In6eytNnp_hbfYh-wY0so_HXZODajLefREPHV5e0dUD8JBck90kBW8SKjnr9KI7g1WRXQcwKSXirU22Mku356vOo9BfVnGeuDfTsLoHuPrqNOLnYmk7Mlr1_oef4P3_1Ht7NeCkbtANpGd74egXePlMr_ABuWByOHn7_2e8UJhw7ptXE2zvWaFzVEzZwrsmpYi49KyiG945RYP0ZQyeOoEl5Kthw52hQjBmSZUZBJmxEIfRYhFLuntcf4WT3x_FwL5wlaQgtR2oSIp7FJvWZtzninCa1fOF5HFuvheYZz2KXcScq7iOd52j9WnKjYpvEaVS5yPBPsFBf134VWKyVRQ_ijdIeXUuVV0msK-VUJY2wIgtgs-uk8qbV4ihb1eWkpHYr-3YLYL3rw3Jmk-OSk9oeTclVAN_6x2hNtEWia389pTJcCZFEXAbwue37_lVcpVGGE84AkqYH__EN5ag4OOjvvrym0hos4rVo4w3XYWFyO_UbyIEm5mszzh8Bfkn9jg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6V9gAcoPyUBlowEhKntElsJ85xWVFtYVOk7lbiFvkvVUVJq-7uoZx4BJ6RJ2Em2QSWHpDKMYmtJB7PzDf2-BuANxgko2fRMpTcy1DYSIaapy70ziN6kJWygg44F0fp6ER8-Cy7bEI6C9PyQ_QLbqQZjb0mBacF6f3frKGzr-e0d0AAJRf8DmxQWe8mqjruGaQ4uq-mvgp6rZCotzrexijZX-2_6pdugM1V7No4n4OHYLrPbnNOvuwt5mbPfvuL0fG__msTHiyhKRu0c-kRrPn6Mdz_g7DwCbhh8Wny8_uPw45kwrEpLSheXbOG5qqes4FzTVkVc-5ZQWm814xy608Z2nH0m1Sqgg3fHQ-KGUO8zCjPhE0oix6bUNXds_opnBy8nw5H4bJOQ2g5opMQXVpsUp95m6Or00SYLzyPY-u10DzjWewy7kTFfaTzHA2Altyo2CZxGlUuMnwL1uuL2m8Di7WyaES8UdqjdanyKol1pZyqpBFWZAG87aRUXrZ0HGVLvJyUNG5lP24B7HRCLJdqOSs5Ee5RVK4CeN0_RoWiXRJd-4sFteFKiCTiMoBnrfD7V3GVRhnGnAEkjQj_8Q3lpBiP-6vnt-n0Cu6OpsW4HB8efXwB9_C-aNMPd2B9frXwuwiJ5uZlM-l_AVs_Abg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21VKrKgdIPIC1QV6rUUyCJ7cQ5LgsraDe0YkHiFjm2U1VAQOzugZ74CfzG_pLOJJuULYdK7TGJrSS2Z96zPX4D8AEnyYgsWvqSO-kLE0hf89j6zjpkD7JURtAB5-ww3j8Rn07l6b1T_I0-RLfgRpZR-2sy8Ctbbv8WDR1fnNPWAfGTVPDH8ETEgaJxvXvUCUhxRK86vQqClk_KW61sYxBtz9efh6UHXHOeutbYM3gOuv3qJuTkbGs6KbbMjz8EHf_nt5ZhaUZMWa8ZSS_gkatewuI9ucJXYPvZl9HP27uDVmLCsmNaTry-YbXIVTVhPWvrpCrFuWMZBfHeMIqs_8bQiyNqUqIK1t856mVjhmyZUZQJG1EMPRahnLvfq9dwMtg77u_7sywNvuHITXwEtLCIXeJMikCnSS5fOB6GxmmhecKT0CbcipK7QKcpmr-WvFChicI4KG1Q8BVYqC4rtwYs1MqgC3GF0g59S5mWUahLZVUpC2FE4sHHtpPyq0aMI29kl6Oc2i3v2s2D9bYP85lRjnNOcns0J1cevO8eoznRHomu3OWUynAlRBRw6cFq0_fdq7iKgwRnnB5EdQ_-5RvyUTYcdldv_qXSO3j6dXeQDw8OP7-FZ3hbNLGH67AwuZ66DeRDk2KzHvK_AGq8AHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMOS-Integrated+Ternary+Content+Addressable+Memory+using+Nanocavity+CBRAMs+for+High+Sensing+Margin&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hyun%2C+Gihwan&rft.au=Alimkhanuly%2C+Batyrbek&rft.au=Seo%2C+Donguk&rft.au=Lee%2C+Minwoo&rft.date=2024-08-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=34&rft.spage=e2310943&rft_id=info:doi/10.1002%2Fsmll.202310943&rft_id=info%3Apmid%2F38607261&rft.externalDocID=38607261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon