Automatic Seizure Detection Using Modified CNN Architecture and Activation Layer

An epileptology expert must visually inspect the EEG to identify abnormal neural activity, which is time-consuming and subject to human errors. The capability of convolution neural networks (CNN) to extract visuospatial features and learn from these discriminative features makes them useful for this...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2318; no. 1; pp. 12013 - 12022
Main Authors Khan, Izhar Dad, Farooq, Omar, Khan, Yusuf Uzzaman
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.08.2022
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
DOI10.1088/1742-6596/2318/1/012013

Cover

Loading…
Abstract An epileptology expert must visually inspect the EEG to identify abnormal neural activity, which is time-consuming and subject to human errors. The capability of convolution neural networks (CNN) to extract visuospatial features and learn from these discriminative features makes them useful for this task. This paper presents seizure classification based on long-term EEGs using CNN. After filtering, the scalogram is plotted using a 1-second window each. A recently published dataset (TUSZ v1.5.2) was used for the performance evaluation of various CNN-based deep neural networks. The best accuracy obtained for GoogLeNet and AlexNet is 95.88%, and 95.79% respectively with 50 epochs and 32 mini-batch sizes by using the SWISH activation function. The proposed hybrid architecture (AG86) for epoch 50 with mini-batch size 32 has shown the best testing results in terms of accuracy (94.98%) as compared to the SqueezeNet (93.19%), GoogLeNet (92.65%), and AlexNet (94.44%). Similar performance was observed using metrics specificity, sensitivity, Mathew correlation coefficient (MCC), and F1 score. A general inference based on evaluation can be drawn as the proposed hybrid architecture (AG86) showed better test results compared to pre-trained CNN models. Moreover, by replacing ReLU with the SWISH activation function, the performance of AlexNet and GoogLeNet improved.
AbstractList An epileptology expert must visually inspect the EEG to identify abnormal neural activity, which is time-consuming and subject to human errors. The capability of convolution neural networks (CNN) to extract visuospatial features and learn from these discriminative features makes them useful for this task. This paper presents seizure classification based on long-term EEGs using CNN. After filtering, the scalogram is plotted using a 1-second window each. A recently published dataset (TUSZ v1.5.2) was used for the performance evaluation of various CNN-based deep neural networks. The best accuracy obtained for GoogLeNet and AlexNet is 95.88%, and 95.79% respectively with 50 epochs and 32 mini-batch sizes by using the SWISH activation function. The proposed hybrid architecture (AG86) for epoch 50 with mini-batch size 32 has shown the best testing results in terms of accuracy (94.98%) as compared to the SqueezeNet (93.19%), GoogLeNet (92.65%), and AlexNet (94.44%). Similar performance was observed using metrics specificity, sensitivity, Mathew correlation coefficient (MCC), and F1 score. A general inference based on evaluation can be drawn as the proposed hybrid architecture (AG86) showed better test results compared to pre-trained CNN models. Moreover, by replacing ReLU with the SWISH activation function, the performance of AlexNet and GoogLeNet improved.
Author Khan, Izhar Dad
Farooq, Omar
Khan, Yusuf Uzzaman
Author_xml – sequence: 1
  givenname: Izhar Dad
  surname: Khan
  fullname: Khan, Izhar Dad
  organization: Departmentt.of Electrical Engineering, Aligarh Muslim University , India
– sequence: 2
  givenname: Omar
  surname: Farooq
  fullname: Farooq, Omar
  organization: Departmentt.of Electronics Engineering, Aligarh Muslim University , India
– sequence: 3
  givenname: Yusuf Uzzaman
  surname: Khan
  fullname: Khan, Yusuf Uzzaman
  organization: Departmentt.of Electrical Engineering, Aligarh Muslim University , India
BookMark eNqNkFtLwzAYhoMouE1_gwXvhLocuia98KLUM3MO5q5DlqSasTU1bYX5601XmSiC5uZL8j3vd3j7YL-whQbgBMFzBBkbIhrhMB4l8RAT5J9DiDBEZA_0dpn93Z2xQ9CvqiWExB_aA9O0qe1a1EYGM23eG6eDS11rWRtbBPPKFM_Bg1UmN1oF2WQSpE6-mDbfkqJQQerRN7HFx2Kj3RE4yMWq0sefcQDm11dP2W04fry5y9JxKAlmJCRUSqUZQlTl-YKoHLJR7OdWEmOxQCJmMIEwxgn1v1IpvIhYktBERQnEKB6RATjt6pbOvja6qvnSNq7wLTmmKEIogiT2FO0o6WxVOZ3z0pm1cBuOIG_t460xvDWJt_ZxxDv7vPLih1Kaertn7YRZ_UN_1umNLb9Gu59ms-8gL1XuYfIL_FeLDxvnkis
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107484
crossref_primary_10_1109_ACCESS_2024_3425166
crossref_primary_10_3390_computers12080151
Cites_doi 10.1109/STCR51658.2021.9588862
10.3389/fninf.2018.00083
10.3390/ijerph18115780
10.1016/S2214-109X(21)00164-9
10.1007/978-3-030-55180-3_43
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2318/1/012013
DatabaseName Institute of Physics Open Access Journals (Activated by CARLI)
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2318_1_012013
JPCS_2318_1_012013
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3283-37ccde8117dffb3df0856201dc22ab1a6809006297620cdd2b489979d49021653
IEDL.DBID BENPR
ISSN 1742-6588
IngestDate Mon Jul 14 07:51:21 EDT 2025
Tue Jul 01 03:37:11 EDT 2025
Thu Apr 24 23:03:07 EDT 2025
Wed Aug 21 03:41:53 EDT 2024
Tue Sep 20 22:51:15 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3283-37ccde8117dffb3df0856201dc22ab1a6809006297620cdd2b489979d49021653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2714114036?pq-origsite=%requestingapplication%
PQID 2714114036
PQPubID 4998668
PageCount 10
ParticipantIDs crossref_citationtrail_10_1088_1742_6596_2318_1_012013
crossref_primary_10_1088_1742_6596_2318_1_012013
proquest_journals_2714114036
iop_journals_10_1088_1742_6596_2318_1_012013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 20220801
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Asif (JPCS_2318_1_012013bib3) 2020; 12449
Shah (JPCS_2318_1_012013bib9) 2018; 12
Balaji (JPCS_2318_1_012013bib10) 2021; 1250
Shoeibi (JPCS_2318_1_012013bib2) 2021; 18
Initiative (JPCS_2318_1_012013bib1) 2021; 9
Chen (JPCS_2318_1_012013bib5) 2018
Roy (JPCS_2318_1_012013bib6) 2018
Roy (JPCS_2318_1_012013bib7) 2019; 11526
Golmohammadi (JPCS_2318_1_012013bib4) 2017
Khan (JPCS_2318_1_012013bib8) 2021
References_xml – volume: 12449
  start-page: 77
  year: 2020
  ident: JPCS_2318_1_012013bib3
  article-title: SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– year: 2021
  ident: JPCS_2318_1_012013bib8
  article-title: A Comparative Analysis of Seizure Detection via Scalogram using GoogLeNet, AlexNet and SqueezeNet
  doi: 10.1109/STCR51658.2021.9588862
– volume: 12
  start-page: 1
  year: 2018
  ident: JPCS_2318_1_012013bib9
  article-title: The temple university hospital seizure detection corpus
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2018.00083
– year: 2017
  ident: JPCS_2318_1_012013bib4
  article-title: Deep Architectures for Automated Seizure Detection in Scalp EEGs
– volume: 18
  year: 2021
  ident: JPCS_2318_1_012013bib2
  article-title: Epileptic seizures detection using deep learning techniques: A review
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18115780
– volume: 11526
  start-page: 47
  year: 2019
  ident: JPCS_2318_1_012013bib7
  article-title: Chrononet: A deep recurrent neural network for abnormal EEG identification
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– volume: 9
  start-page: e1129
  year: 2021
  ident: JPCS_2318_1_012013bib1
  article-title: The burden of neurological disorders across the states of India: the Global Burden of Disease Study 1990-2019
  publication-title: Lancet. Glob. Heal.
  doi: 10.1016/S2214-109X(21)00164-9
– start-page: 2756
  year: 2018
  ident: JPCS_2318_1_012013bib6
  article-title: Deep Learning Enabled Automatic Abnormal EEG Identification
– start-page: 226
  year: 2018
  ident: JPCS_2318_1_012013bib5
  article-title: Cost-Sensitive Deep Active Learning for Epileptic Seizure Detection
– volume: 1250
  start-page: 583
  year: 2021
  ident: JPCS_2318_1_012013bib10
  article-title: Learn-Able Parameter Guided Activation Functions
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-3-030-55180-3_43
SSID ssj0033337
Score 2.3286283
Snippet An epileptology expert must visually inspect the EEG to identify abnormal neural activity, which is time-consuming and subject to human errors. The capability...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12013
SubjectTerms Artificial neural networks
Correlation coefficients
Feature extraction
Human error
Neural networks
Performance evaluation
Physics
Seizures
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journals (Activated by CARLI)
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EXwRP3E6JaCP1q0fS9PHMR1j6BzM4d5CmktgIN3Yx4t_vZe01Q2RYZ9auGuTa3L5hfzujpA7MBJScKzGOPaiOJIe1wF4kZE4REwMWrtsn33WHUW9cXO8HgsznRWu_wFv80TBuQkLQhyvI4YOPNZMWB2xCT7WbfynLVy7F3LGLa3vNXwvvXGIV5wHRVolzkuO198v2lihdrEVv9y0W3s6R-SwAI20lTfxmOzo7ITsO_KmWpySQWu1nLrUq3SoJ5-ruaaPeuk4Vhl1nAD6MoWJQbRJ2_0-ba0dHlCZAW2pssgZfZaIwc_IqPP01u56RaUET4WID9BLKAXaxoyCMWkIBoEUw76ACgKZ-pLxRmKjJRF7BA0FEKQR7rPiBKIE13jWDM9JJZtm-oJQnnDAOWyU5LhTTJiUTKFiakwo_dBAlbDSOkIVacRtNYsP4Y6zORfWrMKaVVizCl_kZq2SxrfiLM-ksV3lHs0vilm12C5-uyHeG7SHmxJiBqZKauXf_BENYj_ybepCdvm_b16Rg8AGRDhKYI1UlvOVvkaYskxv3Dj8Aumm1Wc
  priority: 102
  providerName: IOP Publishing
Title Automatic Seizure Detection Using Modified CNN Architecture and Activation Layer
URI https://iopscience.iop.org/article/10.1088/1742-6596/2318/1/012013
https://www.proquest.com/docview/2714114036
Volume 2318
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-WhEFfyj46mrYLgu1xJvFHZPmpZFmzrGxpaFfWNyHrJAgUO83HS__6nRR5XRisfhDYPj34JN_9JP3uDuAjWoUlelZjnkdZnqlImASjzCqaIjZHY3y2zxmf3maXd8O7sOG2DrTKxiZ6Q421dnvk_SSPs9gll-Pny4fIVY1yp6uhhEYLOmSCxbANnc8Xs_l1Y4tTuvJdSGQSka8VDcOLln3hWcH7BHHotu_CSON0zz-1FvXyHyPtPc_kFRwGyMhGuzF-DS9M9QZeeuqmXr-F-Wi7qX3iVXZjFo_blWFfzMYzrCrmGQHsR40LS1iTjWczNvrr6ICpCtlINyXO2HdFCPwIbicXP8fTKNRJiHRK6IBshNZoXMQoWlumaAlGcfoW1EmiylhxMShcrCQhj2SgEZMyo1VWXmBWkIfnw_QdtKu6MsfARCGQ_mCrlaB1YsGV4po6ltamKk4tdoE32pE6JBF3tSzupT_MFkI6tUqnVunUKmO5U2sXBn86Lnd5NJ7v8onUL8M_tX5e_MOe-OV8fLMvIZdou3DWjOaT6NPcOvn_61M4SFz4gycAnkF7s9qa9wRKNmUPWmLytRfmX885iCG1367m1F6lv34DekXaSw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xUAUX1BdqCqUrtb3VSrw2a_uAqjSAAgQrKiBxW9Y7u1Kkyk5Joqr9Uf2NzK5taFSpnPDN9uxlPDvfN955AHxEq7BAn9WYJEGcxCpIDccgtopMxCZojO_2mYvhVXx6vX-9An_aWhiXVtn6RO-osdLuH3mXJ2EcuuZy4sv0R-CmRrnT1XaERm0WZ-bXTwrZZgcnh_R9P3F-fHQ5GAbNVIFAR4SltKO0RuPqK9HaIkJLpEMQDKLmXBWhEmkvc5WFhNO8pxF5EVNMkmQYZ4SHwk2JIJe_TjQjo120_vUoH39rfX9EV1KXYPKAsD1tM8oozGyeZaJLlIpuu65sNYyW8HB1Uk3_AQWPdMfPYauhqKxf29QLWDHlS3jmU0X17BWM-4t55Ru9sgsz-b24NezQzH1GV8l8BgI7r3BiiduyQZ6z_l9HFUyVyPq6HanGRooY_2u4ehINbsNaWZXmDbA0S5E8htUqpbg0E0oJTQsLayMVRhY7IFrtSN00LXezM75Lf3ieptKpVTq1SqdWGcparR3o3S-c1n07Hl_ymdQvmz08e1z8w5L46XhwsSwhp2g7sNt-zQfRB1t--__X72FjeHk-kqOT_GwHNrkrvfDJh7uwNr9dmHdEiObFXmOFDG6e2vDvAICvETo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8B0yZe2LcoH5sl9ri0TZw6zmNVqICxUokh8WY5PhuhobSC9IW_nrOTwAqa0LQ8JdJdYp-d88_y7-4AvqHTWGBgNWZZlGapjqRNMEqdpiniMrQ2ZPuciMPz9PhicLEC44dYmNm8cf1duq0TBdcmbAhxskcYOonEIBc9wib02PPxnzHvzdGtwqsBF9xXMjg6nbYemdOV1YGRXlHKluf195ctrVKr1JJnrjqsP-O3cNm2vKad_O4uqqJr7p4kdfz_rr2DjQaismGt9R5WbPkBXgeqqLn9CNPhopqFRK_szF7dLW4s27dVYHSVLDAQ2M8ZXjnCtmw0mbDhH0cVTJfIhqYtqcZONCH-T3A-Pvg1OoyaugyR4YRGyCcZg9ZHqKJzBUdHsE1QO9EkiS5iLWQ_97GZhHSSvkFMipR2dVmOaU6IQgz4Z1grZ6XdBCZzieQxnNGS9qW50FoYUiyc4zrmDjsg2nFQpkla7mtnXKtweC6l8iZT3mTKm0zFqjZZB_oPivM6b8fLKt9pXFTzD9--LL63JH48HZ0tSygatg7stPPmUTTJ4jT2iRLF1r998yu8me6P1cnR5Mc2rCc-EiNwEXdgrbpZ2F3CR1XxJUz-ey_o-sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Seizure+Detection+Using+Modified+CNN+Architecture+and+Activation+Layer&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Izhar+Dad+Khan&rft.au=Farooq%2C+Omar&rft.au=Yusuf+Uzzaman+Khan&rft.date=2022-08-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2318&rft.issue=1&rft.spage=012013&rft_id=info:doi/10.1088%2F1742-6596%2F2318%2F1%2F012013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon