Automatic Seizure Detection Using Modified CNN Architecture and Activation Layer
An epileptology expert must visually inspect the EEG to identify abnormal neural activity, which is time-consuming and subject to human errors. The capability of convolution neural networks (CNN) to extract visuospatial features and learn from these discriminative features makes them useful for this...
Saved in:
Published in | Journal of physics. Conference series Vol. 2318; no. 1; pp. 12013 - 12022 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-6588 1742-6596 |
DOI | 10.1088/1742-6596/2318/1/012013 |
Cover
Loading…
Abstract | An epileptology expert must visually inspect the EEG to identify abnormal neural activity, which is time-consuming and subject to human errors. The capability of convolution neural networks (CNN) to extract visuospatial features and learn from these discriminative features makes them useful for this task. This paper presents seizure classification based on long-term EEGs using CNN. After filtering, the scalogram is plotted using a 1-second window each. A recently published dataset (TUSZ v1.5.2) was used for the performance evaluation of various CNN-based deep neural networks. The best accuracy obtained for GoogLeNet and AlexNet is 95.88%, and 95.79% respectively with 50 epochs and 32 mini-batch sizes by using the SWISH activation function. The proposed hybrid architecture (AG86) for epoch 50 with mini-batch size 32 has shown the best testing results in terms of accuracy (94.98%) as compared to the SqueezeNet (93.19%), GoogLeNet (92.65%), and AlexNet (94.44%). Similar performance was observed using metrics specificity, sensitivity, Mathew correlation coefficient (MCC), and F1 score. A general inference based on evaluation can be drawn as the proposed hybrid architecture (AG86) showed better test results compared to pre-trained CNN models. Moreover, by replacing ReLU with the SWISH activation function, the performance of AlexNet and GoogLeNet improved. |
---|---|
AbstractList | An epileptology expert must visually inspect the EEG to identify abnormal neural activity, which is time-consuming and subject to human errors. The capability of convolution neural networks (CNN) to extract visuospatial features and learn from these discriminative features makes them useful for this task. This paper presents seizure classification based on long-term EEGs using CNN. After filtering, the scalogram is plotted using a 1-second window each. A recently published dataset (TUSZ v1.5.2) was used for the performance evaluation of various CNN-based deep neural networks. The best accuracy obtained for GoogLeNet and AlexNet is 95.88%, and 95.79% respectively with 50 epochs and 32 mini-batch sizes by using the SWISH activation function. The proposed hybrid architecture (AG86) for epoch 50 with mini-batch size 32 has shown the best testing results in terms of accuracy (94.98%) as compared to the SqueezeNet (93.19%), GoogLeNet (92.65%), and AlexNet (94.44%). Similar performance was observed using metrics specificity, sensitivity, Mathew correlation coefficient (MCC), and F1 score. A general inference based on evaluation can be drawn as the proposed hybrid architecture (AG86) showed better test results compared to pre-trained CNN models. Moreover, by replacing ReLU with the SWISH activation function, the performance of AlexNet and GoogLeNet improved. |
Author | Khan, Izhar Dad Farooq, Omar Khan, Yusuf Uzzaman |
Author_xml | – sequence: 1 givenname: Izhar Dad surname: Khan fullname: Khan, Izhar Dad organization: Departmentt.of Electrical Engineering, Aligarh Muslim University , India – sequence: 2 givenname: Omar surname: Farooq fullname: Farooq, Omar organization: Departmentt.of Electronics Engineering, Aligarh Muslim University , India – sequence: 3 givenname: Yusuf Uzzaman surname: Khan fullname: Khan, Yusuf Uzzaman organization: Departmentt.of Electrical Engineering, Aligarh Muslim University , India |
BookMark | eNqNkFtLwzAYhoMouE1_gwXvhLocuia98KLUM3MO5q5DlqSasTU1bYX5601XmSiC5uZL8j3vd3j7YL-whQbgBMFzBBkbIhrhMB4l8RAT5J9DiDBEZA_0dpn93Z2xQ9CvqiWExB_aA9O0qe1a1EYGM23eG6eDS11rWRtbBPPKFM_Bg1UmN1oF2WQSpE6-mDbfkqJQQerRN7HFx2Kj3RE4yMWq0sefcQDm11dP2W04fry5y9JxKAlmJCRUSqUZQlTl-YKoHLJR7OdWEmOxQCJmMIEwxgn1v1IpvIhYktBERQnEKB6RATjt6pbOvja6qvnSNq7wLTmmKEIogiT2FO0o6WxVOZ3z0pm1cBuOIG_t460xvDWJt_ZxxDv7vPLih1Kaertn7YRZ_UN_1umNLb9Gu59ms-8gL1XuYfIL_FeLDxvnkis |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107484 crossref_primary_10_1109_ACCESS_2024_3425166 crossref_primary_10_3390_computers12080151 |
Cites_doi | 10.1109/STCR51658.2021.9588862 10.3389/fninf.2018.00083 10.3390/ijerph18115780 10.1016/S2214-109X(21)00164-9 10.1007/978-3-030-55180-3_43 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/2318/1/012013 |
DatabaseName | Institute of Physics Open Access Journals (Activated by CARLI) IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Proquest Central Technology Collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_2318_1_012013 JPCS_2318_1_012013 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION OVT PHGZM PHGZT 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3283-37ccde8117dffb3df0856201dc22ab1a6809006297620cdd2b489979d49021653 |
IEDL.DBID | BENPR |
ISSN | 1742-6588 |
IngestDate | Mon Jul 14 07:51:21 EDT 2025 Tue Jul 01 03:37:11 EDT 2025 Thu Apr 24 23:03:07 EDT 2025 Wed Aug 21 03:41:53 EDT 2024 Tue Sep 20 22:51:15 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3283-37ccde8117dffb3df0856201dc22ab1a6809006297620cdd2b489979d49021653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2714114036?pq-origsite=%requestingapplication% |
PQID | 2714114036 |
PQPubID | 4998668 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1088_1742_6596_2318_1_012013 crossref_primary_10_1088_1742_6596_2318_1_012013 proquest_journals_2714114036 iop_journals_10_1088_1742_6596_2318_1_012013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220801 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Asif (JPCS_2318_1_012013bib3) 2020; 12449 Shah (JPCS_2318_1_012013bib9) 2018; 12 Balaji (JPCS_2318_1_012013bib10) 2021; 1250 Shoeibi (JPCS_2318_1_012013bib2) 2021; 18 Initiative (JPCS_2318_1_012013bib1) 2021; 9 Chen (JPCS_2318_1_012013bib5) 2018 Roy (JPCS_2318_1_012013bib6) 2018 Roy (JPCS_2318_1_012013bib7) 2019; 11526 Golmohammadi (JPCS_2318_1_012013bib4) 2017 Khan (JPCS_2318_1_012013bib8) 2021 |
References_xml | – volume: 12449 start-page: 77 year: 2020 ident: JPCS_2318_1_012013bib3 article-title: SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – year: 2021 ident: JPCS_2318_1_012013bib8 article-title: A Comparative Analysis of Seizure Detection via Scalogram using GoogLeNet, AlexNet and SqueezeNet doi: 10.1109/STCR51658.2021.9588862 – volume: 12 start-page: 1 year: 2018 ident: JPCS_2318_1_012013bib9 article-title: The temple university hospital seizure detection corpus publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00083 – year: 2017 ident: JPCS_2318_1_012013bib4 article-title: Deep Architectures for Automated Seizure Detection in Scalp EEGs – volume: 18 year: 2021 ident: JPCS_2318_1_012013bib2 article-title: Epileptic seizures detection using deep learning techniques: A review publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph18115780 – volume: 11526 start-page: 47 year: 2019 ident: JPCS_2318_1_012013bib7 article-title: Chrononet: A deep recurrent neural network for abnormal EEG identification publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – volume: 9 start-page: e1129 year: 2021 ident: JPCS_2318_1_012013bib1 article-title: The burden of neurological disorders across the states of India: the Global Burden of Disease Study 1990-2019 publication-title: Lancet. Glob. Heal. doi: 10.1016/S2214-109X(21)00164-9 – start-page: 2756 year: 2018 ident: JPCS_2318_1_012013bib6 article-title: Deep Learning Enabled Automatic Abnormal EEG Identification – start-page: 226 year: 2018 ident: JPCS_2318_1_012013bib5 article-title: Cost-Sensitive Deep Active Learning for Epileptic Seizure Detection – volume: 1250 start-page: 583 year: 2021 ident: JPCS_2318_1_012013bib10 article-title: Learn-Able Parameter Guided Activation Functions publication-title: Adv. Intell. Syst. Comput. doi: 10.1007/978-3-030-55180-3_43 |
SSID | ssj0033337 |
Score | 2.3286283 |
Snippet | An epileptology expert must visually inspect the EEG to identify abnormal neural activity, which is time-consuming and subject to human errors. The capability... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12013 |
SubjectTerms | Artificial neural networks Correlation coefficients Feature extraction Human error Neural networks Performance evaluation Physics Seizures |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journals (Activated by CARLI) dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EXwRP3E6JaCP1q0fS9PHMR1j6BzM4d5CmktgIN3Yx4t_vZe01Q2RYZ9auGuTa3L5hfzujpA7MBJScKzGOPaiOJIe1wF4kZE4REwMWrtsn33WHUW9cXO8HgsznRWu_wFv80TBuQkLQhyvI4YOPNZMWB2xCT7WbfynLVy7F3LGLa3vNXwvvXGIV5wHRVolzkuO198v2lihdrEVv9y0W3s6R-SwAI20lTfxmOzo7ITsO_KmWpySQWu1nLrUq3SoJ5-ruaaPeuk4Vhl1nAD6MoWJQbRJ2_0-ba0dHlCZAW2pssgZfZaIwc_IqPP01u56RaUET4WID9BLKAXaxoyCMWkIBoEUw76ACgKZ-pLxRmKjJRF7BA0FEKQR7rPiBKIE13jWDM9JJZtm-oJQnnDAOWyU5LhTTJiUTKFiakwo_dBAlbDSOkIVacRtNYsP4Y6zORfWrMKaVVizCl_kZq2SxrfiLM-ksV3lHs0vilm12C5-uyHeG7SHmxJiBqZKauXf_BENYj_ybepCdvm_b16Rg8AGRDhKYI1UlvOVvkaYskxv3Dj8Aumm1Wc priority: 102 providerName: IOP Publishing |
Title | Automatic Seizure Detection Using Modified CNN Architecture and Activation Layer |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/2318/1/012013 https://www.proquest.com/docview/2714114036 |
Volume | 2318 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-WhEFfyj46mrYLgu1xJvFHZPmpZFmzrGxpaFfWNyHrJAgUO83HS__6nRR5XRisfhDYPj34JN_9JP3uDuAjWoUlelZjnkdZnqlImASjzCqaIjZHY3y2zxmf3maXd8O7sOG2DrTKxiZ6Q421dnvk_SSPs9gll-Pny4fIVY1yp6uhhEYLOmSCxbANnc8Xs_l1Y4tTuvJdSGQSka8VDcOLln3hWcH7BHHotu_CSON0zz-1FvXyHyPtPc_kFRwGyMhGuzF-DS9M9QZeeuqmXr-F-Wi7qX3iVXZjFo_blWFfzMYzrCrmGQHsR40LS1iTjWczNvrr6ICpCtlINyXO2HdFCPwIbicXP8fTKNRJiHRK6IBshNZoXMQoWlumaAlGcfoW1EmiylhxMShcrCQhj2SgEZMyo1VWXmBWkIfnw_QdtKu6MsfARCGQ_mCrlaB1YsGV4po6ltamKk4tdoE32pE6JBF3tSzupT_MFkI6tUqnVunUKmO5U2sXBn86Lnd5NJ7v8onUL8M_tX5e_MOe-OV8fLMvIZdou3DWjOaT6NPcOvn_61M4SFz4gycAnkF7s9qa9wRKNmUPWmLytRfmX885iCG1367m1F6lv34DekXaSw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xUAUX1BdqCqUrtb3VSrw2a_uAqjSAAgQrKiBxW9Y7u1Kkyk5Joqr9Uf2NzK5taFSpnPDN9uxlPDvfN955AHxEq7BAn9WYJEGcxCpIDccgtopMxCZojO_2mYvhVXx6vX-9An_aWhiXVtn6RO-osdLuH3mXJ2EcuuZy4sv0R-CmRrnT1XaERm0WZ-bXTwrZZgcnh_R9P3F-fHQ5GAbNVIFAR4SltKO0RuPqK9HaIkJLpEMQDKLmXBWhEmkvc5WFhNO8pxF5EVNMkmQYZ4SHwk2JIJe_TjQjo120_vUoH39rfX9EV1KXYPKAsD1tM8oozGyeZaJLlIpuu65sNYyW8HB1Uk3_AQWPdMfPYauhqKxf29QLWDHlS3jmU0X17BWM-4t55Ru9sgsz-b24NezQzH1GV8l8BgI7r3BiiduyQZ6z_l9HFUyVyPq6HanGRooY_2u4ehINbsNaWZXmDbA0S5E8htUqpbg0E0oJTQsLayMVRhY7IFrtSN00LXezM75Lf3ieptKpVTq1SqdWGcparR3o3S-c1n07Hl_ymdQvmz08e1z8w5L46XhwsSwhp2g7sNt-zQfRB1t--__X72FjeHk-kqOT_GwHNrkrvfDJh7uwNr9dmHdEiObFXmOFDG6e2vDvAICvETo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8B0yZe2LcoH5sl9ri0TZw6zmNVqICxUokh8WY5PhuhobSC9IW_nrOTwAqa0LQ8JdJdYp-d88_y7-4AvqHTWGBgNWZZlGapjqRNMEqdpiniMrQ2ZPuciMPz9PhicLEC44dYmNm8cf1duq0TBdcmbAhxskcYOonEIBc9wib02PPxnzHvzdGtwqsBF9xXMjg6nbYemdOV1YGRXlHKluf195ctrVKr1JJnrjqsP-O3cNm2vKad_O4uqqJr7p4kdfz_rr2DjQaismGt9R5WbPkBXgeqqLn9CNPhopqFRK_szF7dLW4s27dVYHSVLDAQ2M8ZXjnCtmw0mbDhH0cVTJfIhqYtqcZONCH-T3A-Pvg1OoyaugyR4YRGyCcZg9ZHqKJzBUdHsE1QO9EkiS5iLWQ_97GZhHSSvkFMipR2dVmOaU6IQgz4Z1grZ6XdBCZzieQxnNGS9qW50FoYUiyc4zrmDjsg2nFQpkla7mtnXKtweC6l8iZT3mTKm0zFqjZZB_oPivM6b8fLKt9pXFTzD9--LL63JH48HZ0tSygatg7stPPmUTTJ4jT2iRLF1r998yu8me6P1cnR5Mc2rCc-EiNwEXdgrbpZ2F3CR1XxJUz-ey_o-sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Seizure+Detection+Using+Modified+CNN+Architecture+and+Activation+Layer&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Izhar+Dad+Khan&rft.au=Farooq%2C+Omar&rft.au=Yusuf+Uzzaman+Khan&rft.date=2022-08-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2318&rft.issue=1&rft.spage=012013&rft_id=info:doi/10.1088%2F1742-6596%2F2318%2F1%2F012013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |