Overcoming the Incompatibility Between Electrical Conductivity and Electromagnetic Transmissivity: A Graphene Glass Fiber Fabric Design Strategy
Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electro...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 24; pp. e2313752 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction‐integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high‐quality and layer‐limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250–3000 Ω·sq−1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42–0.51) and higher transmissivity (by 0.27–0.62) than those of its metal‐based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.
Graphene glass fiber fabric is innovatively fabricated through the first‐developed decoupling chemical vapor deposition growth strategy to controllably prepare high‐quality, layer‐limited graphene on the non‐catalytic nonmetallic GFF, through which the desired compatibility of electrical conductivity and EM transmissivity can be realized; thus, helping get rid of the electrical conductivity–electromagnetic transmissivity‐incompatible dilemma suffered by conventional conductive materials effectively. |
---|---|
AbstractList | Abstract
Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction‐integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high‐quality and layer‐limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250–3000 Ω·sq
−1
), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42–0.51) and higher transmissivity (by 0.27–0.62) than those of its metal‐based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems. Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction‐integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high‐quality and layer‐limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250–3000 Ω·sq−1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42–0.51) and higher transmissivity (by 0.27–0.62) than those of its metal‐based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems. Graphene glass fiber fabric is innovatively fabricated through the first‐developed decoupling chemical vapor deposition growth strategy to controllably prepare high‐quality, layer‐limited graphene on the non‐catalytic nonmetallic GFF, through which the desired compatibility of electrical conductivity and EM transmissivity can be realized; thus, helping get rid of the electrical conductivity–electromagnetic transmissivity‐incompatible dilemma suffered by conventional conductive materials effectively. Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems. Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction‐integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high‐quality and layer‐limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250–3000 Ω·sq−1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42–0.51) and higher transmissivity (by 0.27–0.62) than those of its metal‐based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems. Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq ), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems. |
Author | Li, Wenjuan Xie, Qin Zhang, Qinchi Huang, Kewen Tu, Ce Sun, Jianbo Wang, Kun Liu, Ruojuan Ge, Yunsong Cheng, Yi Li, Zhihao Yin, Wanjian Liu, Zhongfan Yang, Fan Yang, Yuyao Liang, Fushun Yuan, Hao Wang, Xiaobai Cheng, Shuting Ma, Mingyang Qi, Yue Jiang, Jun |
Author_xml | – sequence: 1 givenname: Kewen surname: Huang fullname: Huang, Kewen organization: Beijing Graphene Institute – sequence: 2 givenname: Fushun surname: Liang fullname: Liang, Fushun organization: Beijing Graphene Institute – sequence: 3 givenname: Jianbo surname: Sun fullname: Sun, Jianbo organization: Beijing Graphene Institute – sequence: 4 givenname: Qinchi surname: Zhang fullname: Zhang, Qinchi organization: Beijing Graphene Institute – sequence: 5 givenname: Zhihao surname: Li fullname: Li, Zhihao organization: Soochow University – sequence: 6 givenname: Shuting surname: Cheng fullname: Cheng, Shuting organization: China University of Petroleum – sequence: 7 givenname: Wenjuan surname: Li fullname: Li, Wenjuan organization: Beijing Graphene Institute – sequence: 8 givenname: Hao surname: Yuan fullname: Yuan, Hao organization: Beijing Graphene Institute – sequence: 9 givenname: Ruojuan surname: Liu fullname: Liu, Ruojuan organization: Beijing Graphene Institute – sequence: 10 givenname: Yunsong surname: Ge fullname: Ge, Yunsong organization: Beijing Graphene Institute – sequence: 11 givenname: Yi surname: Cheng fullname: Cheng, Yi organization: Beijing Graphene Institute – sequence: 12 givenname: Kun surname: Wang fullname: Wang, Kun organization: Beijing Graphene Institute – sequence: 13 givenname: Jun surname: Jiang fullname: Jiang, Jun organization: China University of Petroleum – sequence: 14 givenname: Yuyao surname: Yang fullname: Yang, Yuyao organization: Beijing Graphene Institute – sequence: 15 givenname: Mingyang surname: Ma fullname: Ma, Mingyang organization: Beijing Graphene Institute – sequence: 16 givenname: Fan surname: Yang fullname: Yang, Fan organization: Beijing Graphene Institute – sequence: 17 givenname: Ce surname: Tu fullname: Tu, Ce organization: Beijing Graphene Institute – sequence: 18 givenname: Qin surname: Xie fullname: Xie, Qin organization: Beijing Graphene Institute – sequence: 19 givenname: Wanjian surname: Yin fullname: Yin, Wanjian organization: Soochow University – sequence: 20 givenname: Xiaobai surname: Wang fullname: Wang, Xiaobai email: xiaobai_wang@yeah.net organization: Beijing Technology and Business University – sequence: 21 givenname: Yue surname: Qi fullname: Qi, Yue email: qiyue@bgi-graphene.com organization: Beijing Graphene Institute – sequence: 22 givenname: Zhongfan orcidid: 0000-0001-5554-1902 surname: Liu fullname: Liu, Zhongfan email: zfliu@pku.edu.cn organization: Beijing Graphene Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38576272$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPClSOyxIXLBn-svbvcQtqklYp6oJxX_phNXe16g-1tlX_BT8ZpQpG4cBqN5nkfjfSeoRM_ekDoPSVzSgj7rOyg5owwTnkl2Cs0o4LRoiSNOEEz0nBRNLKsT9FZjA-EkEYS-Qad8lpUklVshn7dPkIw4-D8Bqd7wNc-L1uVnHa9Szv8FdITgMeXPZgUnFE9Xo7eTia5x_1deXu8jYPaeEjO4LugfBxcjM_IF7zA66C29-ABr3sVI145DQGvlM5CfAHRbTz-noJKsNm9Ra871Ud4d5zn6Mfq8m55Vdzcrq-Xi5vCcFazQhuibScpBy5FY5WUVtiu4lp3JWFCMlvzsjNlpWuwnHCmqFCK6a6isi4F4efo08G7DePPCWJq88cG-l55GKfY5kzJStGQPfrxH_RhnILP32VKVoxVVDSZmh8oE8YYA3TtNrhBhV1LSbvvqt131b50lQMfjtpJD2Bf8D_lZKA5AE-uh91_dO3i4tvir_w3ohSkBQ |
Cites_doi | 10.1039/c1jm12938d 10.1038/s41893‐024‐01287‐w 10.1088/0957-4484/25/4/045707 10.1179/1743280414Y.0000000037 10.1021/acsnano.6b06066 10.1063/1.367025 10.1002/adma.201803639 10.1016/j.jmst.2023.05.017 10.1002/adma.202202982 10.1002/smll.201302729 10.1021/acsami.8b02770 10.1002/adfm.202204591 10.1002/adma.201304872 10.1063/1.329949 10.1021/nl201771h 10.1063/1.4722585 10.1002/adfm.201807398 10.1002/adfm.202200428 10.1002/adma.201204196 10.1109/JSAC.2014.2328098 10.1109/TAP.2008.917005 10.1002/adma.202206389 10.1103/PhysRevB.54.11169 10.1039/C8RA02567C 10.1038/ncomms7499 10.1021/acs.nanolett.6b02826 10.1038/ncomms14486 10.1021/jacs.9b05705 10.1016/B978-008044104-7/50008-3 10.1021/nl902515k 10.1103/RevModPhys.81.109 10.1109/TMTT.2016.2645154 10.1103/PhysRevLett.77.3865 10.1002/app.29812 10.1016/S0955-2219(00)00107-2 10.1002/adma.201504229 10.1038/nnano.2008.58 10.1103/PhysRevB.50.17953 10.1038/nmat1849 10.1126/science.1102896 10.1016/j.compscitech.2004.11.002 10.1002/adfm.202306884 10.1109/TMTT.1982.1131380 10.1021/acsnano.9b07452 10.1063/1.4904349 10.1364/AO.37.005271 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202313752 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202313752 38576272 ADMA202313752 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: nos. 52272032; T2188101; 52021006 – fundername: Beijing Nova Program of Science and Technology funderid: 20220484079 – fundername: National Natural Science Foundation of China grantid: nos. 52272032 – fundername: National Natural Science Foundation of China grantid: 52021006 – fundername: National Natural Science Foundation of China grantid: T2188101 – fundername: Beijing Nova Program of Science and Technology grantid: 20220484079 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LH4 LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3282-bc0bdf613e3659da66d5df73bbf402562d834fc47b8ed3032a15aa2bf71684503 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Sat Oct 26 04:53:55 EDT 2024 Thu Oct 10 19:24:46 EDT 2024 Fri Aug 23 01:39:41 EDT 2024 Sat Nov 02 12:29:24 EDT 2024 Sat Aug 24 00:58:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | graphene glass fiber fabric high electrical conductivity high electromagnetic transmissivity chemical vapor deposition |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3282-bc0bdf613e3659da66d5df73bbf402562d834fc47b8ed3032a15aa2bf71684503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5554-1902 |
PMID | 38576272 |
PQID | 3067227159 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3034245900 proquest_journals_3067227159 crossref_primary_10_1002_adma_202313752 pubmed_primary_38576272 wiley_primary_10_1002_adma_202313752_ADMA202313752 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 116 2017; 8 2015; 6 2012; 100 2013; 25 2023; 33 2009; 81 2019; 31 1982; 30 1982; 53 2017; 65 2023; 166 2000; 20 2016; 10 2014; 26 1953 2009; 112 2008; 56 2011; 11 2014; 25 2020; 14 2005; 65 1998; 83 2008; 3 2002 2024 2004; 306 2019; 141 2016; 16 1996; 54 1996; 77 2004; 11 1998; 37 2018; 8 2015; 27 2022; 34 2014; 59 2007; 6 2009; 9 2019; 29 2011; 21 2022; 32 2018; 10 1994; 50 2022; 38 2014; 32 2014; 10 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 Ramo S. (e_1_2_8_41_1) 1953 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 Cheng T. (e_1_2_8_29_1) 2022; 38 e_1_2_8_39_1 Zhang S. (e_1_2_8_10_1) 2004; 11 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 26 start-page: 1348 year: 2014 publication-title: Adv. Mater. – volume: 11 start-page: 16 year: 2004 publication-title: Electron. Qual. – volume: 37 start-page: 5271 year: 1998 publication-title: Appl. Opt. – volume: 59 start-page: 326 year: 2014 publication-title: Int. Mater. Rev. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 2927 year: 2020 publication-title: ACS Nano – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 6403 year: 2016 publication-title: Nano Lett. – volume: 30 start-page: 2064 year: 1982 publication-title: IEEE Trans. Microwave Theory Tech. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 32 start-page: 1065 year: 2014 publication-title: IEEE J. Sel. Areas Commun. – volume: 81 start-page: 109 year: 2009 publication-title: Rev. Mod. Phys. – volume: 38 year: 2022 publication-title: Acta Phys. Chim. Sin. – volume: 20 start-page: 1923 year: 2000 publication-title: J. Eur. Ceram. Soc. – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – start-page: 127 year: 2002 end-page: 153 – volume: 65 start-page: 1479 year: 2017 publication-title: IEEE Trans. Microwave Theory Tech. – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 65 start-page: 973 year: 2005 publication-title: Compos. Sci. Technol. – volume: 11 start-page: 3370 year: 2011 publication-title: Nano Lett. – volume: 116 year: 2014 publication-title: J. Appl. Phys. – year: 2024 publication-title: Nat. Sustainability – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 206 year: 2008 publication-title: Nat. Nanotechnol. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 56 start-page: 747 year: 2008 publication-title: IEEE Trans. Antennas Propag. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 4268 year: 2009 publication-title: Nano Lett. – volume: 83 start-page: 2631 year: 1998 publication-title: J. Appl. Phys. – volume: 10 year: 2016 publication-title: ACS Nano – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 25 start-page: 1296 year: 2013 publication-title: Adv. Mater. – volume: 6 start-page: 6499 year: 2015 publication-title: Nat. Commun. – volume: 53 start-page: 477 year: 1982 publication-title: J. Appl. Phys. – volume: 166 start-page: 133 year: 2023 publication-title: J. Mater. Sci. Technol. – volume: 27 start-page: 7839 year: 2015 publication-title: Adv. Mater. – volume: 21 year: 2011 publication-title: J. Mater. Chem. – year: 1953 – volume: 10 start-page: 1704 year: 2014 publication-title: Small – volume: 25 year: 2014 publication-title: Nanotechnology – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 112 start-page: 2073 year: 2009 publication-title: J. Appl. Polym. Sci. – volume-title: Fields and Waves in Modern Radio year: 1953 ident: e_1_2_8_41_1 contributor: fullname: Ramo S. – ident: e_1_2_8_32_1 doi: 10.1039/c1jm12938d – ident: e_1_2_8_46_1 doi: 10.1038/s41893‐024‐01287‐w – volume: 11 start-page: 16 year: 2004 ident: e_1_2_8_10_1 publication-title: Electron. Qual. contributor: fullname: Zhang S. – volume: 38 year: 2022 ident: e_1_2_8_29_1 publication-title: Acta Phys. Chim. Sin. contributor: fullname: Cheng T. – ident: e_1_2_8_44_1 doi: 10.1088/0957-4484/25/4/045707 – ident: e_1_2_8_13_1 doi: 10.1179/1743280414Y.0000000037 – ident: e_1_2_8_42_1 doi: 10.1021/acsnano.6b06066 – ident: e_1_2_8_12_1 doi: 10.1063/1.367025 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201803639 – ident: e_1_2_8_5_1 doi: 10.1016/j.jmst.2023.05.017 – ident: e_1_2_8_3_1 doi: 10.1002/adma.202202982 – ident: e_1_2_8_45_1 doi: 10.1002/smll.201302729 – ident: e_1_2_8_7_1 doi: 10.1021/acsami.8b02770 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.202204591 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201304872 – ident: e_1_2_8_26_1 doi: 10.1063/1.329949 – ident: e_1_2_8_22_1 doi: 10.1021/nl201771h – ident: e_1_2_8_18_1 doi: 10.1063/1.4722585 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.201807398 – ident: e_1_2_8_36_1 doi: 10.1002/adfm.202200428 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201204196 – ident: e_1_2_8_1_1 doi: 10.1109/JSAC.2014.2328098 – ident: e_1_2_8_21_1 doi: 10.1109/TAP.2008.917005 – ident: e_1_2_8_43_1 doi: 10.1002/adma.202206389 – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_23_1 doi: 10.1039/C8RA02567C – ident: e_1_2_8_34_1 doi: 10.1038/ncomms7499 – ident: e_1_2_8_30_1 doi: 10.1021/acs.nanolett.6b02826 – ident: e_1_2_8_20_1 doi: 10.1038/ncomms14486 – ident: e_1_2_8_33_1 doi: 10.1021/jacs.9b05705 – ident: e_1_2_8_25_1 doi: 10.1016/B978-008044104-7/50008-3 – ident: e_1_2_8_31_1 doi: 10.1021/nl902515k – ident: e_1_2_8_16_1 doi: 10.1103/RevModPhys.81.109 – ident: e_1_2_8_39_1 doi: 10.1109/TMTT.2016.2645154 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_2_1 doi: 10.1002/app.29812 – ident: e_1_2_8_40_1 doi: 10.1016/S0955-2219(00)00107-2 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201504229 – ident: e_1_2_8_28_1 doi: 10.1038/nnano.2008.58 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_15_1 doi: 10.1038/nmat1849 – ident: e_1_2_8_14_1 doi: 10.1126/science.1102896 – ident: e_1_2_8_9_1 doi: 10.1016/j.compscitech.2004.11.002 – ident: e_1_2_8_6_1 doi: 10.1002/adfm.202306884 – ident: e_1_2_8_17_1 doi: 10.1109/TMTT.1982.1131380 – ident: e_1_2_8_4_1 doi: 10.1021/acsnano.9b07452 – ident: e_1_2_8_38_1 doi: 10.1063/1.4904349 – ident: e_1_2_8_37_1 doi: 10.1364/AO.37.005271 |
SSID | ssj0009606 |
Score | 2.5147696 |
Snippet | Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their... Abstract Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However,... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2313752 |
SubjectTerms | Chemical vapor deposition Decoupling Dielectric strength Electric heating Electrical resistivity Electromagnetic properties Electromagnetic radiation Glass fibers Graphene graphene glass fiber fabric high electrical conductivity high electromagnetic transmissivity Incompatibility Macrostructure Reflectance Transmissivity Wave reflection |
Title | Overcoming the Incompatibility Between Electrical Conductivity and Electromagnetic Transmissivity: A Graphene Glass Fiber Fabric Design Strategy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202313752 https://www.ncbi.nlm.nih.gov/pubmed/38576272 https://www.proquest.com/docview/3067227159 https://www.proquest.com/docview/3034245900 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcmTuzAxzagwCZPQtopkPojcbgV2lJNgkkTSNwiO7Y5IFJE2wP8FfzJvGenaTsOk7ZTYvkjjv383s_288-EHHGnpZfWJUpLlYgus4nm0iQgOxZ577wK3u6XV9noRvy8lbdLp_gjP0S74IYjI-hrHODaTE4WpKHaBt4gwCc8l6iE4Yk-Xf3fC_4ohOeBbI_LpMiEmrM2puxkNfuqVXoHNVeRazA9w02i55WOHif3x7OpOa5e_uBz_J-_2iIbDS6lvShI2-SDqz-Rj0tshZ_J6y8QeygPAhRgIwXVgspkGv1rn-lZdPmig3CzDnY-PR_XyCcbLqigurZN3PhB39V4epIGUwmiNglJTmmPXiCDNihgeoG4ng7Ro4UOtYECaT-4m9CGUff5C7kZDq7PR0lzoUNScZjaJaZKjfUZLrxmsrA6y6y0PufGeIHYi1nFha9EbpSzYFuZ7kqtmfEwqVNCpnyHrNXj2u0R6jJRMM903rVOsIoXvmDOgdQpBxDF6w75Me_Q8jHydpSRoZmV2MZl28Ydcjjv77IZv5MSJ1KM5YD1OuR7Gw3NgdspunbjGabhuG1cpGmH7EY5aT_FFczjWA6Fs9Dbf6lD2etf9trQ_r9kOiDr8C6iF9shWZs-zdxXwEtT8y2MiTfVcg5M |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvClbChgJiVParB-Jw23pdrtAt0iolbhFdmxzQGRRu3sov4KfzIydpCwckOCY-BHHnhl_Y48_A7wU3qignM-0UTqTY-4yI5TNUHYc8d4FHaPdFyfF_Ey--6T6aEI6C5P4IYYFN9KMaK9JwWlBev-KNdS4SByEAEWUCq3wddR5Qbc3TD9eMUgRQI90e0JlVSF1z9uY8_3N8pvz0h9gcxO7xslndgds3-wUc_Jlb72ye8333xgd_-u_7sLtDpqySZKle3DNt_fh1i-EhQ_gxweUfKwQHxgiR4bWhezJKoXYXrI3KeqLHcbLdWj82cGyJUrZeEcFM63r0pZfzeeWDlCyOFuitF3ELK_ZhB0RiTbaYHZE0J7NKKiFzYzFCtk0RpywjlT38iGczQ5PD-ZZd6dD1gj07jLb5NaFgtZeC1U5UxROuVAKa4Mk-MWdFjI0srTaO5xeuRkrY7gN6NdpqXLxCLbaZesfA_OFrHjgphw7L3kjqlBx71HwtEeUEswIXvUjWn9L1B11ImnmNfVxPfTxCHb7Aa87Fb6oyZfivES4N4IXQzJ2B-2omNYv15RH0M5xlecj2E6CMnxKaHTleImV8zjcf2lDPZkuJsPTzr8Ueg435qeL4_r47cn7J3AT38sU1LYLW6vztX-K8Glln0UF-QmlcxJk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH5CRUJwgLKVgQJGQuKUNuMlcbhNO03L0oIQlXqL7NjmgMhUdOZQfkV_ct-zM2kHDkhwTLzEsd_y2X7-DPBaeKOCcj7TRulMjrnLjFA2Q9lxxHsXdIx2PzwqDo7l-xN1cu0Uf-KHGBbcSDOivSYFP3Vh-4o01LjIG4T4RJQKjfBNWSD8JVj05YpAivB5ZNsTKqsKqZe0jTnfXi2_6pb-wJqr0DX6nvoemGWrU8jJ963F3G61v34jdPyf31qHuz0wZZMkSffhhu8ewJ1rdIUP4eITyj3Whw8McSND20LWZJ4CbM_ZTor5Ynvxah0afbY764hQNt5QwUzn-rTZD_Oto-OTLPpKlLWzmOUtm7B9otBGC8z2CdizmkJaWG0sVsimMd6E9ZS654_guN77unuQ9Tc6ZK3AuV1m29y6UNDKa6EqZ4rCKRdKYW2QBL6400KGVpZWe4fOlZuxMobbgLM6LVUuHsNaN-v8E2C-kBUP3JRj5yVvRRUq7j2KnfaIUYIZwZvlgDanibijSRTNvKE-boY-HsHmcrybXoHPGppJcV4i2BvBqyEZu4P2U0znZwvKI2jfuMrzEWwkORk-JTRO5HiJlfM42n9pQzOZHk6Gp6f_Uugl3Po8rZuP744-PIPb-FqmiLZNWJv_XPjniJ3m9kVUj0tffxET |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+the+Incompatibility+Between+Electrical+Conductivity+and+Electromagnetic+Transmissivity%3A+A+Graphene+Glass+Fiber+Fabric+Design+Strategy&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Kewen&rft.au=Liang%2C+Fushun&rft.au=Sun%2C+Jianbo&rft.au=Zhang%2C+Qinchi&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202313752&rft.externalDBID=10.1002%252Fadma.202313752&rft.externalDocID=ADMA202313752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |