Overcoming the Incompatibility Between Electrical Conductivity and Electromagnetic Transmissivity: A Graphene Glass Fiber Fabric Design Strategy

Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electro...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 24; pp. e2313752 - n/a
Main Authors Huang, Kewen, Liang, Fushun, Sun, Jianbo, Zhang, Qinchi, Li, Zhihao, Cheng, Shuting, Li, Wenjuan, Yuan, Hao, Liu, Ruojuan, Ge, Yunsong, Cheng, Yi, Wang, Kun, Jiang, Jun, Yang, Yuyao, Ma, Mingyang, Yang, Fan, Tu, Ce, Xie, Qin, Yin, Wanjian, Wang, Xiaobai, Qi, Yue, Liu, Zhongfan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction‐integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high‐quality and layer‐limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250–3000 Ω·sq−1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42–0.51) and higher transmissivity (by 0.27–0.62) than those of its metal‐based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems. Graphene glass fiber fabric is innovatively fabricated through the first‐developed decoupling chemical vapor deposition growth strategy to controllably prepare high‐quality, layer‐limited graphene on the non‐catalytic nonmetallic GFF, through which the desired compatibility of electrical conductivity and EM transmissivity can be realized; thus, helping get rid of the electrical conductivity–electromagnetic transmissivity‐incompatible dilemma suffered by conventional conductive materials effectively.
AbstractList Abstract Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction‐integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high‐quality and layer‐limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250–3000 Ω·sq −1 ), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42–0.51) and higher transmissivity (by 0.27–0.62) than those of its metal‐based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.
Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction‐integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high‐quality and layer‐limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250–3000 Ω·sq−1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42–0.51) and higher transmissivity (by 0.27–0.62) than those of its metal‐based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems. Graphene glass fiber fabric is innovatively fabricated through the first‐developed decoupling chemical vapor deposition growth strategy to controllably prepare high‐quality, layer‐limited graphene on the non‐catalytic nonmetallic GFF, through which the desired compatibility of electrical conductivity and EM transmissivity can be realized; thus, helping get rid of the electrical conductivity–electromagnetic transmissivity‐incompatible dilemma suffered by conventional conductive materials effectively.
Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.
Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction‐integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high‐quality and layer‐limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250–3000 Ω·sq−1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42–0.51) and higher transmissivity (by 0.27–0.62) than those of its metal‐based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.
Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq ), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.
Author Li, Wenjuan
Xie, Qin
Zhang, Qinchi
Huang, Kewen
Tu, Ce
Sun, Jianbo
Wang, Kun
Liu, Ruojuan
Ge, Yunsong
Cheng, Yi
Li, Zhihao
Yin, Wanjian
Liu, Zhongfan
Yang, Fan
Yang, Yuyao
Liang, Fushun
Yuan, Hao
Wang, Xiaobai
Cheng, Shuting
Ma, Mingyang
Qi, Yue
Jiang, Jun
Author_xml – sequence: 1
  givenname: Kewen
  surname: Huang
  fullname: Huang, Kewen
  organization: Beijing Graphene Institute
– sequence: 2
  givenname: Fushun
  surname: Liang
  fullname: Liang, Fushun
  organization: Beijing Graphene Institute
– sequence: 3
  givenname: Jianbo
  surname: Sun
  fullname: Sun, Jianbo
  organization: Beijing Graphene Institute
– sequence: 4
  givenname: Qinchi
  surname: Zhang
  fullname: Zhang, Qinchi
  organization: Beijing Graphene Institute
– sequence: 5
  givenname: Zhihao
  surname: Li
  fullname: Li, Zhihao
  organization: Soochow University
– sequence: 6
  givenname: Shuting
  surname: Cheng
  fullname: Cheng, Shuting
  organization: China University of Petroleum
– sequence: 7
  givenname: Wenjuan
  surname: Li
  fullname: Li, Wenjuan
  organization: Beijing Graphene Institute
– sequence: 8
  givenname: Hao
  surname: Yuan
  fullname: Yuan, Hao
  organization: Beijing Graphene Institute
– sequence: 9
  givenname: Ruojuan
  surname: Liu
  fullname: Liu, Ruojuan
  organization: Beijing Graphene Institute
– sequence: 10
  givenname: Yunsong
  surname: Ge
  fullname: Ge, Yunsong
  organization: Beijing Graphene Institute
– sequence: 11
  givenname: Yi
  surname: Cheng
  fullname: Cheng, Yi
  organization: Beijing Graphene Institute
– sequence: 12
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  organization: Beijing Graphene Institute
– sequence: 13
  givenname: Jun
  surname: Jiang
  fullname: Jiang, Jun
  organization: China University of Petroleum
– sequence: 14
  givenname: Yuyao
  surname: Yang
  fullname: Yang, Yuyao
  organization: Beijing Graphene Institute
– sequence: 15
  givenname: Mingyang
  surname: Ma
  fullname: Ma, Mingyang
  organization: Beijing Graphene Institute
– sequence: 16
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: Beijing Graphene Institute
– sequence: 17
  givenname: Ce
  surname: Tu
  fullname: Tu, Ce
  organization: Beijing Graphene Institute
– sequence: 18
  givenname: Qin
  surname: Xie
  fullname: Xie, Qin
  organization: Beijing Graphene Institute
– sequence: 19
  givenname: Wanjian
  surname: Yin
  fullname: Yin, Wanjian
  organization: Soochow University
– sequence: 20
  givenname: Xiaobai
  surname: Wang
  fullname: Wang, Xiaobai
  email: xiaobai_wang@yeah.net
  organization: Beijing Technology and Business University
– sequence: 21
  givenname: Yue
  surname: Qi
  fullname: Qi, Yue
  email: qiyue@bgi-graphene.com
  organization: Beijing Graphene Institute
– sequence: 22
  givenname: Zhongfan
  orcidid: 0000-0001-5554-1902
  surname: Liu
  fullname: Liu, Zhongfan
  email: zfliu@pku.edu.cn
  organization: Beijing Graphene Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38576272$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPClSOyxIXLBn-svbvcQtqklYp6oJxX_phNXe16g-1tlX_BT8ZpQpG4cBqN5nkfjfSeoRM_ekDoPSVzSgj7rOyg5owwTnkl2Cs0o4LRoiSNOEEz0nBRNLKsT9FZjA-EkEYS-Qad8lpUklVshn7dPkIw4-D8Bqd7wNc-L1uVnHa9Szv8FdITgMeXPZgUnFE9Xo7eTia5x_1deXu8jYPaeEjO4LugfBxcjM_IF7zA66C29-ABr3sVI145DQGvlM5CfAHRbTz-noJKsNm9Ra871Ud4d5zn6Mfq8m55Vdzcrq-Xi5vCcFazQhuibScpBy5FY5WUVtiu4lp3JWFCMlvzsjNlpWuwnHCmqFCK6a6isi4F4efo08G7DePPCWJq88cG-l55GKfY5kzJStGQPfrxH_RhnILP32VKVoxVVDSZmh8oE8YYA3TtNrhBhV1LSbvvqt131b50lQMfjtpJD2Bf8D_lZKA5AE-uh91_dO3i4tvir_w3ohSkBQ
Cites_doi 10.1039/c1jm12938d
10.1038/s41893‐024‐01287‐w
10.1088/0957-4484/25/4/045707
10.1179/1743280414Y.0000000037
10.1021/acsnano.6b06066
10.1063/1.367025
10.1002/adma.201803639
10.1016/j.jmst.2023.05.017
10.1002/adma.202202982
10.1002/smll.201302729
10.1021/acsami.8b02770
10.1002/adfm.202204591
10.1002/adma.201304872
10.1063/1.329949
10.1021/nl201771h
10.1063/1.4722585
10.1002/adfm.201807398
10.1002/adfm.202200428
10.1002/adma.201204196
10.1109/JSAC.2014.2328098
10.1109/TAP.2008.917005
10.1002/adma.202206389
10.1103/PhysRevB.54.11169
10.1039/C8RA02567C
10.1038/ncomms7499
10.1021/acs.nanolett.6b02826
10.1038/ncomms14486
10.1021/jacs.9b05705
10.1016/B978-008044104-7/50008-3
10.1021/nl902515k
10.1103/RevModPhys.81.109
10.1109/TMTT.2016.2645154
10.1103/PhysRevLett.77.3865
10.1002/app.29812
10.1016/S0955-2219(00)00107-2
10.1002/adma.201504229
10.1038/nnano.2008.58
10.1103/PhysRevB.50.17953
10.1038/nmat1849
10.1126/science.1102896
10.1016/j.compscitech.2004.11.002
10.1002/adfm.202306884
10.1109/TMTT.1982.1131380
10.1021/acsnano.9b07452
10.1063/1.4904349
10.1364/AO.37.005271
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202313752
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202313752
38576272
ADMA202313752
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: nos. 52272032; T2188101; 52021006
– fundername: Beijing Nova Program of Science and Technology
  funderid: 20220484079
– fundername: National Natural Science Foundation of China
  grantid: nos. 52272032
– fundername: National Natural Science Foundation of China
  grantid: 52021006
– fundername: National Natural Science Foundation of China
  grantid: T2188101
– fundername: Beijing Nova Program of Science and Technology
  grantid: 20220484079
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LH4
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3282-bc0bdf613e3659da66d5df73bbf402562d834fc47b8ed3032a15aa2bf71684503
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Sat Oct 26 04:53:55 EDT 2024
Thu Oct 10 19:24:46 EDT 2024
Fri Aug 23 01:39:41 EDT 2024
Sat Nov 02 12:29:24 EDT 2024
Sat Aug 24 00:58:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords graphene glass fiber fabric
high electrical conductivity
high electromagnetic transmissivity
chemical vapor deposition
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3282-bc0bdf613e3659da66d5df73bbf402562d834fc47b8ed3032a15aa2bf71684503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5554-1902
PMID 38576272
PQID 3067227159
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_3034245900
proquest_journals_3067227159
crossref_primary_10_1002_adma_202313752
pubmed_primary_38576272
wiley_primary_10_1002_adma_202313752_ADMA202313752
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 116
2017; 8
2015; 6
2012; 100
2013; 25
2023; 33
2009; 81
2019; 31
1982; 30
1982; 53
2017; 65
2023; 166
2000; 20
2016; 10
2014; 26
1953
2009; 112
2008; 56
2011; 11
2014; 25
2020; 14
2005; 65
1998; 83
2008; 3
2002
2024
2004; 306
2019; 141
2016; 16
1996; 54
1996; 77
2004; 11
1998; 37
2018; 8
2015; 27
2022; 34
2014; 59
2007; 6
2009; 9
2019; 29
2011; 21
2022; 32
2018; 10
1994; 50
2022; 38
2014; 32
2014; 10
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
Ramo S. (e_1_2_8_41_1) 1953
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
Cheng T. (e_1_2_8_29_1) 2022; 38
e_1_2_8_39_1
Zhang S. (e_1_2_8_10_1) 2004; 11
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 26
  start-page: 1348
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 16
  year: 2004
  publication-title: Electron. Qual.
– volume: 37
  start-page: 5271
  year: 1998
  publication-title: Appl. Opt.
– volume: 59
  start-page: 326
  year: 2014
  publication-title: Int. Mater. Rev.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2927
  year: 2020
  publication-title: ACS Nano
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 6403
  year: 2016
  publication-title: Nano Lett.
– volume: 30
  start-page: 2064
  year: 1982
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 32
  start-page: 1065
  year: 2014
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 81
  start-page: 109
  year: 2009
  publication-title: Rev. Mod. Phys.
– volume: 38
  year: 2022
  publication-title: Acta Phys. Chim. Sin.
– volume: 20
  start-page: 1923
  year: 2000
  publication-title: J. Eur. Ceram. Soc.
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– start-page: 127
  year: 2002
  end-page: 153
– volume: 65
  start-page: 1479
  year: 2017
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 65
  start-page: 973
  year: 2005
  publication-title: Compos. Sci. Technol.
– volume: 11
  start-page: 3370
  year: 2011
  publication-title: Nano Lett.
– volume: 116
  year: 2014
  publication-title: J. Appl. Phys.
– year: 2024
  publication-title: Nat. Sustainability
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 206
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 56
  start-page: 747
  year: 2008
  publication-title: IEEE Trans. Antennas Propag.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 4268
  year: 2009
  publication-title: Nano Lett.
– volume: 83
  start-page: 2631
  year: 1998
  publication-title: J. Appl. Phys.
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 25
  start-page: 1296
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6499
  year: 2015
  publication-title: Nat. Commun.
– volume: 53
  start-page: 477
  year: 1982
  publication-title: J. Appl. Phys.
– volume: 166
  start-page: 133
  year: 2023
  publication-title: J. Mater. Sci. Technol.
– volume: 27
  start-page: 7839
  year: 2015
  publication-title: Adv. Mater.
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– year: 1953
– volume: 10
  start-page: 1704
  year: 2014
  publication-title: Small
– volume: 25
  year: 2014
  publication-title: Nanotechnology
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 112
  start-page: 2073
  year: 2009
  publication-title: J. Appl. Polym. Sci.
– volume-title: Fields and Waves in Modern Radio
  year: 1953
  ident: e_1_2_8_41_1
  contributor:
    fullname: Ramo S.
– ident: e_1_2_8_32_1
  doi: 10.1039/c1jm12938d
– ident: e_1_2_8_46_1
  doi: 10.1038/s41893‐024‐01287‐w
– volume: 11
  start-page: 16
  year: 2004
  ident: e_1_2_8_10_1
  publication-title: Electron. Qual.
  contributor:
    fullname: Zhang S.
– volume: 38
  year: 2022
  ident: e_1_2_8_29_1
  publication-title: Acta Phys. Chim. Sin.
  contributor:
    fullname: Cheng T.
– ident: e_1_2_8_44_1
  doi: 10.1088/0957-4484/25/4/045707
– ident: e_1_2_8_13_1
  doi: 10.1179/1743280414Y.0000000037
– ident: e_1_2_8_42_1
  doi: 10.1021/acsnano.6b06066
– ident: e_1_2_8_12_1
  doi: 10.1063/1.367025
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201803639
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jmst.2023.05.017
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.202202982
– ident: e_1_2_8_45_1
  doi: 10.1002/smll.201302729
– ident: e_1_2_8_7_1
  doi: 10.1021/acsami.8b02770
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.202204591
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201304872
– ident: e_1_2_8_26_1
  doi: 10.1063/1.329949
– ident: e_1_2_8_22_1
  doi: 10.1021/nl201771h
– ident: e_1_2_8_18_1
  doi: 10.1063/1.4722585
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.201807398
– ident: e_1_2_8_36_1
  doi: 10.1002/adfm.202200428
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201204196
– ident: e_1_2_8_1_1
  doi: 10.1109/JSAC.2014.2328098
– ident: e_1_2_8_21_1
  doi: 10.1109/TAP.2008.917005
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.202206389
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_23_1
  doi: 10.1039/C8RA02567C
– ident: e_1_2_8_34_1
  doi: 10.1038/ncomms7499
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.nanolett.6b02826
– ident: e_1_2_8_20_1
  doi: 10.1038/ncomms14486
– ident: e_1_2_8_33_1
  doi: 10.1021/jacs.9b05705
– ident: e_1_2_8_25_1
  doi: 10.1016/B978-008044104-7/50008-3
– ident: e_1_2_8_31_1
  doi: 10.1021/nl902515k
– ident: e_1_2_8_16_1
  doi: 10.1103/RevModPhys.81.109
– ident: e_1_2_8_39_1
  doi: 10.1109/TMTT.2016.2645154
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_2_1
  doi: 10.1002/app.29812
– ident: e_1_2_8_40_1
  doi: 10.1016/S0955-2219(00)00107-2
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201504229
– ident: e_1_2_8_28_1
  doi: 10.1038/nnano.2008.58
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_15_1
  doi: 10.1038/nmat1849
– ident: e_1_2_8_14_1
  doi: 10.1126/science.1102896
– ident: e_1_2_8_9_1
  doi: 10.1016/j.compscitech.2004.11.002
– ident: e_1_2_8_6_1
  doi: 10.1002/adfm.202306884
– ident: e_1_2_8_17_1
  doi: 10.1109/TMTT.1982.1131380
– ident: e_1_2_8_4_1
  doi: 10.1021/acsnano.9b07452
– ident: e_1_2_8_38_1
  doi: 10.1063/1.4904349
– ident: e_1_2_8_37_1
  doi: 10.1364/AO.37.005271
SSID ssj0009606
Score 2.5147696
Snippet Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their...
Abstract Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However,...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2313752
SubjectTerms Chemical vapor deposition
Decoupling
Dielectric strength
Electric heating
Electrical resistivity
Electromagnetic properties
Electromagnetic radiation
Glass fibers
Graphene
graphene glass fiber fabric
high electrical conductivity
high electromagnetic transmissivity
Incompatibility
Macrostructure
Reflectance
Transmissivity
Wave reflection
Title Overcoming the Incompatibility Between Electrical Conductivity and Electromagnetic Transmissivity: A Graphene Glass Fiber Fabric Design Strategy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202313752
https://www.ncbi.nlm.nih.gov/pubmed/38576272
https://www.proquest.com/docview/3067227159
https://www.proquest.com/docview/3034245900
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcmTuzAxzagwCZPQtopkPojcbgV2lJNgkkTSNwiO7Y5IFJE2wP8FfzJvGenaTsOk7ZTYvkjjv383s_288-EHHGnpZfWJUpLlYgus4nm0iQgOxZ577wK3u6XV9noRvy8lbdLp_gjP0S74IYjI-hrHODaTE4WpKHaBt4gwCc8l6iE4Yk-Xf3fC_4ohOeBbI_LpMiEmrM2puxkNfuqVXoHNVeRazA9w02i55WOHif3x7OpOa5e_uBz_J-_2iIbDS6lvShI2-SDqz-Rj0tshZ_J6y8QeygPAhRgIwXVgspkGv1rn-lZdPmig3CzDnY-PR_XyCcbLqigurZN3PhB39V4epIGUwmiNglJTmmPXiCDNihgeoG4ng7Ro4UOtYECaT-4m9CGUff5C7kZDq7PR0lzoUNScZjaJaZKjfUZLrxmsrA6y6y0PufGeIHYi1nFha9EbpSzYFuZ7kqtmfEwqVNCpnyHrNXj2u0R6jJRMM903rVOsIoXvmDOgdQpBxDF6w75Me_Q8jHydpSRoZmV2MZl28Ydcjjv77IZv5MSJ1KM5YD1OuR7Gw3NgdspunbjGabhuG1cpGmH7EY5aT_FFczjWA6Fs9Dbf6lD2etf9trQ_r9kOiDr8C6iF9shWZs-zdxXwEtT8y2MiTfVcg5M
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvClbChgJiVParB-Jw23pdrtAt0iolbhFdmxzQGRRu3sov4KfzIydpCwckOCY-BHHnhl_Y48_A7wU3qignM-0UTqTY-4yI5TNUHYc8d4FHaPdFyfF_Ey--6T6aEI6C5P4IYYFN9KMaK9JwWlBev-KNdS4SByEAEWUCq3wddR5Qbc3TD9eMUgRQI90e0JlVSF1z9uY8_3N8pvz0h9gcxO7xslndgds3-wUc_Jlb72ye8333xgd_-u_7sLtDpqySZKle3DNt_fh1i-EhQ_gxweUfKwQHxgiR4bWhezJKoXYXrI3KeqLHcbLdWj82cGyJUrZeEcFM63r0pZfzeeWDlCyOFuitF3ELK_ZhB0RiTbaYHZE0J7NKKiFzYzFCtk0RpywjlT38iGczQ5PD-ZZd6dD1gj07jLb5NaFgtZeC1U5UxROuVAKa4Mk-MWdFjI0srTaO5xeuRkrY7gN6NdpqXLxCLbaZesfA_OFrHjgphw7L3kjqlBx71HwtEeUEswIXvUjWn9L1B11ImnmNfVxPfTxCHb7Aa87Fb6oyZfivES4N4IXQzJ2B-2omNYv15RH0M5xlecj2E6CMnxKaHTleImV8zjcf2lDPZkuJsPTzr8Ueg435qeL4_r47cn7J3AT38sU1LYLW6vztX-K8Glln0UF-QmlcxJk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH5CRUJwgLKVgQJGQuKUNuMlcbhNO03L0oIQlXqL7NjmgMhUdOZQfkV_ct-zM2kHDkhwTLzEsd_y2X7-DPBaeKOCcj7TRulMjrnLjFA2Q9lxxHsXdIx2PzwqDo7l-xN1cu0Uf-KHGBbcSDOivSYFP3Vh-4o01LjIG4T4RJQKjfBNWSD8JVj05YpAivB5ZNsTKqsKqZe0jTnfXi2_6pb-wJqr0DX6nvoemGWrU8jJ963F3G61v34jdPyf31qHuz0wZZMkSffhhu8ewJ1rdIUP4eITyj3Whw8McSND20LWZJ4CbM_ZTor5Ynvxah0afbY764hQNt5QwUzn-rTZD_Oto-OTLPpKlLWzmOUtm7B9otBGC8z2CdizmkJaWG0sVsimMd6E9ZS654_guN77unuQ9Tc6ZK3AuV1m29y6UNDKa6EqZ4rCKRdKYW2QBL6400KGVpZWe4fOlZuxMobbgLM6LVUuHsNaN-v8E2C-kBUP3JRj5yVvRRUq7j2KnfaIUYIZwZvlgDanibijSRTNvKE-boY-HsHmcrybXoHPGppJcV4i2BvBqyEZu4P2U0znZwvKI2jfuMrzEWwkORk-JTRO5HiJlfM42n9pQzOZHk6Gp6f_Uugl3Po8rZuP744-PIPb-FqmiLZNWJv_XPjniJ3m9kVUj0tffxET
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+the+Incompatibility+Between+Electrical+Conductivity+and+Electromagnetic+Transmissivity%3A+A+Graphene+Glass+Fiber+Fabric+Design+Strategy&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Kewen&rft.au=Liang%2C+Fushun&rft.au=Sun%2C+Jianbo&rft.au=Zhang%2C+Qinchi&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202313752&rft.externalDBID=10.1002%252Fadma.202313752&rft.externalDocID=ADMA202313752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon