Porous Supramolecular Crystalline Materials for Photocatalysis
Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions. Benefiting from the unique features of...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 11; pp. e202424452 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.03.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions. Benefiting from the unique features of mild synthesis conditions, well‐defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen‐bonding and π‐π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure‐performance relationship. At the end, we discuss the challenges and perspectives in developing high‐performance PSCM‐based photocatalysts.
Porous supramolecular crystalline materials (PSCMs) are a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions, which have shown great potential in photocatalysis by virtue of their unique features of well‐defined and synthetically tailorable structures, mild synthesis conditions, easy healing and regeneration. In this Minireview, we summarize the syntheses, structural features and photocatalytic applications for PSCMs, including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation. The challenges and opportunities for developing high‐performance PSCMs‐based photocatalysts are also put forward. |
---|---|
AbstractList | Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions. Benefiting from the unique features of mild synthesis conditions, well‐defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen‐bonding and π‐π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure‐performance relationship. At the end, we discuss the challenges and perspectives in developing high‐performance PSCM‐based photocatalysts. Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Benefiting from the unique features of mild synthesis conditions, well-defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen-bonding and π-π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure-performance relationship. At the end, we discuss the challenges and perspectives in developing high-performance PSCM-based photocatalysts.Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Benefiting from the unique features of mild synthesis conditions, well-defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen-bonding and π-π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure-performance relationship. At the end, we discuss the challenges and perspectives in developing high-performance PSCM-based photocatalysts. Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Benefiting from the unique features of mild synthesis conditions, well-defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen-bonding and π-π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO reduction, H evolution, H O production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure-performance relationship. At the end, we discuss the challenges and perspectives in developing high-performance PSCM-based photocatalysts. Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions. Benefiting from the unique features of mild synthesis conditions, well‐defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen‐bonding and π‐π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure‐performance relationship. At the end, we discuss the challenges and perspectives in developing high‐performance PSCM‐based photocatalysts. Porous supramolecular crystalline materials (PSCMs) are a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions, which have shown great potential in photocatalysis by virtue of their unique features of well‐defined and synthetically tailorable structures, mild synthesis conditions, easy healing and regeneration. In this Minireview, we summarize the syntheses, structural features and photocatalytic applications for PSCMs, including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation. The challenges and opportunities for developing high‐performance PSCMs‐based photocatalysts are also put forward. Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π ‐ π stacking and other non‐covalent interactions. Benefiting from the unique features of mild synthesis conditions, well‐defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen‐bonding and π‐π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO 2 reduction, H 2 evolution, H 2 O 2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure‐performance relationship. At the end, we discuss the challenges and perspectives in developing high‐performance PSCM‐based photocatalysts. |
Author | Gong, Yun‐Nan Zhong, Di‐Chang Lu, Tong‐Bu |
Author_xml | – sequence: 1 givenname: Yun‐Nan surname: Gong fullname: Gong, Yun‐Nan organization: Tianjin University of Technology – sequence: 2 givenname: Di‐Chang orcidid: 0000-0002-5504-249X surname: Zhong fullname: Zhong, Di‐Chang email: dczhong@email.tjut.edu.cn organization: Tianjin University of Technology – sequence: 3 givenname: Tong‐Bu surname: Lu fullname: Lu, Tong‐Bu organization: Tianjin University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39777838$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0M1LwzAYBvAgE_ehV49S8OKlMx_NklyEMaYOpg7Uc0jbFDvSZiYt0v_elM0JXjwl8P6e8OYZg0Ftaw3AJYJTBCG-VXWppxjiBCcJxSdghChGMWGMDMI9ISRmnKIhGHu_DZ5zODsDQyIYY5zwEbjbWGdbH722O6cqa3TWGuWihet8o4wpax09qUa7UhkfFdZFmw_b2EyFYedLfw5OizDRF4dzAt7vl2-Lx3j98rBazNdxRjDHMeIKC0R4jlnKNGE8mSlS0DwXouCYwIQSmKeJoDnOU46SIs0wUlzAVKA0m-VkAm727-6c_Wy1b2RV-kwbo2od1pcEUdL_DcFAr__QrW1dHbYLilGKIIa9ujqoNq10LneurJTr5E8zAUz3IHPWe6eLI0FQ9tXLvnp5rD4ExD7wVRrd_aPl_Hm1_M1-AzAchbc |
Cites_doi | 10.1039/D3CS00205E 10.1039/C9CS90020A 10.1039/D2TA09375H 10.1002/anie.201410077 10.1126/science.aay1844 10.1002/anie.202211031 10.1021/acs.chemrev.2c00759 10.1002/smll.202104561 10.31635/ccschem.021.202100910 10.1021/acsanm.9b01787 10.1002/anie.202310470 10.1038/s41467-024-49865-y 10.1038/s41558-021-01001-0 10.1021/jacs.5b05644 10.1021/jacs.3c10661 10.1039/C9CS00377K 10.1021/acs.accounts.2c00686 10.1021/ja2066016 10.1002/anie.202217565 10.1021/accountsmr.0c00019 10.1039/D1CS01008E 10.1039/D2NR02585J 10.1021/jacs.2c04670 10.1002/anie.202203955 10.1021/acs.chemrev.8b00400 10.1021/jacs.9b03766 10.1021/acs.inorgchem.4c02886 10.1021/acsami.2c02917 10.1016/j.chempr.2022.06.015 10.1073/pnas.2010733117 10.1021/jacs.1c07378 10.31635/ccschem.024.202404675 10.1002/anie.202319815 10.1021/acs.accounts.3c00751 10.1016/j.jcis.2024.10.092 10.1021/acs.inorgchem.3c02051 10.1039/c2cc16946k 10.1021/acsami.4c06992 10.1126/sciadv.aax9976 10.1021/jacs.0c05277 10.1002/solr.201900487 10.1016/j.jhazmat.2023.132179 10.1016/j.ccr.2018.03.015 10.1016/j.ccr.2024.215760 10.1002/adfm.202300954 10.1039/D4TC03810J 10.1002/anie.201906890 10.3390/molecules28196850 10.1039/D1MA01173A 10.1039/C9CS00920E 10.1016/j.jcat.2021.09.027 10.1021/acsami.2c04746 10.1016/j.cej.2024.156059 10.1021/ja4129795 10.1002/anie.202115854 10.1016/j.jes.2024.05.015 10.1002/anie.202016710 10.1007/s40843-023-2834-1 10.1021/jacs.0c06473 10.1016/j.mattod.2024.04.002 10.1002/anie.202307160 10.1021/jacs.3c10492 10.1002/anie.201805614 10.1021/jacs.2c02146 10.1002/adfm.202207145 10.1126/science.aaf5039 10.1002/anie.202211482 10.1038/s41586-020-2738-2 10.1038/s41560-023-01218-7 10.1021/acs.chemrev.2c00200 10.1039/D1MH01360B 10.1016/j.jphotochem.2024.115946 10.1038/s41586-021-03907-3 10.1021/jacs.1c11987 10.1021/jacs.1c01161 10.1002/anie.202312306 10.1039/D0CS01134G 10.1073/pnas.2118278119 10.1021/jacs.3c07047 10.1002/adma.201900709 10.1002/anie.201600395 10.1002/anie.202413131 10.1002/anie.202408186 10.1016/S0010-8545(03)00065-1 10.1002/anie.202412777 10.1021/acs.chemmater.2c01476 10.1021/acs.cgd.3c00032 10.1002/anie.201916154 10.1002/smll.202207507 10.1002/cjoc.202300250 10.1016/j.apcatb.2021.120337 10.1021/jacs.3c14254 10.1002/anie.202405451 10.1038/s41929-023-00972-x 10.1021/jacs.9b12428 10.1021/acssuschemeng.2c07168 |
ContentType | Journal Article |
Copyright | 2025 Wiley-VCH GmbH 2025 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley-VCH GmbH – notice: 2025 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202424452 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 39777838 10_1002_anie_202424452 ANIE202424452 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22271218 – fundername: National Natural Science Foundation of China grantid: 22271218 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3282-18a29138d27b7e37846a3f5dd99f82304530db495d2db814fbc21a890b91bc6d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:12:17 EDT 2025 Tue Jul 29 08:10:32 EDT 2025 Mon Jul 21 05:18:16 EDT 2025 Thu Jul 31 00:57:26 EDT 2025 Sun Jul 06 04:45:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | porous supramolecular crystalline materials (PSCMs) photocatalysis π-π stacking hydrogen-bonding |
Language | English |
License | 2025 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3282-18a29138d27b7e37846a3f5dd99f82304530db495d2db814fbc21a890b91bc6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5504-249X |
PMID | 39777838 |
PQID | 3175510200 |
PQPubID | 946352 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3153880610 proquest_journals_3175510200 pubmed_primary_39777838 crossref_primary_10_1002_anie_202424452 wiley_primary_10_1002_anie_202424452_ANIE202424452 |
PublicationCentury | 2000 |
PublicationDate | March 10, 2025 |
PublicationDateYYYYMMDD | 2025-03-10 |
PublicationDate_xml | – month: 03 year: 2025 text: March 10, 2025 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2025; 152 2023; 33 2023; 6 2023; 8 2023; 145 2024; 507 2019; 58 2019; 366 2020; 59 2024; 75 2024; 146 2014; 136 2025; 679 2022; 122 2023; 62 2020; 6 2020; 4 2020; 1 2023; 23 2024; 6 2015; 137 2023; 28 2021; 598 2022; 34 2020; 49 2024; 63 2016; 352 2019; 119 2024; 67 2022; 32 2023; 459 2022; 406 2003; 242 2023; 11 2021; 3 2019; 31 2020; 142 2019; 2 2022; 51 2023; 123 2023; 19 2015; 54 2024; 53 2024; 12 2024; 57 2020; 586 2021; 143 2022; 119 2021; 50 2024; 15 2019; 141 2024; 16 2025; 458 2011; 133 2016; 55 2022; 144 2023; 41 2021; 11 2022; 3 2022; 61 2022; 8 2019; 48 2022; 9 2020; 117 2022; 14 2019; 378 2021; 296 2022; 55 2012; 48 2024; 499 2021; 60 2022; 18 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 Chu D. (e_1_2_9_50_1) 2021; 3 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_9_1 Shang Y. (e_1_2_9_43_1) 2024; 63 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 Zhen C. (e_1_2_9_10_1) 2024; 146 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_3_1 Gao R. (e_1_2_9_82_1) 2024; 63 Mei J.-H. (e_1_2_9_61_1) 2024; 63 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 3 start-page: 3680 year: 2022 end-page: 3708 publication-title: Mater Adv – volume: 142 start-page: 12478 year: 2020 end-page: 12485 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 7719 year: 2019 end-page: 7727 publication-title: ACS Appl. Nano Mater. – volume: 16 start-page: 33657 year: 2024 end-page: 33668 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 4825 year: 2023 end-page: 4835 publication-title: Cryst. Growth Des. – volume: 137 start-page: 9963 year: 2015 end-page: 9970 publication-title: J. Am. Chem. Soc. – volume: 499 year: 2024 publication-title: Chem. Eng. J. – volume: 14 start-page: 21050 year: 2022 end-page: 21058 publication-title: ACS Appl. Mater. Interfaces – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. USA – volume: 458 year: 2025 publication-title: J. Photochem. Photobiol. A – volume: 136 start-page: 547 year: 2014 end-page: 549 publication-title: J. Am. Chem. Soc. – volume: 406 start-page: 19 year: 2022 end-page: 27 publication-title: J. Catal. – volume: 55 start-page: 3752 year: 2022 end-page: 3766 publication-title: Acc. Chem. Res. – volume: 679 start-page: 91 year: 2025 end-page: 101 publication-title: J. Colloid Interface Sci. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 119 start-page: 3962 year: 2019 end-page: 4179 publication-title: Chem. Rev. – volume: 6 start-page: 3030 year: 2024 end-page: 3040 publication-title: CCS Chem. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 77 year: 2020 end-page: 87 publication-title: Acc. Mater. Res. – volume: 50 start-page: 6914 year: 2021 end-page: 6949 publication-title: Chem. Soc. Rev. – volume: 133 start-page: 14570 year: 2011 end-page: 14573 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 7001 year: 2022 end-page: 7009 publication-title: J. Am. Chem. Soc. – volume: 586 start-page: 549 year: 2020 end-page: 554 publication-title: Nature – volume: 8 start-page: 2114 year: 2022 end-page: 2135 publication-title: Chem – volume: 14 start-page: 9762 year: 2022 end-page: 9770 publication-title: Nanoscale – volume: 9 start-page: 731 year: 2022 end-page: 739 publication-title: Mater. Horiz. – volume: 14 start-page: 19623 year: 2022 end-page: 19628 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 2089 year: 2012 end-page: 2091 publication-title: Chem. Commun. – volume: 3 start-page: 1692 year: 2021 end-page: 1700 publication-title: CCS Chem. – volume: 145 start-page: 18148 year: 2023 end-page: 18159 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 10933 year: 2018 end-page: 10937 publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 6704 year: 2022 end-page: 6737 publication-title: Chem. Soc. Rev. – volume: 123 start-page: 5225 year: 2023 end-page: 5261 publication-title: Chem. Rev. – volume: 49 start-page: 6579 year: 2020 end-page: 6591 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 17377 year: 2024 end-page: 17385 publication-title: J. Mater. Chem. C – volume: 59 start-page: 6082 year: 2020 end-page: 6089 publication-title: Angew. Chem. Int. Ed. – volume: 19 year: 2023 publication-title: Small – volume: 122 start-page: 16051 year: 2022 end-page: 16109 publication-title: Chem. Rev. – volume: 60 start-page: 8983 year: 2021 end-page: 8989 publication-title: Angew. Chem. Int. Ed. – volume: 63 start-page: 16533 year: 2024 end-page: 16540 publication-title: Inorg. Chem. – volume: 3 start-page: 1352 year: 2021 end-page: 1362 publication-title: CCS Chem. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 1862 year: 2019 end-page: 1864 publication-title: Chem. Soc. Rev. – volume: 4 year: 2020 publication-title: Solar RRL – volume: 54 start-page: 574 year: 2015 end-page: 577 publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 6850 year: 2023 publication-title: Molecules – volume: 242 start-page: 97 year: 2003 end-page: 113 publication-title: Coord. Chem. Rev. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 62 start-page: 15550 year: 2023 end-page: 15564 publication-title: Inorg. Chem. – volume: 507 year: 2024 publication-title: Coord. Chem. Rev. – volume: 152 start-page: 287 year: 2025 end-page: 301 publication-title: J. Environ. Sci. – volume: 459 year: 2023 publication-title: J. Hazard. Mater. – volume: 598 start-page: 304 year: 2021 end-page: 307 publication-title: Nature – volume: 58 start-page: 12392 year: 2019 end-page: 12397 publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 14924 year: 2016 end-page: 14950 publication-title: Angew. Chem. Int. Ed. – volume: 143 start-page: 10920 year: 2021 end-page: 10929 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 574 year: 2023 end-page: 584 publication-title: Nat. Catal. – volume: 142 start-page: 14399 year: 2020 end-page: 14416 publication-title: J. Am. Chem. Soc. – volume: 146 start-page: 2275 year: 2024 end-page: 2285 publication-title: J. Am. Chem. Soc. – volume: 378 start-page: 17 year: 2019 end-page: 31 publication-title: Coord. Chem. Rev. – volume: 15 start-page: 5469 year: 2024 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 141 start-page: 8737 year: 2019 end-page: 8740 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 10823 year: 2022 end-page: 10831 publication-title: Chem. Mater. – volume: 296 year: 2021 publication-title: Appl. Catal. B, Environ. – volume: 144 start-page: 13319 year: 2022 end-page: 13326 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 20157 year: 2021 end-page: 20165 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 870 year: 2024 end-page: 883 publication-title: Acc. Chem. Res. – volume: 117 start-page: 20397 year: 2020 end-page: 20403 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 197 year: 2021 end-page: 199 publication-title: Nat. Clim. Change – volume: 352 start-page: 1210 year: 2016 end-page: 1213 publication-title: Science – volume: 144 start-page: 1861 year: 2022 end-page: 1871 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 4389 year: 2023 end-page: 4397 publication-title: ACS Sustainable Chem. Eng. – volume: 75 start-page: 244 year: 2024 end-page: 258 publication-title: Mater. Today – volume: 146 start-page: 627 year: 2024 end-page: 634 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 3433 year: 2023 end-page: 3446 publication-title: Chin. J. Chem. – volume: 146 start-page: 28482 year: 2024 end-page: 28490 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 12521 year: 2023 end-page: 12538 publication-title: J. Mater. Chem. A – volume: 145 start-page: 28166 year: 2023 end-page: 28175 publication-title: J. Am. Chem. Soc. – volume: 366 start-page: 226 year: 2019 end-page: 231 publication-title: Science – volume: 53 start-page: 3002 year: 2024 end-page: 3035 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 361 year: 2023 end-page: 371 publication-title: Nat. Energy – volume: 142 start-page: 633 year: 2020 end-page: 640 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 5454 year: 2019 end-page: 5487 publication-title: Chem. Soc. Rev. – volume: 67 start-page: 1846 year: 2024 end-page: 1850 publication-title: Sci. China Mater. – ident: e_1_2_9_63_1 doi: 10.1039/D3CS00205E – ident: e_1_2_9_3_1 doi: 10.1039/C9CS90020A – ident: e_1_2_9_18_1 doi: 10.1039/D2TA09375H – ident: e_1_2_9_47_1 doi: 10.1002/anie.201410077 – volume: 146 start-page: 28482 year: 2024 ident: e_1_2_9_10_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_9_84_1 doi: 10.1126/science.aay1844 – ident: e_1_2_9_77_1 doi: 10.1002/anie.202211031 – ident: e_1_2_9_44_1 doi: 10.1021/acs.chemrev.2c00759 – ident: e_1_2_9_83_1 doi: 10.1002/smll.202104561 – ident: e_1_2_9_27_1 doi: 10.31635/ccschem.021.202100910 – ident: e_1_2_9_97_1 doi: 10.1021/acsanm.9b01787 – ident: e_1_2_9_13_1 doi: 10.1002/anie.202310470 – ident: e_1_2_9_49_1 doi: 10.1038/s41467-024-49865-y – ident: e_1_2_9_1_1 doi: 10.1038/s41558-021-01001-0 – ident: e_1_2_9_46_1 doi: 10.1021/jacs.5b05644 – ident: e_1_2_9_76_1 doi: 10.1021/jacs.3c10661 – ident: e_1_2_9_11_1 doi: 10.1039/C9CS00377K – ident: e_1_2_9_21_1 doi: 10.1021/acs.accounts.2c00686 – ident: e_1_2_9_45_1 doi: 10.1021/ja2066016 – ident: e_1_2_9_14_1 doi: 10.1002/anie.202217565 – ident: e_1_2_9_23_1 doi: 10.1021/accountsmr.0c00019 – ident: e_1_2_9_8_1 doi: 10.1039/D1CS01008E – ident: e_1_2_9_92_1 doi: 10.1039/D2NR02585J – ident: e_1_2_9_26_1 doi: 10.1021/jacs.2c04670 – ident: e_1_2_9_73_1 doi: 10.1002/anie.202203955 – ident: e_1_2_9_68_1 doi: 10.1021/acs.chemrev.8b00400 – volume: 63 year: 2024 ident: e_1_2_9_82_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_9_66_1 doi: 10.1021/jacs.9b03766 – ident: e_1_2_9_91_1 doi: 10.1021/acs.inorgchem.4c02886 – ident: e_1_2_9_75_1 doi: 10.1021/acsami.2c02917 – ident: e_1_2_9_38_1 doi: 10.1016/j.chempr.2022.06.015 – ident: e_1_2_9_51_1 doi: 10.1073/pnas.2010733117 – ident: e_1_2_9_89_1 doi: 10.1021/jacs.1c07378 – ident: e_1_2_9_15_1 doi: 10.31635/ccschem.024.202404675 – ident: e_1_2_9_28_1 doi: 10.1002/anie.202319815 – ident: e_1_2_9_7_1 doi: 10.1021/acs.accounts.3c00751 – ident: e_1_2_9_81_1 doi: 10.1016/j.jcis.2024.10.092 – ident: e_1_2_9_94_1 doi: 10.1021/acs.inorgchem.3c02051 – ident: e_1_2_9_40_1 doi: 10.1039/c2cc16946k – ident: e_1_2_9_101_1 doi: 10.1021/acsami.4c06992 – ident: e_1_2_9_32_1 doi: 10.1126/sciadv.aax9976 – ident: e_1_2_9_57_1 doi: 10.1021/jacs.0c05277 – ident: e_1_2_9_4_1 doi: 10.1002/solr.201900487 – ident: e_1_2_9_100_1 doi: 10.1016/j.jhazmat.2023.132179 – ident: e_1_2_9_95_1 doi: 10.1016/j.ccr.2018.03.015 – ident: e_1_2_9_25_1 doi: 10.1016/j.ccr.2024.215760 – ident: e_1_2_9_79_1 doi: 10.1002/adfm.202300954 – ident: e_1_2_9_29_1 doi: 10.1039/D4TC03810J – ident: e_1_2_9_70_1 doi: 10.1002/anie.201906890 – ident: e_1_2_9_87_1 doi: 10.3390/molecules28196850 – ident: e_1_2_9_24_1 doi: 10.1039/D1MA01173A – ident: e_1_2_9_67_1 doi: 10.1039/C9CS00920E – ident: e_1_2_9_93_1 doi: 10.1016/j.jcat.2021.09.027 – ident: e_1_2_9_60_1 doi: 10.1021/acsami.2c04746 – volume: 63 year: 2024 ident: e_1_2_9_61_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_9_55_1 doi: 10.1016/j.cej.2024.156059 – ident: e_1_2_9_56_1 doi: 10.1021/ja4129795 – ident: e_1_2_9_72_1 doi: 10.1002/anie.202115854 – ident: e_1_2_9_99_1 doi: 10.1016/j.jes.2024.05.015 – ident: e_1_2_9_65_1 doi: 10.1002/anie.202016710 – ident: e_1_2_9_19_1 doi: 10.1007/s40843-023-2834-1 – ident: e_1_2_9_22_1 doi: 10.1021/jacs.0c06473 – ident: e_1_2_9_33_1 doi: 10.1016/j.mattod.2024.04.002 – ident: e_1_2_9_36_1 doi: 10.1002/anie.202307160 – ident: e_1_2_9_42_1 doi: 10.1021/jacs.3c10492 – volume: 3 start-page: 1692 year: 2021 ident: e_1_2_9_50_1 publication-title: CCS Chem. – ident: e_1_2_9_34_1 doi: 10.1002/anie.201805614 – ident: e_1_2_9_41_1 doi: 10.1021/jacs.2c02146 – ident: e_1_2_9_37_1 doi: 10.1002/adfm.202207145 – ident: e_1_2_9_5_1 doi: 10.1126/science.aaf5039 – ident: e_1_2_9_74_1 doi: 10.1002/anie.202211482 – ident: e_1_2_9_17_1 doi: 10.1038/s41586-020-2738-2 – ident: e_1_2_9_86_1 doi: 10.1038/s41560-023-01218-7 – ident: e_1_2_9_6_1 doi: 10.1021/acs.chemrev.2c00200 – ident: e_1_2_9_58_1 doi: 10.1039/D1MH01360B – ident: e_1_2_9_98_1 doi: 10.1016/j.jphotochem.2024.115946 – ident: e_1_2_9_2_1 doi: 10.1038/s41586-021-03907-3 – ident: e_1_2_9_16_1 doi: 10.1021/jacs.1c11987 – ident: e_1_2_9_59_1 doi: 10.1021/jacs.1c01161 – ident: e_1_2_9_39_1 doi: 10.1002/anie.202312306 – ident: e_1_2_9_62_1 doi: 10.1039/D0CS01134G – ident: e_1_2_9_20_1 doi: 10.1073/pnas.2118278119 – ident: e_1_2_9_71_1 doi: 10.1021/jacs.3c07047 – ident: e_1_2_9_12_1 doi: 10.1002/adma.201900709 – ident: e_1_2_9_9_1 doi: 10.1002/anie.201600395 – ident: e_1_2_9_53_1 doi: 10.1002/anie.202413131 – ident: e_1_2_9_85_1 doi: 10.1002/anie.202408186 – ident: e_1_2_9_88_1 doi: 10.1016/S0010-8545(03)00065-1 – ident: e_1_2_9_31_1 doi: 10.1002/anie.202412777 – ident: e_1_2_9_54_1 doi: 10.1021/acs.chemmater.2c01476 – ident: e_1_2_9_30_1 doi: 10.1021/acs.cgd.3c00032 – ident: e_1_2_9_96_1 doi: 10.1002/anie.201916154 – ident: e_1_2_9_52_1 doi: 10.1002/smll.202207507 – ident: e_1_2_9_35_1 doi: 10.1002/cjoc.202300250 – volume: 63 year: 2024 ident: e_1_2_9_43_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_9_80_1 doi: 10.1016/j.apcatb.2021.120337 – ident: e_1_2_9_69_1 doi: 10.1021/jacs.3c14254 – ident: e_1_2_9_78_1 doi: 10.1002/anie.202405451 – ident: e_1_2_9_64_1 doi: 10.1038/s41929-023-00972-x – ident: e_1_2_9_48_1 doi: 10.1021/jacs.9b12428 – ident: e_1_2_9_90_1 doi: 10.1021/acssuschemeng.2c07168 |
SSID | ssj0028806 |
Score | 2.4941657 |
SecondaryResourceType | review_article |
Snippet | Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous... Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202424452 |
SubjectTerms | Carbon dioxide Catalytic activity Electron transfer Hydrogen Hydrogen evolution Hydrogen peroxide hydrogen-bonding Photocatalysis Photocatalysts Porous materials porous supramolecular crystalline materials (PSCMs) Synthesis π-π stacking |
Title | Porous Supramolecular Crystalline Materials for Photocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202424452 https://www.ncbi.nlm.nih.gov/pubmed/39777838 https://www.proquest.com/docview/3175510200 https://www.proquest.com/docview/3153880610 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kF734fkSrRBA8pW320SQXoZQWFVqKWugt7GY3CGJS2uSgv96dpIlWD4IeQ7LsZnZm9tvdmW8Arqj0kKWdOq7x_g6LOXf8KPKdmHox9yRhsshbG427t1N2P-OzL1n8JT9EfeCGllH4azRwIZftT9JQzMA2-ztMb2AcnTAGbCEqeqj5o4hRzjK9iFIHq9BXrI0d0l5vvr4q_YCa68i1WHqGOyCqQZcRJy-tPJOt6P0bn-N__moXtle41O6VirQHGzrZh81-VQ7uAG4m6SLNl_ZjPl-I16qort1fvBl8icTe2h6JrNRn2yBhe_KcZmlxOoSkJ4cwHQ6e-rfOqviCE1GzDXNcX5DApb4invQ09QxOETTmSgVBXFzOcdpR0myvFFHSd1ksI-IKP-jIwJVRV9EjaCRpok_A9hThmvOu0pQzJYWgkhEtmcCIHMmYBdeV8MN5ybERlmzKJER5hLU8LGhWcxOubG0ZIgIynsWYuwWX9WsjHbz6EIk2sjHfcGS9MVjRguNyTuuuEAJ7PvUtIMXM_DKGsDe-G9RPp39pdAZbBMsIF2GBTWhki1yfG2yTyYtCfz8Ach7udQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kHurF9yM-Iwieos0-muQilGpp1RZRC97CbnaDICalJgf99e4kTaR6EPQYkmU3szOz3-7OfANwQqWHLO3UcY33d1jMueNHke_E1Iu5JwmTRd7acNTuj9n1E6-iCTEXpuSHqA_c0DIKf40GjgfS51-soZiCbTZ4mN_AuPHCi1jWG-nzL-9rBili1LNMMKLUwTr0FW9ji5zPt59fl36AzXnsWiw-vRWQ1bDLmJOXszyTZ9HHN0bHf_3XKizPoKndKXVpDRZ0sg7NblURbgMu7tJpmr_ZD_lkKl6rurp2d_puICZye2t7KLJSpW0Dhu275zRLiwMi5D3ZhHHv6rHbd2b1F5yImp2Y4_qCBC71FfGkp6lnoIqgMVcqCOLifo7TlpJmh6WIkr7LYhkRV_hBSwaujNqKbkEjSRO9A7anCNect5WmnCkpBJWMaMkEBuVIxiw4raQfTkqajbAkVCYhyiOs5WHBfjU54czc3kIEQca5GIu34Lh-baSDtx8i0UY25huOxDcGLlqwXU5q3RWiYM-nvgWkmJpfxhB2RoOr-mn3L42OoNl_HN6Gt4PRzR4sEawqXEQJ7kMjm-b6wECdTB4WyvwJa1DykQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EQb34fkSrRhA8pW32kcdFKH3Qqi1FLfQWdrMbBLEpaXrQX-9u0kSrB0GPIVl2Mzsz--3uzDcAV5i7mqUdW7by_haJKLW8MPSsCLsRdTkiPMtb6w-c7ojcjun4SxZ_zg9RHrhpy8j8tTbwqYhqn6ShOgNb7e90egOhygmvEafu6-INrYeSQAop7czzizC2dBn6graxjmrL7ZeXpR9Ycxm6ZmtPZxtYMeo85OSlOk95NXz_Ruj4n9_aga0FMDUbuSbtwoqc7MFGs6gHtw83wziJ5zPzcT5N2GtRVddsJm8KYGpmb2n2WZortKmgsDl8jtM4Ox7SrCcHMOq0n5pda1F9wQqx2odZtseQb2NPIJe7ErsKqDAcUSF8P8pu5yiuC672VwIJ7tkk4iGymefXuW_z0BH4EFYn8UQeg-kKRCWljpCYEsEZw5wgyQnTITmcEAOuC-EH05xkI8jplFGg5RGU8jCgUsxNsDC2WaAhkHItyt4NuCxfK-nouw82kUo26huqaW8UWDTgKJ_TsiuNgV0PewagbGZ-GUPQGPTa5dPJXxpdwPqw1Qnue4O7U9hEuqRwFiJYgdU0mcszhXNSfp6p8geWnvFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Supramolecular+Crystalline+Materials+for+Photocatalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gong%2C+Yun%E2%80%90Nan&rft.au=Zhong%2C+Di%E2%80%90Chang&rft.au=Lu%2C+Tong%E2%80%90Bu&rft.date=2025-03-10&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202424452&rft.externalDBID=10.1002%252Fanie.202424452&rft.externalDocID=ANIE202424452 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |