Porous Supramolecular Crystalline Materials for Photocatalysis

Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions. Benefiting from the unique features of...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 11; pp. e202424452 - n/a
Main Authors Gong, Yun‐Nan, Zhong, Di‐Chang, Lu, Tong‐Bu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.03.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions. Benefiting from the unique features of mild synthesis conditions, well‐defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen‐bonding and π‐π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure‐performance relationship. At the end, we discuss the challenges and perspectives in developing high‐performance PSCM‐based photocatalysts. Porous supramolecular crystalline materials (PSCMs) are a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions, which have shown great potential in photocatalysis by virtue of their unique features of well‐defined and synthetically tailorable structures, mild synthesis conditions, easy healing and regeneration. In this Minireview, we summarize the syntheses, structural features and photocatalytic applications for PSCMs, including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation. The challenges and opportunities for developing high‐performance PSCMs‐based photocatalysts are also put forward.
AbstractList Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions. Benefiting from the unique features of mild synthesis conditions, well‐defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen‐bonding and π‐π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure‐performance relationship. At the end, we discuss the challenges and perspectives in developing high‐performance PSCM‐based photocatalysts.
Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Benefiting from the unique features of mild synthesis conditions, well-defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen-bonding and π-π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure-performance relationship. At the end, we discuss the challenges and perspectives in developing high-performance PSCM-based photocatalysts.Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Benefiting from the unique features of mild synthesis conditions, well-defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen-bonding and π-π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure-performance relationship. At the end, we discuss the challenges and perspectives in developing high-performance PSCM-based photocatalysts.
Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Benefiting from the unique features of mild synthesis conditions, well-defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen-bonding and π-π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO reduction, H evolution, H O production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure-performance relationship. At the end, we discuss the challenges and perspectives in developing high-performance PSCM-based photocatalysts.
Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions. Benefiting from the unique features of mild synthesis conditions, well‐defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen‐bonding and π‐π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure‐performance relationship. At the end, we discuss the challenges and perspectives in developing high‐performance PSCM‐based photocatalysts. Porous supramolecular crystalline materials (PSCMs) are a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π‐π stacking and other non‐covalent interactions, which have shown great potential in photocatalysis by virtue of their unique features of well‐defined and synthetically tailorable structures, mild synthesis conditions, easy healing and regeneration. In this Minireview, we summarize the syntheses, structural features and photocatalytic applications for PSCMs, including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation. The challenges and opportunities for developing high‐performance PSCMs‐based photocatalysts are also put forward.
Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen‐bonding, π ‐ π stacking and other non‐covalent interactions. Benefiting from the unique features of mild synthesis conditions, well‐defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen‐bonding and π‐π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO 2 reduction, H 2 evolution, H 2 O 2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure‐performance relationship. At the end, we discuss the challenges and perspectives in developing high‐performance PSCM‐based photocatalysts.
Author Gong, Yun‐Nan
Zhong, Di‐Chang
Lu, Tong‐Bu
Author_xml – sequence: 1
  givenname: Yun‐Nan
  surname: Gong
  fullname: Gong, Yun‐Nan
  organization: Tianjin University of Technology
– sequence: 2
  givenname: Di‐Chang
  orcidid: 0000-0002-5504-249X
  surname: Zhong
  fullname: Zhong, Di‐Chang
  email: dczhong@email.tjut.edu.cn
  organization: Tianjin University of Technology
– sequence: 3
  givenname: Tong‐Bu
  surname: Lu
  fullname: Lu, Tong‐Bu
  organization: Tianjin University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39777838$$D View this record in MEDLINE/PubMed
BookMark eNqF0M1LwzAYBvAgE_ehV49S8OKlMx_NklyEMaYOpg7Uc0jbFDvSZiYt0v_elM0JXjwl8P6e8OYZg0Ftaw3AJYJTBCG-VXWppxjiBCcJxSdghChGMWGMDMI9ISRmnKIhGHu_DZ5zODsDQyIYY5zwEbjbWGdbH722O6cqa3TWGuWihet8o4wpax09qUa7UhkfFdZFmw_b2EyFYedLfw5OizDRF4dzAt7vl2-Lx3j98rBazNdxRjDHMeIKC0R4jlnKNGE8mSlS0DwXouCYwIQSmKeJoDnOU46SIs0wUlzAVKA0m-VkAm727-6c_Wy1b2RV-kwbo2od1pcEUdL_DcFAr__QrW1dHbYLilGKIIa9ujqoNq10LneurJTr5E8zAUz3IHPWe6eLI0FQ9tXLvnp5rD4ExD7wVRrd_aPl_Hm1_M1-AzAchbc
Cites_doi 10.1039/D3CS00205E
10.1039/C9CS90020A
10.1039/D2TA09375H
10.1002/anie.201410077
10.1126/science.aay1844
10.1002/anie.202211031
10.1021/acs.chemrev.2c00759
10.1002/smll.202104561
10.31635/ccschem.021.202100910
10.1021/acsanm.9b01787
10.1002/anie.202310470
10.1038/s41467-024-49865-y
10.1038/s41558-021-01001-0
10.1021/jacs.5b05644
10.1021/jacs.3c10661
10.1039/C9CS00377K
10.1021/acs.accounts.2c00686
10.1021/ja2066016
10.1002/anie.202217565
10.1021/accountsmr.0c00019
10.1039/D1CS01008E
10.1039/D2NR02585J
10.1021/jacs.2c04670
10.1002/anie.202203955
10.1021/acs.chemrev.8b00400
10.1021/jacs.9b03766
10.1021/acs.inorgchem.4c02886
10.1021/acsami.2c02917
10.1016/j.chempr.2022.06.015
10.1073/pnas.2010733117
10.1021/jacs.1c07378
10.31635/ccschem.024.202404675
10.1002/anie.202319815
10.1021/acs.accounts.3c00751
10.1016/j.jcis.2024.10.092
10.1021/acs.inorgchem.3c02051
10.1039/c2cc16946k
10.1021/acsami.4c06992
10.1126/sciadv.aax9976
10.1021/jacs.0c05277
10.1002/solr.201900487
10.1016/j.jhazmat.2023.132179
10.1016/j.ccr.2018.03.015
10.1016/j.ccr.2024.215760
10.1002/adfm.202300954
10.1039/D4TC03810J
10.1002/anie.201906890
10.3390/molecules28196850
10.1039/D1MA01173A
10.1039/C9CS00920E
10.1016/j.jcat.2021.09.027
10.1021/acsami.2c04746
10.1016/j.cej.2024.156059
10.1021/ja4129795
10.1002/anie.202115854
10.1016/j.jes.2024.05.015
10.1002/anie.202016710
10.1007/s40843-023-2834-1
10.1021/jacs.0c06473
10.1016/j.mattod.2024.04.002
10.1002/anie.202307160
10.1021/jacs.3c10492
10.1002/anie.201805614
10.1021/jacs.2c02146
10.1002/adfm.202207145
10.1126/science.aaf5039
10.1002/anie.202211482
10.1038/s41586-020-2738-2
10.1038/s41560-023-01218-7
10.1021/acs.chemrev.2c00200
10.1039/D1MH01360B
10.1016/j.jphotochem.2024.115946
10.1038/s41586-021-03907-3
10.1021/jacs.1c11987
10.1021/jacs.1c01161
10.1002/anie.202312306
10.1039/D0CS01134G
10.1073/pnas.2118278119
10.1021/jacs.3c07047
10.1002/adma.201900709
10.1002/anie.201600395
10.1002/anie.202413131
10.1002/anie.202408186
10.1016/S0010-8545(03)00065-1
10.1002/anie.202412777
10.1021/acs.chemmater.2c01476
10.1021/acs.cgd.3c00032
10.1002/anie.201916154
10.1002/smll.202207507
10.1002/cjoc.202300250
10.1016/j.apcatb.2021.120337
10.1021/jacs.3c14254
10.1002/anie.202405451
10.1038/s41929-023-00972-x
10.1021/jacs.9b12428
10.1021/acssuschemeng.2c07168
ContentType Journal Article
Copyright 2025 Wiley-VCH GmbH
2025 Wiley-VCH GmbH.
Copyright_xml – notice: 2025 Wiley-VCH GmbH
– notice: 2025 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202424452
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 39777838
10_1002_anie_202424452
ANIE202424452
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22271218
– fundername: National Natural Science Foundation of China
  grantid: 22271218
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3282-18a29138d27b7e37846a3f5dd99f82304530db495d2db814fbc21a890b91bc6d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:12:17 EDT 2025
Tue Jul 29 08:10:32 EDT 2025
Mon Jul 21 05:18:16 EDT 2025
Thu Jul 31 00:57:26 EDT 2025
Sun Jul 06 04:45:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords porous supramolecular crystalline materials (PSCMs)
photocatalysis
π-π stacking
hydrogen-bonding
Language English
License 2025 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3282-18a29138d27b7e37846a3f5dd99f82304530db495d2db814fbc21a890b91bc6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5504-249X
PMID 39777838
PQID 3175510200
PQPubID 946352
PageCount 15
ParticipantIDs proquest_miscellaneous_3153880610
proquest_journals_3175510200
pubmed_primary_39777838
crossref_primary_10_1002_anie_202424452
wiley_primary_10_1002_anie_202424452_ANIE202424452
PublicationCentury 2000
PublicationDate March 10, 2025
PublicationDateYYYYMMDD 2025-03-10
PublicationDate_xml – month: 03
  year: 2025
  text: March 10, 2025
  day: 10
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2025; 152
2023; 33
2023; 6
2023; 8
2023; 145
2024; 507
2019; 58
2019; 366
2020; 59
2024; 75
2024; 146
2014; 136
2025; 679
2022; 122
2023; 62
2020; 6
2020; 4
2020; 1
2023; 23
2024; 6
2015; 137
2023; 28
2021; 598
2022; 34
2020; 49
2024; 63
2016; 352
2019; 119
2024; 67
2022; 32
2023; 459
2022; 406
2003; 242
2023; 11
2021; 3
2019; 31
2020; 142
2019; 2
2022; 51
2023; 123
2023; 19
2015; 54
2024; 53
2024; 12
2024; 57
2020; 586
2021; 143
2022; 119
2021; 50
2024; 15
2019; 141
2024; 16
2025; 458
2011; 133
2016; 55
2022; 144
2023; 41
2021; 11
2022; 3
2022; 61
2022; 8
2019; 48
2022; 9
2020; 117
2022; 14
2019; 378
2021; 296
2022; 55
2012; 48
2024; 499
2021; 60
2022; 18
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
Chu D. (e_1_2_9_50_1) 2021; 3
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_9_1
Shang Y. (e_1_2_9_43_1) 2024; 63
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
Zhen C. (e_1_2_9_10_1) 2024; 146
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_3_1
Gao R. (e_1_2_9_82_1) 2024; 63
Mei J.-H. (e_1_2_9_61_1) 2024; 63
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 3
  start-page: 3680
  year: 2022
  end-page: 3708
  publication-title: Mater Adv
– volume: 142
  start-page: 12478
  year: 2020
  end-page: 12485
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 7719
  year: 2019
  end-page: 7727
  publication-title: ACS Appl. Nano Mater.
– volume: 16
  start-page: 33657
  year: 2024
  end-page: 33668
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 4825
  year: 2023
  end-page: 4835
  publication-title: Cryst. Growth Des.
– volume: 137
  start-page: 9963
  year: 2015
  end-page: 9970
  publication-title: J. Am. Chem. Soc.
– volume: 499
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 21050
  year: 2022
  end-page: 21058
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 458
  year: 2025
  publication-title: J. Photochem. Photobiol. A
– volume: 136
  start-page: 547
  year: 2014
  end-page: 549
  publication-title: J. Am. Chem. Soc.
– volume: 406
  start-page: 19
  year: 2022
  end-page: 27
  publication-title: J. Catal.
– volume: 55
  start-page: 3752
  year: 2022
  end-page: 3766
  publication-title: Acc. Chem. Res.
– volume: 679
  start-page: 91
  year: 2025
  end-page: 101
  publication-title: J. Colloid Interface Sci.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 119
  start-page: 3962
  year: 2019
  end-page: 4179
  publication-title: Chem. Rev.
– volume: 6
  start-page: 3030
  year: 2024
  end-page: 3040
  publication-title: CCS Chem.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 77
  year: 2020
  end-page: 87
  publication-title: Acc. Mater. Res.
– volume: 50
  start-page: 6914
  year: 2021
  end-page: 6949
  publication-title: Chem. Soc. Rev.
– volume: 133
  start-page: 14570
  year: 2011
  end-page: 14573
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 7001
  year: 2022
  end-page: 7009
  publication-title: J. Am. Chem. Soc.
– volume: 586
  start-page: 549
  year: 2020
  end-page: 554
  publication-title: Nature
– volume: 8
  start-page: 2114
  year: 2022
  end-page: 2135
  publication-title: Chem
– volume: 14
  start-page: 9762
  year: 2022
  end-page: 9770
  publication-title: Nanoscale
– volume: 9
  start-page: 731
  year: 2022
  end-page: 739
  publication-title: Mater. Horiz.
– volume: 14
  start-page: 19623
  year: 2022
  end-page: 19628
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 2089
  year: 2012
  end-page: 2091
  publication-title: Chem. Commun.
– volume: 3
  start-page: 1692
  year: 2021
  end-page: 1700
  publication-title: CCS Chem.
– volume: 145
  start-page: 18148
  year: 2023
  end-page: 18159
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 10933
  year: 2018
  end-page: 10937
  publication-title: Angew. Chem. Int. Ed.
– volume: 51
  start-page: 6704
  year: 2022
  end-page: 6737
  publication-title: Chem. Soc. Rev.
– volume: 123
  start-page: 5225
  year: 2023
  end-page: 5261
  publication-title: Chem. Rev.
– volume: 49
  start-page: 6579
  year: 2020
  end-page: 6591
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 17377
  year: 2024
  end-page: 17385
  publication-title: J. Mater. Chem. C
– volume: 59
  start-page: 6082
  year: 2020
  end-page: 6089
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 122
  start-page: 16051
  year: 2022
  end-page: 16109
  publication-title: Chem. Rev.
– volume: 60
  start-page: 8983
  year: 2021
  end-page: 8989
  publication-title: Angew. Chem. Int. Ed.
– volume: 63
  start-page: 16533
  year: 2024
  end-page: 16540
  publication-title: Inorg. Chem.
– volume: 3
  start-page: 1352
  year: 2021
  end-page: 1362
  publication-title: CCS Chem.
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 1862
  year: 2019
  end-page: 1864
  publication-title: Chem. Soc. Rev.
– volume: 4
  year: 2020
  publication-title: Solar RRL
– volume: 54
  start-page: 574
  year: 2015
  end-page: 577
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 6850
  year: 2023
  publication-title: Molecules
– volume: 242
  start-page: 97
  year: 2003
  end-page: 113
  publication-title: Coord. Chem. Rev.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 62
  start-page: 15550
  year: 2023
  end-page: 15564
  publication-title: Inorg. Chem.
– volume: 507
  year: 2024
  publication-title: Coord. Chem. Rev.
– volume: 152
  start-page: 287
  year: 2025
  end-page: 301
  publication-title: J. Environ. Sci.
– volume: 459
  year: 2023
  publication-title: J. Hazard. Mater.
– volume: 598
  start-page: 304
  year: 2021
  end-page: 307
  publication-title: Nature
– volume: 58
  start-page: 12392
  year: 2019
  end-page: 12397
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 14924
  year: 2016
  end-page: 14950
  publication-title: Angew. Chem. Int. Ed.
– volume: 143
  start-page: 10920
  year: 2021
  end-page: 10929
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 574
  year: 2023
  end-page: 584
  publication-title: Nat. Catal.
– volume: 142
  start-page: 14399
  year: 2020
  end-page: 14416
  publication-title: J. Am. Chem. Soc.
– volume: 146
  start-page: 2275
  year: 2024
  end-page: 2285
  publication-title: J. Am. Chem. Soc.
– volume: 378
  start-page: 17
  year: 2019
  end-page: 31
  publication-title: Coord. Chem. Rev.
– volume: 15
  start-page: 5469
  year: 2024
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 141
  start-page: 8737
  year: 2019
  end-page: 8740
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 10823
  year: 2022
  end-page: 10831
  publication-title: Chem. Mater.
– volume: 296
  year: 2021
  publication-title: Appl. Catal. B, Environ.
– volume: 144
  start-page: 13319
  year: 2022
  end-page: 13326
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 20157
  year: 2021
  end-page: 20165
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 870
  year: 2024
  end-page: 883
  publication-title: Acc. Chem. Res.
– volume: 117
  start-page: 20397
  year: 2020
  end-page: 20403
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 197
  year: 2021
  end-page: 199
  publication-title: Nat. Clim. Change
– volume: 352
  start-page: 1210
  year: 2016
  end-page: 1213
  publication-title: Science
– volume: 144
  start-page: 1861
  year: 2022
  end-page: 1871
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 4389
  year: 2023
  end-page: 4397
  publication-title: ACS Sustainable Chem. Eng.
– volume: 75
  start-page: 244
  year: 2024
  end-page: 258
  publication-title: Mater. Today
– volume: 146
  start-page: 627
  year: 2024
  end-page: 634
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 3433
  year: 2023
  end-page: 3446
  publication-title: Chin. J. Chem.
– volume: 146
  start-page: 28482
  year: 2024
  end-page: 28490
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 12521
  year: 2023
  end-page: 12538
  publication-title: J. Mater. Chem. A
– volume: 145
  start-page: 28166
  year: 2023
  end-page: 28175
  publication-title: J. Am. Chem. Soc.
– volume: 366
  start-page: 226
  year: 2019
  end-page: 231
  publication-title: Science
– volume: 53
  start-page: 3002
  year: 2024
  end-page: 3035
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 361
  year: 2023
  end-page: 371
  publication-title: Nat. Energy
– volume: 142
  start-page: 633
  year: 2020
  end-page: 640
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 5454
  year: 2019
  end-page: 5487
  publication-title: Chem. Soc. Rev.
– volume: 67
  start-page: 1846
  year: 2024
  end-page: 1850
  publication-title: Sci. China Mater.
– ident: e_1_2_9_63_1
  doi: 10.1039/D3CS00205E
– ident: e_1_2_9_3_1
  doi: 10.1039/C9CS90020A
– ident: e_1_2_9_18_1
  doi: 10.1039/D2TA09375H
– ident: e_1_2_9_47_1
  doi: 10.1002/anie.201410077
– volume: 146
  start-page: 28482
  year: 2024
  ident: e_1_2_9_10_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_9_84_1
  doi: 10.1126/science.aay1844
– ident: e_1_2_9_77_1
  doi: 10.1002/anie.202211031
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.chemrev.2c00759
– ident: e_1_2_9_83_1
  doi: 10.1002/smll.202104561
– ident: e_1_2_9_27_1
  doi: 10.31635/ccschem.021.202100910
– ident: e_1_2_9_97_1
  doi: 10.1021/acsanm.9b01787
– ident: e_1_2_9_13_1
  doi: 10.1002/anie.202310470
– ident: e_1_2_9_49_1
  doi: 10.1038/s41467-024-49865-y
– ident: e_1_2_9_1_1
  doi: 10.1038/s41558-021-01001-0
– ident: e_1_2_9_46_1
  doi: 10.1021/jacs.5b05644
– ident: e_1_2_9_76_1
  doi: 10.1021/jacs.3c10661
– ident: e_1_2_9_11_1
  doi: 10.1039/C9CS00377K
– ident: e_1_2_9_21_1
  doi: 10.1021/acs.accounts.2c00686
– ident: e_1_2_9_45_1
  doi: 10.1021/ja2066016
– ident: e_1_2_9_14_1
  doi: 10.1002/anie.202217565
– ident: e_1_2_9_23_1
  doi: 10.1021/accountsmr.0c00019
– ident: e_1_2_9_8_1
  doi: 10.1039/D1CS01008E
– ident: e_1_2_9_92_1
  doi: 10.1039/D2NR02585J
– ident: e_1_2_9_26_1
  doi: 10.1021/jacs.2c04670
– ident: e_1_2_9_73_1
  doi: 10.1002/anie.202203955
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.chemrev.8b00400
– volume: 63
  year: 2024
  ident: e_1_2_9_82_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_9_66_1
  doi: 10.1021/jacs.9b03766
– ident: e_1_2_9_91_1
  doi: 10.1021/acs.inorgchem.4c02886
– ident: e_1_2_9_75_1
  doi: 10.1021/acsami.2c02917
– ident: e_1_2_9_38_1
  doi: 10.1016/j.chempr.2022.06.015
– ident: e_1_2_9_51_1
  doi: 10.1073/pnas.2010733117
– ident: e_1_2_9_89_1
  doi: 10.1021/jacs.1c07378
– ident: e_1_2_9_15_1
  doi: 10.31635/ccschem.024.202404675
– ident: e_1_2_9_28_1
  doi: 10.1002/anie.202319815
– ident: e_1_2_9_7_1
  doi: 10.1021/acs.accounts.3c00751
– ident: e_1_2_9_81_1
  doi: 10.1016/j.jcis.2024.10.092
– ident: e_1_2_9_94_1
  doi: 10.1021/acs.inorgchem.3c02051
– ident: e_1_2_9_40_1
  doi: 10.1039/c2cc16946k
– ident: e_1_2_9_101_1
  doi: 10.1021/acsami.4c06992
– ident: e_1_2_9_32_1
  doi: 10.1126/sciadv.aax9976
– ident: e_1_2_9_57_1
  doi: 10.1021/jacs.0c05277
– ident: e_1_2_9_4_1
  doi: 10.1002/solr.201900487
– ident: e_1_2_9_100_1
  doi: 10.1016/j.jhazmat.2023.132179
– ident: e_1_2_9_95_1
  doi: 10.1016/j.ccr.2018.03.015
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ccr.2024.215760
– ident: e_1_2_9_79_1
  doi: 10.1002/adfm.202300954
– ident: e_1_2_9_29_1
  doi: 10.1039/D4TC03810J
– ident: e_1_2_9_70_1
  doi: 10.1002/anie.201906890
– ident: e_1_2_9_87_1
  doi: 10.3390/molecules28196850
– ident: e_1_2_9_24_1
  doi: 10.1039/D1MA01173A
– ident: e_1_2_9_67_1
  doi: 10.1039/C9CS00920E
– ident: e_1_2_9_93_1
  doi: 10.1016/j.jcat.2021.09.027
– ident: e_1_2_9_60_1
  doi: 10.1021/acsami.2c04746
– volume: 63
  year: 2024
  ident: e_1_2_9_61_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_9_55_1
  doi: 10.1016/j.cej.2024.156059
– ident: e_1_2_9_56_1
  doi: 10.1021/ja4129795
– ident: e_1_2_9_72_1
  doi: 10.1002/anie.202115854
– ident: e_1_2_9_99_1
  doi: 10.1016/j.jes.2024.05.015
– ident: e_1_2_9_65_1
  doi: 10.1002/anie.202016710
– ident: e_1_2_9_19_1
  doi: 10.1007/s40843-023-2834-1
– ident: e_1_2_9_22_1
  doi: 10.1021/jacs.0c06473
– ident: e_1_2_9_33_1
  doi: 10.1016/j.mattod.2024.04.002
– ident: e_1_2_9_36_1
  doi: 10.1002/anie.202307160
– ident: e_1_2_9_42_1
  doi: 10.1021/jacs.3c10492
– volume: 3
  start-page: 1692
  year: 2021
  ident: e_1_2_9_50_1
  publication-title: CCS Chem.
– ident: e_1_2_9_34_1
  doi: 10.1002/anie.201805614
– ident: e_1_2_9_41_1
  doi: 10.1021/jacs.2c02146
– ident: e_1_2_9_37_1
  doi: 10.1002/adfm.202207145
– ident: e_1_2_9_5_1
  doi: 10.1126/science.aaf5039
– ident: e_1_2_9_74_1
  doi: 10.1002/anie.202211482
– ident: e_1_2_9_17_1
  doi: 10.1038/s41586-020-2738-2
– ident: e_1_2_9_86_1
  doi: 10.1038/s41560-023-01218-7
– ident: e_1_2_9_6_1
  doi: 10.1021/acs.chemrev.2c00200
– ident: e_1_2_9_58_1
  doi: 10.1039/D1MH01360B
– ident: e_1_2_9_98_1
  doi: 10.1016/j.jphotochem.2024.115946
– ident: e_1_2_9_2_1
  doi: 10.1038/s41586-021-03907-3
– ident: e_1_2_9_16_1
  doi: 10.1021/jacs.1c11987
– ident: e_1_2_9_59_1
  doi: 10.1021/jacs.1c01161
– ident: e_1_2_9_39_1
  doi: 10.1002/anie.202312306
– ident: e_1_2_9_62_1
  doi: 10.1039/D0CS01134G
– ident: e_1_2_9_20_1
  doi: 10.1073/pnas.2118278119
– ident: e_1_2_9_71_1
  doi: 10.1021/jacs.3c07047
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.201900709
– ident: e_1_2_9_9_1
  doi: 10.1002/anie.201600395
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.202413131
– ident: e_1_2_9_85_1
  doi: 10.1002/anie.202408186
– ident: e_1_2_9_88_1
  doi: 10.1016/S0010-8545(03)00065-1
– ident: e_1_2_9_31_1
  doi: 10.1002/anie.202412777
– ident: e_1_2_9_54_1
  doi: 10.1021/acs.chemmater.2c01476
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.cgd.3c00032
– ident: e_1_2_9_96_1
  doi: 10.1002/anie.201916154
– ident: e_1_2_9_52_1
  doi: 10.1002/smll.202207507
– ident: e_1_2_9_35_1
  doi: 10.1002/cjoc.202300250
– volume: 63
  year: 2024
  ident: e_1_2_9_43_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_9_80_1
  doi: 10.1016/j.apcatb.2021.120337
– ident: e_1_2_9_69_1
  doi: 10.1021/jacs.3c14254
– ident: e_1_2_9_78_1
  doi: 10.1002/anie.202405451
– ident: e_1_2_9_64_1
  doi: 10.1038/s41929-023-00972-x
– ident: e_1_2_9_48_1
  doi: 10.1021/jacs.9b12428
– ident: e_1_2_9_90_1
  doi: 10.1021/acssuschemeng.2c07168
SSID ssj0028806
Score 2.4941657
SecondaryResourceType review_article
Snippet Porous supramolecular crystalline materials (PSCMs), such as hydrogen‐bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous...
Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202424452
SubjectTerms Carbon dioxide
Catalytic activity
Electron transfer
Hydrogen
Hydrogen evolution
Hydrogen peroxide
hydrogen-bonding
Photocatalysis
Photocatalysts
Porous materials
porous supramolecular crystalline materials (PSCMs)
Synthesis
π-π stacking
Title Porous Supramolecular Crystalline Materials for Photocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202424452
https://www.ncbi.nlm.nih.gov/pubmed/39777838
https://www.proquest.com/docview/3175510200
https://www.proquest.com/docview/3153880610
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kF734fkSrRBA8pW320SQXoZQWFVqKWugt7GY3CGJS2uSgv96dpIlWD4IeQ7LsZnZm9tvdmW8Arqj0kKWdOq7x_g6LOXf8KPKdmHox9yRhsshbG427t1N2P-OzL1n8JT9EfeCGllH4azRwIZftT9JQzMA2-ztMb2AcnTAGbCEqeqj5o4hRzjK9iFIHq9BXrI0d0l5vvr4q_YCa68i1WHqGOyCqQZcRJy-tPJOt6P0bn-N__moXtle41O6VirQHGzrZh81-VQ7uAG4m6SLNl_ZjPl-I16qort1fvBl8icTe2h6JrNRn2yBhe_KcZmlxOoSkJ4cwHQ6e-rfOqviCE1GzDXNcX5DApb4invQ09QxOETTmSgVBXFzOcdpR0myvFFHSd1ksI-IKP-jIwJVRV9EjaCRpok_A9hThmvOu0pQzJYWgkhEtmcCIHMmYBdeV8MN5ybERlmzKJER5hLU8LGhWcxOubG0ZIgIynsWYuwWX9WsjHbz6EIk2sjHfcGS9MVjRguNyTuuuEAJ7PvUtIMXM_DKGsDe-G9RPp39pdAZbBMsIF2GBTWhki1yfG2yTyYtCfz8Ach7udQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kHurF9yM-Iwieos0-muQilGpp1RZRC97CbnaDICalJgf99e4kTaR6EPQYkmU3szOz3-7OfANwQqWHLO3UcY33d1jMueNHke_E1Iu5JwmTRd7acNTuj9n1E6-iCTEXpuSHqA_c0DIKf40GjgfS51-soZiCbTZ4mN_AuPHCi1jWG-nzL-9rBili1LNMMKLUwTr0FW9ji5zPt59fl36AzXnsWiw-vRWQ1bDLmJOXszyTZ9HHN0bHf_3XKizPoKndKXVpDRZ0sg7NblURbgMu7tJpmr_ZD_lkKl6rurp2d_puICZye2t7KLJSpW0Dhu275zRLiwMi5D3ZhHHv6rHbd2b1F5yImp2Y4_qCBC71FfGkp6lnoIqgMVcqCOLifo7TlpJmh6WIkr7LYhkRV_hBSwaujNqKbkEjSRO9A7anCNect5WmnCkpBJWMaMkEBuVIxiw4raQfTkqajbAkVCYhyiOs5WHBfjU54czc3kIEQca5GIu34Lh-baSDtx8i0UY25huOxDcGLlqwXU5q3RWiYM-nvgWkmJpfxhB2RoOr-mn3L42OoNl_HN6Gt4PRzR4sEawqXEQJ7kMjm-b6wECdTB4WyvwJa1DykQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EQb34fkSrRhA8pW32kcdFKH3Qqi1FLfQWdrMbBLEpaXrQX-9u0kSrB0GPIVl2Mzsz--3uzDcAV5i7mqUdW7by_haJKLW8MPSsCLsRdTkiPMtb6w-c7ojcjun4SxZ_zg9RHrhpy8j8tTbwqYhqn6ShOgNb7e90egOhygmvEafu6-INrYeSQAop7czzizC2dBn6graxjmrL7ZeXpR9Ycxm6ZmtPZxtYMeo85OSlOk95NXz_Ruj4n9_aga0FMDUbuSbtwoqc7MFGs6gHtw83wziJ5zPzcT5N2GtRVddsJm8KYGpmb2n2WZortKmgsDl8jtM4Ox7SrCcHMOq0n5pda1F9wQqx2odZtseQb2NPIJe7ErsKqDAcUSF8P8pu5yiuC672VwIJ7tkk4iGymefXuW_z0BH4EFYn8UQeg-kKRCWljpCYEsEZw5wgyQnTITmcEAOuC-EH05xkI8jplFGg5RGU8jCgUsxNsDC2WaAhkHItyt4NuCxfK-nouw82kUo26huqaW8UWDTgKJ_TsiuNgV0PewagbGZ-GUPQGPTa5dPJXxpdwPqw1Qnue4O7U9hEuqRwFiJYgdU0mcszhXNSfp6p8geWnvFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Supramolecular+Crystalline+Materials+for+Photocatalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gong%2C+Yun%E2%80%90Nan&rft.au=Zhong%2C+Di%E2%80%90Chang&rft.au=Lu%2C+Tong%E2%80%90Bu&rft.date=2025-03-10&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202424452&rft.externalDBID=10.1002%252Fanie.202424452&rft.externalDocID=ANIE202424452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon