Modulated Synthesis of Self‐Standing Covalent Organic Framework Films
The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self‐standing COF films with good crystallinity and tunable thickness is reported. As compared with the non‐modu...
Saved in:
Published in | Chemistry : a European journal Vol. 28; no. 46; pp. e202200961 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
16.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self‐standing COF films with good crystallinity and tunable thickness is reported. As compared with the non‐modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self‐standing LZU‐8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self‐standing COF thin films for practical applications.
A modulated strategy was developed for the synthesis of self‐standing COF films with good crystallinity and tunable thickness. As compared with the non‐modulated method, the modulated approach changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times. |
---|---|
AbstractList | The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, we report a modulated strategy for the facile synthesis of self-standing COF films with good crystallinity and tunable thickness. As compared with the non-modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self-standing COF films with improved mechanical properties. The Young's modulus of the self-standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self-standing LZU-8 film can be used as a membrane for efficient removal of 99% mercury ions from aqueous solution. Our results open up a new approach to prepare self-standing COF thin films for practical applications. The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self‐standing COF films with good crystallinity and tunable thickness is reported. As compared with the non‐modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self‐standing LZU‐8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self‐standing COF thin films for practical applications. A modulated strategy was developed for the synthesis of self‐standing COF films with good crystallinity and tunable thickness. As compared with the non‐modulated method, the modulated approach changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times. The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self‐standing COF films with good crystallinity and tunable thickness is reported. As compared with the non‐modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self‐standing LZU‐8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self‐standing COF thin films for practical applications. The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self-standing COF films with good crystallinity and tunable thickness is reported. As compared with the non-modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self-standing COF films with improved mechanical properties. The Young's modulus of the self-standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self-standing LZU-8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self-standing COF thin films for practical applications.The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self-standing COF films with good crystallinity and tunable thickness is reported. As compared with the non-modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self-standing COF films with improved mechanical properties. The Young's modulus of the self-standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self-standing LZU-8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self-standing COF thin films for practical applications. |
Author | Wang, Yang Yang, Tong Guo, Bei Zhang, Zhi‐Cong Wang, Wei Ding, San‐Yuan Liang, Lin |
Author_xml | – sequence: 1 givenname: Yang surname: Wang fullname: Wang, Yang organization: Lanzhou University – sequence: 2 givenname: Bei surname: Guo fullname: Guo, Bei organization: Lanzhou University – sequence: 3 givenname: Tong surname: Yang fullname: Yang, Tong organization: Lanzhou University – sequence: 4 givenname: Zhi‐Cong surname: Zhang fullname: Zhang, Zhi‐Cong organization: Lanzhou University – sequence: 5 givenname: Lin surname: Liang fullname: Liang, Lin organization: Lanzhou University – sequence: 6 givenname: San‐Yuan orcidid: 0000-0003-2160-4092 surname: Ding fullname: Ding, San‐Yuan email: dingsy@lzu.edu.cn organization: Lanzhou University – sequence: 7 givenname: Wei surname: Wang fullname: Wang, Wei organization: Lanzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35510482$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0btOwzAUBmALgaBcVkYUiYUlxcdunHhEFQUkEENhthznGAKJDXYC6sYj8Iw8CanKRWJh8vL95xz53ybrzjskZB_oGChlx-Ye2zGjjFEqBayREWQMUp6LbJ2MqJzkqci43CLbMT7QpeF8k2zxLAM6KdiInF35qm90h1UyX7juHmMdE2-TOTb24-193mlX1e4umfoX3aDrkutwp11tklnQLb768JjM6qaNu2TD6ibi3te7Q25npzfT8_Ty-uxienKZGs4KSLFCBGuG_RotlxUYWWLGrC5kadmEW8agQJGbSthKG4t6YgXIkgltdGmB75Cj1dyn4J97jJ1q62iwabRD30fFhKBAGc_zgR7-oQ--D264TrGcgSgAqBzUwZfqyxYr9RTqVoeF-v6iAYxXwAQfY0D7Q4CqZQdq2YH66WAIyFXgtW5w8Y9W0_PTq9_sJzD8iz0 |
Cites_doi | 10.1039/D0CS01347A 10.1002/ange.201710190 10.1038/s41467-019-10157-5 10.1002/chem.202000552 10.1021/jacs.8b08788 10.1002/anie.201510291 10.1002/ange.201811399 10.1002/ange.201607812 10.1126/sciadv.abe8706 10.1002/ange.201905713 10.1038/s41563-021-01052-w 10.1021/acs.chemrev.0c01184 10.1002/ange.201913975 10.1021/jacs.6b04669 10.1038/nchem.1628 10.1126/science.1139915 10.1038/s41467-021-26817-4 10.1002/anie.201710190 10.1021/jacs.8b07120 10.1039/C6CS00528D 10.1021/acscentsci.9b00212 10.1039/C8CS00376A 10.1002/anie.202104106 10.1039/C6TA04579K 10.1002/chem.201003211 10.1002/ange.201804753 10.1002/chem.201603547 10.1021/ja204233q 10.1038/s41557-018-0141-5 10.1038/s41467-019-14056-7 10.1039/C9CS00827F 10.1038/ncomms13461 10.1021/jacs.7b06640 10.1002/chem.201603043 10.1021/jacs.8b05136 10.1016/j.chempr.2017.12.011 10.1021/ja204728y 10.1002/ange.202014556 10.1126/science.aal1585 10.1021/acs.langmuir.8b00951 10.1021/jacs.5b10708 10.1002/anie.201913975 10.1016/j.cej.2021.129750 10.1021/jacs.9b09956 10.1002/adma.202001284 10.1021/acs.chemrev.9b00550 10.1002/anie.202105190 10.1002/anie.201804753 10.1002/adfm.201705553 10.1126/science.aat7679 10.1021/jacs.5b10754 10.1002/chem.201802564 10.1039/C2CS35072F 10.1038/s41570-017-0056 10.1002/anie.202014556 10.1002/anie.201811399 10.1002/anie.201607812 10.1126/science.1120411 10.1002/ange.201510291 10.1126/sciadv.abb1110 10.1016/j.jcis.2020.02.046 10.1021/jacs.1c02090 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202200961 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 35510482 10_1002_chem_202200961 CHEM202200961 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21871120 and 22075118 – fundername: Fundamental Research Funds for the Central Universities funderid: lzujbky-2021-sp26 and lzujbky-2021-ct21 – fundername: Gulf Research Program funderid: 2021jyjbgs-04 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3281-edee1fc355aef39d1c9be52fa89bf243f2218e67cd6fdacfea4f619b26acabf13 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 18:53:42 EDT 2025 Sun Jul 13 04:37:02 EDT 2025 Wed Feb 19 02:25:20 EST 2025 Tue Jul 01 00:43:38 EDT 2025 Wed Jan 22 16:24:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | self-standing films modulated strategy covalent organic framework morphology control |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3281-edee1fc355aef39d1c9be52fa89bf243f2218e67cd6fdacfea4f619b26acabf13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2160-4092 |
PMID | 35510482 |
PQID | 2721681109 |
PQPubID | 986340 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2660102377 proquest_journals_2721681109 pubmed_primary_35510482 crossref_primary_10_1002_chem_202200961 wiley_primary_10_1002_chem_202200961_CHEM202200961 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 16, 2022 |
PublicationDateYYYYMMDD | 2022-08-16 |
PublicationDate_xml | – month: 08 year: 2022 text: August 16, 2022 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2018; 28 2017; 1 2021; 20 2018; 140 2019; 5 2021; 421 2005; 310 2020; 120 2019; 10 2013; 42 2017; 46 2020 2020; 59 132 2020; 568 2020; 11 2021; 143 2020; 32 2021; 50 2011; 17 2019; 141 2017; 355 2013; 5 2019 2019; 58 131 2011; 133 2017; 139 2018; 24 2022; 122 2016; 4 2020; 6 2016; 7 2007; 316 2016 2016; 55 128 2021; 12 2018; 4 2018 2018; 57 130 2022; 7 2019; 48 2020; 49 2021 2021; 60 133 2020; 26 2016; 138 2018; 34 2021; 60 2018; 10 2019 2019; 131 2016; 22 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_28_3 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_47_3 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_66_1 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_64_2 e_1_2_8_62_2 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_34_2 e_1_2_8_59_2 e_1_2_8_36_3 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_57_2 e_1_2_8_55_1 e_1_2_8_30_2 e_1_2_8_51_3 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_51_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_1 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_40_3 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_63_3 e_1_2_8_65_1 e_1_2_8_40_2 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_14_2 e_1_2_8_37_1 Xu J. (e_1_2_8_63_2) 2019 e_1_2_8_31_2 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_52_3 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – volume: 141 start-page: 19831 year: 2019 end-page: 19838 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 6596 year: 2021 publication-title: Nat. Commun. – volume: 139 start-page: 13083 year: 2017 end-page: 13091 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 10094 year: 2018 end-page: 10098 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 55 128 start-page: 15604 15833 year: 2016 2016 end-page: 15608 15837 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 1551 year: 2021 end-page: 1558 publication-title: Nat. Mater. – volume: 60 133 start-page: 2 2 year: 2021 2021 end-page: 9 2 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 4510 year: 2020 end-page: 4514 publication-title: Chem. Eur. J. – volume: 22 start-page: 17784 year: 2016 end-page: 17789 publication-title: Chem. Eur. J. – volume: 361 start-page: 48 year: 2018 end-page: 52 publication-title: Science – volume: 50 start-page: 5468 year: 2021 end-page: 5516 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 1234 year: 2016 end-page: 1239 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 308 year: 2018 end-page: 317 publication-title: Chem. – volume: 568 start-page: 76 year: 2020 end-page: 80 publication-title: J. Colloid Interface Sci. – volume: 7 year: 2022 publication-title: Sci. Adv. – volume: 60 start-page: 17638 year: 2021 end-page: 17646 publication-title: Angew. Chem. Int. Ed. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 59 132 start-page: 5165 5203 year: 2020 2020 end-page: 5171 5209 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 publication-title: Chem. Rev. – volume: 34 start-page: 8731 year: 2018 end-page: 8738 publication-title: Langmuir – volume: 46 start-page: 464 year: 2017 end-page: 480 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 599 year: 2020 publication-title: Nat. Commun. – volume: 140 start-page: 12152 year: 2018 end-page: 12158 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 11433 year: 2016 end-page: 11436 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1352 year: 2019 end-page: 1359 publication-title: ACS Cent. Sci. – volume: 5 start-page: 453 year: 2013 end-page: 465 publication-title: Nat. Chem. – volume: 122 start-page: 442 year: 2022 end-page: 564 publication-title: Chem. Rev. – volume: 49 start-page: 708 year: 2020 end-page: 735 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 2101 year: 2019 publication-title: Nat. Commun. – volume: 22 start-page: 18412 year: 2016 end-page: 18418 publication-title: Chem. Eur. J. – volume: 10 start-page: 1180 year: 2018 end-page: 1189 publication-title: Nat. Chem. – volume: 143 start-page: 9415 year: 2021 end-page: 9422 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 138 start-page: 3031 year: 2016 end-page: 3037 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 13461 year: 2016 publication-title: Nat. Commun. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 publication-title: Science – volume: 57 130 start-page: 4850 4942 year: 2018 2018 end-page: 4878 4972 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 488 year: 2019 end-page: 516 publication-title: Chem. Soc. Rev. – volume: 57 130 start-page: 10894 11060 year: 2018 2018 end-page: 10898 11064 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 0056 year: 2017 publication-title: Nat. Chem. Rev. – volume: 133 start-page: 15506 year: 2011 end-page: 15513 publication-title: J. Am. Chem. Soc. – volume: 355 start-page: 923 year: 2017 end-page: 932 publication-title: Science – volume: 4 start-page: 13444 year: 2016 end-page: 13449 publication-title: J. Mater. Chem. A – volume: 60 start-page: 14875 year: 2021 end-page: 14880 publication-title: Angew. Chem. Int. Ed. – volume: 55 128 start-page: 3615 3679 year: 2016 2016 end-page: 3619 3683 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 10979 year: 2018 end-page: 10983 publication-title: Chem. Eur. J. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 133 start-page: 11478 year: 2011 end-page: 11481 publication-title: J. Am. Chem. Soc. – volume: 316 start-page: 268 year: 2007 end-page: 272 publication-title: Science – volume: 421 year: 2021 publication-title: Chem. Eng. J. – volume: 58 131 start-page: 1376 1390 year: 2019 2019 end-page: 1381 1395 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 14342 year: 2018 end-page: 14349 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 58 12193 year: 2019 2019 end-page: 12069 12197 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 6643 year: 2011 end-page: 6651 publication-title: Chem. Eur. J. – ident: e_1_2_8_14_2 doi: 10.1039/D0CS01347A – ident: e_1_2_8_37_1 – ident: e_1_2_8_9_3 doi: 10.1002/ange.201710190 – ident: e_1_2_8_62_2 doi: 10.1038/s41467-019-10157-5 – ident: e_1_2_8_35_2 doi: 10.1002/chem.202000552 – ident: e_1_2_8_43_2 doi: 10.1021/jacs.8b08788 – ident: e_1_2_8_47_2 doi: 10.1002/anie.201510291 – ident: e_1_2_8_40_3 doi: 10.1002/ange.201811399 – ident: e_1_2_8_52_3 doi: 10.1002/ange.201607812 – ident: e_1_2_8_4_1 – ident: e_1_2_8_13_1 – ident: e_1_2_8_24_2 doi: 10.1126/sciadv.abe8706 – ident: e_1_2_8_63_3 doi: 10.1002/ange.201905713 – ident: e_1_2_8_22_2 doi: 10.1038/s41563-021-01052-w – ident: e_1_2_8_12_2 doi: 10.1021/acs.chemrev.0c01184 – ident: e_1_2_8_51_3 doi: 10.1002/ange.201913975 – ident: e_1_2_8_54_1 doi: 10.1021/jacs.6b04669 – ident: e_1_2_8_7_2 doi: 10.1038/nchem.1628 – ident: e_1_2_8_3_2 doi: 10.1126/science.1139915 – ident: e_1_2_8_33_2 doi: 10.1038/s41467-021-26817-4 – ident: e_1_2_8_9_2 doi: 10.1002/anie.201710190 – ident: e_1_2_8_18_2 doi: 10.1038/s41467-019-10157-5 – ident: e_1_2_8_48_2 doi: 10.1021/jacs.8b07120 – ident: e_1_2_8_31_2 doi: 10.1039/C6CS00528D – ident: e_1_2_8_41_2 doi: 10.1021/acscentsci.9b00212 – ident: e_1_2_8_61_1 – ident: e_1_2_8_16_2 doi: 10.1039/C8CS00376A – ident: e_1_2_8_30_2 doi: 10.1002/anie.202104106 – ident: e_1_2_8_55_1 doi: 10.1039/C6TA04579K – ident: e_1_2_8_42_1 – ident: e_1_2_8_50_1 – ident: e_1_2_8_59_2 doi: 10.1002/chem.201003211 – ident: e_1_2_8_28_3 doi: 10.1002/ange.201804753 – ident: e_1_2_8_49_2 doi: 10.1002/chem.201603547 – ident: e_1_2_8_58_2 doi: 10.1021/ja204233q – ident: e_1_2_8_56_1 – ident: e_1_2_8_34_2 doi: 10.1038/s41557-018-0141-5 – ident: e_1_2_8_19_2 doi: 10.1038/s41467-019-14056-7 – ident: e_1_2_8_15_2 doi: 10.1039/C9CS00827F – ident: e_1_2_8_44_2 doi: 10.1038/ncomms13461 – ident: e_1_2_8_38_2 doi: 10.1021/jacs.7b06640 – ident: e_1_2_8_25_2 doi: 10.1002/chem.201603043 – ident: e_1_2_8_17_2 doi: 10.1021/jacs.8b05136 – ident: e_1_2_8_39_2 doi: 10.1016/j.chempr.2017.12.011 – ident: e_1_2_8_66_1 doi: 10.1021/ja204728y – ident: e_1_2_8_36_3 doi: 10.1002/ange.202014556 – ident: e_1_2_8_5_2 doi: 10.1126/science.aal1585 – ident: e_1_2_8_45_2 doi: 10.1021/acs.langmuir.8b00951 – ident: e_1_2_8_1_1 – ident: e_1_2_8_57_2 doi: 10.1021/jacs.5b10708 – ident: e_1_2_8_51_2 doi: 10.1002/anie.201913975 – ident: e_1_2_8_53_1 doi: 10.1016/j.cej.2021.129750 – start-page: 58 year: 2019 ident: e_1_2_8_63_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_27_1 – ident: e_1_2_8_32_2 doi: 10.1021/jacs.9b09956 – ident: e_1_2_8_29_2 doi: 10.1002/adma.202001284 – ident: e_1_2_8_11_2 doi: 10.1021/acs.chemrev.9b00550 – ident: e_1_2_8_23_2 doi: 10.1002/anie.202105190 – ident: e_1_2_8_28_2 doi: 10.1002/anie.201804753 – ident: e_1_2_8_46_1 – ident: e_1_2_8_10_2 doi: 10.1002/adfm.201705553 – ident: e_1_2_8_60_1 doi: 10.1126/science.aat7679 – ident: e_1_2_8_65_1 doi: 10.1021/jacs.5b10754 – ident: e_1_2_8_26_2 doi: 10.1002/chem.201802564 – ident: e_1_2_8_6_2 doi: 10.1039/C2CS35072F – ident: e_1_2_8_8_2 doi: 10.1038/s41570-017-0056 – ident: e_1_2_8_36_2 doi: 10.1002/anie.202014556 – ident: e_1_2_8_40_2 doi: 10.1002/anie.201811399 – ident: e_1_2_8_52_2 doi: 10.1002/anie.201607812 – ident: e_1_2_8_2_2 doi: 10.1126/science.1120411 – ident: e_1_2_8_47_3 doi: 10.1002/ange.201510291 – ident: e_1_2_8_64_2 doi: 10.1039/D0CS01347A – ident: e_1_2_8_20_2 doi: 10.1126/sciadv.abb1110 – ident: e_1_2_8_67_1 doi: 10.1016/j.jcis.2020.02.046 – ident: e_1_2_8_21_2 doi: 10.1021/jacs.1c02090 |
SSID | ssj0009633 |
Score | 2.4179287 |
Snippet | The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy... The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, we report a modulated... The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, a modulated strategy... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202200961 |
SubjectTerms | Aqueous solutions Chemistry covalent organic framework Mechanical properties Mercury modulated strategy Modulus of elasticity morphology control Nanofibers Nanoparticles self-standing films Synthesis Thin films |
Title | Modulated Synthesis of Self‐Standing Covalent Organic Framework Films |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202200961 https://www.ncbi.nlm.nih.gov/pubmed/35510482 https://www.proquest.com/docview/2721681109 https://www.proquest.com/docview/2660102377 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hLnBpofQR2FZGqtRTAD_yOqIVW1QJDmxX2lvkx1hChQSR3QM99Sf0N_aXME42odseKtFbotiKxzO2v7E93wB8ROMKlBmSm1q4WDmkeVCJLEZ-YrnKksQkIXb44jI9n6kv82T-WxR_xw8xbLiFkdHO12GAa9McP5GGkkwhklyINmsJTcLhwlZARVdP_FFkXV0ueZXFgYO1Z208Ecfr1ddXpb-g5jpybZeeyUvQfaO7GyffjpYLc2S__8Hn-D9S7cCLFS5lp50h7cIGVq9ga9yng9uDzxe1C6m-0LHpQ0WwsbluWO3ZFG_8rx8_p6v4GDauyXZpJWNdlKdlk_76F5tc39w2r2E2Ofs6Po9XWRhiK0XOY3SI3FvCJRq9LBy3hcFEeJ0XxgslvSCUgGlmXeqdth618uSVGZFqq43n8g1sVnWF74AJmxovM0dOYK4MlyahQqrIrbKSe84j-NRrobzryDbKjlZZlKFjyqFjIhj1SipXg64pRSAiygOFagSHw2fqpnAGoiusl1QmDR6okFkWwdtOucOvSERyTnMRgWhV9I82lIG0Ynjbf06lA9gOz2GPmqcj2FzcL_E9gZyF-dAa8iMptvQ5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASOBOKWtH3kdOKAty5Z2e2BbqbcQ22Opok0qsitUTvwE_gp_hZ_AL2GcV7VwQELqgWMSJ7E9M54Ze-YbgOeobYYyQXJTMxsqi7QOKpGEyLcMV0kU6cjnDk_348mhencUHa3A9z4XpsWHGDbcvGQ067UXcL8hvXmBGkqD8qnkQjRlS7q4yl08_0xeW_1qZ5tI_EKI8ZuD0STsCguERoqUh2gRuTOkagt0MrPcZBoj4Yo0004o6QQpPowTY2NnC-OwUI4cDS3iwhTacUnfvQJXfRlxD9e__f4CsYr4ua1er5LQo772OJFbYnO5v8t68A_jdtlWbpTd-Ab86KepjXH5uLGY6w3z5TcEyf9qHm_C9c70Zq9bWbkFK1jehrVRX_HuDrydVtZXM0PLZuclWcb1cc0qx2Z44n5-_TbrUoDYqCLxJGXN2kRWw8Z9hBsbH5-c1nfh8FLGcQ9Wy6rEB8CEibWTiSU_N1WaSx1RI5WlRhnJHecBvOzJnp-1eCJ5ixwtck-IfCBEAOs9V-TdulLnwmMtpR4lNoBnw2OaJn_MU5RYLahN7J1sIZMkgPstNw2_oiGS_52KAETDE3_pQ-5xOYarh__y0lNYmxxM9_K9nf3dR3DN3_db8jxeh9X5pwU-Jpturp80UsTgw2Wz2y-mV1e4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIkEv5b8EChgJxCnt2nH-DhzQLqGltEIslXoLsT2WqrZJRXZVlROPwKPwKrwCT8I4f9XCAQmpB45JnMT2zHhm7JlvAJ6hMikGMZKbmhpfGqR1UIrYRz7SXMZhqEKXO7y7F23ty7cH4cESfO9zYVp8iGHDzUlGs147AT81dvMCNJTG5DLJhWiqlnRhlTt4fkZOW_1ye0IUfi5E9vrjeMvv6gr4OhAJ99EgcqtJ0xZog9RwnSoMhS2SVFkhAytI72EUaxNZU2iLhbTkZygRFbpQlgf03StwVUaj1BWLmHy4AKwidm6L18vYd6CvPUzkSGwu9ndRDf5h2y6ayo2uy27Aj36W2hCXo435TG3oL78BSP5P03gTVjvDm71qJeUWLGF5G66P-3p3d-DNbmVcLTM0bHpekl1cH9assmyKx_bn12_TLgGIjSsSTlLVrE1j1Szr49tYdnh8Ut-F_UsZxz1YLqsS7wMTOlI2iA15uYlUPFAhNZJpoqUOuOXcgxc91fPTFk0kb3GjRe4IkQ-E8GC9Z4q8W1XqXDikpcRhxHrwdHhM0-QOeYoSqzm1iZyLLYI49mCtZabhVzRE8r4T4YFoWOIvfcgdKsdw9eBfXnoC195Psvzd9t7OQ1hxt91-PI_WYXn2eY6PyKCbqceNDDH4dNnc9gs4cFZn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulated+Synthesis+of+Self-Standing+Covalent+Organic+Framework+Films&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wang%2C+Yang&rft.au=Guo%2C+Bei&rft.au=Yang%2C+Tong&rft.au=Zhang%2C+Zhi-Cong&rft.date=2022-08-16&rft.eissn=1521-3765&rft_id=info:doi/10.1002%2Fchem.202200961&rft_id=info%3Apmid%2F35510482&rft.externalDocID=35510482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |