Modulated Synthesis of Self‐Standing Covalent Organic Framework Films

The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self‐standing COF films with good crystallinity and tunable thickness is reported. As compared with the non‐modu...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 28; no. 46; pp. e202200961 - n/a
Main Authors Wang, Yang, Guo, Bei, Yang, Tong, Zhang, Zhi‐Cong, Liang, Lin, Ding, San‐Yuan, Wang, Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self‐standing COF films with good crystallinity and tunable thickness is reported. As compared with the non‐modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self‐standing LZU‐8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self‐standing COF thin films for practical applications. A modulated strategy was developed for the synthesis of self‐standing COF films with good crystallinity and tunable thickness. As compared with the non‐modulated method, the modulated approach changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times.
AbstractList The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, we report a modulated strategy for the facile synthesis of self-standing COF films with good crystallinity and tunable thickness. As compared with the non-modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self-standing COF films with improved mechanical properties. The Young's modulus of the self-standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self-standing LZU-8 film can be used as a membrane for efficient removal of 99% mercury ions from aqueous solution. Our results open up a new approach to prepare self-standing COF thin films for practical applications.
The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self‐standing COF films with good crystallinity and tunable thickness is reported. As compared with the non‐modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self‐standing LZU‐8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self‐standing COF thin films for practical applications. A modulated strategy was developed for the synthesis of self‐standing COF films with good crystallinity and tunable thickness. As compared with the non‐modulated method, the modulated approach changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times.
The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self‐standing COF films with good crystallinity and tunable thickness is reported. As compared with the non‐modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self‐standing COF films with improved mechanical properties. The Young's modulus of the self‐standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self‐standing LZU‐8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self‐standing COF thin films for practical applications.
The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self-standing COF films with good crystallinity and tunable thickness is reported. As compared with the non-modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self-standing COF films with improved mechanical properties. The Young's modulus of the self-standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self-standing LZU-8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self-standing COF thin films for practical applications.The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, a modulated strategy for the facile synthesis of self-standing COF films with good crystallinity and tunable thickness is reported. As compared with the non-modulated approach, the modulated strategy changes the COF morphology from nanoparticles to nanofibers, enabling the facile preparation of self-standing COF films with improved mechanical properties. The Young's modulus of the self-standing COF film obtained via the modulated strategy could increase by 26 times. Moreover, self-standing LZU-8 film can be used as a membrane for efficient removal of 99 % mercury ions from aqueous solution. Our results open up a new approach to prepare self-standing COF thin films for practical applications.
Author Wang, Yang
Yang, Tong
Guo, Bei
Zhang, Zhi‐Cong
Wang, Wei
Ding, San‐Yuan
Liang, Lin
Author_xml – sequence: 1
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: Lanzhou University
– sequence: 2
  givenname: Bei
  surname: Guo
  fullname: Guo, Bei
  organization: Lanzhou University
– sequence: 3
  givenname: Tong
  surname: Yang
  fullname: Yang, Tong
  organization: Lanzhou University
– sequence: 4
  givenname: Zhi‐Cong
  surname: Zhang
  fullname: Zhang, Zhi‐Cong
  organization: Lanzhou University
– sequence: 5
  givenname: Lin
  surname: Liang
  fullname: Liang, Lin
  organization: Lanzhou University
– sequence: 6
  givenname: San‐Yuan
  orcidid: 0000-0003-2160-4092
  surname: Ding
  fullname: Ding, San‐Yuan
  email: dingsy@lzu.edu.cn
  organization: Lanzhou University
– sequence: 7
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Lanzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35510482$$D View this record in MEDLINE/PubMed
BookMark eNqF0btOwzAUBmALgaBcVkYUiYUlxcdunHhEFQUkEENhthznGAKJDXYC6sYj8Iw8CanKRWJh8vL95xz53ybrzjskZB_oGChlx-Ye2zGjjFEqBayREWQMUp6LbJ2MqJzkqci43CLbMT7QpeF8k2zxLAM6KdiInF35qm90h1UyX7juHmMdE2-TOTb24-193mlX1e4umfoX3aDrkutwp11tklnQLb768JjM6qaNu2TD6ibi3te7Q25npzfT8_Ty-uxienKZGs4KSLFCBGuG_RotlxUYWWLGrC5kadmEW8agQJGbSthKG4t6YgXIkgltdGmB75Cj1dyn4J97jJ1q62iwabRD30fFhKBAGc_zgR7-oQ--D264TrGcgSgAqBzUwZfqyxYr9RTqVoeF-v6iAYxXwAQfY0D7Q4CqZQdq2YH66WAIyFXgtW5w8Y9W0_PTq9_sJzD8iz0
Cites_doi 10.1039/D0CS01347A
10.1002/ange.201710190
10.1038/s41467-019-10157-5
10.1002/chem.202000552
10.1021/jacs.8b08788
10.1002/anie.201510291
10.1002/ange.201811399
10.1002/ange.201607812
10.1126/sciadv.abe8706
10.1002/ange.201905713
10.1038/s41563-021-01052-w
10.1021/acs.chemrev.0c01184
10.1002/ange.201913975
10.1021/jacs.6b04669
10.1038/nchem.1628
10.1126/science.1139915
10.1038/s41467-021-26817-4
10.1002/anie.201710190
10.1021/jacs.8b07120
10.1039/C6CS00528D
10.1021/acscentsci.9b00212
10.1039/C8CS00376A
10.1002/anie.202104106
10.1039/C6TA04579K
10.1002/chem.201003211
10.1002/ange.201804753
10.1002/chem.201603547
10.1021/ja204233q
10.1038/s41557-018-0141-5
10.1038/s41467-019-14056-7
10.1039/C9CS00827F
10.1038/ncomms13461
10.1021/jacs.7b06640
10.1002/chem.201603043
10.1021/jacs.8b05136
10.1016/j.chempr.2017.12.011
10.1021/ja204728y
10.1002/ange.202014556
10.1126/science.aal1585
10.1021/acs.langmuir.8b00951
10.1021/jacs.5b10708
10.1002/anie.201913975
10.1016/j.cej.2021.129750
10.1021/jacs.9b09956
10.1002/adma.202001284
10.1021/acs.chemrev.9b00550
10.1002/anie.202105190
10.1002/anie.201804753
10.1002/adfm.201705553
10.1126/science.aat7679
10.1021/jacs.5b10754
10.1002/chem.201802564
10.1039/C2CS35072F
10.1038/s41570-017-0056
10.1002/anie.202014556
10.1002/anie.201811399
10.1002/anie.201607812
10.1126/science.1120411
10.1002/ange.201510291
10.1126/sciadv.abb1110
10.1016/j.jcis.2020.02.046
10.1021/jacs.1c02090
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202200961
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 35510482
10_1002_chem_202200961
CHEM202200961
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21871120 and 22075118
– fundername: Fundamental Research Funds for the Central Universities
  funderid: lzujbky-2021-sp26 and lzujbky-2021-ct21
– fundername: Gulf Research Program
  funderid: 2021jyjbgs-04
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3281-edee1fc355aef39d1c9be52fa89bf243f2218e67cd6fdacfea4f619b26acabf13
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 18:53:42 EDT 2025
Sun Jul 13 04:37:02 EDT 2025
Wed Feb 19 02:25:20 EST 2025
Tue Jul 01 00:43:38 EDT 2025
Wed Jan 22 16:24:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords self-standing films
modulated strategy
covalent organic framework
morphology control
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3281-edee1fc355aef39d1c9be52fa89bf243f2218e67cd6fdacfea4f619b26acabf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2160-4092
PMID 35510482
PQID 2721681109
PQPubID 986340
PageCount 5
ParticipantIDs proquest_miscellaneous_2660102377
proquest_journals_2721681109
pubmed_primary_35510482
crossref_primary_10_1002_chem_202200961
wiley_primary_10_1002_chem_202200961_CHEM202200961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 16, 2022
PublicationDateYYYYMMDD 2022-08-16
PublicationDate_xml – month: 08
  year: 2022
  text: August 16, 2022
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2018; 28
2017; 1
2021; 20
2018; 140
2019; 5
2021; 421
2005; 310
2020; 120
2019; 10
2013; 42
2017; 46
2020 2020; 59 132
2020; 568
2020; 11
2021; 143
2020; 32
2021; 50
2011; 17
2019; 141
2017; 355
2013; 5
2019 2019; 58 131
2011; 133
2017; 139
2018; 24
2022; 122
2016; 4
2020; 6
2016; 7
2007; 316
2016 2016; 55 128
2021; 12
2018; 4
2018 2018; 57 130
2022; 7
2019; 48
2020; 49
2021 2021; 60 133
2020; 26
2016; 138
2018; 34
2021; 60
2018; 10
2019 2019; 131
2016; 22
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_28_3
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_47_3
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_66_1
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_64_2
e_1_2_8_62_2
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_34_2
e_1_2_8_59_2
e_1_2_8_36_3
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_57_2
e_1_2_8_55_1
e_1_2_8_30_2
e_1_2_8_51_3
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_51_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_1
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_40_3
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_3
e_1_2_8_65_1
e_1_2_8_40_2
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_14_2
e_1_2_8_37_1
Xu J. (e_1_2_8_63_2) 2019
e_1_2_8_31_2
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_52_3
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 141
  start-page: 19831
  year: 2019
  end-page: 19838
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 6596
  year: 2021
  publication-title: Nat. Commun.
– volume: 139
  start-page: 13083
  year: 2017
  end-page: 13091
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 10094
  year: 2018
  end-page: 10098
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  publication-title: Chem. Soc. Rev.
– volume: 55 128
  start-page: 15604 15833
  year: 2016 2016
  end-page: 15608 15837
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 1551
  year: 2021
  end-page: 1558
  publication-title: Nat. Mater.
– volume: 60 133
  start-page: 2 2
  year: 2021 2021
  end-page: 9 2
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 26
  start-page: 4510
  year: 2020
  end-page: 4514
  publication-title: Chem. Eur. J.
– volume: 22
  start-page: 17784
  year: 2016
  end-page: 17789
  publication-title: Chem. Eur. J.
– volume: 361
  start-page: 48
  year: 2018
  end-page: 52
  publication-title: Science
– volume: 50
  start-page: 5468
  year: 2021
  end-page: 5516
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 1234
  year: 2016
  end-page: 1239
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 308
  year: 2018
  end-page: 317
  publication-title: Chem.
– volume: 568
  start-page: 76
  year: 2020
  end-page: 80
  publication-title: J. Colloid Interface Sci.
– volume: 7
  year: 2022
  publication-title: Sci. Adv.
– volume: 60
  start-page: 17638
  year: 2021
  end-page: 17646
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 59 132
  start-page: 5165 5203
  year: 2020 2020
  end-page: 5171 5209
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  publication-title: Chem. Rev.
– volume: 34
  start-page: 8731
  year: 2018
  end-page: 8738
  publication-title: Langmuir
– volume: 46
  start-page: 464
  year: 2017
  end-page: 480
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 599
  year: 2020
  publication-title: Nat. Commun.
– volume: 140
  start-page: 12152
  year: 2018
  end-page: 12158
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 11433
  year: 2016
  end-page: 11436
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1352
  year: 2019
  end-page: 1359
  publication-title: ACS Cent. Sci.
– volume: 5
  start-page: 453
  year: 2013
  end-page: 465
  publication-title: Nat. Chem.
– volume: 122
  start-page: 442
  year: 2022
  end-page: 564
  publication-title: Chem. Rev.
– volume: 49
  start-page: 708
  year: 2020
  end-page: 735
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 2101
  year: 2019
  publication-title: Nat. Commun.
– volume: 22
  start-page: 18412
  year: 2016
  end-page: 18418
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 1180
  year: 2018
  end-page: 1189
  publication-title: Nat. Chem.
– volume: 143
  start-page: 9415
  year: 2021
  end-page: 9422
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 138
  start-page: 3031
  year: 2016
  end-page: 3037
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 13461
  year: 2016
  publication-title: Nat. Commun.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  publication-title: Science
– volume: 57 130
  start-page: 4850 4942
  year: 2018 2018
  end-page: 4878 4972
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 488
  year: 2019
  end-page: 516
  publication-title: Chem. Soc. Rev.
– volume: 57 130
  start-page: 10894 11060
  year: 2018 2018
  end-page: 10898 11064
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 0056
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 133
  start-page: 15506
  year: 2011
  end-page: 15513
  publication-title: J. Am. Chem. Soc.
– volume: 355
  start-page: 923
  year: 2017
  end-page: 932
  publication-title: Science
– volume: 4
  start-page: 13444
  year: 2016
  end-page: 13449
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 14875
  year: 2021
  end-page: 14880
  publication-title: Angew. Chem. Int. Ed.
– volume: 55 128
  start-page: 3615 3679
  year: 2016 2016
  end-page: 3619 3683
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 10979
  year: 2018
  end-page: 10983
  publication-title: Chem. Eur. J.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 133
  start-page: 11478
  year: 2011
  end-page: 11481
  publication-title: J. Am. Chem. Soc.
– volume: 316
  start-page: 268
  year: 2007
  end-page: 272
  publication-title: Science
– volume: 421
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 58 131
  start-page: 1376 1390
  year: 2019 2019
  end-page: 1381 1395
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 14342
  year: 2018
  end-page: 14349
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 58 12193
  year: 2019 2019
  end-page: 12069 12197
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 6643
  year: 2011
  end-page: 6651
  publication-title: Chem. Eur. J.
– ident: e_1_2_8_14_2
  doi: 10.1039/D0CS01347A
– ident: e_1_2_8_37_1
– ident: e_1_2_8_9_3
  doi: 10.1002/ange.201710190
– ident: e_1_2_8_62_2
  doi: 10.1038/s41467-019-10157-5
– ident: e_1_2_8_35_2
  doi: 10.1002/chem.202000552
– ident: e_1_2_8_43_2
  doi: 10.1021/jacs.8b08788
– ident: e_1_2_8_47_2
  doi: 10.1002/anie.201510291
– ident: e_1_2_8_40_3
  doi: 10.1002/ange.201811399
– ident: e_1_2_8_52_3
  doi: 10.1002/ange.201607812
– ident: e_1_2_8_4_1
– ident: e_1_2_8_13_1
– ident: e_1_2_8_24_2
  doi: 10.1126/sciadv.abe8706
– ident: e_1_2_8_63_3
  doi: 10.1002/ange.201905713
– ident: e_1_2_8_22_2
  doi: 10.1038/s41563-021-01052-w
– ident: e_1_2_8_12_2
  doi: 10.1021/acs.chemrev.0c01184
– ident: e_1_2_8_51_3
  doi: 10.1002/ange.201913975
– ident: e_1_2_8_54_1
  doi: 10.1021/jacs.6b04669
– ident: e_1_2_8_7_2
  doi: 10.1038/nchem.1628
– ident: e_1_2_8_3_2
  doi: 10.1126/science.1139915
– ident: e_1_2_8_33_2
  doi: 10.1038/s41467-021-26817-4
– ident: e_1_2_8_9_2
  doi: 10.1002/anie.201710190
– ident: e_1_2_8_18_2
  doi: 10.1038/s41467-019-10157-5
– ident: e_1_2_8_48_2
  doi: 10.1021/jacs.8b07120
– ident: e_1_2_8_31_2
  doi: 10.1039/C6CS00528D
– ident: e_1_2_8_41_2
  doi: 10.1021/acscentsci.9b00212
– ident: e_1_2_8_61_1
– ident: e_1_2_8_16_2
  doi: 10.1039/C8CS00376A
– ident: e_1_2_8_30_2
  doi: 10.1002/anie.202104106
– ident: e_1_2_8_55_1
  doi: 10.1039/C6TA04579K
– ident: e_1_2_8_42_1
– ident: e_1_2_8_50_1
– ident: e_1_2_8_59_2
  doi: 10.1002/chem.201003211
– ident: e_1_2_8_28_3
  doi: 10.1002/ange.201804753
– ident: e_1_2_8_49_2
  doi: 10.1002/chem.201603547
– ident: e_1_2_8_58_2
  doi: 10.1021/ja204233q
– ident: e_1_2_8_56_1
– ident: e_1_2_8_34_2
  doi: 10.1038/s41557-018-0141-5
– ident: e_1_2_8_19_2
  doi: 10.1038/s41467-019-14056-7
– ident: e_1_2_8_15_2
  doi: 10.1039/C9CS00827F
– ident: e_1_2_8_44_2
  doi: 10.1038/ncomms13461
– ident: e_1_2_8_38_2
  doi: 10.1021/jacs.7b06640
– ident: e_1_2_8_25_2
  doi: 10.1002/chem.201603043
– ident: e_1_2_8_17_2
  doi: 10.1021/jacs.8b05136
– ident: e_1_2_8_39_2
  doi: 10.1016/j.chempr.2017.12.011
– ident: e_1_2_8_66_1
  doi: 10.1021/ja204728y
– ident: e_1_2_8_36_3
  doi: 10.1002/ange.202014556
– ident: e_1_2_8_5_2
  doi: 10.1126/science.aal1585
– ident: e_1_2_8_45_2
  doi: 10.1021/acs.langmuir.8b00951
– ident: e_1_2_8_1_1
– ident: e_1_2_8_57_2
  doi: 10.1021/jacs.5b10708
– ident: e_1_2_8_51_2
  doi: 10.1002/anie.201913975
– ident: e_1_2_8_53_1
  doi: 10.1016/j.cej.2021.129750
– start-page: 58
  year: 2019
  ident: e_1_2_8_63_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_8_27_1
– ident: e_1_2_8_32_2
  doi: 10.1021/jacs.9b09956
– ident: e_1_2_8_29_2
  doi: 10.1002/adma.202001284
– ident: e_1_2_8_11_2
  doi: 10.1021/acs.chemrev.9b00550
– ident: e_1_2_8_23_2
  doi: 10.1002/anie.202105190
– ident: e_1_2_8_28_2
  doi: 10.1002/anie.201804753
– ident: e_1_2_8_46_1
– ident: e_1_2_8_10_2
  doi: 10.1002/adfm.201705553
– ident: e_1_2_8_60_1
  doi: 10.1126/science.aat7679
– ident: e_1_2_8_65_1
  doi: 10.1021/jacs.5b10754
– ident: e_1_2_8_26_2
  doi: 10.1002/chem.201802564
– ident: e_1_2_8_6_2
  doi: 10.1039/C2CS35072F
– ident: e_1_2_8_8_2
  doi: 10.1038/s41570-017-0056
– ident: e_1_2_8_36_2
  doi: 10.1002/anie.202014556
– ident: e_1_2_8_40_2
  doi: 10.1002/anie.201811399
– ident: e_1_2_8_52_2
  doi: 10.1002/anie.201607812
– ident: e_1_2_8_2_2
  doi: 10.1126/science.1120411
– ident: e_1_2_8_47_3
  doi: 10.1002/ange.201510291
– ident: e_1_2_8_64_2
  doi: 10.1039/D0CS01347A
– ident: e_1_2_8_20_2
  doi: 10.1126/sciadv.abb1110
– ident: e_1_2_8_67_1
  doi: 10.1016/j.jcis.2020.02.046
– ident: e_1_2_8_21_2
  doi: 10.1021/jacs.1c02090
SSID ssj0009633
Score 2.4179287
Snippet The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self‐standing COF films difficult. Herein, a modulated strategy...
The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, we report a modulated...
The weak interaction of covalent organic framework (COF) nanoparticles makes the preparation of self-standing COF films difficult. Herein, a modulated strategy...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202200961
SubjectTerms Aqueous solutions
Chemistry
covalent organic framework
Mechanical properties
Mercury
modulated strategy
Modulus of elasticity
morphology control
Nanofibers
Nanoparticles
self-standing films
Synthesis
Thin films
Title Modulated Synthesis of Self‐Standing Covalent Organic Framework Films
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202200961
https://www.ncbi.nlm.nih.gov/pubmed/35510482
https://www.proquest.com/docview/2721681109
https://www.proquest.com/docview/2660102377
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hLnBpofQR2FZGqtRTAD_yOqIVW1QJDmxX2lvkx1hChQSR3QM99Sf0N_aXME42odseKtFbotiKxzO2v7E93wB8ROMKlBmSm1q4WDmkeVCJLEZ-YrnKksQkIXb44jI9n6kv82T-WxR_xw8xbLiFkdHO12GAa9McP5GGkkwhklyINmsJTcLhwlZARVdP_FFkXV0ueZXFgYO1Z208Ecfr1ddXpb-g5jpybZeeyUvQfaO7GyffjpYLc2S__8Hn-D9S7cCLFS5lp50h7cIGVq9ga9yng9uDzxe1C6m-0LHpQ0WwsbluWO3ZFG_8rx8_p6v4GDauyXZpJWNdlKdlk_76F5tc39w2r2E2Ofs6Po9XWRhiK0XOY3SI3FvCJRq9LBy3hcFEeJ0XxgslvSCUgGlmXeqdth618uSVGZFqq43n8g1sVnWF74AJmxovM0dOYK4MlyahQqrIrbKSe84j-NRrobzryDbKjlZZlKFjyqFjIhj1SipXg64pRSAiygOFagSHw2fqpnAGoiusl1QmDR6okFkWwdtOucOvSERyTnMRgWhV9I82lIG0Ynjbf06lA9gOz2GPmqcj2FzcL_E9gZyF-dAa8iMptvQ5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASOBOKWtH3kdOKAty5Z2e2BbqbcQ22Opok0qsitUTvwE_gp_hZ_AL2GcV7VwQELqgWMSJ7E9M54Ze-YbgOeobYYyQXJTMxsqi7QOKpGEyLcMV0kU6cjnDk_348mhencUHa3A9z4XpsWHGDbcvGQ067UXcL8hvXmBGkqD8qnkQjRlS7q4yl08_0xeW_1qZ5tI_EKI8ZuD0STsCguERoqUh2gRuTOkagt0MrPcZBoj4Yo0004o6QQpPowTY2NnC-OwUI4cDS3iwhTacUnfvQJXfRlxD9e__f4CsYr4ua1er5LQo772OJFbYnO5v8t68A_jdtlWbpTd-Ab86KepjXH5uLGY6w3z5TcEyf9qHm_C9c70Zq9bWbkFK1jehrVRX_HuDrydVtZXM0PLZuclWcb1cc0qx2Z44n5-_TbrUoDYqCLxJGXN2kRWw8Z9hBsbH5-c1nfh8FLGcQ9Wy6rEB8CEibWTiSU_N1WaSx1RI5WlRhnJHecBvOzJnp-1eCJ5ixwtck-IfCBEAOs9V-TdulLnwmMtpR4lNoBnw2OaJn_MU5RYLahN7J1sIZMkgPstNw2_oiGS_52KAETDE3_pQ-5xOYarh__y0lNYmxxM9_K9nf3dR3DN3_db8jxeh9X5pwU-Jpturp80UsTgw2Wz2y-mV1e4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIkEv5b8EChgJxCnt2nH-DhzQLqGltEIslXoLsT2WqrZJRXZVlROPwKPwKrwCT8I4f9XCAQmpB45JnMT2zHhm7JlvAJ6hMikGMZKbmhpfGqR1UIrYRz7SXMZhqEKXO7y7F23ty7cH4cESfO9zYVp8iGHDzUlGs147AT81dvMCNJTG5DLJhWiqlnRhlTt4fkZOW_1ye0IUfi5E9vrjeMvv6gr4OhAJ99EgcqtJ0xZog9RwnSoMhS2SVFkhAytI72EUaxNZU2iLhbTkZygRFbpQlgf03StwVUaj1BWLmHy4AKwidm6L18vYd6CvPUzkSGwu9ndRDf5h2y6ayo2uy27Aj36W2hCXo435TG3oL78BSP5P03gTVjvDm71qJeUWLGF5G66P-3p3d-DNbmVcLTM0bHpekl1cH9assmyKx_bn12_TLgGIjSsSTlLVrE1j1Szr49tYdnh8Ut-F_UsZxz1YLqsS7wMTOlI2iA15uYlUPFAhNZJpoqUOuOXcgxc91fPTFk0kb3GjRe4IkQ-E8GC9Z4q8W1XqXDikpcRhxHrwdHhM0-QOeYoSqzm1iZyLLYI49mCtZabhVzRE8r4T4YFoWOIvfcgdKsdw9eBfXnoC195Psvzd9t7OQ1hxt91-PI_WYXn2eY6PyKCbqceNDDH4dNnc9gs4cFZn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulated+Synthesis+of+Self-Standing+Covalent+Organic+Framework+Films&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wang%2C+Yang&rft.au=Guo%2C+Bei&rft.au=Yang%2C+Tong&rft.au=Zhang%2C+Zhi-Cong&rft.date=2022-08-16&rft.eissn=1521-3765&rft_id=info:doi/10.1002%2Fchem.202200961&rft_id=info%3Apmid%2F35510482&rft.externalDocID=35510482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon