Polymerization‐Induced Self‐Assembly Providing PEG‐Gels with Dynamic Micelle‐Crosslinked Hierarchical Structures and Overall Improvement of Their Comprehensive Performances
Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self‐healing performances in o...
Saved in:
Published in | Macromolecular rapid communications. Vol. 46; no. 2; pp. e2400681 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self‐healing performances in one gel is more difficult. Herein, polymerization‐induced self‐assembly (PISA) providing PEG‐gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. Compared to hydrogels, PEG‐gels show excellent long‐term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers). The energy dissipation mechanism of the PEG‐gels is analyzed via stress relaxation and cyclic mechanical tests. High‐density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self‐healing properties of the dynamic micelle‐crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials.
In this work, PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers). |
---|---|
AbstractList | Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self‐healing performances in one gel is more difficult. Herein, polymerization‐induced self‐assembly (PISA) providing PEG‐gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. Compared to hydrogels, PEG‐gels show excellent long‐term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers). The energy dissipation mechanism of the PEG‐gels is analyzed via stress relaxation and cyclic mechanical tests. High‐density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self‐healing properties of the dynamic micelle‐crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials. Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self-healing performances in one gel is more difficult. Herein, polymerization-induced self-assembly (PISA) providing PEG-gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG-gels with dynamic micelle-crosslinked hierarchical structures. Compared to hydrogels, PEG-gels show excellent long-term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG-gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous-gels (without nanofillers). The energy dissipation mechanism of the PEG-gels is analyzed via stress relaxation and cyclic mechanical tests. High-density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self-healing properties of the dynamic micelle-crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials.Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self-healing performances in one gel is more difficult. Herein, polymerization-induced self-assembly (PISA) providing PEG-gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG-gels with dynamic micelle-crosslinked hierarchical structures. Compared to hydrogels, PEG-gels show excellent long-term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG-gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous-gels (without nanofillers). The energy dissipation mechanism of the PEG-gels is analyzed via stress relaxation and cyclic mechanical tests. High-density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self-healing properties of the dynamic micelle-crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials. Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self‐healing performances in one gel is more difficult. Herein, polymerization‐induced self‐assembly (PISA) providing PEG‐gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. Compared to hydrogels, PEG‐gels show excellent long‐term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers). The energy dissipation mechanism of the PEG‐gels is analyzed via stress relaxation and cyclic mechanical tests. High‐density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self‐healing properties of the dynamic micelle‐crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials. In this work, PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers). |
Author | Zhang, Wen‐Jian Chang, Zi‐Xuan Hong, Chun‐Yan |
Author_xml | – sequence: 1 givenname: Zi‐Xuan surname: Chang fullname: Chang, Zi‐Xuan organization: University of Science and Technology of China – sequence: 2 givenname: Chun‐Yan surname: Hong fullname: Hong, Chun‐Yan email: hongcy@ustc.edu.cn organization: University of Science and Technology of China – sequence: 3 givenname: Wen‐Jian orcidid: 0000-0001-9039-3618 surname: Zhang fullname: Zhang, Wen‐Jian email: wjzhang@ahu.edu.cn organization: Anhui University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39427340$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH9gyxJZYsMmg3-SjL0cpWU6UquOaFlHjnPDuDh2sZOpwopH6MP0iXgSPJpSJDasbN_7naPre47RgfMOEHpLyYwSwj72KugZIywnpBT0BTqiBaMZl2x-kO6EsYxyXh6i4xhvCSEiJ-wVOuQyZ3OekyP0uPZ26iGYH2ow3v36-bBy7aihxddgu_RcxAh9Yye8Dn5rWuO-4vXZMjWWYCO-N8MGn05O9UbjS6PBWki9KvgYrXHfks-5gZCG3BitLL4ewqiHMUDEyrX4apt61uJVf5fcoQc3YN_hmw2YgCufqrABF80W8BpC50OvnIb4Gr3slI3w5uk8QV8-nd1U59nF1XJVLS4yzZmgWamkyJtCl6KVXFPa6KagUpdU5m3TUEpzWXLRKgBZdiQvSk14AaSlcyKKRpT8BH3Y-6bpvo8Qh7o3cfdH5cCPseaUCsHzQsqEvv8HvfVjcGm6RBVCpH0Llqh3T9TY9NDWd8GkAKf6Tx4JmO0BvdtggO4ZoaTeBV7vAq-fA08CuRfcGwvTf-j6cvG5-qv9DUlVtUw |
Cites_doi | 10.1002/anie.202211792 10.1002/adfm.202004407 10.1002/anie.201709129 10.1016/j.coco.2022.101344 10.1002/adma.201704118 10.1021/jacs.1c01963 10.1038/s41467-020-18460-2 10.1016/j.progpolymsci.2024.101847 10.1002/adma.202301551 10.1002/marc.202000209 10.1002/adma.201600466 10.1002/anie.202215134 10.1021/acs.macromol.3c01143 10.1039/D0SC00219D 10.1021/acs.macromol.3c00302 10.1002/anie.202308372 10.1021/acs.macromol.3c00759 10.1021/acsnano.0c05902 10.1016/j.coco.2023.101684 10.1002/adma.201600514 10.1002/smtd.202201592 10.1002/aenm.202201542 10.1002/anie.201809614 10.1002/adma.201800671 10.1002/anie.201705462 10.1002/app.50473 10.1002/anie.202315849 10.1021/acs.macromol.1c01528 10.1038/s41467-019-08433-5 10.1002/anie.201911758 10.1002/adfm.201704195 10.1016/j.chempr.2020.02.009 10.1021/acs.macromol.6b01756 10.1002/adma.202311206 10.1021/acs.chemrev.1c00481 10.1021/acs.macromol.9b02710 10.1039/D1CS00029B 10.1002/anie.201800907 10.1007/s11426-023-1770-7 10.1021/acsmacrolett.3c00547 10.1002/anie.201708614 10.1021/jacs.2c13049 10.1002/adma.202107791 10.1021/acs.macromol.6b00688 10.1016/j.coco.2022.101488 10.1002/adma.201902432 10.1002/adma.201601613 10.1016/j.cej.2018.02.108 10.1002/adfm.201903895 10.1126/science.abe7366 10.1002/adma.202210021 10.1016/j.progpolymsci.2020.101279 10.1002/anie.202314848 10.1002/anie.202309951 10.1002/adfm.201701807 10.1021/acsnano.0c09166 10.1016/j.eurpolymj.2014.11.024 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202400681 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 39427340 10_1002_marc_202400681 MARC202400681 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22171255; 22131010; 52021002 – fundername: National Natural Science Foundation of China grantid: 22171255 – fundername: National Natural Science Foundation of China grantid: 22131010 – fundername: National Natural Science Foundation of China grantid: 52021002 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c3281-6a984b5c68d93c11bcb519c6194dbb11149638daee96f0456c035e0d17085b863 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Thu Jul 10 22:00:54 EDT 2025 Fri Jul 25 12:12:17 EDT 2025 Mon Jul 21 05:58:07 EDT 2025 Tue Jul 01 03:31:52 EDT 2025 Fri Jan 24 09:42:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | dynamic micellar crosslinkers hydrogels polymeric nanoparticles PEG‐gels polymerization‐induced self‐assembly |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3281-6a984b5c68d93c11bcb519c6194dbb11149638daee96f0456c035e0d17085b863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9039-3618 |
PMID | 39427340 |
PQID | 3158842782 |
PQPubID | 1016394 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3118834599 proquest_journals_3158842782 pubmed_primary_39427340 crossref_primary_10_1002_marc_202400681 wiley_primary_10_1002_marc_202400681_MARC202400681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 342 2018; 28 2023; 35 2023; 12 2023; 56 2019; 31 2020; 41 2017; 27 2019; 10 2023; 7 2023; 145 2020; 59 2020; 107 2020; 14 2017; 29 2020; 11 2021; 143 2021; 50 2024; 36 2023; 42 2022; 122 2023; 62 2020; 6 2021; 15 2021; 54 2020; 53 2020; 30 2022; 61 2021; 138 2020; 370 2015; 65 2017; 56 2022; 12 2022; 34 2022; 35 2024; 63 2024; 154 2019; 29 2018; 30 2024; 67 2016; 28 2016; 49 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 12 year: 2022 publication-title: Adv. Energy. Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 56 start-page: 3296 year: 2023 publication-title: Macromolecules – volume: 145 start-page: 5824 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 122 start-page: 5317 year: 2022 publication-title: Chem. Rev. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 11 start-page: 4690 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 1457 year: 2023 publication-title: ACS Macro Lett. – volume: 56 start-page: 5743 year: 2023 publication-title: Macromolecules – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 154 year: 2024 publication-title: Prog. Polym. Sci. – volume: 53 start-page: 1212 year: 2020 publication-title: Macromolecules – volume: 14 year: 2020 publication-title: ACS Nano – volume: 11 start-page: 2855 year: 2020 publication-title: Chem. Sci. – volume: 35 year: 2023 publication-title: Compos. Commun. – volume: 49 start-page: 3789 year: 2016 publication-title: Macromolecules – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1160 year: 2020 publication-title: Chem – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 547 year: 2019 publication-title: Nat. Commun. – volume: 67 start-page: 390 year: 2024 publication-title: Sci. China: Chem. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 4258 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 8167 year: 2016 publication-title: Macromolecules – volume: 138 year: 2021 publication-title: J. Appl. Polym. Sci. – volume: 370 start-page: 910 year: 2020 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 41 year: 2020 publication-title: Macromol. Rapid Comm. – volume: 28 start-page: 9060 year: 2016 publication-title: Adv. Mater. – volume: 15 start-page: 4688 year: 2021 publication-title: ACS Nano – volume: 7 year: 2023 publication-title: Small Methods – volume: 65 start-page: 252 year: 2015 publication-title: Eur. Polym. J. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 143 start-page: 7449 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 35 year: 2022 publication-title: Compos. Commun. – volume: 54 start-page: 9496 year: 2021 publication-title: Macromolecules – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 5857 year: 2016 publication-title: Adv. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 342 start-page: 357 year: 2018 publication-title: Chem. Eng. J. – volume: 59 start-page: 8368 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 28 start-page: 4884 year: 2016 publication-title: Adv. Mater. – volume: 107 year: 2020 publication-title: Prog. Polym. Sci. – volume: 50 year: 2021 publication-title: Chem. Soc. Rev. – volume: 56 start-page: 6655 year: 2023 publication-title: Macromolecules – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 42 year: 2023 publication-title: Compos. Commun. – ident: e_1_2_7_31_1 doi: 10.1002/anie.202211792 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.202004407 – ident: e_1_2_7_44_1 doi: 10.1002/anie.201709129 – ident: e_1_2_7_55_1 doi: 10.1016/j.coco.2022.101344 – ident: e_1_2_7_21_1 doi: 10.1002/adma.201704118 – ident: e_1_2_7_32_1 doi: 10.1021/jacs.1c01963 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-020-18460-2 – ident: e_1_2_7_8_1 doi: 10.1016/j.progpolymsci.2024.101847 – ident: e_1_2_7_12_1 doi: 10.1002/adma.202301551 – ident: e_1_2_7_47_1 doi: 10.1002/marc.202000209 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201600466 – ident: e_1_2_7_30_1 doi: 10.1002/anie.202215134 – ident: e_1_2_7_34_1 doi: 10.1021/acs.macromol.3c01143 – ident: e_1_2_7_38_1 doi: 10.1039/D0SC00219D – ident: e_1_2_7_45_1 doi: 10.1021/acs.macromol.3c00302 – ident: e_1_2_7_48_1 doi: 10.1002/anie.202308372 – ident: e_1_2_7_36_1 doi: 10.1021/acs.macromol.3c00759 – ident: e_1_2_7_25_1 doi: 10.1021/acsnano.0c05902 – ident: e_1_2_7_11_1 doi: 10.1016/j.coco.2023.101684 – ident: e_1_2_7_54_1 doi: 10.1002/adma.201600514 – ident: e_1_2_7_51_1 doi: 10.1002/smtd.202201592 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.202201542 – ident: e_1_2_7_40_1 doi: 10.1002/anie.201809614 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201800671 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201705462 – ident: e_1_2_7_57_1 doi: 10.1002/app.50473 – ident: e_1_2_7_37_1 doi: 10.1002/anie.202315849 – ident: e_1_2_7_49_1 doi: 10.1021/acs.macromol.1c01528 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-019-08433-5 – ident: e_1_2_7_42_1 doi: 10.1002/anie.201911758 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201704195 – ident: e_1_2_7_41_1 doi: 10.1016/j.chempr.2020.02.009 – ident: e_1_2_7_43_1 doi: 10.1021/acs.macromol.6b01756 – ident: e_1_2_7_13_1 doi: 10.1002/adma.202311206 – ident: e_1_2_7_52_1 doi: 10.1021/acs.chemrev.1c00481 – ident: e_1_2_7_46_1 doi: 10.1021/acs.macromol.9b02710 – ident: e_1_2_7_2_1 doi: 10.1039/D1CS00029B – ident: e_1_2_7_3_1 doi: 10.1002/anie.201800907 – ident: e_1_2_7_27_1 doi: 10.1007/s11426-023-1770-7 – ident: e_1_2_7_26_1 doi: 10.1021/acsmacrolett.3c00547 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201708614 – ident: e_1_2_7_29_1 doi: 10.1021/jacs.2c13049 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202107791 – ident: e_1_2_7_50_1 doi: 10.1021/acs.macromol.6b00688 – ident: e_1_2_7_23_1 doi: 10.1016/j.coco.2022.101488 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201902432 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201601613 – ident: e_1_2_7_56_1 doi: 10.1016/j.cej.2018.02.108 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.201903895 – ident: e_1_2_7_4_1 doi: 10.1126/science.abe7366 – ident: e_1_2_7_53_1 doi: 10.1002/adma.202210021 – ident: e_1_2_7_5_1 doi: 10.1016/j.progpolymsci.2020.101279 – ident: e_1_2_7_39_1 doi: 10.1002/anie.202314848 – ident: e_1_2_7_28_1 doi: 10.1002/anie.202309951 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201701807 – ident: e_1_2_7_33_1 doi: 10.1021/acsnano.0c09166 – ident: e_1_2_7_1_1 doi: 10.1016/j.eurpolymj.2014.11.024 |
SSID | ssj0008402 |
Score | 2.4493828 |
Snippet | Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2400681 |
SubjectTerms | Cross-Linking Reagents - chemistry Crosslinking dynamic micellar crosslinkers Energy dissipation Functional materials Gels Gels - chemical synthesis Gels - chemistry Healing hydrogels Hydrogels - chemical synthesis Hydrogels - chemistry Hydrogen bonding Hydrogen bonds Mechanical properties Mechanical tests Micelles Molecular Structure Nanoparticles Particle Size PEG‐gels Polyethylene glycol Polyethylene Glycols - chemical synthesis Polyethylene Glycols - chemistry Polymer gels polymeric nanoparticles Polymerization polymerization‐induced self‐assembly Polymers Self-assembly Solvents Stability Stress relaxation Structure-function relationships Synthesis |
Title | Polymerization‐Induced Self‐Assembly Providing PEG‐Gels with Dynamic Micelle‐Crosslinked Hierarchical Structures and Overall Improvement of Their Comprehensive Performances |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400681 https://www.ncbi.nlm.nih.gov/pubmed/39427340 https://www.proquest.com/docview/3158842782 https://www.proquest.com/docview/3118834599 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQN7CBUl4ppTISEqu0ie144mU1tB0hDYz6kLqL_IoYkWZQp4M0rPgEPoYv4ku4155kGFggwTJy3vfaPj7X91xCXhnjtfJcpKrQDtkqlyrvytQOrFRGMlFapAbG7-ToUry9Kq5-yeKP-hA94YY9I4zX2MG1mR-uRUNR6gHWd7gHUobca9ywhajobK0fBauXGO6EFRcsxmSn2pixw83LN2elP6DmJnINU8_JA6K7l447Tj4eLG7Ngf3ym57j_3zVNrm_wqX0KDrSQ3LHtzvk7rArB_eIfJ_MmiWGd2Le5o-v37Dqh_WOnvumhkMMH1-bZkknIbkPpkQ6OT6FhlOYfinyvfTNstXXU0vH0xAvgLYh_g4MIsN9RlNMhg61WRp6HnRtFzd-TnXr6PvPyJ01NHIggdKks5peYJiD4ph24z_Erfh0sk6FmD8mlyfHF8NRuir5kFrOyjyVWpXCFFaWTnGb58YagJgWqRZnDIzLAgcMp71XskY0ajNe-MzlA4COppT8CdlqZ61_RqgYDDKmfcEy60SRc-1dDWDIZnldgy-whLzuTF59isoeVdRwZhVaoeqtkJC9ziOqVQ-fVzzHFF8GACshL_tmsAn-QN362QLPycuSi0KphDyNntQ_iiuBykJZQljwh7-8QzU-Ohv2R7v_ctFzco9h8eLAH-2RLbCjfwGI6tbsh17zExPBHvU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcigX3g9DgUUCcXJrrx_xHjhUSduUNiVqU6k3431YRLgOahpQOPET-CtI_BJ-Ar-Emd04UeCAhNQDR2v90uzM7jczO98APJfSFMJEsS-SQlO0SvvC6MxXLZUKmfI4UxQa6B2m3ZP49WlyugLfmloYxw8xD7iRZdj1mgycAtKbC9ZQ4npAB48OQaZZODtXuW-mn9BrG7_a6-AUv-B8Z3vQ7vqzxgK-ingW-mkhslgmKs20iFQYSiURyChy6LWUaP0xqaUujBFpSZhHBVFiAh22EKDILI3wvVfgKrURJ7r-ztGCsQr9JZdgRR8P3b-04YkM-Oby_y7vg3-A22WsbDe7nRvwoxGTO-PyfmNyITfU598YJP8rOd6E6zPozbacrdyCFVPfhrV20_HuDnzvj6opZbBcaerPL1-psYkymh2bqsRLypCfyWrK-rZ-EXd91t_exYFdRBiMQtqsM62Ls6FivaFNieBYm-RPeXJ8T3dI9d62_UzFji117-TcjFlRa_bmI4UHK-bCPDZqy0YlG1Amh9GyfW7euWoD1l9Ue4zvwsmlCO0erNaj2jwAFrdaAS9MwgOl4ySMCqNLxHsqCMsSlY978LLRsfyDIy_JHU01z2nW8_mse7DeqGA-W8TGeRRSFTNHDOnBs_kwzgkJsKjNaEL3hFkWxYkQHtx3qjv_VCRiIk8KPOBWAf_yD3lv66g9v3r4Lw89hbXuoHeQH-wd7j-Ca5x6Ndtw2Tqs4pyaxwggL-QTa7IM3l62bv8Cepl6jg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIgEX3g9DgUUCcXJrrx_xHjhUSdOUkmL1IfVmvA-LCNepmgYUTvwEfgoH_gh_gV_CzDp2FDggIfXA0Vq_NDuz-83MzjcAz6U0uTBB6Ioo1xSt0q4wOnFVR8VCxjxMFIUGhnvx4Ch8fRwdr8C3pham5odoA25kGXa9JgM_1cXGgjSUqB7Qv6MzkHHiz49V7prZJ3TaJq92ejjDLzjvbx12B-68r4CrAp74bpyLJJSRihMtAuX7UknEMYr8eS0lGn9IWqlzY0RcEORRXhAZT_sdxCcyiQN87yW4HMaeoGYRvf0FYRW6S3V-FV089P7ihibS4xvL_7u8Df6BbZehst3r-jfgRyOl-ojLh_XpuVxXn38jkPyfxHgTrs-BN9usLeUWrJjqNlztNv3u7sD3dFzOKH9VF6b-_PKV2pooo9mBKQu8pPz4iSxnLLXVi7jns3RrGwe2EV8wCmiz3qzKT0aKDUc2IYJjXRI_ZcnxPYMRVXvb5jMlO7DEvdMzM2F5pdnbjxQcLFkd5LExWzYu2CHlcRgt2mfmfV1rwNJFrcfkLhxdiNDuwWo1rswDYGGn4_HcRNxTOoz8IDe6QLSnPL8oUPe4Ay8bFctOa-qSrCap5hnNetbOugNrjQZm8yVskgU-1TBzRJAOPGuHcU5IgHllxlO6x0-SIIyEcOB-rbntpwIREnWS5wC3-veXf8iGm_vd9urhvzz0FK6kvX72Zmdv9xFc49So2cbK1mAVp9Q8RvR4Lp9Yg2Xw7qJV-xeAonk9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymerization-Induced+Self-Assembly+Providing+PEG-Gels+with+Dynamic+Micelle-Crosslinked+Hierarchical+Structures+and+Overall+Improvement+of+Their+Comprehensive+Performances&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Chang%2C+Zi-Xuan&rft.au=Hong%2C+Chun-Yan&rft.au=Zhang%2C+Wen-Jian&rft.date=2025-01-01&rft.eissn=1521-3927&rft.volume=46&rft.issue=2&rft.spage=e2400681&rft_id=info:doi/10.1002%2Fmarc.202400681&rft_id=info%3Apmid%2F39427340&rft.externalDocID=39427340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |