Polymerization‐Induced Self‐Assembly Providing PEG‐Gels with Dynamic Micelle‐Crosslinked Hierarchical Structures and Overall Improvement of Their Comprehensive Performances

Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self‐healing performances in o...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 46; no. 2; pp. e2400681 - n/a
Main Authors Chang, Zi‐Xuan, Hong, Chun‐Yan, Zhang, Wen‐Jian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self‐healing performances in one gel is more difficult. Herein, polymerization‐induced self‐assembly (PISA) providing PEG‐gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. Compared to hydrogels, PEG‐gels show excellent long‐term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers). The energy dissipation mechanism of the PEG‐gels is analyzed via stress relaxation and cyclic mechanical tests. High‐density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self‐healing properties of the dynamic micelle‐crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials. In this work, PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers).
AbstractList Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self‐healing performances in one gel is more difficult. Herein, polymerization‐induced self‐assembly (PISA) providing PEG‐gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. Compared to hydrogels, PEG‐gels show excellent long‐term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers). The energy dissipation mechanism of the PEG‐gels is analyzed via stress relaxation and cyclic mechanical tests. High‐density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self‐healing properties of the dynamic micelle‐crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials.
Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self-healing performances in one gel is more difficult. Herein, polymerization-induced self-assembly (PISA) providing PEG-gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG-gels with dynamic micelle-crosslinked hierarchical structures. Compared to hydrogels, PEG-gels show excellent long-term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG-gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous-gels (without nanofillers). The energy dissipation mechanism of the PEG-gels is analyzed via stress relaxation and cyclic mechanical tests. High-density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self-healing properties of the dynamic micelle-crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials.Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self-healing performances in one gel is more difficult. Herein, polymerization-induced self-assembly (PISA) providing PEG-gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG-gels with dynamic micelle-crosslinked hierarchical structures. Compared to hydrogels, PEG-gels show excellent long-term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG-gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous-gels (without nanofillers). The energy dissipation mechanism of the PEG-gels is analyzed via stress relaxation and cyclic mechanical tests. High-density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self-healing properties of the dynamic micelle-crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials.
Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self‐healing performances in one gel is more difficult. Herein, polymerization‐induced self‐assembly (PISA) providing PEG‐gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. Compared to hydrogels, PEG‐gels show excellent long‐term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers). The energy dissipation mechanism of the PEG‐gels is analyzed via stress relaxation and cyclic mechanical tests. High‐density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self‐healing properties of the dynamic micelle‐crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials. In this work, PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG‐gels with dynamic micelle‐crosslinked hierarchical structures. The hierarchical PEG‐gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous‐gels (without nanofillers).
Author Zhang, Wen‐Jian
Chang, Zi‐Xuan
Hong, Chun‐Yan
Author_xml – sequence: 1
  givenname: Zi‐Xuan
  surname: Chang
  fullname: Chang, Zi‐Xuan
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Chun‐Yan
  surname: Hong
  fullname: Hong, Chun‐Yan
  email: hongcy@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Wen‐Jian
  orcidid: 0000-0001-9039-3618
  surname: Zhang
  fullname: Zhang, Wen‐Jian
  email: wjzhang@ahu.edu.cn
  organization: Anhui University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39427340$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxJZYsMmg3-SjL0cpWU6UquOaFlHjnPDuDh2sZOpwopH6MP0iXgSPJpSJDasbN_7naPre47RgfMOEHpLyYwSwj72KugZIywnpBT0BTqiBaMZl2x-kO6EsYxyXh6i4xhvCSEiJ-wVOuQyZ3OekyP0uPZ26iGYH2ow3v36-bBy7aihxddgu_RcxAh9Yye8Dn5rWuO-4vXZMjWWYCO-N8MGn05O9UbjS6PBWki9KvgYrXHfks-5gZCG3BitLL4ewqiHMUDEyrX4apt61uJVf5fcoQc3YN_hmw2YgCufqrABF80W8BpC50OvnIb4Gr3slI3w5uk8QV8-nd1U59nF1XJVLS4yzZmgWamkyJtCl6KVXFPa6KagUpdU5m3TUEpzWXLRKgBZdiQvSk14AaSlcyKKRpT8BH3Y-6bpvo8Qh7o3cfdH5cCPseaUCsHzQsqEvv8HvfVjcGm6RBVCpH0Llqh3T9TY9NDWd8GkAKf6Tx4JmO0BvdtggO4ZoaTeBV7vAq-fA08CuRfcGwvTf-j6cvG5-qv9DUlVtUw
Cites_doi 10.1002/anie.202211792
10.1002/adfm.202004407
10.1002/anie.201709129
10.1016/j.coco.2022.101344
10.1002/adma.201704118
10.1021/jacs.1c01963
10.1038/s41467-020-18460-2
10.1016/j.progpolymsci.2024.101847
10.1002/adma.202301551
10.1002/marc.202000209
10.1002/adma.201600466
10.1002/anie.202215134
10.1021/acs.macromol.3c01143
10.1039/D0SC00219D
10.1021/acs.macromol.3c00302
10.1002/anie.202308372
10.1021/acs.macromol.3c00759
10.1021/acsnano.0c05902
10.1016/j.coco.2023.101684
10.1002/adma.201600514
10.1002/smtd.202201592
10.1002/aenm.202201542
10.1002/anie.201809614
10.1002/adma.201800671
10.1002/anie.201705462
10.1002/app.50473
10.1002/anie.202315849
10.1021/acs.macromol.1c01528
10.1038/s41467-019-08433-5
10.1002/anie.201911758
10.1002/adfm.201704195
10.1016/j.chempr.2020.02.009
10.1021/acs.macromol.6b01756
10.1002/adma.202311206
10.1021/acs.chemrev.1c00481
10.1021/acs.macromol.9b02710
10.1039/D1CS00029B
10.1002/anie.201800907
10.1007/s11426-023-1770-7
10.1021/acsmacrolett.3c00547
10.1002/anie.201708614
10.1021/jacs.2c13049
10.1002/adma.202107791
10.1021/acs.macromol.6b00688
10.1016/j.coco.2022.101488
10.1002/adma.201902432
10.1002/adma.201601613
10.1016/j.cej.2018.02.108
10.1002/adfm.201903895
10.1126/science.abe7366
10.1002/adma.202210021
10.1016/j.progpolymsci.2020.101279
10.1002/anie.202314848
10.1002/anie.202309951
10.1002/adfm.201701807
10.1021/acsnano.0c09166
10.1016/j.eurpolymj.2014.11.024
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202400681
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 39427340
10_1002_marc_202400681
MARC202400681
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22171255; 22131010; 52021002
– fundername: National Natural Science Foundation of China
  grantid: 22171255
– fundername: National Natural Science Foundation of China
  grantid: 22131010
– fundername: National Natural Science Foundation of China
  grantid: 52021002
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c3281-6a984b5c68d93c11bcb519c6194dbb11149638daee96f0456c035e0d17085b863
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Thu Jul 10 22:00:54 EDT 2025
Fri Jul 25 12:12:17 EDT 2025
Mon Jul 21 05:58:07 EDT 2025
Tue Jul 01 03:31:52 EDT 2025
Fri Jan 24 09:42:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords dynamic micellar crosslinkers
hydrogels
polymeric nanoparticles
PEG‐gels
polymerization‐induced self‐assembly
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3281-6a984b5c68d93c11bcb519c6194dbb11149638daee96f0456c035e0d17085b863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9039-3618
PMID 39427340
PQID 3158842782
PQPubID 1016394
PageCount 9
ParticipantIDs proquest_miscellaneous_3118834599
proquest_journals_3158842782
pubmed_primary_39427340
crossref_primary_10_1002_marc_202400681
wiley_primary_10_1002_marc_202400681_MARC202400681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 342
2018; 28
2023; 35
2023; 12
2023; 56
2019; 31
2020; 41
2017; 27
2019; 10
2023; 7
2023; 145
2020; 59
2020; 107
2020; 14
2017; 29
2020; 11
2021; 143
2021; 50
2024; 36
2023; 42
2022; 122
2023; 62
2020; 6
2021; 15
2021; 54
2020; 53
2020; 30
2022; 61
2021; 138
2020; 370
2015; 65
2017; 56
2022; 12
2022; 34
2022; 35
2024; 63
2024; 154
2019; 29
2018; 30
2024; 67
2016; 28
2016; 49
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 12
  year: 2022
  publication-title: Adv. Energy. Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 3296
  year: 2023
  publication-title: Macromolecules
– volume: 145
  start-page: 5824
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  start-page: 5317
  year: 2022
  publication-title: Chem. Rev.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 11
  start-page: 4690
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1457
  year: 2023
  publication-title: ACS Macro Lett.
– volume: 56
  start-page: 5743
  year: 2023
  publication-title: Macromolecules
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 154
  year: 2024
  publication-title: Prog. Polym. Sci.
– volume: 53
  start-page: 1212
  year: 2020
  publication-title: Macromolecules
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 11
  start-page: 2855
  year: 2020
  publication-title: Chem. Sci.
– volume: 35
  year: 2023
  publication-title: Compos. Commun.
– volume: 49
  start-page: 3789
  year: 2016
  publication-title: Macromolecules
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1160
  year: 2020
  publication-title: Chem
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 547
  year: 2019
  publication-title: Nat. Commun.
– volume: 67
  start-page: 390
  year: 2024
  publication-title: Sci. China: Chem.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 4258
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 8167
  year: 2016
  publication-title: Macromolecules
– volume: 138
  year: 2021
  publication-title: J. Appl. Polym. Sci.
– volume: 370
  start-page: 910
  year: 2020
  publication-title: Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 41
  year: 2020
  publication-title: Macromol. Rapid Comm.
– volume: 28
  start-page: 9060
  year: 2016
  publication-title: Adv. Mater.
– volume: 15
  start-page: 4688
  year: 2021
  publication-title: ACS Nano
– volume: 7
  year: 2023
  publication-title: Small Methods
– volume: 65
  start-page: 252
  year: 2015
  publication-title: Eur. Polym. J.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 143
  start-page: 7449
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 35
  year: 2022
  publication-title: Compos. Commun.
– volume: 54
  start-page: 9496
  year: 2021
  publication-title: Macromolecules
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 5857
  year: 2016
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 342
  start-page: 357
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 59
  start-page: 8368
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4884
  year: 2016
  publication-title: Adv. Mater.
– volume: 107
  year: 2020
  publication-title: Prog. Polym. Sci.
– volume: 50
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 6655
  year: 2023
  publication-title: Macromolecules
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 42
  year: 2023
  publication-title: Compos. Commun.
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.202211792
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.202004407
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201709129
– ident: e_1_2_7_55_1
  doi: 10.1016/j.coco.2022.101344
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.201704118
– ident: e_1_2_7_32_1
  doi: 10.1021/jacs.1c01963
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-020-18460-2
– ident: e_1_2_7_8_1
  doi: 10.1016/j.progpolymsci.2024.101847
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.202301551
– ident: e_1_2_7_47_1
  doi: 10.1002/marc.202000209
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201600466
– ident: e_1_2_7_30_1
  doi: 10.1002/anie.202215134
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.macromol.3c01143
– ident: e_1_2_7_38_1
  doi: 10.1039/D0SC00219D
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.macromol.3c00302
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.202308372
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.macromol.3c00759
– ident: e_1_2_7_25_1
  doi: 10.1021/acsnano.0c05902
– ident: e_1_2_7_11_1
  doi: 10.1016/j.coco.2023.101684
– ident: e_1_2_7_54_1
  doi: 10.1002/adma.201600514
– ident: e_1_2_7_51_1
  doi: 10.1002/smtd.202201592
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.202201542
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201809614
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201800671
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201705462
– ident: e_1_2_7_57_1
  doi: 10.1002/app.50473
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.202315849
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.macromol.1c01528
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-019-08433-5
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201911758
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201704195
– ident: e_1_2_7_41_1
  doi: 10.1016/j.chempr.2020.02.009
– ident: e_1_2_7_43_1
  doi: 10.1021/acs.macromol.6b01756
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.202311206
– ident: e_1_2_7_52_1
  doi: 10.1021/acs.chemrev.1c00481
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.macromol.9b02710
– ident: e_1_2_7_2_1
  doi: 10.1039/D1CS00029B
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.201800907
– ident: e_1_2_7_27_1
  doi: 10.1007/s11426-023-1770-7
– ident: e_1_2_7_26_1
  doi: 10.1021/acsmacrolett.3c00547
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201708614
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.2c13049
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202107791
– ident: e_1_2_7_50_1
  doi: 10.1021/acs.macromol.6b00688
– ident: e_1_2_7_23_1
  doi: 10.1016/j.coco.2022.101488
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201902432
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201601613
– ident: e_1_2_7_56_1
  doi: 10.1016/j.cej.2018.02.108
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.201903895
– ident: e_1_2_7_4_1
  doi: 10.1126/science.abe7366
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.202210021
– ident: e_1_2_7_5_1
  doi: 10.1016/j.progpolymsci.2020.101279
– ident: e_1_2_7_39_1
  doi: 10.1002/anie.202314848
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.202309951
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201701807
– ident: e_1_2_7_33_1
  doi: 10.1021/acsnano.0c09166
– ident: e_1_2_7_1_1
  doi: 10.1016/j.eurpolymj.2014.11.024
SSID ssj0008402
Score 2.4493828
Snippet Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2400681
SubjectTerms Cross-Linking Reagents - chemistry
Crosslinking
dynamic micellar crosslinkers
Energy dissipation
Functional materials
Gels
Gels - chemical synthesis
Gels - chemistry
Healing
hydrogels
Hydrogels - chemical synthesis
Hydrogels - chemistry
Hydrogen bonding
Hydrogen bonds
Mechanical properties
Mechanical tests
Micelles
Molecular Structure
Nanoparticles
Particle Size
PEG‐gels
Polyethylene glycol
Polyethylene Glycols - chemical synthesis
Polyethylene Glycols - chemistry
Polymer gels
polymeric nanoparticles
Polymerization
polymerization‐induced self‐assembly
Polymers
Self-assembly
Solvents
Stability
Stress relaxation
Structure-function relationships
Synthesis
Title Polymerization‐Induced Self‐Assembly Providing PEG‐Gels with Dynamic Micelle‐Crosslinked Hierarchical Structures and Overall Improvement of Their Comprehensive Performances
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400681
https://www.ncbi.nlm.nih.gov/pubmed/39427340
https://www.proquest.com/docview/3158842782
https://www.proquest.com/docview/3118834599
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQN7CBUl4ppTISEqu0ie144mU1tB0hDYz6kLqL_IoYkWZQp4M0rPgEPoYv4ku4155kGFggwTJy3vfaPj7X91xCXhnjtfJcpKrQDtkqlyrvytQOrFRGMlFapAbG7-ToUry9Kq5-yeKP-hA94YY9I4zX2MG1mR-uRUNR6gHWd7gHUobca9ywhajobK0fBauXGO6EFRcsxmSn2pixw83LN2elP6DmJnINU8_JA6K7l447Tj4eLG7Ngf3ym57j_3zVNrm_wqX0KDrSQ3LHtzvk7rArB_eIfJ_MmiWGd2Le5o-v37Dqh_WOnvumhkMMH1-bZkknIbkPpkQ6OT6FhlOYfinyvfTNstXXU0vH0xAvgLYh_g4MIsN9RlNMhg61WRp6HnRtFzd-TnXr6PvPyJ01NHIggdKks5peYJiD4ph24z_Erfh0sk6FmD8mlyfHF8NRuir5kFrOyjyVWpXCFFaWTnGb58YagJgWqRZnDIzLAgcMp71XskY0ajNe-MzlA4COppT8CdlqZ61_RqgYDDKmfcEy60SRc-1dDWDIZnldgy-whLzuTF59isoeVdRwZhVaoeqtkJC9ziOqVQ-fVzzHFF8GACshL_tmsAn-QN362QLPycuSi0KphDyNntQ_iiuBykJZQljwh7-8QzU-Ohv2R7v_ctFzco9h8eLAH-2RLbCjfwGI6tbsh17zExPBHvU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcigX3g9DgUUCcXJrrx_xHjhUSduUNiVqU6k3431YRLgOahpQOPET-CtI_BJ-Ar-Emd04UeCAhNQDR2v90uzM7jczO98APJfSFMJEsS-SQlO0SvvC6MxXLZUKmfI4UxQa6B2m3ZP49WlyugLfmloYxw8xD7iRZdj1mgycAtKbC9ZQ4npAB48OQaZZODtXuW-mn9BrG7_a6-AUv-B8Z3vQ7vqzxgK-ingW-mkhslgmKs20iFQYSiURyChy6LWUaP0xqaUujBFpSZhHBVFiAh22EKDILI3wvVfgKrURJ7r-ztGCsQr9JZdgRR8P3b-04YkM-Oby_y7vg3-A22WsbDe7nRvwoxGTO-PyfmNyITfU598YJP8rOd6E6zPozbacrdyCFVPfhrV20_HuDnzvj6opZbBcaerPL1-psYkymh2bqsRLypCfyWrK-rZ-EXd91t_exYFdRBiMQtqsM62Ls6FivaFNieBYm-RPeXJ8T3dI9d62_UzFji117-TcjFlRa_bmI4UHK-bCPDZqy0YlG1Amh9GyfW7euWoD1l9Ue4zvwsmlCO0erNaj2jwAFrdaAS9MwgOl4ySMCqNLxHsqCMsSlY978LLRsfyDIy_JHU01z2nW8_mse7DeqGA-W8TGeRRSFTNHDOnBs_kwzgkJsKjNaEL3hFkWxYkQHtx3qjv_VCRiIk8KPOBWAf_yD3lv66g9v3r4Lw89hbXuoHeQH-wd7j-Ca5x6Ndtw2Tqs4pyaxwggL-QTa7IM3l62bv8Cepl6jg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIgEX3g9DgUUCcXJrrx_xHjhUSdOUkmL1IfVmvA-LCNepmgYUTvwEfgoH_gh_gV_CzDp2FDggIfXA0Vq_NDuz-83MzjcAz6U0uTBB6Ioo1xSt0q4wOnFVR8VCxjxMFIUGhnvx4Ch8fRwdr8C3pham5odoA25kGXa9JgM_1cXGgjSUqB7Qv6MzkHHiz49V7prZJ3TaJq92ejjDLzjvbx12B-68r4CrAp74bpyLJJSRihMtAuX7UknEMYr8eS0lGn9IWqlzY0RcEORRXhAZT_sdxCcyiQN87yW4HMaeoGYRvf0FYRW6S3V-FV089P7ihibS4xvL_7u8Df6BbZehst3r-jfgRyOl-ojLh_XpuVxXn38jkPyfxHgTrs-BN9usLeUWrJjqNlztNv3u7sD3dFzOKH9VF6b-_PKV2pooo9mBKQu8pPz4iSxnLLXVi7jns3RrGwe2EV8wCmiz3qzKT0aKDUc2IYJjXRI_ZcnxPYMRVXvb5jMlO7DEvdMzM2F5pdnbjxQcLFkd5LExWzYu2CHlcRgt2mfmfV1rwNJFrcfkLhxdiNDuwWo1rswDYGGn4_HcRNxTOoz8IDe6QLSnPL8oUPe4Ay8bFctOa-qSrCap5hnNetbOugNrjQZm8yVskgU-1TBzRJAOPGuHcU5IgHllxlO6x0-SIIyEcOB-rbntpwIREnWS5wC3-veXf8iGm_vd9urhvzz0FK6kvX72Zmdv9xFc49So2cbK1mAVp9Q8RvR4Lp9Yg2Xw7qJV-xeAonk9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymerization-Induced+Self-Assembly+Providing+PEG-Gels+with+Dynamic+Micelle-Crosslinked+Hierarchical+Structures+and+Overall+Improvement+of+Their+Comprehensive+Performances&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Chang%2C+Zi-Xuan&rft.au=Hong%2C+Chun-Yan&rft.au=Zhang%2C+Wen-Jian&rft.date=2025-01-01&rft.eissn=1521-3927&rft.volume=46&rft.issue=2&rft.spage=e2400681&rft_id=info:doi/10.1002%2Fmarc.202400681&rft_id=info%3Apmid%2F39427340&rft.externalDocID=39427340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon