Phase‐Tunable Molybdenum Boride Ceramics as an Emerging Sensitive and Reliable SERS Platform in Harsh Environments
Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temper...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 31; pp. e2308690 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid‐phase precursor and carbothermal reduction have β‐MoB, MoB2, and Mo2B5 phases. Among these phases, β‐MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10−9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all‐ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh‐temperature ceramics for detection applications in extreme environments.
The all‐ceramic SERS substrates prepared by three different crystalline phases of molybdenum boride powders have good SERS activity, which is closely related to their crystal structure. Among them, β‐MoB has the best SERS enhancement activity, and the enhancement factor of 5 orders is comparable to that of noble metals. This all‐ceramic SERS platform shows promising applications in corrosive and high temperature environments. |
---|---|
AbstractList | Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have β-MoB, MoB
, and Mo
B
phases. Among these phases, β-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10
m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments. Abstract Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid‐phase precursor and carbothermal reduction have β‐MoB, MoB 2 , and Mo 2 B 5 phases. Among these phases, β‐MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10 −9 m . The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all‐ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh‐temperature ceramics for detection applications in extreme environments. Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid‐phase precursor and carbothermal reduction have β‐MoB, MoB2, and Mo2B5 phases. Among these phases, β‐MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10−9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all‐ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh‐temperature ceramics for detection applications in extreme environments. Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid‐phase precursor and carbothermal reduction have β‐MoB, MoB2, and Mo2B5 phases. Among these phases, β‐MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10−9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all‐ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh‐temperature ceramics for detection applications in extreme environments. The all‐ceramic SERS substrates prepared by three different crystalline phases of molybdenum boride powders have good SERS activity, which is closely related to their crystal structure. Among them, β‐MoB has the best SERS enhancement activity, and the enhancement factor of 5 orders is comparable to that of noble metals. This all‐ceramic SERS platform shows promising applications in corrosive and high temperature environments. Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have β-MoB, MoB2, and Mo2B5 phases. Among these phases, β-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10-9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments.Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have β-MoB, MoB2, and Mo2B5 phases. Among these phases, β-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10-9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments. |
Author | Huang, Zhulin Hu, Xiaoye Li, Ke Wang, Zhen Li, Xinyang Hu, Mengen Wu, Nianqiang Meng, Guowen Cao, Liang Yang, Chengwan Li, Kewei Li, Yue Dang, Xian |
Author_xml | – sequence: 1 givenname: Mengen surname: Hu fullname: Hu, Mengen organization: University of Science and Technology of China – sequence: 2 givenname: Ke surname: Li fullname: Li, Ke organization: Anhui Agricultural University – sequence: 3 givenname: Xian surname: Dang fullname: Dang, Xian organization: Anhui University – sequence: 4 givenname: Chengwan surname: Yang fullname: Yang, Chengwan organization: University of Science and Technology of China – sequence: 5 givenname: Xinyang surname: Li fullname: Li, Xinyang organization: Chinese Academy of Sciences – sequence: 6 givenname: Zhen surname: Wang fullname: Wang, Zhen organization: University of Science and Technology of China – sequence: 7 givenname: Kewei surname: Li fullname: Li, Kewei organization: University of Science and Technology of China – sequence: 8 givenname: Liang surname: Cao fullname: Cao, Liang organization: Chinese Academy of Sciences – sequence: 9 givenname: Xiaoye surname: Hu fullname: Hu, Xiaoye organization: Chinese Academy of Sciences – sequence: 10 givenname: Yue surname: Li fullname: Li, Yue organization: Chinese Academy of Sciences – sequence: 11 givenname: Nianqiang surname: Wu fullname: Wu, Nianqiang email: nianqiangwu@umass.edu organization: University of Massachusetts Amherst – sequence: 12 givenname: Zhulin orcidid: 0000-0002-1625-7236 surname: Huang fullname: Huang, Zhulin email: zlhuang@issp.ac.cn organization: University of Science and Technology of China – sequence: 13 givenname: Guowen surname: Meng fullname: Meng, Guowen organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38470201$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOGzEUhq0KVC7ttsvKUjdsEo7Hk4m9pFEoSEEgQteWx3MGjHwBewaUHY_QZ-yTdEIglbqpdCQfWZ8_Wf9_QHZCDEjIFwZjBlAcZ-_cuICCg6gkfCD7rGJ8VIlC7mx3BnvkIOd7AM6KcvqR7HFRTqEAtk-6qzud8ffLr5s-6NohvYhuVTcYek-_x2QbpDNM2luTqR4m0LnHdGvDLV1iyLazTzjcNvQanX0VLOfXS3rldNfG5KkN9EynfEfn4cmmGDyGLn8iu612GT-_nYfk5-n8ZnY2Wlz-OJ-dLEaGFwJGsjXNxPAaTFWhYHpa8VJIJpvaYFsKgSgmUhgtWpA1YiXZEIPRpmwawLLU_JAcbbwPKT72mDvlbTbonA4Y-6wKOanYREylGNBv_6D3sU9h-J1aRyuY4MAGaryhTIo5J2zVQ7Jep5VioNZ9qHUfatvH8ODrm7avPTZb_L2AAZAb4Nk6XP1Hp5YXi8Vf-R-OwZqB |
Cites_doi | 10.1002/anie.202000489 10.1039/D0SC02712J 10.1021/jacs.7b04011 10.1038/s41467-017-02166-z 10.1039/C8CC05102J 10.1039/D0TC03512B 10.1021/acsnano.8b03698 10.1007/s12274-021-4017-4 10.1016/j.mtphys.2021.100378 10.1080/14786435.2017.1407881 10.1021/acs.est.2c07416 10.1021/acsami.3c04414 10.1002/anie.201705187 10.1002/anie.201902776 10.1021/acs.accounts.3c00207 10.1002/smll.202107027 10.1038/s41467-023-38198-x 10.1021/acs.jpcc.7b08180 10.1038/s41467-021-27100-2 10.1038/s41467-019-13505-7 10.1002/jrs.4854 10.1038/s41467-020-17628-0 10.1021/jacs.8b02972 10.1016/j.jallcom.2007.03.024 10.1364/OE.473965 10.1038/s41524-020-00383-7 10.1002/adom.201801249 10.1038/srep23733 10.1039/C0CC03697H 10.1038/nmat4958 10.1007/s40820-020-00565-4 10.1002/admt.202200217 10.1016/j.foodchem.2022.134384 10.1002/adfm.201606694 10.1016/j.snb.2021.131110 10.1016/j.apsusc.2023.156854 10.1039/C9NR09238B 10.1021/acs.accounts.9b00545 10.1016/j.trac.2020.115983 10.1002/adma.201803432 10.1103/PhysRevB.73.144108 10.1021/acsmaterialslett.2c00908 10.1002/adma.201001179 10.1002/adma.201506251 10.1002/anie.202015306 10.1002/advs.202100640 10.1016/j.surfin.2022.102440 10.1002/adma.201604797 10.1002/adom.202101976 10.1021/acs.chemmater.9b01698 10.1016/j.matt.2021.11.028 10.1016/j.apsusc.2022.155034 10.1103/PhysRevB.106.064507 10.1021/acsami.0c11322 10.1002/smll.202107182 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202308690 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202308690 38470201 SMLL202308690 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Major Science and Technology Project of Anhui Province funderid: 008192841048 – fundername: Natural Science Fund for Excellent Young Scholars funderid: 52222208 – fundername: HFIPS funderid: BJPY2021B04; YZJJ202202−CX; YZJJKX202202 – fundername: Natural Science Foundation of China funderid: 52232007; 52072373; 21673245; 51825103; 52102191 – fundername: Natural Science Fund for Excellent Young Scholars grantid: 52222208 – fundername: Major Science and Technology Project of Anhui Province grantid: 008192841048 – fundername: HFIPS grantid: YZJJKX202202 – fundername: Natural Science Foundation of China grantid: 52102191 – fundername: Natural Science Foundation of China grantid: 52232007 – fundername: HFIPS grantid: BJPY2021B04 – fundername: Natural Science Foundation of China grantid: 21673245 – fundername: Natural Science Foundation of China grantid: 51825103 – fundername: HFIPS grantid: YZJJ202202-CX – fundername: Natural Science Foundation of China grantid: 52072373 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF EBD EJD EMOBN FEDTE GODZA HVGLF NPM SV3 AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3280-9fcd5c3b0c66e81a76348919dbcef488ee8598ca8f09bee691230cac4dd0e44a3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Sat Oct 26 04:31:18 EDT 2024 Thu Oct 10 22:34:34 EDT 2024 Fri Aug 23 04:30:41 EDT 2024 Tue Oct 29 09:10:50 EDT 2024 Sat Aug 24 00:56:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | charge interaction molybdenum boride surface‐enhanced Raman scattering phase tunable |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3280-9fcd5c3b0c66e81a76348919dbcef488ee8598ca8f09bee691230cac4dd0e44a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1625-7236 |
PMID | 38470201 |
PQID | 3086818301 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2956158798 proquest_journals_3086818301 crossref_primary_10_1002_smll_202308690 pubmed_primary_38470201 wiley_primary_10_1002_smll_202308690_SMLL202308690 |
PublicationCentury | 2000 |
PublicationDate | August 1, 2024 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2006; 73 2019; 10 2019; 58 2020; 59 2023; 620 2020; 12 2020; 11 2020; 8 2010; 22 2020; 6 2020; 53 2020; 130 2022; 35 2022; 30 2017; 121 2016; 47 2022; 354 2021; 8 2019; 7 2023; 57 2023; 14 2018; 140 2023; 56 2019; 31 2023; 15 2017; 27 2023; 403 2017; 29 2023; 607 2017; 139 2021; 13 2016; 6 2021; 12 2022; 4 2022; 5 2017; 16 2022; 7 2021; 18 2017; 56 2022; 15 2008; 457 2022; 10 2011; 47 2018; 12 2016; 28 2021; 60 2018; 54 2018; 98 2022; 106 2022; 18 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 22 start-page: 4136 year: 2010 publication-title: Adv. Mater. – volume: 106 year: 2022 publication-title: Phys. Rev. B – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 8362 year: 2018 publication-title: ACS Nano – volume: 18 year: 2022 publication-title: Small – volume: 18 year: 2021 publication-title: Mater. Today Phys. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 607 year: 2023 publication-title: Appl. Surf. Sci. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 457 start-page: 191 year: 2008 publication-title: J. Alloys Compd. – volume: 11 start-page: 3889 year: 2020 publication-title: Nat. Commun. – volume: 28 start-page: 4871 year: 2016 publication-title: Adv. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 5725 year: 2019 publication-title: Chem. Mater. – volume: 8 start-page: 1993 year: 2017 publication-title: Nat. Commun. – volume: 15 start-page: 4374 year: 2022 publication-title: Nano Res. – volume: 10 start-page: 5502 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 6849 year: 2021 publication-title: Nat. Commun. – volume: 12 start-page: 4359 year: 2020 publication-title: Nanoscale – volume: 57 start-page: 25 year: 2023 publication-title: Environ. Sci. Technol. – volume: 47 start-page: 51 year: 2016 publication-title: J. Raman Spectrosc. – volume: 4 start-page: 2622 year: 2022 publication-title: Acs Mater. Lett. – volume: 8 year: 2020 publication-title: J. Mater. Chem. C – volume: 16 start-page: 878 year: 2017 publication-title: Nat. Mater. – volume: 6 start-page: 112 year: 2020 publication-title: Npj Comput. Mater. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 7 year: 2022 publication-title: Adv. Mater. Technol. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 58 start-page: 7757 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 403 year: 2023 publication-title: Food Chem. – volume: 56 start-page: 9851 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 620 year: 2023 publication-title: Appl. Surf. Sci. – volume: 13 start-page: 52 year: 2021 publication-title: Nano‐Micro Lett. – volume: 30 year: 2022 publication-title: Opt. Express – volume: 47 start-page: 2426 year: 2011 publication-title: Chem. Commun. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 9414 year: 2020 publication-title: Chem. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 98 start-page: 422 year: 2018 publication-title: Philos. Mag. – volume: 56 start-page: 2072 year: 2023 publication-title: Acc. Chem. Res. – volume: 130 year: 2020 publication-title: Trends Anal. Chem. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 73 year: 2006 publication-title: Phys. Rev. B – volume: 354 year: 2022 publication-title: Sens. Actuators B: Chem. – volume: 5 start-page: 694 year: 2022 publication-title: Matter – volume: 35 year: 2022 publication-title: Surf. Interfaces – volume: 60 start-page: 5505 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 140 start-page: 8696 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 729 year: 2020 publication-title: Acc. Chem. Res. – volume: 14 start-page: 2717 year: 2023 publication-title: Nat. Commun. – ident: e_1_2_8_12_1 doi: 10.1002/anie.202000489 – ident: e_1_2_8_30_1 doi: 10.1039/D0SC02712J – ident: e_1_2_8_3_1 doi: 10.1021/jacs.7b04011 – ident: e_1_2_8_27_1 doi: 10.1038/s41467-017-02166-z – ident: e_1_2_8_37_1 doi: 10.1039/C8CC05102J – ident: e_1_2_8_20_1 doi: 10.1039/D0TC03512B – ident: e_1_2_8_11_1 doi: 10.1021/acsnano.8b03698 – ident: e_1_2_8_24_1 doi: 10.1007/s12274-021-4017-4 – ident: e_1_2_8_46_1 doi: 10.1016/j.mtphys.2021.100378 – ident: e_1_2_8_50_1 doi: 10.1080/14786435.2017.1407881 – ident: e_1_2_8_22_1 doi: 10.1021/acs.est.2c07416 – ident: e_1_2_8_5_1 doi: 10.1021/acsami.3c04414 – ident: e_1_2_8_41_1 doi: 10.1002/anie.201705187 – ident: e_1_2_8_9_1 doi: 10.1002/anie.201902776 – ident: e_1_2_8_23_1 doi: 10.1021/acs.accounts.3c00207 – ident: e_1_2_8_35_1 doi: 10.1002/smll.202107027 – ident: e_1_2_8_29_1 doi: 10.1038/s41467-023-38198-x – ident: e_1_2_8_39_1 doi: 10.1021/acs.jpcc.7b08180 – ident: e_1_2_8_1_1 doi: 10.1038/s41467-021-27100-2 – ident: e_1_2_8_45_1 doi: 10.1038/s41467-019-13505-7 – ident: e_1_2_8_19_1 doi: 10.1002/jrs.4854 – ident: e_1_2_8_55_1 doi: 10.1038/s41467-020-17628-0 – ident: e_1_2_8_18_1 doi: 10.1021/jacs.8b02972 – ident: e_1_2_8_49_1 doi: 10.1016/j.jallcom.2007.03.024 – ident: e_1_2_8_48_1 doi: 10.1364/OE.473965 – ident: e_1_2_8_53_1 doi: 10.1038/s41524-020-00383-7 – ident: e_1_2_8_26_1 doi: 10.1002/adom.201801249 – ident: e_1_2_8_16_1 doi: 10.1038/srep23733 – ident: e_1_2_8_28_1 doi: 10.1039/C0CC03697H – ident: e_1_2_8_40_1 doi: 10.1038/nmat4958 – ident: e_1_2_8_44_1 doi: 10.1007/s40820-020-00565-4 – ident: e_1_2_8_34_1 doi: 10.1002/admt.202200217 – ident: e_1_2_8_8_1 doi: 10.1016/j.foodchem.2022.134384 – ident: e_1_2_8_54_1 doi: 10.1002/adfm.201606694 – ident: e_1_2_8_14_1 doi: 10.1016/j.snb.2021.131110 – ident: e_1_2_8_25_1 doi: 10.1016/j.apsusc.2023.156854 – ident: e_1_2_8_4_1 doi: 10.1039/C9NR09238B – ident: e_1_2_8_10_1 doi: 10.1021/acs.accounts.9b00545 – ident: e_1_2_8_17_1 doi: 10.1016/j.trac.2020.115983 – ident: e_1_2_8_36_1 doi: 10.1002/adma.201803432 – ident: e_1_2_8_52_1 doi: 10.1103/PhysRevB.73.144108 – ident: e_1_2_8_42_1 doi: 10.1021/acsmaterialslett.2c00908 – ident: e_1_2_8_7_1 doi: 10.1002/adma.201001179 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201506251 – ident: e_1_2_8_32_1 doi: 10.1002/anie.202015306 – ident: e_1_2_8_15_1 doi: 10.1002/advs.202100640 – ident: e_1_2_8_21_1 doi: 10.1016/j.surfin.2022.102440 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201604797 – ident: e_1_2_8_33_1 doi: 10.1002/adom.202101976 – ident: e_1_2_8_43_1 doi: 10.1021/acs.chemmater.9b01698 – ident: e_1_2_8_13_1 doi: 10.1016/j.matt.2021.11.028 – ident: e_1_2_8_38_1 doi: 10.1016/j.apsusc.2022.155034 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevB.106.064507 – ident: e_1_2_8_6_1 doi: 10.1021/acsami.0c11322 – ident: e_1_2_8_47_1 doi: 10.1002/smll.202107182 |
SSID | ssj0031247 |
Score | 2.4974866 |
Snippet | Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost... Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost... Abstract Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2308690 |
SubjectTerms | Ceramic powders Ceramics charge interaction Chemical sensors Extreme environments High temperature Molybdenum molybdenum boride Noble metals phase tunable Phases Raman spectra Rhodamine 6G Substrates surface‐enhanced Raman scattering |
Title | Phase‐Tunable Molybdenum Boride Ceramics as an Emerging Sensitive and Reliable SERS Platform in Harsh Environments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202308690 https://www.ncbi.nlm.nih.gov/pubmed/38470201 https://www.proquest.com/docview/3086818301 https://www.proquest.com/docview/2956158798 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEF5VnOiBv9ISCmgrVeJkcLxrs3ssIVFUkQoRkLhZ-zMREcFBsXOgJx6BZ-yTMGMnJqEHpFbywfZq7bV3d-ab3ZlvGPsunG5qKwcB2T-BtMoGykoRJAlIDzI2IqFA4d6vpHstf97ENwtR_BU_RL3gRjOjlNc0wY3Nj19JQ_P7EW0dIISmpEoohJvihHy6zi5r_iiByqvMroI6KyDirTlrYxgdL1df1kp_Qc1l5Fqqns46M_NGVx4nd0fTwh6532_4HP_nqzbY2gyX8h_VQNpkHyDbYh8X2Ao_seLiFlXen6fnq2kZcMV749Gj9eRLz0_Hk6EH3oIJ5bfPucEj47TiRUmQeJ_c5Emw4l3PyQ26fEC_fdnnFyNTEHLmw4x30cy-5e2F4Lttdt1pX7W6wSxpQ-BEpMJAD5yPnbChw-5WTYPySyocD946GKC0AFCxVs6oQagtQKJRdYbOOOl9CFIa8ZmtZOMMdhgXGkIJEVpoICTauco7aUIEMGiDiViLBjucd1r6UHFzpBULc5TSf0zr_9hge_M-TWdzNE-pCOEKSrgG-1YX4-yiLROTwXiapxHF_cbqRKsG-1KNhfpVAhU7gm2sHZU9-k4b0n7v_Ly-2v2XSl_ZKp7Lyv9wj60UkynsIyYq7EE57l8AtK0D3w |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOQAH3oVAgUVC4uTW9a7N7hFKqgBJVTWpxG21j4laERyUOAc48RP4jfwSZuzYNHBAAskXe7V-7O7MfLOe-QbguQxm33g1Tdj_SZTXPtFeyaQoUEVUuZMFJwqPjorBqXr3IW-jCTkXpuGH6DbcWDJqfc0CzhvSe79YQ5efZvzvgDA0V1W6DFdI5iUXMXhz0jFISTJfdX0VsloJU2-1vI1ptrfZf9Mu_QE2N7FrbXwOb4JvX7uJOfm4u6r8bvj6G6Pjf33XLbixhqbiVbOWbsMlLO_A9QuEhXehOj4jq_fj2_fJqs65EqP57IuPHE4vXs8X5xHFAS64xP1SODpKwZteXAdJjDlSnnUrXY2CI6HrG4z7J2NxPHMVg2dxXooBedpnon8h_-4enB72JweDZF23IQky02lipiHmQfo00IzrfUcqTGlaEtEHnJLCQNS50cHpaWo8YmHIeqbBBRVjiko5uQ1b5bzEByCkwVRhRk4aSkWuro5BuZQwDLlhMjeyBy_aWbOfG3oO2xAxZ5bH0Xbj2IOddlLtWkyXlpsIsZCS68GzrpkEjP-auBLnq6XNOPU31y-N7sH9ZjF0j5Jk2wlvU--sntK_vIMdj4bD7uzhv3R6ClcHk9HQDt8evX8E1-i6asIRd2CrWqzwMUGkyj-pheAn7OwH-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkSp64FEoBErZSpV6cut612b3CCVRCkkVNa3U22pfVitSp0qcA5z4CfxGfgkzdmISekACyQc_tPbauzPzjXfmG4A97tSRsiKPyP-JhJU2klbwKMuC8EGkhmeUKNw_zboX4tNlermUxV_zQzQ_3EgyKn1NAn7r88PfpKHTmxEtHSCEpqJK9-GByHCXYNFZQyDF0XpV5VXQaEXEvLWgbYyTw9X2q2bpDtZcha6V7ek8BrPodR1y8uVgVtoD9-0PQsf_ea0n8GgOTNn7eiY9hXuh2ISNJbrCZ1AOrtDm_fz-43xWZVyx_nj01XoKpmcfxpNrH9hxmFCB-ykzuBWMfnlRFSQ2pDh50qx41jOKg65uMGyfDdlgZEqCzuy6YF30s69Yeyn77jlcdNrnx91oXrUhcjyRcaRy51PHbexwvOWRQQUmJE4Ib13IUV2EIFMlnZF5rGwImULbGTvjhPdxEMLwLVgrxkV4CYyrEIuQoIsWuEBHV3onTIwIBp0wniregv3FoOnbmpxD1zTMiabvqJvv2ILtxZjquZBONV1CvIIqrgW7zWUUL1ozMUUYz6Y6ocTfVL5TsgUv6rnQPIqjZUe0ja2TakT_0gc97Pd6zdGrf2n0FtYHHzu6d3L6-TU8xNOijkXchrVyMgtvEB-VdqcSgV_L6wao |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase%E2%80%90Tunable+Molybdenum+Boride+Ceramics+as+an+Emerging+Sensitive+and+Reliable+SERS+Platform+in+Harsh+Environments&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hu%2C+Mengen&rft.au=Li%2C+Ke&rft.au=Dang%2C+Xian&rft.au=Yang%2C+Chengwan&rft.date=2024-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202308690&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202308690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |