Phase‐Tunable Molybdenum Boride Ceramics as an Emerging Sensitive and Reliable SERS Platform in Harsh Environments

Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temper...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 31; pp. e2308690 - n/a
Main Authors Hu, Mengen, Li, Ke, Dang, Xian, Yang, Chengwan, Li, Xinyang, Wang, Zhen, Li, Kewei, Cao, Liang, Hu, Xiaoye, Li, Yue, Wu, Nianqiang, Huang, Zhulin, Meng, Guowen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid‐phase precursor and carbothermal reduction have β‐MoB, MoB2, and Mo2B5 phases. Among these phases, β‐MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10−9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all‐ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh‐temperature ceramics for detection applications in extreme environments. The all‐ceramic SERS substrates prepared by three different crystalline phases of molybdenum boride powders have good SERS activity, which is closely related to their crystal structure. Among them, β‐MoB has the best SERS enhancement activity, and the enhancement factor of 5 orders is comparable to that of noble metals. This all‐ceramic SERS platform shows promising applications in corrosive and high temperature environments.
AbstractList Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have β-MoB, MoB , and Mo B phases. Among these phases, β-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10  m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments.
Abstract Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid‐phase precursor and carbothermal reduction have β‐MoB, MoB 2 , and Mo 2 B 5 phases. Among these phases, β‐MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10 −9   m . The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all‐ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh‐temperature ceramics for detection applications in extreme environments.
Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid‐phase precursor and carbothermal reduction have β‐MoB, MoB2, and Mo2B5 phases. Among these phases, β‐MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10−9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all‐ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh‐temperature ceramics for detection applications in extreme environments.
Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid‐phase precursor and carbothermal reduction have β‐MoB, MoB2, and Mo2B5 phases. Among these phases, β‐MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10−9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all‐ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh‐temperature ceramics for detection applications in extreme environments. The all‐ceramic SERS substrates prepared by three different crystalline phases of molybdenum boride powders have good SERS activity, which is closely related to their crystal structure. Among them, β‐MoB has the best SERS enhancement activity, and the enhancement factor of 5 orders is comparable to that of noble metals. This all‐ceramic SERS platform shows promising applications in corrosive and high temperature environments.
Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have β-MoB, MoB2, and Mo2B5 phases. Among these phases, β-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10-9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments.Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have β-MoB, MoB2, and Mo2B5 phases. Among these phases, β-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10-9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments.
Author Huang, Zhulin
Hu, Xiaoye
Li, Ke
Wang, Zhen
Li, Xinyang
Hu, Mengen
Wu, Nianqiang
Meng, Guowen
Cao, Liang
Yang, Chengwan
Li, Kewei
Li, Yue
Dang, Xian
Author_xml – sequence: 1
  givenname: Mengen
  surname: Hu
  fullname: Hu, Mengen
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Ke
  surname: Li
  fullname: Li, Ke
  organization: Anhui Agricultural University
– sequence: 3
  givenname: Xian
  surname: Dang
  fullname: Dang, Xian
  organization: Anhui University
– sequence: 4
  givenname: Chengwan
  surname: Yang
  fullname: Yang, Chengwan
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Xinyang
  surname: Li
  fullname: Li, Xinyang
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Kewei
  surname: Li
  fullname: Li, Kewei
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Liang
  surname: Cao
  fullname: Cao, Liang
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Xiaoye
  surname: Hu
  fullname: Hu, Xiaoye
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Yue
  surname: Li
  fullname: Li, Yue
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Nianqiang
  surname: Wu
  fullname: Wu, Nianqiang
  email: nianqiangwu@umass.edu
  organization: University of Massachusetts Amherst
– sequence: 12
  givenname: Zhulin
  orcidid: 0000-0002-1625-7236
  surname: Huang
  fullname: Huang, Zhulin
  email: zlhuang@issp.ac.cn
  organization: University of Science and Technology of China
– sequence: 13
  givenname: Guowen
  surname: Meng
  fullname: Meng, Guowen
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38470201$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOGzEUhq0KVC7ttsvKUjdsEo7Hk4m9pFEoSEEgQteWx3MGjHwBewaUHY_QZ-yTdEIglbqpdCQfWZ8_Wf9_QHZCDEjIFwZjBlAcZ-_cuICCg6gkfCD7rGJ8VIlC7mx3BnvkIOd7AM6KcvqR7HFRTqEAtk-6qzud8ffLr5s-6NohvYhuVTcYek-_x2QbpDNM2luTqR4m0LnHdGvDLV1iyLazTzjcNvQanX0VLOfXS3rldNfG5KkN9EynfEfn4cmmGDyGLn8iu612GT-_nYfk5-n8ZnY2Wlz-OJ-dLEaGFwJGsjXNxPAaTFWhYHpa8VJIJpvaYFsKgSgmUhgtWpA1YiXZEIPRpmwawLLU_JAcbbwPKT72mDvlbTbonA4Y-6wKOanYREylGNBv_6D3sU9h-J1aRyuY4MAGaryhTIo5J2zVQ7Jep5VioNZ9qHUfatvH8ODrm7avPTZb_L2AAZAb4Nk6XP1Hp5YXi8Vf-R-OwZqB
Cites_doi 10.1002/anie.202000489
10.1039/D0SC02712J
10.1021/jacs.7b04011
10.1038/s41467-017-02166-z
10.1039/C8CC05102J
10.1039/D0TC03512B
10.1021/acsnano.8b03698
10.1007/s12274-021-4017-4
10.1016/j.mtphys.2021.100378
10.1080/14786435.2017.1407881
10.1021/acs.est.2c07416
10.1021/acsami.3c04414
10.1002/anie.201705187
10.1002/anie.201902776
10.1021/acs.accounts.3c00207
10.1002/smll.202107027
10.1038/s41467-023-38198-x
10.1021/acs.jpcc.7b08180
10.1038/s41467-021-27100-2
10.1038/s41467-019-13505-7
10.1002/jrs.4854
10.1038/s41467-020-17628-0
10.1021/jacs.8b02972
10.1016/j.jallcom.2007.03.024
10.1364/OE.473965
10.1038/s41524-020-00383-7
10.1002/adom.201801249
10.1038/srep23733
10.1039/C0CC03697H
10.1038/nmat4958
10.1007/s40820-020-00565-4
10.1002/admt.202200217
10.1016/j.foodchem.2022.134384
10.1002/adfm.201606694
10.1016/j.snb.2021.131110
10.1016/j.apsusc.2023.156854
10.1039/C9NR09238B
10.1021/acs.accounts.9b00545
10.1016/j.trac.2020.115983
10.1002/adma.201803432
10.1103/PhysRevB.73.144108
10.1021/acsmaterialslett.2c00908
10.1002/adma.201001179
10.1002/adma.201506251
10.1002/anie.202015306
10.1002/advs.202100640
10.1016/j.surfin.2022.102440
10.1002/adma.201604797
10.1002/adom.202101976
10.1021/acs.chemmater.9b01698
10.1016/j.matt.2021.11.028
10.1016/j.apsusc.2022.155034
10.1103/PhysRevB.106.064507
10.1021/acsami.0c11322
10.1002/smll.202107182
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202308690
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202308690
38470201
SMLL202308690
Genre article
Journal Article
GrantInformation_xml – fundername: Major Science and Technology Project of Anhui Province
  funderid: 008192841048
– fundername: Natural Science Fund for Excellent Young Scholars
  funderid: 52222208
– fundername: HFIPS
  funderid: BJPY2021B04; YZJJ202202−CX; YZJJKX202202
– fundername: Natural Science Foundation of China
  funderid: 52232007; 52072373; 21673245; 51825103; 52102191
– fundername: Natural Science Fund for Excellent Young Scholars
  grantid: 52222208
– fundername: Major Science and Technology Project of Anhui Province
  grantid: 008192841048
– fundername: HFIPS
  grantid: YZJJKX202202
– fundername: Natural Science Foundation of China
  grantid: 52102191
– fundername: Natural Science Foundation of China
  grantid: 52232007
– fundername: HFIPS
  grantid: BJPY2021B04
– fundername: Natural Science Foundation of China
  grantid: 21673245
– fundername: Natural Science Foundation of China
  grantid: 51825103
– fundername: HFIPS
  grantid: YZJJ202202-CX
– fundername: Natural Science Foundation of China
  grantid: 52072373
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
NPM
SV3
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3280-9fcd5c3b0c66e81a76348919dbcef488ee8598ca8f09bee691230cac4dd0e44a3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Sat Oct 26 04:31:18 EDT 2024
Thu Oct 10 22:34:34 EDT 2024
Fri Aug 23 04:30:41 EDT 2024
Tue Oct 29 09:10:50 EDT 2024
Sat Aug 24 00:56:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords charge interaction
molybdenum boride
surface‐enhanced Raman scattering
phase tunable
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3280-9fcd5c3b0c66e81a76348919dbcef488ee8598ca8f09bee691230cac4dd0e44a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1625-7236
PMID 38470201
PQID 3086818301
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2956158798
proquest_journals_3086818301
crossref_primary_10_1002_smll_202308690
pubmed_primary_38470201
wiley_primary_10_1002_smll_202308690_SMLL202308690
PublicationCentury 2000
PublicationDate August 1, 2024
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2006; 73
2019; 10
2019; 58
2020; 59
2023; 620
2020; 12
2020; 11
2020; 8
2010; 22
2020; 6
2020; 53
2020; 130
2022; 35
2022; 30
2017; 121
2016; 47
2022; 354
2021; 8
2019; 7
2023; 57
2023; 14
2018; 140
2023; 56
2019; 31
2023; 15
2017; 27
2023; 403
2017; 29
2023; 607
2017; 139
2021; 13
2016; 6
2021; 12
2022; 4
2022; 5
2017; 16
2022; 7
2021; 18
2017; 56
2022; 15
2008; 457
2022; 10
2011; 47
2018; 12
2016; 28
2021; 60
2018; 54
2018; 98
2022; 106
2022; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 22
  start-page: 4136
  year: 2010
  publication-title: Adv. Mater.
– volume: 106
  year: 2022
  publication-title: Phys. Rev. B
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 8362
  year: 2018
  publication-title: ACS Nano
– volume: 18
  year: 2022
  publication-title: Small
– volume: 18
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 607
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 457
  start-page: 191
  year: 2008
  publication-title: J. Alloys Compd.
– volume: 11
  start-page: 3889
  year: 2020
  publication-title: Nat. Commun.
– volume: 28
  start-page: 4871
  year: 2016
  publication-title: Adv. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 5725
  year: 2019
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1993
  year: 2017
  publication-title: Nat. Commun.
– volume: 15
  start-page: 4374
  year: 2022
  publication-title: Nano Res.
– volume: 10
  start-page: 5502
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 6849
  year: 2021
  publication-title: Nat. Commun.
– volume: 12
  start-page: 4359
  year: 2020
  publication-title: Nanoscale
– volume: 57
  start-page: 25
  year: 2023
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 51
  year: 2016
  publication-title: J. Raman Spectrosc.
– volume: 4
  start-page: 2622
  year: 2022
  publication-title: Acs Mater. Lett.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 16
  start-page: 878
  year: 2017
  publication-title: Nat. Mater.
– volume: 6
  start-page: 112
  year: 2020
  publication-title: Npj Comput. Mater.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 58
  start-page: 7757
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 403
  year: 2023
  publication-title: Food Chem.
– volume: 56
  start-page: 9851
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 620
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 52
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 30
  year: 2022
  publication-title: Opt. Express
– volume: 47
  start-page: 2426
  year: 2011
  publication-title: Chem. Commun.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 9414
  year: 2020
  publication-title: Chem. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 98
  start-page: 422
  year: 2018
  publication-title: Philos. Mag.
– volume: 56
  start-page: 2072
  year: 2023
  publication-title: Acc. Chem. Res.
– volume: 130
  year: 2020
  publication-title: Trends Anal. Chem.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 73
  year: 2006
  publication-title: Phys. Rev. B
– volume: 354
  year: 2022
  publication-title: Sens. Actuators B: Chem.
– volume: 5
  start-page: 694
  year: 2022
  publication-title: Matter
– volume: 35
  year: 2022
  publication-title: Surf. Interfaces
– volume: 60
  start-page: 5505
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 140
  start-page: 8696
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 729
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 14
  start-page: 2717
  year: 2023
  publication-title: Nat. Commun.
– ident: e_1_2_8_12_1
  doi: 10.1002/anie.202000489
– ident: e_1_2_8_30_1
  doi: 10.1039/D0SC02712J
– ident: e_1_2_8_3_1
  doi: 10.1021/jacs.7b04011
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-017-02166-z
– ident: e_1_2_8_37_1
  doi: 10.1039/C8CC05102J
– ident: e_1_2_8_20_1
  doi: 10.1039/D0TC03512B
– ident: e_1_2_8_11_1
  doi: 10.1021/acsnano.8b03698
– ident: e_1_2_8_24_1
  doi: 10.1007/s12274-021-4017-4
– ident: e_1_2_8_46_1
  doi: 10.1016/j.mtphys.2021.100378
– ident: e_1_2_8_50_1
  doi: 10.1080/14786435.2017.1407881
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.est.2c07416
– ident: e_1_2_8_5_1
  doi: 10.1021/acsami.3c04414
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.201705187
– ident: e_1_2_8_9_1
  doi: 10.1002/anie.201902776
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.accounts.3c00207
– ident: e_1_2_8_35_1
  doi: 10.1002/smll.202107027
– ident: e_1_2_8_29_1
  doi: 10.1038/s41467-023-38198-x
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.jpcc.7b08180
– ident: e_1_2_8_1_1
  doi: 10.1038/s41467-021-27100-2
– ident: e_1_2_8_45_1
  doi: 10.1038/s41467-019-13505-7
– ident: e_1_2_8_19_1
  doi: 10.1002/jrs.4854
– ident: e_1_2_8_55_1
  doi: 10.1038/s41467-020-17628-0
– ident: e_1_2_8_18_1
  doi: 10.1021/jacs.8b02972
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jallcom.2007.03.024
– ident: e_1_2_8_48_1
  doi: 10.1364/OE.473965
– ident: e_1_2_8_53_1
  doi: 10.1038/s41524-020-00383-7
– ident: e_1_2_8_26_1
  doi: 10.1002/adom.201801249
– ident: e_1_2_8_16_1
  doi: 10.1038/srep23733
– ident: e_1_2_8_28_1
  doi: 10.1039/C0CC03697H
– ident: e_1_2_8_40_1
  doi: 10.1038/nmat4958
– ident: e_1_2_8_44_1
  doi: 10.1007/s40820-020-00565-4
– ident: e_1_2_8_34_1
  doi: 10.1002/admt.202200217
– ident: e_1_2_8_8_1
  doi: 10.1016/j.foodchem.2022.134384
– ident: e_1_2_8_54_1
  doi: 10.1002/adfm.201606694
– ident: e_1_2_8_14_1
  doi: 10.1016/j.snb.2021.131110
– ident: e_1_2_8_25_1
  doi: 10.1016/j.apsusc.2023.156854
– ident: e_1_2_8_4_1
  doi: 10.1039/C9NR09238B
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.accounts.9b00545
– ident: e_1_2_8_17_1
  doi: 10.1016/j.trac.2020.115983
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201803432
– ident: e_1_2_8_52_1
  doi: 10.1103/PhysRevB.73.144108
– ident: e_1_2_8_42_1
  doi: 10.1021/acsmaterialslett.2c00908
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.201001179
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201506251
– ident: e_1_2_8_32_1
  doi: 10.1002/anie.202015306
– ident: e_1_2_8_15_1
  doi: 10.1002/advs.202100640
– ident: e_1_2_8_21_1
  doi: 10.1016/j.surfin.2022.102440
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201604797
– ident: e_1_2_8_33_1
  doi: 10.1002/adom.202101976
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.chemmater.9b01698
– ident: e_1_2_8_13_1
  doi: 10.1016/j.matt.2021.11.028
– ident: e_1_2_8_38_1
  doi: 10.1016/j.apsusc.2022.155034
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevB.106.064507
– ident: e_1_2_8_6_1
  doi: 10.1021/acsami.0c11322
– ident: e_1_2_8_47_1
  doi: 10.1002/smll.202107182
SSID ssj0031247
Score 2.4974866
Snippet Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost...
Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost...
Abstract Traditional surface‐enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2308690
SubjectTerms Ceramic powders
Ceramics
charge interaction
Chemical sensors
Extreme environments
High temperature
Molybdenum
molybdenum boride
Noble metals
phase tunable
Phases
Raman spectra
Rhodamine 6G
Substrates
surface‐enhanced Raman scattering
Title Phase‐Tunable Molybdenum Boride Ceramics as an Emerging Sensitive and Reliable SERS Platform in Harsh Environments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202308690
https://www.ncbi.nlm.nih.gov/pubmed/38470201
https://www.proquest.com/docview/3086818301
https://www.proquest.com/docview/2956158798
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEF5VnOiBv9ISCmgrVeJkcLxrs3ssIVFUkQoRkLhZ-zMREcFBsXOgJx6BZ-yTMGMnJqEHpFbywfZq7bV3d-ab3ZlvGPsunG5qKwcB2T-BtMoGykoRJAlIDzI2IqFA4d6vpHstf97ENwtR_BU_RL3gRjOjlNc0wY3Nj19JQ_P7EW0dIISmpEoohJvihHy6zi5r_iiByqvMroI6KyDirTlrYxgdL1df1kp_Qc1l5Fqqns46M_NGVx4nd0fTwh6532_4HP_nqzbY2gyX8h_VQNpkHyDbYh8X2Ao_seLiFlXen6fnq2kZcMV749Gj9eRLz0_Hk6EH3oIJ5bfPucEj47TiRUmQeJ_c5Emw4l3PyQ26fEC_fdnnFyNTEHLmw4x30cy-5e2F4Lttdt1pX7W6wSxpQ-BEpMJAD5yPnbChw-5WTYPySyocD946GKC0AFCxVs6oQagtQKJRdYbOOOl9CFIa8ZmtZOMMdhgXGkIJEVpoICTauco7aUIEMGiDiViLBjucd1r6UHFzpBULc5TSf0zr_9hge_M-TWdzNE-pCOEKSrgG-1YX4-yiLROTwXiapxHF_cbqRKsG-1KNhfpVAhU7gm2sHZU9-k4b0n7v_Ly-2v2XSl_ZKp7Lyv9wj60UkynsIyYq7EE57l8AtK0D3w
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOQAH3oVAgUVC4uTW9a7N7hFKqgBJVTWpxG21j4laERyUOAc48RP4jfwSZuzYNHBAAskXe7V-7O7MfLOe-QbguQxm33g1Tdj_SZTXPtFeyaQoUEVUuZMFJwqPjorBqXr3IW-jCTkXpuGH6DbcWDJqfc0CzhvSe79YQ5efZvzvgDA0V1W6DFdI5iUXMXhz0jFISTJfdX0VsloJU2-1vI1ptrfZf9Mu_QE2N7FrbXwOb4JvX7uJOfm4u6r8bvj6G6Pjf33XLbixhqbiVbOWbsMlLO_A9QuEhXehOj4jq_fj2_fJqs65EqP57IuPHE4vXs8X5xHFAS64xP1SODpKwZteXAdJjDlSnnUrXY2CI6HrG4z7J2NxPHMVg2dxXooBedpnon8h_-4enB72JweDZF23IQky02lipiHmQfo00IzrfUcqTGlaEtEHnJLCQNS50cHpaWo8YmHIeqbBBRVjiko5uQ1b5bzEByCkwVRhRk4aSkWuro5BuZQwDLlhMjeyBy_aWbOfG3oO2xAxZ5bH0Xbj2IOddlLtWkyXlpsIsZCS68GzrpkEjP-auBLnq6XNOPU31y-N7sH9ZjF0j5Jk2wlvU--sntK_vIMdj4bD7uzhv3R6ClcHk9HQDt8evX8E1-i6asIRd2CrWqzwMUGkyj-pheAn7OwH-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkSp64FEoBErZSpV6cut612b3CCVRCkkVNa3U22pfVitSp0qcA5z4CfxGfgkzdmISekACyQc_tPbauzPzjXfmG4A97tSRsiKPyP-JhJU2klbwKMuC8EGkhmeUKNw_zboX4tNlermUxV_zQzQ_3EgyKn1NAn7r88PfpKHTmxEtHSCEpqJK9-GByHCXYNFZQyDF0XpV5VXQaEXEvLWgbYyTw9X2q2bpDtZcha6V7ek8BrPodR1y8uVgVtoD9-0PQsf_ea0n8GgOTNn7eiY9hXuh2ISNJbrCZ1AOrtDm_fz-43xWZVyx_nj01XoKpmcfxpNrH9hxmFCB-ykzuBWMfnlRFSQ2pDh50qx41jOKg65uMGyfDdlgZEqCzuy6YF30s69Yeyn77jlcdNrnx91oXrUhcjyRcaRy51PHbexwvOWRQQUmJE4Ib13IUV2EIFMlnZF5rGwImULbGTvjhPdxEMLwLVgrxkV4CYyrEIuQoIsWuEBHV3onTIwIBp0wniregv3FoOnbmpxD1zTMiabvqJvv2ILtxZjquZBONV1CvIIqrgW7zWUUL1ozMUUYz6Y6ocTfVL5TsgUv6rnQPIqjZUe0ja2TakT_0gc97Pd6zdGrf2n0FtYHHzu6d3L6-TU8xNOijkXchrVyMgtvEB-VdqcSgV_L6wao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase%E2%80%90Tunable+Molybdenum+Boride+Ceramics+as+an+Emerging+Sensitive+and+Reliable+SERS+Platform+in+Harsh+Environments&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hu%2C+Mengen&rft.au=Li%2C+Ke&rft.au=Dang%2C+Xian&rft.au=Yang%2C+Chengwan&rft.date=2024-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202308690&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202308690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon