Backpropagation neural network prediction for cryptocurrency bitcoin prices
The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing their bitcoin assets. Changes in the price of bitcoin itself are influenced by many things such as the closing of the bitcoin market in a coun...
Saved in:
Published in | Journal of physics. Conference series Vol. 1339; no. 1; pp. 12060 - 12068 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing their bitcoin assets. Changes in the price of bitcoin itself are influenced by many things such as the closing of the bitcoin market in a country, the occurrence of hacker attacks on the bitcoin blockchain and the emergence of new coins that use technology similar to bitcoin. But when a stable market situation changes the price of bitcoin is purely influenced by market forces. By implementing an artificial neural network using backpropagation method, it will be able to predict the price of bitcoin by giving a form of predictive results that are strengthened with a fairly good value of accuracy. This research begins by determining prediction variables with target values that can be determined based on previous bitcoin prices. This artificial neural network process is able to conduct training and testing of data based on network patterns that have been formed, then the results of training and testing of the network will be analysed again, so that at the last stage the best network patterns will be used in the prediction process. |
---|---|
AbstractList | Abstract
The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing their bitcoin assets. Changes in the price of bitcoin itself are influenced by many things such as the closing of the bitcoin market in a country, the occurrence of hacker attacks on the bitcoin blockchain and the emergence of new coins that use technology similar to bitcoin. But when a stable market situation changes the price of bitcoin is purely influenced by market forces. By implementing an artificial neural network using backpropagation method, it will be able to predict the price of bitcoin by giving a form of predictive results that are strengthened with a fairly good value of accuracy. This research begins by determining prediction variables with target values that can be determined based on previous bitcoin prices. This artificial neural network process is able to conduct training and testing of data based on network patterns that have been formed, then the results of training and testing of the network will be analysed again, so that at the last stage the best network patterns will be used in the prediction process. The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing their bitcoin assets. Changes in the price of bitcoin itself are influenced by many things such as the closing of the bitcoin market in a country, the occurrence of hacker attacks on the bitcoin blockchain and the emergence of new coins that use technology similar to bitcoin. But when a stable market situation changes the price of bitcoin is purely influenced by market forces. By implementing an artificial neural network using backpropagation method, it will be able to predict the price of bitcoin by giving a form of predictive results that are strengthened with a fairly good value of accuracy. This research begins by determining prediction variables with target values that can be determined based on previous bitcoin prices. This artificial neural network process is able to conduct training and testing of data based on network patterns that have been formed, then the results of training and testing of the network will be analysed again, so that at the last stage the best network patterns will be used in the prediction process. |
Author | Sovia, Rini Mayola, Liga Budiman, Arif Yanto, Musli Saputra, Dio |
Author_xml | – sequence: 1 givenname: Rini surname: Sovia fullname: Sovia, Rini email: rini_sovia@upiyptk.ac.id organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia – sequence: 2 givenname: Musli surname: Yanto fullname: Yanto, Musli organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia – sequence: 3 givenname: Arif surname: Budiman fullname: Budiman, Arif organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia – sequence: 4 givenname: Liga surname: Mayola fullname: Mayola, Liga organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia – sequence: 5 givenname: Dio surname: Saputra fullname: Saputra, Dio organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia |
BookMark | eNqFkG9LwzAQh4NMcJt-Bgu-E2YvzZpcX-rw_0BBfR3SNJFus6lpi-zbm1qZCIJ5c4F77u7HMyGjylWGkGMKZxQQYyrmyYynGY8pY1lMY6AJcNgj411ntPsjHpBJ06wAWHhiTO4vlF7X3tXqVbWlq6LKdF5tQmk_nF9HtTdFqb861vlI-23dOt15byq9jfKy1a6sAlVq0xySfas2jTn6rlPycnX5vLiZLR-ubxfny5lmCcKMMwVKZSIHBklewNymwBETRFPYjOeFQJEqY9McLANASBOVKgzhhRGoFJuSk2FvyP3emaaVK9f5KpyUScoR5sgED5QYKO1d03hjZUj5pvxWUpC9Odk7kb0f2ZuTVA7mwuTpMFm6-mf13ePi6Tco68IGmP0B_3fiEyNNf8Y |
CitedBy_id | crossref_primary_10_1016_j_asoc_2021_107952 crossref_primary_10_1021_acs_iecr_2c02334 crossref_primary_10_1038_s41598_024_51408_w crossref_primary_10_1002_isaf_1488 |
Cites_doi | 10.5121/ijcsit.2011.3108 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7X5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO H8D HCIFZ K6~ L7M P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/1339/1/012060 |
DatabaseName | IOP Publishing (Open access) IOPscience (Open Access) CrossRef Proquest Entrepreneurship Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Business Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Entrepreneurship Publicly Available Content Database Advanced Technologies & Aerospace Collection Business Premium Collection Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef ProQuest Entrepreneurship |
Database_xml | – sequence: 1 dbid: O3W name: IOP Publishing (Open access) url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Backpropagation neural network prediction for cryptocurrency bitcoin prices |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_1339_1_012060 JPCS_1339_1_012060 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION 7X5 8FD 8FE 8FG ABUWG AZQEC BEZIV DWQXO H8D K6~ L7M P62 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3280-63a0aa97b0302bd04f50688288edf96bd7875aef5b0f3008052a5a86587e78aa3 |
IEDL.DBID | BENPR |
ISSN | 1742-6588 |
IngestDate | Thu Oct 10 17:51:26 EDT 2024 Fri Aug 23 01:54:51 EDT 2024 Thu Jan 07 13:48:50 EST 2021 Wed Aug 21 03:40:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3280-63a0aa97b0302bd04f50688288edf96bd7875aef5b0f3008052a5a86587e78aa3 |
OpenAccessLink | https://www.proquest.com/docview/2568048376?pq-origsite=%requestingapplication% |
PQID | 2568048376 |
PQPubID | 4998668 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1088_1742_6596_1339_1_012060 proquest_journals_2568048376 iop_journals_10_1088_1742_6596_1339_1_012060 |
PublicationCentury | 2000 |
PublicationDate | 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191201 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Li (JPCS_1339_1_012060bib1) 2017 Simarmata (JPCS_1339_1_012060bib5) 2009 Ganatra (JPCS_1339_1_012060bib10) 2011 Riedmiller (JPCS_1339_1_012060bib9) 1993 S (JPCS_1339_1_012060bib6) 2013 Tanjung (JPCS_1339_1_012060bib2) 2015; 2 Siang (JPCS_1339_1_012060bib7) 2009 Nawi (JPCS_1339_1_012060bib8) 2014 JPCS_1339_1_012060bib12 Pakaja (JPCS_1339_1_012060bib11) 2012 Dimaz (JPCS_1339_1_012060bib4) 2017 Mulyanto (JPCS_1339_1_012060bib3) 2015; 4 |
References_xml | – year: 2013 ident: JPCS_1339_1_012060bib6 contributor: fullname: S – year: 2009 ident: JPCS_1339_1_012060bib7 contributor: fullname: Siang – year: 2017 ident: JPCS_1339_1_012060bib1 contributor: fullname: Li – year: 2011 ident: JPCS_1339_1_012060bib10 article-title: Initial Classification Through Back Propagation In a Neural Network Following Optimization Through GA to Evaluate the Fitness of an Algorithm doi: 10.5121/ijcsit.2011.3108 contributor: fullname: Ganatra – year: 2014 ident: JPCS_1339_1_012060bib8 contributor: fullname: Nawi – year: 2012 ident: JPCS_1339_1_012060bib11 article-title: Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan contributor: fullname: Pakaja – volume: 4 start-page: 2302 year: 2015 ident: JPCS_1339_1_012060bib3 publication-title: Pemanfaatan Cryptocurrency Sebagai Penerapan Mata Uang Rupiah Kedalam Bentuk Digital Menggunakan Teknologi Bitcoin contributor: fullname: Mulyanto – year: 2017 ident: JPCS_1339_1_012060bib4 contributor: fullname: Dimaz – start-page: 586 year: 1993 ident: JPCS_1339_1_012060bib9 contributor: fullname: Riedmiller – volume: 2 start-page: 2354 year: 2015 ident: JPCS_1339_1_012060bib2 publication-title: Jaringan Saraf Tiruan Dengan Backpropagation Untuk Memprediksi Penyakit Asma contributor: fullname: Tanjung – year: 2009 ident: JPCS_1339_1_012060bib5 contributor: fullname: Simarmata – ident: JPCS_1339_1_012060bib12 |
SSID | ssj0033337 |
Score | 2.2885087 |
Snippet | The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing... Abstract The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 12060 |
SubjectTerms | Artificial neural networks Back propagation Back propagation networks Coins Cryptography Digital currencies Neural networks Physics Training |
SummonAdditionalLinks | – databaseName: IOP Electronic Journals dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-ELz4FtcXBT3afTRtOjmquPhAXdCFvYUkTWARumWtB_31TpoWXUVE7KnQSZp8Sb7MkJkJIceZmyWKm5BTA2FMLYTgTgozGYMFCoalLlD49o5dDuPrUTL6HAszKWrqb-OrTxTsIawd4qCDOnQUsoSzDtpXvNPruPhPhmb7IsUV42b21f2gYWOKT-qDIl0hgMbH6-eKZnaoeWzFN5qu9p7-KtFNq73LyVP7pVRt_fYloeP_urVGVmrVNDj1JdbJnMk3yFLlIqqfN8nNmdRP2ARkoGo0A5cKE-Vz70geFFN35lN9QUU40NPXopzoKv2Tfg3UuNSTcY5Sjpm2yLB_8Xh-GdZXMYSaRoAGJpVdKXmqkBMilXVjm7jbaiIAk1nOVIbrPpHGJqprqdNCk0gmEhDw1KQgJd0mC_kkNzskiGLrjMxYcYXVIKUgx3CletIwyy2LW6TbwC8Kn3FDVCflAMJhJBxGwmEkesJj1CIniKqoV9_z7-JHM-LXg_OHWQlRZLZF9ptR_xBFBRGqJPxs92__3CPLqGpx7wizTxbK6Ys5QHWmVIfVfH0HPqvjYA priority: 102 providerName: IOP Publishing |
Title | Backpropagation neural network prediction for cryptocurrency bitcoin prices |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/1339/1/012060 https://www.proquest.com/docview/2568048376 |
Volume | 1339 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEB7cFcGL-MT1sRT0aNndpo_kJCquL9TFB3oLSZvAIrR1dz3sv3cmbVlE0B5yaKY9fMm8MpMZgOOMdokWxhfMcD9klvucIoWZCrnljJs4oYvC9w_x9Wt4-x691wdu0zqtspGJTlBnRUpn5D1UzdyVP49Py0-fukZRdLVuodGC5QA9haANy-eXD6OnRhYzfJLqSmTgo67lTYYXun31OxH30E0TvUGPrpG6SpUL_dQaF-UvIe00z3Ad1mqT0Tur1ngDlky-CSsudTOdbsHduUo_8FuUDA5lj0pUIn1eJXh75YRiMW4GDVQvnczLWZG6skzp3NPjWVqMc6QiibENr8PLl4trv26R4Kcs4Oj4MdVXSiQaeTXQWT-0EXWRCTg3mRWxzpAfI2VspPuWkXUYBSpSHKFITMKVYjvQzovc7IIXhJacv1ALjb9BVkfeF1oPlImtsHHYgX4DjCyrShjSRbA5l4SlJCwlYSkHssKyAycIoKy5Yvo_-dEP8tvRxfNPCllmtgMHzXosSBe7Y-_v6X1YRZNHVAkpB9CeTb7MIZoVM92FFh9edesd1CURH-F48zjC8ZG9fQPoTchO |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,38879,38904,43614,43819,53856,53882 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NS8MwFA9uInoRP3E6taBHS7umH8lJVJzTTRFU2C0kbQJDaOtWD_73vpe2DBG0x-a1h1_yvvK-CDnP8JQorl1ONXNDapjLMFKYyZAZRpmOEywUfnyKR2_hwzSaNhduiyatspWJVlBnRYp35B6oZmbbn8eX5YeLU6MwutqM0OiQ1ZCCosFK8eFdK4kpPEldEBm4oGlZm98FTl_zjsceOGncG3hYRGr7VC61U2dWlL9EtNU7wy2y2RiMzlW9w9tkRec7ZM0mbqaLXTK-luk7fAtywWLsYINKoM_r9G6nnGMkxq6Aeeqk86-yKlLblCn9ctSsSotZDlQoL_bI2_D29WbkNgMS3JQGDNw-Kn0peaKAUwOV-aGJcIZMwJjODI9VBtwYSW0i5RuKtmEUyEgygCLRCZOS7pNuXuT6gDhBaND1CxVX8BtgdOB8rtRA6thwE4c94rfAiLLugyFs_JoxgVgKxFIglmIgaix75AIAFA1PLP4nP_tB_vB88_KTQpSZ6ZF-ux9L0uXZOPx7-ZSsj14fJ2Jy_zQ-Ihtg_PA6NaVPutX8Ux-DgVGpE3uKvgFLOMYK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUFEvhbYgtrwiwZFssnk44yOvFY8CK1Ekbpad2AghZaMlHOivZxwnoG2FECKnSBk7zmf7y2d5ZgywU9hRorj2eazRT2KDPtqdwkImaDBGzTIbKHx-wY6vk9Ob9GYGhi-xMOOqpf4-3bpEwQ7C1iEOA9LQkc9SzgJaX_FgENj4TxYGVWFmYZ4mcGpH-snlqGPkmK7MBUbagoidn9fblU39pWapJf9RdfP_GS7Cbddy53Zy33-sVT__-09Sx89_2hJ8ayWqt-dKfYcZXf6AL42raP7wE872ZX5PzSAmanrVsykxyb50DuVeNbF7P80TEsRePnmq6nHepIHKnzx1V-fju5KsLEMtw_Xw6M_Bsd8eyeDncYS00IxlKCXPFHFDpIowMak9tSZC1IXhTBU0_1OpTapCE1s1mkYylUigZzpDKeMVmCvHpV4FL0qMXWwmiiuqhqiFuIYrNZCaGW5Y0oOw6wJRucwbotkxRxQWJ2FxEhYnMRAOpx7sErKinYUP75tvT5mfjg6upi0EAd-D9a7nX01JKGKTjJ_9-tg7t2BhdDgUv08uztbgK6kv7nxj1mGunjzqDVI4tdpshu8zqizowA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Backpropagation+neural+network+prediction+for+cryptocurrency+bitcoin+prices&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Rini+Sovia&rft.au=Yanto%2C+Musli&rft.au=Budiman%2C+Arif&rft.au=Liga+Mayola&rft.date=2019-12-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1339&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1339%2F1%2F012060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |