Backpropagation neural network prediction for cryptocurrency bitcoin prices

The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing their bitcoin assets. Changes in the price of bitcoin itself are influenced by many things such as the closing of the bitcoin market in a coun...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1339; no. 1; pp. 12060 - 12068
Main Authors Sovia, Rini, Yanto, Musli, Budiman, Arif, Mayola, Liga, Saputra, Dio
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing their bitcoin assets. Changes in the price of bitcoin itself are influenced by many things such as the closing of the bitcoin market in a country, the occurrence of hacker attacks on the bitcoin blockchain and the emergence of new coins that use technology similar to bitcoin. But when a stable market situation changes the price of bitcoin is purely influenced by market forces. By implementing an artificial neural network using backpropagation method, it will be able to predict the price of bitcoin by giving a form of predictive results that are strengthened with a fairly good value of accuracy. This research begins by determining prediction variables with target values that can be determined based on previous bitcoin prices. This artificial neural network process is able to conduct training and testing of data based on network patterns that have been formed, then the results of training and testing of the network will be analysed again, so that at the last stage the best network patterns will be used in the prediction process.
AbstractList Abstract The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing their bitcoin assets. Changes in the price of bitcoin itself are influenced by many things such as the closing of the bitcoin market in a country, the occurrence of hacker attacks on the bitcoin blockchain and the emergence of new coins that use technology similar to bitcoin. But when a stable market situation changes the price of bitcoin is purely influenced by market forces. By implementing an artificial neural network using backpropagation method, it will be able to predict the price of bitcoin by giving a form of predictive results that are strengthened with a fairly good value of accuracy. This research begins by determining prediction variables with target values that can be determined based on previous bitcoin prices. This artificial neural network process is able to conduct training and testing of data based on network patterns that have been formed, then the results of training and testing of the network will be analysed again, so that at the last stage the best network patterns will be used in the prediction process.
The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing their bitcoin assets. Changes in the price of bitcoin itself are influenced by many things such as the closing of the bitcoin market in a country, the occurrence of hacker attacks on the bitcoin blockchain and the emergence of new coins that use technology similar to bitcoin. But when a stable market situation changes the price of bitcoin is purely influenced by market forces. By implementing an artificial neural network using backpropagation method, it will be able to predict the price of bitcoin by giving a form of predictive results that are strengthened with a fairly good value of accuracy. This research begins by determining prediction variables with target values that can be determined based on previous bitcoin prices. This artificial neural network process is able to conduct training and testing of data based on network patterns that have been formed, then the results of training and testing of the network will be analysed again, so that at the last stage the best network patterns will be used in the prediction process.
Author Sovia, Rini
Mayola, Liga
Budiman, Arif
Yanto, Musli
Saputra, Dio
Author_xml – sequence: 1
  givenname: Rini
  surname: Sovia
  fullname: Sovia, Rini
  email: rini_sovia@upiyptk.ac.id
  organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia
– sequence: 2
  givenname: Musli
  surname: Yanto
  fullname: Yanto, Musli
  organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia
– sequence: 3
  givenname: Arif
  surname: Budiman
  fullname: Budiman, Arif
  organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia
– sequence: 4
  givenname: Liga
  surname: Mayola
  fullname: Mayola, Liga
  organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia
– sequence: 5
  givenname: Dio
  surname: Saputra
  fullname: Saputra, Dio
  organization: Department Informatics Engineering, Faculty of Computer Science, University Putra Indonesia "YPTK" Padang , Indonesia
BookMark eNqFkG9LwzAQh4NMcJt-Bgu-E2YvzZpcX-rw_0BBfR3SNJFus6lpi-zbm1qZCIJ5c4F77u7HMyGjylWGkGMKZxQQYyrmyYynGY8pY1lMY6AJcNgj411ntPsjHpBJ06wAWHhiTO4vlF7X3tXqVbWlq6LKdF5tQmk_nF9HtTdFqb861vlI-23dOt15byq9jfKy1a6sAlVq0xySfas2jTn6rlPycnX5vLiZLR-ubxfny5lmCcKMMwVKZSIHBklewNymwBETRFPYjOeFQJEqY9McLANASBOVKgzhhRGoFJuSk2FvyP3emaaVK9f5KpyUScoR5sgED5QYKO1d03hjZUj5pvxWUpC9Odk7kb0f2ZuTVA7mwuTpMFm6-mf13ePi6Tco68IGmP0B_3fiEyNNf8Y
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107952
crossref_primary_10_1021_acs_iecr_2c02334
crossref_primary_10_1038_s41598_024_51408_w
crossref_primary_10_1002_isaf_1488
Cites_doi 10.5121/ijcsit.2011.3108
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7X5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
K6~
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1339/1/012060
DatabaseName IOP Publishing (Open access)
IOPscience (Open Access)
CrossRef
Proquest Entrepreneurship
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Business Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Entrepreneurship
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Business Premium Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

ProQuest Entrepreneurship
Database_xml – sequence: 1
  dbid: O3W
  name: IOP Publishing (Open access)
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Backpropagation neural network prediction for cryptocurrency bitcoin prices
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1339_1_012060
JPCS_1339_1_012060
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
7X5
8FD
8FE
8FG
ABUWG
AZQEC
BEZIV
DWQXO
H8D
K6~
L7M
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3280-63a0aa97b0302bd04f50688288edf96bd7875aef5b0f3008052a5a86587e78aa3
IEDL.DBID BENPR
ISSN 1742-6588
IngestDate Thu Oct 10 17:51:26 EDT 2024
Fri Aug 23 01:54:51 EDT 2024
Thu Jan 07 13:48:50 EST 2021
Wed Aug 21 03:40:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3280-63a0aa97b0302bd04f50688288edf96bd7875aef5b0f3008052a5a86587e78aa3
OpenAccessLink https://www.proquest.com/docview/2568048376?pq-origsite=%requestingapplication%
PQID 2568048376
PQPubID 4998668
PageCount 9
ParticipantIDs crossref_primary_10_1088_1742_6596_1339_1_012060
proquest_journals_2568048376
iop_journals_10_1088_1742_6596_1339_1_012060
PublicationCentury 2000
PublicationDate 20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191201
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Li (JPCS_1339_1_012060bib1) 2017
Simarmata (JPCS_1339_1_012060bib5) 2009
Ganatra (JPCS_1339_1_012060bib10) 2011
Riedmiller (JPCS_1339_1_012060bib9) 1993
S (JPCS_1339_1_012060bib6) 2013
Tanjung (JPCS_1339_1_012060bib2) 2015; 2
Siang (JPCS_1339_1_012060bib7) 2009
Nawi (JPCS_1339_1_012060bib8) 2014
JPCS_1339_1_012060bib12
Pakaja (JPCS_1339_1_012060bib11) 2012
Dimaz (JPCS_1339_1_012060bib4) 2017
Mulyanto (JPCS_1339_1_012060bib3) 2015; 4
References_xml – year: 2013
  ident: JPCS_1339_1_012060bib6
  contributor:
    fullname: S
– year: 2009
  ident: JPCS_1339_1_012060bib7
  contributor:
    fullname: Siang
– year: 2017
  ident: JPCS_1339_1_012060bib1
  contributor:
    fullname: Li
– year: 2011
  ident: JPCS_1339_1_012060bib10
  article-title: Initial Classification Through Back Propagation In a Neural Network Following Optimization Through GA to Evaluate the Fitness of an Algorithm
  doi: 10.5121/ijcsit.2011.3108
  contributor:
    fullname: Ganatra
– year: 2014
  ident: JPCS_1339_1_012060bib8
  contributor:
    fullname: Nawi
– year: 2012
  ident: JPCS_1339_1_012060bib11
  article-title: Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan
  contributor:
    fullname: Pakaja
– volume: 4
  start-page: 2302
  year: 2015
  ident: JPCS_1339_1_012060bib3
  publication-title: Pemanfaatan Cryptocurrency Sebagai Penerapan Mata Uang Rupiah Kedalam Bentuk Digital Menggunakan Teknologi Bitcoin
  contributor:
    fullname: Mulyanto
– year: 2017
  ident: JPCS_1339_1_012060bib4
  contributor:
    fullname: Dimaz
– start-page: 586
  year: 1993
  ident: JPCS_1339_1_012060bib9
  contributor:
    fullname: Riedmiller
– volume: 2
  start-page: 2354
  year: 2015
  ident: JPCS_1339_1_012060bib2
  publication-title: Jaringan Saraf Tiruan Dengan Backpropagation Untuk Memprediksi Penyakit Asma
  contributor:
    fullname: Tanjung
– year: 2009
  ident: JPCS_1339_1_012060bib5
  contributor:
    fullname: Simarmata
– ident: JPCS_1339_1_012060bib12
SSID ssj0033337
Score 2.2885087
Snippet The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in managing...
Abstract The value of bitcoin currency is very volatile, hard to guess for every hour, so many of the bitcoin traders suffer losses because they are wrong in...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 12060
SubjectTerms Artificial neural networks
Back propagation
Back propagation networks
Coins
Cryptography
Digital currencies
Neural networks
Physics
Training
SummonAdditionalLinks – databaseName: IOP Electronic Journals
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-ELz4FtcXBT3afTRtOjmquPhAXdCFvYUkTWARumWtB_31TpoWXUVE7KnQSZp8Sb7MkJkJIceZmyWKm5BTA2FMLYTgTgozGYMFCoalLlD49o5dDuPrUTL6HAszKWrqb-OrTxTsIawd4qCDOnQUsoSzDtpXvNPruPhPhmb7IsUV42b21f2gYWOKT-qDIl0hgMbH6-eKZnaoeWzFN5qu9p7-KtFNq73LyVP7pVRt_fYloeP_urVGVmrVNDj1JdbJnMk3yFLlIqqfN8nNmdRP2ARkoGo0A5cKE-Vz70geFFN35lN9QUU40NPXopzoKv2Tfg3UuNSTcY5Sjpm2yLB_8Xh-GdZXMYSaRoAGJpVdKXmqkBMilXVjm7jbaiIAk1nOVIbrPpHGJqprqdNCk0gmEhDw1KQgJd0mC_kkNzskiGLrjMxYcYXVIKUgx3CletIwyy2LW6TbwC8Kn3FDVCflAMJhJBxGwmEkesJj1CIniKqoV9_z7-JHM-LXg_OHWQlRZLZF9ptR_xBFBRGqJPxs92__3CPLqGpx7wizTxbK6Ys5QHWmVIfVfH0HPqvjYA
  priority: 102
  providerName: IOP Publishing
Title Backpropagation neural network prediction for cryptocurrency bitcoin prices
URI https://iopscience.iop.org/article/10.1088/1742-6596/1339/1/012060
https://www.proquest.com/docview/2568048376
Volume 1339
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEB7cFcGL-MT1sRT0aNndpo_kJCquL9TFB3oLSZvAIrR1dz3sv3cmbVlE0B5yaKY9fMm8MpMZgOOMdokWxhfMcD9klvucIoWZCrnljJs4oYvC9w_x9Wt4-x691wdu0zqtspGJTlBnRUpn5D1UzdyVP49Py0-fukZRdLVuodGC5QA9haANy-eXD6OnRhYzfJLqSmTgo67lTYYXun31OxH30E0TvUGPrpG6SpUL_dQaF-UvIe00z3Ad1mqT0Tur1ngDlky-CSsudTOdbsHduUo_8FuUDA5lj0pUIn1eJXh75YRiMW4GDVQvnczLWZG6skzp3NPjWVqMc6QiibENr8PLl4trv26R4Kcs4Oj4MdVXSiQaeTXQWT-0EXWRCTg3mRWxzpAfI2VspPuWkXUYBSpSHKFITMKVYjvQzovc7IIXhJacv1ALjb9BVkfeF1oPlImtsHHYgX4DjCyrShjSRbA5l4SlJCwlYSkHssKyAycIoKy5Yvo_-dEP8tvRxfNPCllmtgMHzXosSBe7Y-_v6X1YRZNHVAkpB9CeTb7MIZoVM92FFh9edesd1CURH-F48zjC8ZG9fQPoTchO
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,38879,38904,43614,43819,53856,53882
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NS8MwFA9uInoRP3E6taBHS7umH8lJVJzTTRFU2C0kbQJDaOtWD_73vpe2DBG0x-a1h1_yvvK-CDnP8JQorl1ONXNDapjLMFKYyZAZRpmOEywUfnyKR2_hwzSaNhduiyatspWJVlBnRYp35B6oZmbbn8eX5YeLU6MwutqM0OiQ1ZCCosFK8eFdK4kpPEldEBm4oGlZm98FTl_zjsceOGncG3hYRGr7VC61U2dWlL9EtNU7wy2y2RiMzlW9w9tkRec7ZM0mbqaLXTK-luk7fAtywWLsYINKoM_r9G6nnGMkxq6Aeeqk86-yKlLblCn9ctSsSotZDlQoL_bI2_D29WbkNgMS3JQGDNw-Kn0peaKAUwOV-aGJcIZMwJjODI9VBtwYSW0i5RuKtmEUyEgygCLRCZOS7pNuXuT6gDhBaND1CxVX8BtgdOB8rtRA6thwE4c94rfAiLLugyFs_JoxgVgKxFIglmIgaix75AIAFA1PLP4nP_tB_vB88_KTQpSZ6ZF-ux9L0uXZOPx7-ZSsj14fJ2Jy_zQ-Ihtg_PA6NaVPutX8Ux-DgVGpE3uKvgFLOMYK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUFEvhbYgtrwiwZFssnk44yOvFY8CK1Ekbpad2AghZaMlHOivZxwnoG2FECKnSBk7zmf7y2d5ZgywU9hRorj2eazRT2KDPtqdwkImaDBGzTIbKHx-wY6vk9Ob9GYGhi-xMOOqpf4-3bpEwQ7C1iEOA9LQkc9SzgJaX_FgENj4TxYGVWFmYZ4mcGpH-snlqGPkmK7MBUbagoidn9fblU39pWapJf9RdfP_GS7Cbddy53Zy33-sVT__-09Sx89_2hJ8ayWqt-dKfYcZXf6AL42raP7wE872ZX5PzSAmanrVsykxyb50DuVeNbF7P80TEsRePnmq6nHepIHKnzx1V-fju5KsLEMtw_Xw6M_Bsd8eyeDncYS00IxlKCXPFHFDpIowMak9tSZC1IXhTBU0_1OpTapCE1s1mkYylUigZzpDKeMVmCvHpV4FL0qMXWwmiiuqhqiFuIYrNZCaGW5Y0oOw6wJRucwbotkxRxQWJ2FxEhYnMRAOpx7sErKinYUP75tvT5mfjg6upi0EAd-D9a7nX01JKGKTjJ_9-tg7t2BhdDgUv08uztbgK6kv7nxj1mGunjzqDVI4tdpshu8zqizowA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Backpropagation+neural+network+prediction+for+cryptocurrency+bitcoin+prices&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Rini+Sovia&rft.au=Yanto%2C+Musli&rft.au=Budiman%2C+Arif&rft.au=Liga+Mayola&rft.date=2019-12-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1339&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1339%2F1%2F012060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon